Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / spi / atmel_spi.c
blobc4e04428992de8302b3b3e2a512927bdb159643b
1 /*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
23 #include <asm/io.h>
24 #include <mach/board.h>
25 #include <mach/gpio.h>
26 #include <mach/cpu.h>
28 #include "atmel_spi.h"
31 * The core SPI transfer engine just talks to a register bank to set up
32 * DMA transfers; transfer queue progress is driven by IRQs. The clock
33 * framework provides the base clock, subdivided for each spi_device.
35 struct atmel_spi {
36 spinlock_t lock;
38 void __iomem *regs;
39 int irq;
40 struct clk *clk;
41 struct platform_device *pdev;
42 struct spi_device *stay;
44 u8 stopping;
45 struct list_head queue;
46 struct spi_transfer *current_transfer;
47 unsigned long current_remaining_bytes;
48 struct spi_transfer *next_transfer;
49 unsigned long next_remaining_bytes;
51 void *buffer;
52 dma_addr_t buffer_dma;
55 /* Controller-specific per-slave state */
56 struct atmel_spi_device {
57 unsigned int npcs_pin;
58 u32 csr;
61 #define BUFFER_SIZE PAGE_SIZE
62 #define INVALID_DMA_ADDRESS 0xffffffff
65 * Version 2 of the SPI controller has
66 * - CR.LASTXFER
67 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
68 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
69 * - SPI_CSRx.CSAAT
70 * - SPI_CSRx.SBCR allows faster clocking
72 * We can determine the controller version by reading the VERSION
73 * register, but I haven't checked that it exists on all chips, and
74 * this is cheaper anyway.
76 static bool atmel_spi_is_v2(void)
78 return !cpu_is_at91rm9200();
82 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
83 * they assume that spi slave device state will not change on deselect, so
84 * that automagic deselection is OK. ("NPCSx rises if no data is to be
85 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
86 * controllers have CSAAT and friends.
88 * Since the CSAAT functionality is a bit weird on newer controllers as
89 * well, we use GPIO to control nCSx pins on all controllers, updating
90 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
91 * support active-high chipselects despite the controller's belief that
92 * only active-low devices/systems exists.
94 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
95 * right when driven with GPIO. ("Mode Fault does not allow more than one
96 * Master on Chip Select 0.") No workaround exists for that ... so for
97 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
98 * and (c) will trigger that first erratum in some cases.
100 * TODO: Test if the atmel_spi_is_v2() branch below works on
101 * AT91RM9200 if we use some other register than CSR0. However, don't
102 * do this unconditionally since AP7000 has an errata where the BITS
103 * field in CSR0 overrides all other CSRs.
106 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
108 struct atmel_spi_device *asd = spi->controller_state;
109 unsigned active = spi->mode & SPI_CS_HIGH;
110 u32 mr;
112 if (atmel_spi_is_v2()) {
114 * Always use CSR0. This ensures that the clock
115 * switches to the correct idle polarity before we
116 * toggle the CS.
118 spi_writel(as, CSR0, asd->csr);
119 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
120 | SPI_BIT(MSTR));
121 mr = spi_readl(as, MR);
122 gpio_set_value(asd->npcs_pin, active);
123 } else {
124 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
125 int i;
126 u32 csr;
128 /* Make sure clock polarity is correct */
129 for (i = 0; i < spi->master->num_chipselect; i++) {
130 csr = spi_readl(as, CSR0 + 4 * i);
131 if ((csr ^ cpol) & SPI_BIT(CPOL))
132 spi_writel(as, CSR0 + 4 * i,
133 csr ^ SPI_BIT(CPOL));
136 mr = spi_readl(as, MR);
137 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
138 if (spi->chip_select != 0)
139 gpio_set_value(asd->npcs_pin, active);
140 spi_writel(as, MR, mr);
143 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
144 asd->npcs_pin, active ? " (high)" : "",
145 mr);
148 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
150 struct atmel_spi_device *asd = spi->controller_state;
151 unsigned active = spi->mode & SPI_CS_HIGH;
152 u32 mr;
154 /* only deactivate *this* device; sometimes transfers to
155 * another device may be active when this routine is called.
157 mr = spi_readl(as, MR);
158 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
159 mr = SPI_BFINS(PCS, 0xf, mr);
160 spi_writel(as, MR, mr);
163 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
164 asd->npcs_pin, active ? " (low)" : "",
165 mr);
167 if (atmel_spi_is_v2() || spi->chip_select != 0)
168 gpio_set_value(asd->npcs_pin, !active);
171 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
172 struct spi_transfer *xfer)
174 return msg->transfers.prev == &xfer->transfer_list;
177 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
179 return xfer->delay_usecs == 0 && !xfer->cs_change;
182 static void atmel_spi_next_xfer_data(struct spi_master *master,
183 struct spi_transfer *xfer,
184 dma_addr_t *tx_dma,
185 dma_addr_t *rx_dma,
186 u32 *plen)
188 struct atmel_spi *as = spi_master_get_devdata(master);
189 u32 len = *plen;
191 /* use scratch buffer only when rx or tx data is unspecified */
192 if (xfer->rx_buf)
193 *rx_dma = xfer->rx_dma + xfer->len - *plen;
194 else {
195 *rx_dma = as->buffer_dma;
196 if (len > BUFFER_SIZE)
197 len = BUFFER_SIZE;
199 if (xfer->tx_buf)
200 *tx_dma = xfer->tx_dma + xfer->len - *plen;
201 else {
202 *tx_dma = as->buffer_dma;
203 if (len > BUFFER_SIZE)
204 len = BUFFER_SIZE;
205 memset(as->buffer, 0, len);
206 dma_sync_single_for_device(&as->pdev->dev,
207 as->buffer_dma, len, DMA_TO_DEVICE);
210 *plen = len;
214 * Submit next transfer for DMA.
215 * lock is held, spi irq is blocked
217 static void atmel_spi_next_xfer(struct spi_master *master,
218 struct spi_message *msg)
220 struct atmel_spi *as = spi_master_get_devdata(master);
221 struct spi_transfer *xfer;
222 u32 len, remaining;
223 u32 ieval;
224 dma_addr_t tx_dma, rx_dma;
226 if (!as->current_transfer)
227 xfer = list_entry(msg->transfers.next,
228 struct spi_transfer, transfer_list);
229 else if (!as->next_transfer)
230 xfer = list_entry(as->current_transfer->transfer_list.next,
231 struct spi_transfer, transfer_list);
232 else
233 xfer = NULL;
235 if (xfer) {
236 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
238 len = xfer->len;
239 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
240 remaining = xfer->len - len;
242 spi_writel(as, RPR, rx_dma);
243 spi_writel(as, TPR, tx_dma);
245 if (msg->spi->bits_per_word > 8)
246 len >>= 1;
247 spi_writel(as, RCR, len);
248 spi_writel(as, TCR, len);
250 dev_dbg(&msg->spi->dev,
251 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
252 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
253 xfer->rx_buf, xfer->rx_dma);
254 } else {
255 xfer = as->next_transfer;
256 remaining = as->next_remaining_bytes;
259 as->current_transfer = xfer;
260 as->current_remaining_bytes = remaining;
262 if (remaining > 0)
263 len = remaining;
264 else if (!atmel_spi_xfer_is_last(msg, xfer)
265 && atmel_spi_xfer_can_be_chained(xfer)) {
266 xfer = list_entry(xfer->transfer_list.next,
267 struct spi_transfer, transfer_list);
268 len = xfer->len;
269 } else
270 xfer = NULL;
272 as->next_transfer = xfer;
274 if (xfer) {
275 u32 total;
277 total = len;
278 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
279 as->next_remaining_bytes = total - len;
281 spi_writel(as, RNPR, rx_dma);
282 spi_writel(as, TNPR, tx_dma);
284 if (msg->spi->bits_per_word > 8)
285 len >>= 1;
286 spi_writel(as, RNCR, len);
287 spi_writel(as, TNCR, len);
289 dev_dbg(&msg->spi->dev,
290 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
291 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
292 xfer->rx_buf, xfer->rx_dma);
293 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
294 } else {
295 spi_writel(as, RNCR, 0);
296 spi_writel(as, TNCR, 0);
297 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
300 /* REVISIT: We're waiting for ENDRX before we start the next
301 * transfer because we need to handle some difficult timing
302 * issues otherwise. If we wait for ENDTX in one transfer and
303 * then starts waiting for ENDRX in the next, it's difficult
304 * to tell the difference between the ENDRX interrupt we're
305 * actually waiting for and the ENDRX interrupt of the
306 * previous transfer.
308 * It should be doable, though. Just not now...
310 spi_writel(as, IER, ieval);
311 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
314 static void atmel_spi_next_message(struct spi_master *master)
316 struct atmel_spi *as = spi_master_get_devdata(master);
317 struct spi_message *msg;
318 struct spi_device *spi;
320 BUG_ON(as->current_transfer);
322 msg = list_entry(as->queue.next, struct spi_message, queue);
323 spi = msg->spi;
325 dev_dbg(master->dev.parent, "start message %p for %s\n",
326 msg, dev_name(&spi->dev));
328 /* select chip if it's not still active */
329 if (as->stay) {
330 if (as->stay != spi) {
331 cs_deactivate(as, as->stay);
332 cs_activate(as, spi);
334 as->stay = NULL;
335 } else
336 cs_activate(as, spi);
338 atmel_spi_next_xfer(master, msg);
342 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
343 * - The buffer is either valid for CPU access, else NULL
344 * - If the buffer is valid, so is its DMA addresss
346 * This driver manages the dma addresss unless message->is_dma_mapped.
348 static int
349 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
351 struct device *dev = &as->pdev->dev;
353 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
354 if (xfer->tx_buf) {
355 xfer->tx_dma = dma_map_single(dev,
356 (void *) xfer->tx_buf, xfer->len,
357 DMA_TO_DEVICE);
358 if (dma_mapping_error(dev, xfer->tx_dma))
359 return -ENOMEM;
361 if (xfer->rx_buf) {
362 xfer->rx_dma = dma_map_single(dev,
363 xfer->rx_buf, xfer->len,
364 DMA_FROM_DEVICE);
365 if (dma_mapping_error(dev, xfer->rx_dma)) {
366 if (xfer->tx_buf)
367 dma_unmap_single(dev,
368 xfer->tx_dma, xfer->len,
369 DMA_TO_DEVICE);
370 return -ENOMEM;
373 return 0;
376 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
377 struct spi_transfer *xfer)
379 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
380 dma_unmap_single(master->dev.parent, xfer->tx_dma,
381 xfer->len, DMA_TO_DEVICE);
382 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
383 dma_unmap_single(master->dev.parent, xfer->rx_dma,
384 xfer->len, DMA_FROM_DEVICE);
387 static void
388 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
389 struct spi_message *msg, int status, int stay)
391 if (!stay || status < 0)
392 cs_deactivate(as, msg->spi);
393 else
394 as->stay = msg->spi;
396 list_del(&msg->queue);
397 msg->status = status;
399 dev_dbg(master->dev.parent,
400 "xfer complete: %u bytes transferred\n",
401 msg->actual_length);
403 spin_unlock(&as->lock);
404 msg->complete(msg->context);
405 spin_lock(&as->lock);
407 as->current_transfer = NULL;
408 as->next_transfer = NULL;
410 /* continue if needed */
411 if (list_empty(&as->queue) || as->stopping)
412 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
413 else
414 atmel_spi_next_message(master);
417 static irqreturn_t
418 atmel_spi_interrupt(int irq, void *dev_id)
420 struct spi_master *master = dev_id;
421 struct atmel_spi *as = spi_master_get_devdata(master);
422 struct spi_message *msg;
423 struct spi_transfer *xfer;
424 u32 status, pending, imr;
425 int ret = IRQ_NONE;
427 spin_lock(&as->lock);
429 xfer = as->current_transfer;
430 msg = list_entry(as->queue.next, struct spi_message, queue);
432 imr = spi_readl(as, IMR);
433 status = spi_readl(as, SR);
434 pending = status & imr;
436 if (pending & SPI_BIT(OVRES)) {
437 int timeout;
439 ret = IRQ_HANDLED;
441 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
442 | SPI_BIT(OVRES)));
445 * When we get an overrun, we disregard the current
446 * transfer. Data will not be copied back from any
447 * bounce buffer and msg->actual_len will not be
448 * updated with the last xfer.
450 * We will also not process any remaning transfers in
451 * the message.
453 * First, stop the transfer and unmap the DMA buffers.
455 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
456 if (!msg->is_dma_mapped)
457 atmel_spi_dma_unmap_xfer(master, xfer);
459 /* REVISIT: udelay in irq is unfriendly */
460 if (xfer->delay_usecs)
461 udelay(xfer->delay_usecs);
463 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
464 spi_readl(as, TCR), spi_readl(as, RCR));
467 * Clean up DMA registers and make sure the data
468 * registers are empty.
470 spi_writel(as, RNCR, 0);
471 spi_writel(as, TNCR, 0);
472 spi_writel(as, RCR, 0);
473 spi_writel(as, TCR, 0);
474 for (timeout = 1000; timeout; timeout--)
475 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
476 break;
477 if (!timeout)
478 dev_warn(master->dev.parent,
479 "timeout waiting for TXEMPTY");
480 while (spi_readl(as, SR) & SPI_BIT(RDRF))
481 spi_readl(as, RDR);
483 /* Clear any overrun happening while cleaning up */
484 spi_readl(as, SR);
486 atmel_spi_msg_done(master, as, msg, -EIO, 0);
487 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
488 ret = IRQ_HANDLED;
490 spi_writel(as, IDR, pending);
492 if (as->current_remaining_bytes == 0) {
493 msg->actual_length += xfer->len;
495 if (!msg->is_dma_mapped)
496 atmel_spi_dma_unmap_xfer(master, xfer);
498 /* REVISIT: udelay in irq is unfriendly */
499 if (xfer->delay_usecs)
500 udelay(xfer->delay_usecs);
502 if (atmel_spi_xfer_is_last(msg, xfer)) {
503 /* report completed message */
504 atmel_spi_msg_done(master, as, msg, 0,
505 xfer->cs_change);
506 } else {
507 if (xfer->cs_change) {
508 cs_deactivate(as, msg->spi);
509 udelay(1);
510 cs_activate(as, msg->spi);
514 * Not done yet. Submit the next transfer.
516 * FIXME handle protocol options for xfer
518 atmel_spi_next_xfer(master, msg);
520 } else {
522 * Keep going, we still have data to send in
523 * the current transfer.
525 atmel_spi_next_xfer(master, msg);
529 spin_unlock(&as->lock);
531 return ret;
534 static int atmel_spi_setup(struct spi_device *spi)
536 struct atmel_spi *as;
537 struct atmel_spi_device *asd;
538 u32 scbr, csr;
539 unsigned int bits = spi->bits_per_word;
540 unsigned long bus_hz;
541 unsigned int npcs_pin;
542 int ret;
544 as = spi_master_get_devdata(spi->master);
546 if (as->stopping)
547 return -ESHUTDOWN;
549 if (spi->chip_select > spi->master->num_chipselect) {
550 dev_dbg(&spi->dev,
551 "setup: invalid chipselect %u (%u defined)\n",
552 spi->chip_select, spi->master->num_chipselect);
553 return -EINVAL;
556 if (bits < 8 || bits > 16) {
557 dev_dbg(&spi->dev,
558 "setup: invalid bits_per_word %u (8 to 16)\n",
559 bits);
560 return -EINVAL;
563 /* see notes above re chipselect */
564 if (!atmel_spi_is_v2()
565 && spi->chip_select == 0
566 && (spi->mode & SPI_CS_HIGH)) {
567 dev_dbg(&spi->dev, "setup: can't be active-high\n");
568 return -EINVAL;
571 /* v1 chips start out at half the peripheral bus speed. */
572 bus_hz = clk_get_rate(as->clk);
573 if (!atmel_spi_is_v2())
574 bus_hz /= 2;
576 if (spi->max_speed_hz) {
578 * Calculate the lowest divider that satisfies the
579 * constraint, assuming div32/fdiv/mbz == 0.
581 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
584 * If the resulting divider doesn't fit into the
585 * register bitfield, we can't satisfy the constraint.
587 if (scbr >= (1 << SPI_SCBR_SIZE)) {
588 dev_dbg(&spi->dev,
589 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
590 spi->max_speed_hz, scbr, bus_hz/255);
591 return -EINVAL;
593 } else
594 /* speed zero means "as slow as possible" */
595 scbr = 0xff;
597 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
598 if (spi->mode & SPI_CPOL)
599 csr |= SPI_BIT(CPOL);
600 if (!(spi->mode & SPI_CPHA))
601 csr |= SPI_BIT(NCPHA);
603 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
605 * DLYBCT would add delays between words, slowing down transfers.
606 * It could potentially be useful to cope with DMA bottlenecks, but
607 * in those cases it's probably best to just use a lower bitrate.
609 csr |= SPI_BF(DLYBS, 0);
610 csr |= SPI_BF(DLYBCT, 0);
612 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
613 npcs_pin = (unsigned int)spi->controller_data;
614 asd = spi->controller_state;
615 if (!asd) {
616 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
617 if (!asd)
618 return -ENOMEM;
620 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
621 if (ret) {
622 kfree(asd);
623 return ret;
626 asd->npcs_pin = npcs_pin;
627 spi->controller_state = asd;
628 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
629 } else {
630 unsigned long flags;
632 spin_lock_irqsave(&as->lock, flags);
633 if (as->stay == spi)
634 as->stay = NULL;
635 cs_deactivate(as, spi);
636 spin_unlock_irqrestore(&as->lock, flags);
639 asd->csr = csr;
641 dev_dbg(&spi->dev,
642 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
643 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
645 if (!atmel_spi_is_v2())
646 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
648 return 0;
651 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
653 struct atmel_spi *as;
654 struct spi_transfer *xfer;
655 unsigned long flags;
656 struct device *controller = spi->master->dev.parent;
658 as = spi_master_get_devdata(spi->master);
660 dev_dbg(controller, "new message %p submitted for %s\n",
661 msg, dev_name(&spi->dev));
663 if (unlikely(list_empty(&msg->transfers)))
664 return -EINVAL;
666 if (as->stopping)
667 return -ESHUTDOWN;
669 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
670 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
671 dev_dbg(&spi->dev, "missing rx or tx buf\n");
672 return -EINVAL;
675 /* FIXME implement these protocol options!! */
676 if (xfer->bits_per_word || xfer->speed_hz) {
677 dev_dbg(&spi->dev, "no protocol options yet\n");
678 return -ENOPROTOOPT;
682 * DMA map early, for performance (empties dcache ASAP) and
683 * better fault reporting. This is a DMA-only driver.
685 * NOTE that if dma_unmap_single() ever starts to do work on
686 * platforms supported by this driver, we would need to clean
687 * up mappings for previously-mapped transfers.
689 if (!msg->is_dma_mapped) {
690 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
691 return -ENOMEM;
695 #ifdef VERBOSE
696 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
697 dev_dbg(controller,
698 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
699 xfer, xfer->len,
700 xfer->tx_buf, xfer->tx_dma,
701 xfer->rx_buf, xfer->rx_dma);
703 #endif
705 msg->status = -EINPROGRESS;
706 msg->actual_length = 0;
708 spin_lock_irqsave(&as->lock, flags);
709 list_add_tail(&msg->queue, &as->queue);
710 if (!as->current_transfer)
711 atmel_spi_next_message(spi->master);
712 spin_unlock_irqrestore(&as->lock, flags);
714 return 0;
717 static void atmel_spi_cleanup(struct spi_device *spi)
719 struct atmel_spi *as = spi_master_get_devdata(spi->master);
720 struct atmel_spi_device *asd = spi->controller_state;
721 unsigned gpio = (unsigned) spi->controller_data;
722 unsigned long flags;
724 if (!asd)
725 return;
727 spin_lock_irqsave(&as->lock, flags);
728 if (as->stay == spi) {
729 as->stay = NULL;
730 cs_deactivate(as, spi);
732 spin_unlock_irqrestore(&as->lock, flags);
734 spi->controller_state = NULL;
735 gpio_free(gpio);
736 kfree(asd);
739 /*-------------------------------------------------------------------------*/
741 static int __init atmel_spi_probe(struct platform_device *pdev)
743 struct resource *regs;
744 int irq;
745 struct clk *clk;
746 int ret;
747 struct spi_master *master;
748 struct atmel_spi *as;
750 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
751 if (!regs)
752 return -ENXIO;
754 irq = platform_get_irq(pdev, 0);
755 if (irq < 0)
756 return irq;
758 clk = clk_get(&pdev->dev, "spi_clk");
759 if (IS_ERR(clk))
760 return PTR_ERR(clk);
762 /* setup spi core then atmel-specific driver state */
763 ret = -ENOMEM;
764 master = spi_alloc_master(&pdev->dev, sizeof *as);
765 if (!master)
766 goto out_free;
768 /* the spi->mode bits understood by this driver: */
769 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
771 master->bus_num = pdev->id;
772 master->num_chipselect = 4;
773 master->setup = atmel_spi_setup;
774 master->transfer = atmel_spi_transfer;
775 master->cleanup = atmel_spi_cleanup;
776 platform_set_drvdata(pdev, master);
778 as = spi_master_get_devdata(master);
781 * Scratch buffer is used for throwaway rx and tx data.
782 * It's coherent to minimize dcache pollution.
784 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
785 &as->buffer_dma, GFP_KERNEL);
786 if (!as->buffer)
787 goto out_free;
789 spin_lock_init(&as->lock);
790 INIT_LIST_HEAD(&as->queue);
791 as->pdev = pdev;
792 as->regs = ioremap(regs->start, resource_size(regs));
793 if (!as->regs)
794 goto out_free_buffer;
795 as->irq = irq;
796 as->clk = clk;
798 ret = request_irq(irq, atmel_spi_interrupt, 0,
799 dev_name(&pdev->dev), master);
800 if (ret)
801 goto out_unmap_regs;
803 /* Initialize the hardware */
804 clk_enable(clk);
805 spi_writel(as, CR, SPI_BIT(SWRST));
806 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
807 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
808 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
809 spi_writel(as, CR, SPI_BIT(SPIEN));
811 /* go! */
812 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
813 (unsigned long)regs->start, irq);
815 ret = spi_register_master(master);
816 if (ret)
817 goto out_reset_hw;
819 return 0;
821 out_reset_hw:
822 spi_writel(as, CR, SPI_BIT(SWRST));
823 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
824 clk_disable(clk);
825 free_irq(irq, master);
826 out_unmap_regs:
827 iounmap(as->regs);
828 out_free_buffer:
829 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
830 as->buffer_dma);
831 out_free:
832 clk_put(clk);
833 spi_master_put(master);
834 return ret;
837 static int __exit atmel_spi_remove(struct platform_device *pdev)
839 struct spi_master *master = platform_get_drvdata(pdev);
840 struct atmel_spi *as = spi_master_get_devdata(master);
841 struct spi_message *msg;
843 /* reset the hardware and block queue progress */
844 spin_lock_irq(&as->lock);
845 as->stopping = 1;
846 spi_writel(as, CR, SPI_BIT(SWRST));
847 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
848 spi_readl(as, SR);
849 spin_unlock_irq(&as->lock);
851 /* Terminate remaining queued transfers */
852 list_for_each_entry(msg, &as->queue, queue) {
853 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
854 * but we shouldn't depend on that...
856 msg->status = -ESHUTDOWN;
857 msg->complete(msg->context);
860 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
861 as->buffer_dma);
863 clk_disable(as->clk);
864 clk_put(as->clk);
865 free_irq(as->irq, master);
866 iounmap(as->regs);
868 spi_unregister_master(master);
870 return 0;
873 #ifdef CONFIG_PM
875 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
877 struct spi_master *master = platform_get_drvdata(pdev);
878 struct atmel_spi *as = spi_master_get_devdata(master);
880 clk_disable(as->clk);
881 return 0;
884 static int atmel_spi_resume(struct platform_device *pdev)
886 struct spi_master *master = platform_get_drvdata(pdev);
887 struct atmel_spi *as = spi_master_get_devdata(master);
889 clk_enable(as->clk);
890 return 0;
893 #else
894 #define atmel_spi_suspend NULL
895 #define atmel_spi_resume NULL
896 #endif
899 static struct platform_driver atmel_spi_driver = {
900 .driver = {
901 .name = "atmel_spi",
902 .owner = THIS_MODULE,
904 .suspend = atmel_spi_suspend,
905 .resume = atmel_spi_resume,
906 .remove = __exit_p(atmel_spi_remove),
909 static int __init atmel_spi_init(void)
911 return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
913 module_init(atmel_spi_init);
915 static void __exit atmel_spi_exit(void)
917 platform_driver_unregister(&atmel_spi_driver);
919 module_exit(atmel_spi_exit);
921 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
922 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
923 MODULE_LICENSE("GPL");
924 MODULE_ALIAS("platform:atmel_spi");