2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
30 * RAID10 provides a combination of RAID0 and RAID1 functionality.
31 * The layout of data is defined by
34 * near_copies (stored in low byte of layout)
35 * far_copies (stored in second byte of layout)
36 * far_offset (stored in bit 16 of layout )
38 * The data to be stored is divided into chunks using chunksize.
39 * Each device is divided into far_copies sections.
40 * In each section, chunks are laid out in a style similar to raid0, but
41 * near_copies copies of each chunk is stored (each on a different drive).
42 * The starting device for each section is offset near_copies from the starting
43 * device of the previous section.
44 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * near_copies and far_copies must be at least one, and their product is at most
49 * If far_offset is true, then the far_copies are handled a bit differently.
50 * The copies are still in different stripes, but instead of be very far apart
51 * on disk, there are adjacent stripes.
55 * Number of guaranteed r10bios in case of extreme VM load:
57 #define NR_RAID10_BIOS 256
59 static void unplug_slaves(mddev_t
*mddev
);
61 static void allow_barrier(conf_t
*conf
);
62 static void lower_barrier(conf_t
*conf
);
64 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
68 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
70 /* allocate a r10bio with room for raid_disks entries in the bios array */
71 r10_bio
= kzalloc(size
, gfp_flags
);
72 if (!r10_bio
&& conf
->mddev
)
73 unplug_slaves(conf
->mddev
);
78 static void r10bio_pool_free(void *r10_bio
, void *data
)
83 /* Maximum size of each resync request */
84 #define RESYNC_BLOCK_SIZE (64*1024)
85 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
86 /* amount of memory to reserve for resync requests */
87 #define RESYNC_WINDOW (1024*1024)
88 /* maximum number of concurrent requests, memory permitting */
89 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
92 * When performing a resync, we need to read and compare, so
93 * we need as many pages are there are copies.
94 * When performing a recovery, we need 2 bios, one for read,
95 * one for write (we recover only one drive per r10buf)
98 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
107 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
109 unplug_slaves(conf
->mddev
);
113 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
114 nalloc
= conf
->copies
; /* resync */
116 nalloc
= 2; /* recovery */
121 for (j
= nalloc
; j
-- ; ) {
122 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
125 r10_bio
->devs
[j
].bio
= bio
;
128 * Allocate RESYNC_PAGES data pages and attach them
131 for (j
= 0 ; j
< nalloc
; j
++) {
132 bio
= r10_bio
->devs
[j
].bio
;
133 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
134 page
= alloc_page(gfp_flags
);
138 bio
->bi_io_vec
[i
].bv_page
= page
;
146 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
148 for (i
= 0; i
< RESYNC_PAGES
; i
++)
149 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
152 while ( ++j
< nalloc
)
153 bio_put(r10_bio
->devs
[j
].bio
);
154 r10bio_pool_free(r10_bio
, conf
);
158 static void r10buf_pool_free(void *__r10_bio
, void *data
)
162 r10bio_t
*r10bio
= __r10_bio
;
165 for (j
=0; j
< conf
->copies
; j
++) {
166 struct bio
*bio
= r10bio
->devs
[j
].bio
;
168 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
169 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
170 bio
->bi_io_vec
[i
].bv_page
= NULL
;
175 r10bio_pool_free(r10bio
, conf
);
178 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
182 for (i
= 0; i
< conf
->copies
; i
++) {
183 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
184 if (*bio
&& *bio
!= IO_BLOCKED
)
190 static void free_r10bio(r10bio_t
*r10_bio
)
192 conf_t
*conf
= r10_bio
->mddev
->private;
195 * Wake up any possible resync thread that waits for the device
200 put_all_bios(conf
, r10_bio
);
201 mempool_free(r10_bio
, conf
->r10bio_pool
);
204 static void put_buf(r10bio_t
*r10_bio
)
206 conf_t
*conf
= r10_bio
->mddev
->private;
208 mempool_free(r10_bio
, conf
->r10buf_pool
);
213 static void reschedule_retry(r10bio_t
*r10_bio
)
216 mddev_t
*mddev
= r10_bio
->mddev
;
217 conf_t
*conf
= mddev
->private;
219 spin_lock_irqsave(&conf
->device_lock
, flags
);
220 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
222 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
224 /* wake up frozen array... */
225 wake_up(&conf
->wait_barrier
);
227 md_wakeup_thread(mddev
->thread
);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
235 static void raid_end_bio_io(r10bio_t
*r10_bio
)
237 struct bio
*bio
= r10_bio
->master_bio
;
240 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
241 free_r10bio(r10_bio
);
245 * Update disk head position estimator based on IRQ completion info.
247 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
249 conf_t
*conf
= r10_bio
->mddev
->private;
251 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
252 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
255 static void raid10_end_read_request(struct bio
*bio
, int error
)
257 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
258 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
260 conf_t
*conf
= r10_bio
->mddev
->private;
263 slot
= r10_bio
->read_slot
;
264 dev
= r10_bio
->devs
[slot
].devnum
;
266 * this branch is our 'one mirror IO has finished' event handler:
268 update_head_pos(slot
, r10_bio
);
272 * Set R10BIO_Uptodate in our master bio, so that
273 * we will return a good error code to the higher
274 * levels even if IO on some other mirrored buffer fails.
276 * The 'master' represents the composite IO operation to
277 * user-side. So if something waits for IO, then it will
278 * wait for the 'master' bio.
280 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
281 raid_end_bio_io(r10_bio
);
286 char b
[BDEVNAME_SIZE
];
287 if (printk_ratelimit())
288 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
289 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
290 reschedule_retry(r10_bio
);
293 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
296 static void raid10_end_write_request(struct bio
*bio
, int error
)
298 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
299 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
301 conf_t
*conf
= r10_bio
->mddev
->private;
303 for (slot
= 0; slot
< conf
->copies
; slot
++)
304 if (r10_bio
->devs
[slot
].bio
== bio
)
306 dev
= r10_bio
->devs
[slot
].devnum
;
309 * this branch is our 'one mirror IO has finished' event handler:
312 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
313 /* an I/O failed, we can't clear the bitmap */
314 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
317 * Set R10BIO_Uptodate in our master bio, so that
318 * we will return a good error code for to the higher
319 * levels even if IO on some other mirrored buffer fails.
321 * The 'master' represents the composite IO operation to
322 * user-side. So if something waits for IO, then it will
323 * wait for the 'master' bio.
325 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
327 update_head_pos(slot
, r10_bio
);
331 * Let's see if all mirrored write operations have finished
334 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
335 /* clear the bitmap if all writes complete successfully */
336 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
338 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
340 md_write_end(r10_bio
->mddev
);
341 raid_end_bio_io(r10_bio
);
344 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
349 * RAID10 layout manager
350 * Aswell as the chunksize and raid_disks count, there are two
351 * parameters: near_copies and far_copies.
352 * near_copies * far_copies must be <= raid_disks.
353 * Normally one of these will be 1.
354 * If both are 1, we get raid0.
355 * If near_copies == raid_disks, we get raid1.
357 * Chunks are layed out in raid0 style with near_copies copies of the
358 * first chunk, followed by near_copies copies of the next chunk and
360 * If far_copies > 1, then after 1/far_copies of the array has been assigned
361 * as described above, we start again with a device offset of near_copies.
362 * So we effectively have another copy of the whole array further down all
363 * the drives, but with blocks on different drives.
364 * With this layout, and block is never stored twice on the one device.
366 * raid10_find_phys finds the sector offset of a given virtual sector
367 * on each device that it is on.
369 * raid10_find_virt does the reverse mapping, from a device and a
370 * sector offset to a virtual address
373 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
383 /* now calculate first sector/dev */
384 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
385 sector
= r10bio
->sector
& conf
->chunk_mask
;
387 chunk
*= conf
->near_copies
;
389 dev
= sector_div(stripe
, conf
->raid_disks
);
390 if (conf
->far_offset
)
391 stripe
*= conf
->far_copies
;
393 sector
+= stripe
<< conf
->chunk_shift
;
395 /* and calculate all the others */
396 for (n
=0; n
< conf
->near_copies
; n
++) {
399 r10bio
->devs
[slot
].addr
= sector
;
400 r10bio
->devs
[slot
].devnum
= d
;
403 for (f
= 1; f
< conf
->far_copies
; f
++) {
404 d
+= conf
->near_copies
;
405 if (d
>= conf
->raid_disks
)
406 d
-= conf
->raid_disks
;
408 r10bio
->devs
[slot
].devnum
= d
;
409 r10bio
->devs
[slot
].addr
= s
;
413 if (dev
>= conf
->raid_disks
) {
415 sector
+= (conf
->chunk_mask
+ 1);
418 BUG_ON(slot
!= conf
->copies
);
421 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
423 sector_t offset
, chunk
, vchunk
;
425 offset
= sector
& conf
->chunk_mask
;
426 if (conf
->far_offset
) {
428 chunk
= sector
>> conf
->chunk_shift
;
429 fc
= sector_div(chunk
, conf
->far_copies
);
430 dev
-= fc
* conf
->near_copies
;
432 dev
+= conf
->raid_disks
;
434 while (sector
>= conf
->stride
) {
435 sector
-= conf
->stride
;
436 if (dev
< conf
->near_copies
)
437 dev
+= conf
->raid_disks
- conf
->near_copies
;
439 dev
-= conf
->near_copies
;
441 chunk
= sector
>> conf
->chunk_shift
;
443 vchunk
= chunk
* conf
->raid_disks
+ dev
;
444 sector_div(vchunk
, conf
->near_copies
);
445 return (vchunk
<< conf
->chunk_shift
) + offset
;
449 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
451 * @bvm: properties of new bio
452 * @biovec: the request that could be merged to it.
454 * Return amount of bytes we can accept at this offset
455 * If near_copies == raid_disk, there are no striping issues,
456 * but in that case, the function isn't called at all.
458 static int raid10_mergeable_bvec(struct request_queue
*q
,
459 struct bvec_merge_data
*bvm
,
460 struct bio_vec
*biovec
)
462 mddev_t
*mddev
= q
->queuedata
;
463 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
465 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
466 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
468 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
469 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
470 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
471 return biovec
->bv_len
;
477 * This routine returns the disk from which the requested read should
478 * be done. There is a per-array 'next expected sequential IO' sector
479 * number - if this matches on the next IO then we use the last disk.
480 * There is also a per-disk 'last know head position' sector that is
481 * maintained from IRQ contexts, both the normal and the resync IO
482 * completion handlers update this position correctly. If there is no
483 * perfect sequential match then we pick the disk whose head is closest.
485 * If there are 2 mirrors in the same 2 devices, performance degrades
486 * because position is mirror, not device based.
488 * The rdev for the device selected will have nr_pending incremented.
492 * FIXME: possibly should rethink readbalancing and do it differently
493 * depending on near_copies / far_copies geometry.
495 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
497 const unsigned long this_sector
= r10_bio
->sector
;
498 int disk
, slot
, nslot
;
499 const int sectors
= r10_bio
->sectors
;
500 sector_t new_distance
, current_distance
;
503 raid10_find_phys(conf
, r10_bio
);
506 * Check if we can balance. We can balance on the whole
507 * device if no resync is going on (recovery is ok), or below
508 * the resync window. We take the first readable disk when
509 * above the resync window.
511 if (conf
->mddev
->recovery_cp
< MaxSector
512 && (this_sector
+ sectors
>= conf
->next_resync
)) {
513 /* make sure that disk is operational */
515 disk
= r10_bio
->devs
[slot
].devnum
;
517 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
518 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
519 !test_bit(In_sync
, &rdev
->flags
)) {
521 if (slot
== conf
->copies
) {
526 disk
= r10_bio
->devs
[slot
].devnum
;
532 /* make sure the disk is operational */
534 disk
= r10_bio
->devs
[slot
].devnum
;
535 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
536 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
537 !test_bit(In_sync
, &rdev
->flags
)) {
539 if (slot
== conf
->copies
) {
543 disk
= r10_bio
->devs
[slot
].devnum
;
547 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
548 conf
->mirrors
[disk
].head_position
);
550 /* Find the disk whose head is closest,
551 * or - for far > 1 - find the closest to partition beginning */
553 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
554 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
557 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
558 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
559 !test_bit(In_sync
, &rdev
->flags
))
562 /* This optimisation is debatable, and completely destroys
563 * sequential read speed for 'far copies' arrays. So only
564 * keep it for 'near' arrays, and review those later.
566 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
572 /* for far > 1 always use the lowest address */
573 if (conf
->far_copies
> 1)
574 new_distance
= r10_bio
->devs
[nslot
].addr
;
576 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
577 conf
->mirrors
[ndisk
].head_position
);
578 if (new_distance
< current_distance
) {
579 current_distance
= new_distance
;
586 r10_bio
->read_slot
= slot
;
587 /* conf->next_seq_sect = this_sector + sectors;*/
589 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
590 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
598 static void unplug_slaves(mddev_t
*mddev
)
600 conf_t
*conf
= mddev
->private;
604 for (i
=0; i
<mddev
->raid_disks
; i
++) {
605 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
606 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
607 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
609 atomic_inc(&rdev
->nr_pending
);
614 rdev_dec_pending(rdev
, mddev
);
621 static void raid10_unplug(struct request_queue
*q
)
623 mddev_t
*mddev
= q
->queuedata
;
625 unplug_slaves(q
->queuedata
);
626 md_wakeup_thread(mddev
->thread
);
629 static int raid10_congested(void *data
, int bits
)
631 mddev_t
*mddev
= data
;
632 conf_t
*conf
= mddev
->private;
635 if (mddev_congested(mddev
, bits
))
638 for (i
= 0; i
< mddev
->raid_disks
&& ret
== 0; i
++) {
639 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
640 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
641 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
643 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
650 static int flush_pending_writes(conf_t
*conf
)
652 /* Any writes that have been queued but are awaiting
653 * bitmap updates get flushed here.
654 * We return 1 if any requests were actually submitted.
658 spin_lock_irq(&conf
->device_lock
);
660 if (conf
->pending_bio_list
.head
) {
662 bio
= bio_list_get(&conf
->pending_bio_list
);
663 blk_remove_plug(conf
->mddev
->queue
);
664 spin_unlock_irq(&conf
->device_lock
);
665 /* flush any pending bitmap writes to disk
666 * before proceeding w/ I/O */
667 bitmap_unplug(conf
->mddev
->bitmap
);
669 while (bio
) { /* submit pending writes */
670 struct bio
*next
= bio
->bi_next
;
672 generic_make_request(bio
);
677 spin_unlock_irq(&conf
->device_lock
);
681 * Sometimes we need to suspend IO while we do something else,
682 * either some resync/recovery, or reconfigure the array.
683 * To do this we raise a 'barrier'.
684 * The 'barrier' is a counter that can be raised multiple times
685 * to count how many activities are happening which preclude
687 * We can only raise the barrier if there is no pending IO.
688 * i.e. if nr_pending == 0.
689 * We choose only to raise the barrier if no-one is waiting for the
690 * barrier to go down. This means that as soon as an IO request
691 * is ready, no other operations which require a barrier will start
692 * until the IO request has had a chance.
694 * So: regular IO calls 'wait_barrier'. When that returns there
695 * is no backgroup IO happening, It must arrange to call
696 * allow_barrier when it has finished its IO.
697 * backgroup IO calls must call raise_barrier. Once that returns
698 * there is no normal IO happeing. It must arrange to call
699 * lower_barrier when the particular background IO completes.
702 static void raise_barrier(conf_t
*conf
, int force
)
704 BUG_ON(force
&& !conf
->barrier
);
705 spin_lock_irq(&conf
->resync_lock
);
707 /* Wait until no block IO is waiting (unless 'force') */
708 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
710 raid10_unplug(conf
->mddev
->queue
));
712 /* block any new IO from starting */
715 /* No wait for all pending IO to complete */
716 wait_event_lock_irq(conf
->wait_barrier
,
717 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
719 raid10_unplug(conf
->mddev
->queue
));
721 spin_unlock_irq(&conf
->resync_lock
);
724 static void lower_barrier(conf_t
*conf
)
727 spin_lock_irqsave(&conf
->resync_lock
, flags
);
729 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
730 wake_up(&conf
->wait_barrier
);
733 static void wait_barrier(conf_t
*conf
)
735 spin_lock_irq(&conf
->resync_lock
);
738 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
740 raid10_unplug(conf
->mddev
->queue
));
744 spin_unlock_irq(&conf
->resync_lock
);
747 static void allow_barrier(conf_t
*conf
)
750 spin_lock_irqsave(&conf
->resync_lock
, flags
);
752 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
753 wake_up(&conf
->wait_barrier
);
756 static void freeze_array(conf_t
*conf
)
758 /* stop syncio and normal IO and wait for everything to
760 * We increment barrier and nr_waiting, and then
761 * wait until nr_pending match nr_queued+1
762 * This is called in the context of one normal IO request
763 * that has failed. Thus any sync request that might be pending
764 * will be blocked by nr_pending, and we need to wait for
765 * pending IO requests to complete or be queued for re-try.
766 * Thus the number queued (nr_queued) plus this request (1)
767 * must match the number of pending IOs (nr_pending) before
770 spin_lock_irq(&conf
->resync_lock
);
773 wait_event_lock_irq(conf
->wait_barrier
,
774 conf
->nr_pending
== conf
->nr_queued
+1,
776 ({ flush_pending_writes(conf
);
777 raid10_unplug(conf
->mddev
->queue
); }));
778 spin_unlock_irq(&conf
->resync_lock
);
781 static void unfreeze_array(conf_t
*conf
)
783 /* reverse the effect of the freeze */
784 spin_lock_irq(&conf
->resync_lock
);
787 wake_up(&conf
->wait_barrier
);
788 spin_unlock_irq(&conf
->resync_lock
);
791 static int make_request(struct request_queue
*q
, struct bio
* bio
)
793 mddev_t
*mddev
= q
->queuedata
;
794 conf_t
*conf
= mddev
->private;
795 mirror_info_t
*mirror
;
797 struct bio
*read_bio
;
800 int chunk_sects
= conf
->chunk_mask
+ 1;
801 const int rw
= bio_data_dir(bio
);
802 const bool do_sync
= bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
805 mdk_rdev_t
*blocked_rdev
;
807 if (unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
808 md_barrier_request(mddev
, bio
);
812 /* If this request crosses a chunk boundary, we need to
813 * split it. This will only happen for 1 PAGE (or less) requests.
815 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
817 conf
->near_copies
< conf
->raid_disks
)) {
819 /* Sanity check -- queue functions should prevent this happening */
820 if (bio
->bi_vcnt
!= 1 ||
823 /* This is a one page bio that upper layers
824 * refuse to split for us, so we need to split it.
827 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
828 if (make_request(q
, &bp
->bio1
))
829 generic_make_request(&bp
->bio1
);
830 if (make_request(q
, &bp
->bio2
))
831 generic_make_request(&bp
->bio2
);
833 bio_pair_release(bp
);
836 printk("raid10_make_request bug: can't convert block across chunks"
837 " or bigger than %dk %llu %d\n", chunk_sects
/2,
838 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
844 md_write_start(mddev
, bio
);
847 * Register the new request and wait if the reconstruction
848 * thread has put up a bar for new requests.
849 * Continue immediately if no resync is active currently.
853 cpu
= part_stat_lock();
854 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
855 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
859 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
861 r10_bio
->master_bio
= bio
;
862 r10_bio
->sectors
= bio
->bi_size
>> 9;
864 r10_bio
->mddev
= mddev
;
865 r10_bio
->sector
= bio
->bi_sector
;
870 * read balancing logic:
872 int disk
= read_balance(conf
, r10_bio
);
873 int slot
= r10_bio
->read_slot
;
875 raid_end_bio_io(r10_bio
);
878 mirror
= conf
->mirrors
+ disk
;
880 read_bio
= bio_clone(bio
, GFP_NOIO
);
882 r10_bio
->devs
[slot
].bio
= read_bio
;
884 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
885 mirror
->rdev
->data_offset
;
886 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
887 read_bio
->bi_end_io
= raid10_end_read_request
;
888 read_bio
->bi_rw
= READ
| (do_sync
<< BIO_RW_SYNCIO
);
889 read_bio
->bi_private
= r10_bio
;
891 generic_make_request(read_bio
);
898 /* first select target devices under rcu_lock and
899 * inc refcount on their rdev. Record them by setting
902 raid10_find_phys(conf
, r10_bio
);
906 for (i
= 0; i
< conf
->copies
; i
++) {
907 int d
= r10_bio
->devs
[i
].devnum
;
908 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
909 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
910 atomic_inc(&rdev
->nr_pending
);
914 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
915 atomic_inc(&rdev
->nr_pending
);
916 r10_bio
->devs
[i
].bio
= bio
;
918 r10_bio
->devs
[i
].bio
= NULL
;
919 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
924 if (unlikely(blocked_rdev
)) {
925 /* Have to wait for this device to get unblocked, then retry */
929 for (j
= 0; j
< i
; j
++)
930 if (r10_bio
->devs
[j
].bio
) {
931 d
= r10_bio
->devs
[j
].devnum
;
932 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
935 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
940 atomic_set(&r10_bio
->remaining
, 0);
943 for (i
= 0; i
< conf
->copies
; i
++) {
945 int d
= r10_bio
->devs
[i
].devnum
;
946 if (!r10_bio
->devs
[i
].bio
)
949 mbio
= bio_clone(bio
, GFP_NOIO
);
950 r10_bio
->devs
[i
].bio
= mbio
;
952 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
953 conf
->mirrors
[d
].rdev
->data_offset
;
954 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
955 mbio
->bi_end_io
= raid10_end_write_request
;
956 mbio
->bi_rw
= WRITE
| (do_sync
<< BIO_RW_SYNCIO
);
957 mbio
->bi_private
= r10_bio
;
959 atomic_inc(&r10_bio
->remaining
);
960 bio_list_add(&bl
, mbio
);
963 if (unlikely(!atomic_read(&r10_bio
->remaining
))) {
964 /* the array is dead */
966 raid_end_bio_io(r10_bio
);
970 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
971 spin_lock_irqsave(&conf
->device_lock
, flags
);
972 bio_list_merge(&conf
->pending_bio_list
, &bl
);
973 blk_plug_device(mddev
->queue
);
974 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
976 /* In case raid10d snuck in to freeze_array */
977 wake_up(&conf
->wait_barrier
);
980 md_wakeup_thread(mddev
->thread
);
985 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
987 conf_t
*conf
= mddev
->private;
990 if (conf
->near_copies
< conf
->raid_disks
)
991 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
992 if (conf
->near_copies
> 1)
993 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
994 if (conf
->far_copies
> 1) {
995 if (conf
->far_offset
)
996 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
998 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1000 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1001 conf
->raid_disks
- mddev
->degraded
);
1002 for (i
= 0; i
< conf
->raid_disks
; i
++)
1003 seq_printf(seq
, "%s",
1004 conf
->mirrors
[i
].rdev
&&
1005 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1006 seq_printf(seq
, "]");
1009 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1011 char b
[BDEVNAME_SIZE
];
1012 conf_t
*conf
= mddev
->private;
1015 * If it is not operational, then we have already marked it as dead
1016 * else if it is the last working disks, ignore the error, let the
1017 * next level up know.
1018 * else mark the drive as failed
1020 if (test_bit(In_sync
, &rdev
->flags
)
1021 && conf
->raid_disks
-mddev
->degraded
== 1)
1023 * Don't fail the drive, just return an IO error.
1024 * The test should really be more sophisticated than
1025 * "working_disks == 1", but it isn't critical, and
1026 * can wait until we do more sophisticated "is the drive
1027 * really dead" tests...
1030 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1031 unsigned long flags
;
1032 spin_lock_irqsave(&conf
->device_lock
, flags
);
1034 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1036 * if recovery is running, make sure it aborts.
1038 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1040 set_bit(Faulty
, &rdev
->flags
);
1041 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1042 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device.\n"
1043 "raid10: Operation continuing on %d devices.\n",
1044 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1047 static void print_conf(conf_t
*conf
)
1052 printk("RAID10 conf printout:\n");
1054 printk("(!conf)\n");
1057 printk(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1060 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1061 char b
[BDEVNAME_SIZE
];
1062 tmp
= conf
->mirrors
+ i
;
1064 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1065 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1066 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1067 bdevname(tmp
->rdev
->bdev
,b
));
1071 static void close_sync(conf_t
*conf
)
1074 allow_barrier(conf
);
1076 mempool_destroy(conf
->r10buf_pool
);
1077 conf
->r10buf_pool
= NULL
;
1080 /* check if there are enough drives for
1081 * every block to appear on atleast one
1083 static int enough(conf_t
*conf
)
1088 int n
= conf
->copies
;
1091 if (conf
->mirrors
[first
].rdev
)
1093 first
= (first
+1) % conf
->raid_disks
;
1097 } while (first
!= 0);
1101 static int raid10_spare_active(mddev_t
*mddev
)
1104 conf_t
*conf
= mddev
->private;
1108 * Find all non-in_sync disks within the RAID10 configuration
1109 * and mark them in_sync
1111 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1112 tmp
= conf
->mirrors
+ i
;
1114 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1115 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1116 unsigned long flags
;
1117 spin_lock_irqsave(&conf
->device_lock
, flags
);
1119 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1128 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1130 conf_t
*conf
= mddev
->private;
1135 int last
= mddev
->raid_disks
- 1;
1137 if (mddev
->recovery_cp
< MaxSector
)
1138 /* only hot-add to in-sync arrays, as recovery is
1139 * very different from resync
1145 if (rdev
->raid_disk
>= 0)
1146 first
= last
= rdev
->raid_disk
;
1148 if (rdev
->saved_raid_disk
>= 0 &&
1149 rdev
->saved_raid_disk
>= first
&&
1150 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1151 mirror
= rdev
->saved_raid_disk
;
1154 for ( ; mirror
<= last
; mirror
++)
1155 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1157 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1158 rdev
->data_offset
<< 9);
1159 /* as we don't honour merge_bvec_fn, we must
1160 * never risk violating it, so limit
1161 * ->max_segments to one lying with a single
1162 * page, as a one page request is never in
1165 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1166 blk_queue_max_segments(mddev
->queue
, 1);
1167 blk_queue_segment_boundary(mddev
->queue
,
1168 PAGE_CACHE_SIZE
- 1);
1171 p
->head_position
= 0;
1172 rdev
->raid_disk
= mirror
;
1174 if (rdev
->saved_raid_disk
!= mirror
)
1176 rcu_assign_pointer(p
->rdev
, rdev
);
1180 md_integrity_add_rdev(rdev
, mddev
);
1185 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1187 conf_t
*conf
= mddev
->private;
1190 mirror_info_t
*p
= conf
->mirrors
+ number
;
1195 if (test_bit(In_sync
, &rdev
->flags
) ||
1196 atomic_read(&rdev
->nr_pending
)) {
1200 /* Only remove faulty devices in recovery
1203 if (!test_bit(Faulty
, &rdev
->flags
) &&
1210 if (atomic_read(&rdev
->nr_pending
)) {
1211 /* lost the race, try later */
1216 md_integrity_register(mddev
);
1225 static void end_sync_read(struct bio
*bio
, int error
)
1227 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1228 conf_t
*conf
= r10_bio
->mddev
->private;
1231 for (i
=0; i
<conf
->copies
; i
++)
1232 if (r10_bio
->devs
[i
].bio
== bio
)
1234 BUG_ON(i
== conf
->copies
);
1235 update_head_pos(i
, r10_bio
);
1236 d
= r10_bio
->devs
[i
].devnum
;
1238 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1239 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1241 atomic_add(r10_bio
->sectors
,
1242 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1243 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1244 md_error(r10_bio
->mddev
,
1245 conf
->mirrors
[d
].rdev
);
1248 /* for reconstruct, we always reschedule after a read.
1249 * for resync, only after all reads
1251 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1252 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1253 atomic_dec_and_test(&r10_bio
->remaining
)) {
1254 /* we have read all the blocks,
1255 * do the comparison in process context in raid10d
1257 reschedule_retry(r10_bio
);
1261 static void end_sync_write(struct bio
*bio
, int error
)
1263 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1264 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1265 mddev_t
*mddev
= r10_bio
->mddev
;
1266 conf_t
*conf
= mddev
->private;
1269 for (i
= 0; i
< conf
->copies
; i
++)
1270 if (r10_bio
->devs
[i
].bio
== bio
)
1272 d
= r10_bio
->devs
[i
].devnum
;
1275 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1277 update_head_pos(i
, r10_bio
);
1279 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1280 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1281 if (r10_bio
->master_bio
== NULL
) {
1282 /* the primary of several recovery bios */
1283 sector_t s
= r10_bio
->sectors
;
1285 md_done_sync(mddev
, s
, 1);
1288 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1296 * Note: sync and recover and handled very differently for raid10
1297 * This code is for resync.
1298 * For resync, we read through virtual addresses and read all blocks.
1299 * If there is any error, we schedule a write. The lowest numbered
1300 * drive is authoritative.
1301 * However requests come for physical address, so we need to map.
1302 * For every physical address there are raid_disks/copies virtual addresses,
1303 * which is always are least one, but is not necessarly an integer.
1304 * This means that a physical address can span multiple chunks, so we may
1305 * have to submit multiple io requests for a single sync request.
1308 * We check if all blocks are in-sync and only write to blocks that
1311 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1313 conf_t
*conf
= mddev
->private;
1315 struct bio
*tbio
, *fbio
;
1317 atomic_set(&r10_bio
->remaining
, 1);
1319 /* find the first device with a block */
1320 for (i
=0; i
<conf
->copies
; i
++)
1321 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1324 if (i
== conf
->copies
)
1328 fbio
= r10_bio
->devs
[i
].bio
;
1330 /* now find blocks with errors */
1331 for (i
=0 ; i
< conf
->copies
; i
++) {
1333 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1335 tbio
= r10_bio
->devs
[i
].bio
;
1337 if (tbio
->bi_end_io
!= end_sync_read
)
1341 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1342 /* We know that the bi_io_vec layout is the same for
1343 * both 'first' and 'i', so we just compare them.
1344 * All vec entries are PAGE_SIZE;
1346 for (j
= 0; j
< vcnt
; j
++)
1347 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1348 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1353 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1355 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1356 /* Don't fix anything. */
1358 /* Ok, we need to write this bio
1359 * First we need to fixup bv_offset, bv_len and
1360 * bi_vecs, as the read request might have corrupted these
1362 tbio
->bi_vcnt
= vcnt
;
1363 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1365 tbio
->bi_phys_segments
= 0;
1366 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1367 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1368 tbio
->bi_next
= NULL
;
1369 tbio
->bi_rw
= WRITE
;
1370 tbio
->bi_private
= r10_bio
;
1371 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1373 for (j
=0; j
< vcnt
; j
++) {
1374 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1375 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1377 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1378 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1381 tbio
->bi_end_io
= end_sync_write
;
1383 d
= r10_bio
->devs
[i
].devnum
;
1384 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1385 atomic_inc(&r10_bio
->remaining
);
1386 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1388 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1389 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1390 generic_make_request(tbio
);
1394 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1395 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1401 * Now for the recovery code.
1402 * Recovery happens across physical sectors.
1403 * We recover all non-is_sync drives by finding the virtual address of
1404 * each, and then choose a working drive that also has that virt address.
1405 * There is a separate r10_bio for each non-in_sync drive.
1406 * Only the first two slots are in use. The first for reading,
1407 * The second for writing.
1411 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1413 conf_t
*conf
= mddev
->private;
1415 struct bio
*bio
, *wbio
;
1418 /* move the pages across to the second bio
1419 * and submit the write request
1421 bio
= r10_bio
->devs
[0].bio
;
1422 wbio
= r10_bio
->devs
[1].bio
;
1423 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1424 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1425 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1426 wbio
->bi_io_vec
[i
].bv_page
= p
;
1428 d
= r10_bio
->devs
[1].devnum
;
1430 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1431 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1432 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1433 generic_make_request(wbio
);
1435 bio_endio(wbio
, -EIO
);
1440 * Used by fix_read_error() to decay the per rdev read_errors.
1441 * We halve the read error count for every hour that has elapsed
1442 * since the last recorded read error.
1445 static void check_decay_read_errors(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1447 struct timespec cur_time_mon
;
1448 unsigned long hours_since_last
;
1449 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1451 ktime_get_ts(&cur_time_mon
);
1453 if (rdev
->last_read_error
.tv_sec
== 0 &&
1454 rdev
->last_read_error
.tv_nsec
== 0) {
1455 /* first time we've seen a read error */
1456 rdev
->last_read_error
= cur_time_mon
;
1460 hours_since_last
= (cur_time_mon
.tv_sec
-
1461 rdev
->last_read_error
.tv_sec
) / 3600;
1463 rdev
->last_read_error
= cur_time_mon
;
1466 * if hours_since_last is > the number of bits in read_errors
1467 * just set read errors to 0. We do this to avoid
1468 * overflowing the shift of read_errors by hours_since_last.
1470 if (hours_since_last
>= 8 * sizeof(read_errors
))
1471 atomic_set(&rdev
->read_errors
, 0);
1473 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1477 * This is a kernel thread which:
1479 * 1. Retries failed read operations on working mirrors.
1480 * 2. Updates the raid superblock when problems encounter.
1481 * 3. Performs writes following reads for array synchronising.
1484 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1486 int sect
= 0; /* Offset from r10_bio->sector */
1487 int sectors
= r10_bio
->sectors
;
1489 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
1493 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1494 char b
[BDEVNAME_SIZE
];
1495 int cur_read_error_count
= 0;
1497 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1498 bdevname(rdev
->bdev
, b
);
1500 if (test_bit(Faulty
, &rdev
->flags
)) {
1502 /* drive has already been failed, just ignore any
1503 more fix_read_error() attempts */
1507 check_decay_read_errors(mddev
, rdev
);
1508 atomic_inc(&rdev
->read_errors
);
1509 cur_read_error_count
= atomic_read(&rdev
->read_errors
);
1510 if (cur_read_error_count
> max_read_errors
) {
1513 "raid10: %s: Raid device exceeded "
1514 "read_error threshold "
1515 "[cur %d:max %d]\n",
1516 b
, cur_read_error_count
, max_read_errors
);
1518 "raid10: %s: Failing raid "
1520 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1528 int sl
= r10_bio
->read_slot
;
1532 if (s
> (PAGE_SIZE
>>9))
1537 int d
= r10_bio
->devs
[sl
].devnum
;
1538 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1540 test_bit(In_sync
, &rdev
->flags
)) {
1541 atomic_inc(&rdev
->nr_pending
);
1543 success
= sync_page_io(rdev
->bdev
,
1544 r10_bio
->devs
[sl
].addr
+
1545 sect
+ rdev
->data_offset
,
1547 conf
->tmppage
, READ
);
1548 rdev_dec_pending(rdev
, mddev
);
1554 if (sl
== conf
->copies
)
1556 } while (!success
&& sl
!= r10_bio
->read_slot
);
1560 /* Cannot read from anywhere -- bye bye array */
1561 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1562 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1567 /* write it back and re-read */
1569 while (sl
!= r10_bio
->read_slot
) {
1570 char b
[BDEVNAME_SIZE
];
1575 d
= r10_bio
->devs
[sl
].devnum
;
1576 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1578 test_bit(In_sync
, &rdev
->flags
)) {
1579 atomic_inc(&rdev
->nr_pending
);
1581 atomic_add(s
, &rdev
->corrected_errors
);
1582 if (sync_page_io(rdev
->bdev
,
1583 r10_bio
->devs
[sl
].addr
+
1584 sect
+ rdev
->data_offset
,
1585 s
<<9, conf
->tmppage
, WRITE
)
1587 /* Well, this device is dead */
1589 "raid10:%s: read correction "
1591 " (%d sectors at %llu on %s)\n",
1593 (unsigned long long)(sect
+
1595 bdevname(rdev
->bdev
, b
));
1596 printk(KERN_NOTICE
"raid10:%s: failing "
1598 bdevname(rdev
->bdev
, b
));
1599 md_error(mddev
, rdev
);
1601 rdev_dec_pending(rdev
, mddev
);
1606 while (sl
!= r10_bio
->read_slot
) {
1611 d
= r10_bio
->devs
[sl
].devnum
;
1612 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1614 test_bit(In_sync
, &rdev
->flags
)) {
1615 char b
[BDEVNAME_SIZE
];
1616 atomic_inc(&rdev
->nr_pending
);
1618 if (sync_page_io(rdev
->bdev
,
1619 r10_bio
->devs
[sl
].addr
+
1620 sect
+ rdev
->data_offset
,
1621 s
<<9, conf
->tmppage
,
1623 /* Well, this device is dead */
1625 "raid10:%s: unable to read back "
1627 " (%d sectors at %llu on %s)\n",
1629 (unsigned long long)(sect
+
1631 bdevname(rdev
->bdev
, b
));
1632 printk(KERN_NOTICE
"raid10:%s: failing drive\n",
1633 bdevname(rdev
->bdev
, b
));
1635 md_error(mddev
, rdev
);
1638 "raid10:%s: read error corrected"
1639 " (%d sectors at %llu on %s)\n",
1641 (unsigned long long)(sect
+
1643 bdevname(rdev
->bdev
, b
));
1646 rdev_dec_pending(rdev
, mddev
);
1657 static void raid10d(mddev_t
*mddev
)
1661 unsigned long flags
;
1662 conf_t
*conf
= mddev
->private;
1663 struct list_head
*head
= &conf
->retry_list
;
1667 md_check_recovery(mddev
);
1670 char b
[BDEVNAME_SIZE
];
1672 unplug
+= flush_pending_writes(conf
);
1674 spin_lock_irqsave(&conf
->device_lock
, flags
);
1675 if (list_empty(head
)) {
1676 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1679 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1680 list_del(head
->prev
);
1682 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1684 mddev
= r10_bio
->mddev
;
1685 conf
= mddev
->private;
1686 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1687 sync_request_write(mddev
, r10_bio
);
1689 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1690 recovery_request_write(mddev
, r10_bio
);
1694 /* we got a read error. Maybe the drive is bad. Maybe just
1695 * the block and we can fix it.
1696 * We freeze all other IO, and try reading the block from
1697 * other devices. When we find one, we re-write
1698 * and check it that fixes the read error.
1699 * This is all done synchronously while the array is
1702 if (mddev
->ro
== 0) {
1704 fix_read_error(conf
, mddev
, r10_bio
);
1705 unfreeze_array(conf
);
1708 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1709 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1710 mddev
->ro
? IO_BLOCKED
: NULL
;
1711 mirror
= read_balance(conf
, r10_bio
);
1713 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1714 " read error for block %llu\n",
1715 bdevname(bio
->bi_bdev
,b
),
1716 (unsigned long long)r10_bio
->sector
);
1717 raid_end_bio_io(r10_bio
);
1720 const bool do_sync
= bio_rw_flagged(r10_bio
->master_bio
, BIO_RW_SYNCIO
);
1722 rdev
= conf
->mirrors
[mirror
].rdev
;
1723 if (printk_ratelimit())
1724 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1725 " another mirror\n",
1726 bdevname(rdev
->bdev
,b
),
1727 (unsigned long long)r10_bio
->sector
);
1728 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1729 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1730 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1731 + rdev
->data_offset
;
1732 bio
->bi_bdev
= rdev
->bdev
;
1733 bio
->bi_rw
= READ
| (do_sync
<< BIO_RW_SYNCIO
);
1734 bio
->bi_private
= r10_bio
;
1735 bio
->bi_end_io
= raid10_end_read_request
;
1737 generic_make_request(bio
);
1743 unplug_slaves(mddev
);
1747 static int init_resync(conf_t
*conf
)
1751 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1752 BUG_ON(conf
->r10buf_pool
);
1753 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1754 if (!conf
->r10buf_pool
)
1756 conf
->next_resync
= 0;
1761 * perform a "sync" on one "block"
1763 * We need to make sure that no normal I/O request - particularly write
1764 * requests - conflict with active sync requests.
1766 * This is achieved by tracking pending requests and a 'barrier' concept
1767 * that can be installed to exclude normal IO requests.
1769 * Resync and recovery are handled very differently.
1770 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1772 * For resync, we iterate over virtual addresses, read all copies,
1773 * and update if there are differences. If only one copy is live,
1775 * For recovery, we iterate over physical addresses, read a good
1776 * value for each non-in_sync drive, and over-write.
1778 * So, for recovery we may have several outstanding complex requests for a
1779 * given address, one for each out-of-sync device. We model this by allocating
1780 * a number of r10_bio structures, one for each out-of-sync device.
1781 * As we setup these structures, we collect all bio's together into a list
1782 * which we then process collectively to add pages, and then process again
1783 * to pass to generic_make_request.
1785 * The r10_bio structures are linked using a borrowed master_bio pointer.
1786 * This link is counted in ->remaining. When the r10_bio that points to NULL
1787 * has its remaining count decremented to 0, the whole complex operation
1792 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1794 conf_t
*conf
= mddev
->private;
1796 struct bio
*biolist
= NULL
, *bio
;
1797 sector_t max_sector
, nr_sectors
;
1803 sector_t sectors_skipped
= 0;
1804 int chunks_skipped
= 0;
1806 if (!conf
->r10buf_pool
)
1807 if (init_resync(conf
))
1811 max_sector
= mddev
->dev_sectors
;
1812 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1813 max_sector
= mddev
->resync_max_sectors
;
1814 if (sector_nr
>= max_sector
) {
1815 /* If we aborted, we need to abort the
1816 * sync on the 'current' bitmap chucks (there can
1817 * be several when recovering multiple devices).
1818 * as we may have started syncing it but not finished.
1819 * We can find the current address in
1820 * mddev->curr_resync, but for recovery,
1821 * we need to convert that to several
1822 * virtual addresses.
1824 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1825 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1826 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1828 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1830 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1831 bitmap_end_sync(mddev
->bitmap
, sect
,
1834 } else /* completed sync */
1837 bitmap_close_sync(mddev
->bitmap
);
1840 return sectors_skipped
;
1842 if (chunks_skipped
>= conf
->raid_disks
) {
1843 /* if there has been nothing to do on any drive,
1844 * then there is nothing to do at all..
1847 return (max_sector
- sector_nr
) + sectors_skipped
;
1850 if (max_sector
> mddev
->resync_max
)
1851 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1853 /* make sure whole request will fit in a chunk - if chunks
1856 if (conf
->near_copies
< conf
->raid_disks
&&
1857 max_sector
> (sector_nr
| conf
->chunk_mask
))
1858 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1860 * If there is non-resync activity waiting for us then
1861 * put in a delay to throttle resync.
1863 if (!go_faster
&& conf
->nr_waiting
)
1864 msleep_interruptible(1000);
1866 /* Again, very different code for resync and recovery.
1867 * Both must result in an r10bio with a list of bios that
1868 * have bi_end_io, bi_sector, bi_bdev set,
1869 * and bi_private set to the r10bio.
1870 * For recovery, we may actually create several r10bios
1871 * with 2 bios in each, that correspond to the bios in the main one.
1872 * In this case, the subordinate r10bios link back through a
1873 * borrowed master_bio pointer, and the counter in the master
1874 * includes a ref from each subordinate.
1876 /* First, we decide what to do and set ->bi_end_io
1877 * To end_sync_read if we want to read, and
1878 * end_sync_write if we will want to write.
1881 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1882 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1883 /* recovery... the complicated one */
1887 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1888 if (conf
->mirrors
[i
].rdev
&&
1889 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1890 int still_degraded
= 0;
1891 /* want to reconstruct this device */
1892 r10bio_t
*rb2
= r10_bio
;
1893 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1895 /* Unless we are doing a full sync, we only need
1896 * to recover the block if it is set in the bitmap
1898 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1900 if (sync_blocks
< max_sync
)
1901 max_sync
= sync_blocks
;
1904 /* yep, skip the sync_blocks here, but don't assume
1905 * that there will never be anything to do here
1907 chunks_skipped
= -1;
1911 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1912 raise_barrier(conf
, rb2
!= NULL
);
1913 atomic_set(&r10_bio
->remaining
, 0);
1915 r10_bio
->master_bio
= (struct bio
*)rb2
;
1917 atomic_inc(&rb2
->remaining
);
1918 r10_bio
->mddev
= mddev
;
1919 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1920 r10_bio
->sector
= sect
;
1922 raid10_find_phys(conf
, r10_bio
);
1924 /* Need to check if the array will still be
1927 for (j
=0; j
<conf
->raid_disks
; j
++)
1928 if (conf
->mirrors
[j
].rdev
== NULL
||
1929 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
1934 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1935 &sync_blocks
, still_degraded
);
1937 for (j
=0; j
<conf
->copies
;j
++) {
1938 int d
= r10_bio
->devs
[j
].devnum
;
1939 if (conf
->mirrors
[d
].rdev
&&
1940 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1941 /* This is where we read from */
1942 bio
= r10_bio
->devs
[0].bio
;
1943 bio
->bi_next
= biolist
;
1945 bio
->bi_private
= r10_bio
;
1946 bio
->bi_end_io
= end_sync_read
;
1948 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1949 conf
->mirrors
[d
].rdev
->data_offset
;
1950 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1951 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1952 atomic_inc(&r10_bio
->remaining
);
1953 /* and we write to 'i' */
1955 for (k
=0; k
<conf
->copies
; k
++)
1956 if (r10_bio
->devs
[k
].devnum
== i
)
1958 BUG_ON(k
== conf
->copies
);
1959 bio
= r10_bio
->devs
[1].bio
;
1960 bio
->bi_next
= biolist
;
1962 bio
->bi_private
= r10_bio
;
1963 bio
->bi_end_io
= end_sync_write
;
1965 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1966 conf
->mirrors
[i
].rdev
->data_offset
;
1967 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1969 r10_bio
->devs
[0].devnum
= d
;
1970 r10_bio
->devs
[1].devnum
= i
;
1975 if (j
== conf
->copies
) {
1976 /* Cannot recover, so abort the recovery */
1979 atomic_dec(&rb2
->remaining
);
1981 if (!test_and_set_bit(MD_RECOVERY_INTR
,
1983 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1988 if (biolist
== NULL
) {
1990 r10bio_t
*rb2
= r10_bio
;
1991 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1992 rb2
->master_bio
= NULL
;
1998 /* resync. Schedule a read for every block at this virt offset */
2001 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2003 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2004 &sync_blocks
, mddev
->degraded
) &&
2005 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2006 /* We can skip this block */
2008 return sync_blocks
+ sectors_skipped
;
2010 if (sync_blocks
< max_sync
)
2011 max_sync
= sync_blocks
;
2012 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2014 r10_bio
->mddev
= mddev
;
2015 atomic_set(&r10_bio
->remaining
, 0);
2016 raise_barrier(conf
, 0);
2017 conf
->next_resync
= sector_nr
;
2019 r10_bio
->master_bio
= NULL
;
2020 r10_bio
->sector
= sector_nr
;
2021 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
2022 raid10_find_phys(conf
, r10_bio
);
2023 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2025 for (i
=0; i
<conf
->copies
; i
++) {
2026 int d
= r10_bio
->devs
[i
].devnum
;
2027 bio
= r10_bio
->devs
[i
].bio
;
2028 bio
->bi_end_io
= NULL
;
2029 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2030 if (conf
->mirrors
[d
].rdev
== NULL
||
2031 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2033 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2034 atomic_inc(&r10_bio
->remaining
);
2035 bio
->bi_next
= biolist
;
2037 bio
->bi_private
= r10_bio
;
2038 bio
->bi_end_io
= end_sync_read
;
2040 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
2041 conf
->mirrors
[d
].rdev
->data_offset
;
2042 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2047 for (i
=0; i
<conf
->copies
; i
++) {
2048 int d
= r10_bio
->devs
[i
].devnum
;
2049 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2050 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
2058 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2060 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2062 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2065 bio
->bi_phys_segments
= 0;
2070 if (sector_nr
+ max_sync
< max_sector
)
2071 max_sector
= sector_nr
+ max_sync
;
2074 int len
= PAGE_SIZE
;
2076 if (sector_nr
+ (len
>>9) > max_sector
)
2077 len
= (max_sector
- sector_nr
) << 9;
2080 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2081 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2082 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2085 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2086 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
2087 /* remove last page from this bio */
2089 bio2
->bi_size
-= len
;
2090 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2096 nr_sectors
+= len
>>9;
2097 sector_nr
+= len
>>9;
2098 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
2100 r10_bio
->sectors
= nr_sectors
;
2104 biolist
= biolist
->bi_next
;
2106 bio
->bi_next
= NULL
;
2107 r10_bio
= bio
->bi_private
;
2108 r10_bio
->sectors
= nr_sectors
;
2110 if (bio
->bi_end_io
== end_sync_read
) {
2111 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2112 generic_make_request(bio
);
2116 if (sectors_skipped
)
2117 /* pretend they weren't skipped, it makes
2118 * no important difference in this case
2120 md_done_sync(mddev
, sectors_skipped
, 1);
2122 return sectors_skipped
+ nr_sectors
;
2124 /* There is nowhere to write, so all non-sync
2125 * drives must be failed, so try the next chunk...
2127 if (sector_nr
+ max_sync
< max_sector
)
2128 max_sector
= sector_nr
+ max_sync
;
2130 sectors_skipped
+= (max_sector
- sector_nr
);
2132 sector_nr
= max_sector
;
2137 raid10_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2140 conf_t
*conf
= mddev
->private;
2143 raid_disks
= mddev
->raid_disks
;
2145 sectors
= mddev
->dev_sectors
;
2147 size
= sectors
>> conf
->chunk_shift
;
2148 sector_div(size
, conf
->far_copies
);
2149 size
= size
* raid_disks
;
2150 sector_div(size
, conf
->near_copies
);
2152 return size
<< conf
->chunk_shift
;
2155 static int run(mddev_t
*mddev
)
2158 int i
, disk_idx
, chunk_size
;
2159 mirror_info_t
*disk
;
2162 sector_t stride
, size
;
2164 if (mddev
->chunk_sectors
< (PAGE_SIZE
>> 9) ||
2165 !is_power_of_2(mddev
->chunk_sectors
)) {
2166 printk(KERN_ERR
"md/raid10: chunk size must be "
2167 "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE
);
2171 nc
= mddev
->layout
& 255;
2172 fc
= (mddev
->layout
>> 8) & 255;
2173 fo
= mddev
->layout
& (1<<16);
2174 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2175 (mddev
->layout
>> 17)) {
2176 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
2177 mdname(mddev
), mddev
->layout
);
2181 * copy the already verified devices into our private RAID10
2182 * bookkeeping area. [whatever we allocate in run(),
2183 * should be freed in stop()]
2185 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2186 mddev
->private = conf
;
2188 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2192 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2194 if (!conf
->mirrors
) {
2195 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2200 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2204 conf
->raid_disks
= mddev
->raid_disks
;
2205 conf
->near_copies
= nc
;
2206 conf
->far_copies
= fc
;
2207 conf
->copies
= nc
*fc
;
2208 conf
->far_offset
= fo
;
2209 conf
->chunk_mask
= mddev
->chunk_sectors
- 1;
2210 conf
->chunk_shift
= ffz(~mddev
->chunk_sectors
);
2211 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2212 sector_div(size
, fc
);
2213 size
= size
* conf
->raid_disks
;
2214 sector_div(size
, nc
);
2215 /* 'size' is now the number of chunks in the array */
2216 /* calculate "used chunks per device" in 'stride' */
2217 stride
= size
* conf
->copies
;
2219 /* We need to round up when dividing by raid_disks to
2220 * get the stride size.
2222 stride
+= conf
->raid_disks
- 1;
2223 sector_div(stride
, conf
->raid_disks
);
2224 mddev
->dev_sectors
= stride
<< conf
->chunk_shift
;
2229 sector_div(stride
, fc
);
2230 conf
->stride
= stride
<< conf
->chunk_shift
;
2232 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2233 r10bio_pool_free
, conf
);
2234 if (!conf
->r10bio_pool
) {
2235 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2240 conf
->mddev
= mddev
;
2241 spin_lock_init(&conf
->device_lock
);
2242 mddev
->queue
->queue_lock
= &conf
->device_lock
;
2244 chunk_size
= mddev
->chunk_sectors
<< 9;
2245 blk_queue_io_min(mddev
->queue
, chunk_size
);
2246 if (conf
->raid_disks
% conf
->near_copies
)
2247 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2249 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2250 (conf
->raid_disks
/ conf
->near_copies
));
2252 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2253 disk_idx
= rdev
->raid_disk
;
2254 if (disk_idx
>= mddev
->raid_disks
2257 disk
= conf
->mirrors
+ disk_idx
;
2260 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2261 rdev
->data_offset
<< 9);
2262 /* as we don't honour merge_bvec_fn, we must never risk
2263 * violating it, so limit max_segments to 1 lying
2264 * within a single page.
2266 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2267 blk_queue_max_segments(mddev
->queue
, 1);
2268 blk_queue_segment_boundary(mddev
->queue
,
2269 PAGE_CACHE_SIZE
- 1);
2272 disk
->head_position
= 0;
2274 INIT_LIST_HEAD(&conf
->retry_list
);
2276 spin_lock_init(&conf
->resync_lock
);
2277 init_waitqueue_head(&conf
->wait_barrier
);
2279 /* need to check that every block has at least one working mirror */
2280 if (!enough(conf
)) {
2281 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2286 mddev
->degraded
= 0;
2287 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2289 disk
= conf
->mirrors
+ i
;
2292 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2293 disk
->head_position
= 0;
2301 mddev
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
2302 if (!mddev
->thread
) {
2304 "raid10: couldn't allocate thread for %s\n",
2309 if (mddev
->recovery_cp
!= MaxSector
)
2310 printk(KERN_NOTICE
"raid10: %s is not clean"
2311 " -- starting background reconstruction\n",
2314 "raid10: raid set %s active with %d out of %d devices\n",
2315 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2318 * Ok, everything is just fine now
2320 md_set_array_sectors(mddev
, raid10_size(mddev
, 0, 0));
2321 mddev
->resync_max_sectors
= raid10_size(mddev
, 0, 0);
2323 mddev
->queue
->unplug_fn
= raid10_unplug
;
2324 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2325 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2327 /* Calculate max read-ahead size.
2328 * We need to readahead at least twice a whole stripe....
2332 int stripe
= conf
->raid_disks
*
2333 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2334 stripe
/= conf
->near_copies
;
2335 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2336 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2339 if (conf
->near_copies
< mddev
->raid_disks
)
2340 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2341 md_integrity_register(mddev
);
2345 if (conf
->r10bio_pool
)
2346 mempool_destroy(conf
->r10bio_pool
);
2347 safe_put_page(conf
->tmppage
);
2348 kfree(conf
->mirrors
);
2350 mddev
->private = NULL
;
2355 static int stop(mddev_t
*mddev
)
2357 conf_t
*conf
= mddev
->private;
2359 raise_barrier(conf
, 0);
2360 lower_barrier(conf
);
2362 md_unregister_thread(mddev
->thread
);
2363 mddev
->thread
= NULL
;
2364 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2365 if (conf
->r10bio_pool
)
2366 mempool_destroy(conf
->r10bio_pool
);
2367 kfree(conf
->mirrors
);
2369 mddev
->private = NULL
;
2373 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2375 conf_t
*conf
= mddev
->private;
2379 raise_barrier(conf
, 0);
2382 lower_barrier(conf
);
2387 static struct mdk_personality raid10_personality
=
2391 .owner
= THIS_MODULE
,
2392 .make_request
= make_request
,
2396 .error_handler
= error
,
2397 .hot_add_disk
= raid10_add_disk
,
2398 .hot_remove_disk
= raid10_remove_disk
,
2399 .spare_active
= raid10_spare_active
,
2400 .sync_request
= sync_request
,
2401 .quiesce
= raid10_quiesce
,
2402 .size
= raid10_size
,
2405 static int __init
raid_init(void)
2407 return register_md_personality(&raid10_personality
);
2410 static void raid_exit(void)
2412 unregister_md_personality(&raid10_personality
);
2415 module_init(raid_init
);
2416 module_exit(raid_exit
);
2417 MODULE_LICENSE("GPL");
2418 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2419 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2420 MODULE_ALIAS("md-raid10");
2421 MODULE_ALIAS("md-level-10");