radix tree: use GFP_ZONEMASK bits of gfp_t for flags
[linux/fpc-iii.git] / drivers / dma / mv_xor.c
blob1993889003fd11d51d80090daf32737d740a5b4b
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
31 #include "dmaengine.h"
32 #include "mv_xor.h"
34 enum mv_xor_type {
35 XOR_ORION,
36 XOR_ARMADA_38X,
37 XOR_ARMADA_37XX,
40 enum mv_xor_mode {
41 XOR_MODE_IN_REG,
42 XOR_MODE_IN_DESC,
45 static void mv_xor_issue_pending(struct dma_chan *chan);
47 #define to_mv_xor_chan(chan) \
48 container_of(chan, struct mv_xor_chan, dmachan)
50 #define to_mv_xor_slot(tx) \
51 container_of(tx, struct mv_xor_desc_slot, async_tx)
53 #define mv_chan_to_devp(chan) \
54 ((chan)->dmadev.dev)
56 static void mv_desc_init(struct mv_xor_desc_slot *desc,
57 dma_addr_t addr, u32 byte_count,
58 enum dma_ctrl_flags flags)
60 struct mv_xor_desc *hw_desc = desc->hw_desc;
62 hw_desc->status = XOR_DESC_DMA_OWNED;
63 hw_desc->phy_next_desc = 0;
64 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
65 hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
66 XOR_DESC_EOD_INT_EN : 0;
67 hw_desc->phy_dest_addr = addr;
68 hw_desc->byte_count = byte_count;
71 static void mv_desc_set_mode(struct mv_xor_desc_slot *desc)
73 struct mv_xor_desc *hw_desc = desc->hw_desc;
75 switch (desc->type) {
76 case DMA_XOR:
77 case DMA_INTERRUPT:
78 hw_desc->desc_command |= XOR_DESC_OPERATION_XOR;
79 break;
80 case DMA_MEMCPY:
81 hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY;
82 break;
83 default:
84 BUG();
85 return;
89 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
90 u32 next_desc_addr)
92 struct mv_xor_desc *hw_desc = desc->hw_desc;
93 BUG_ON(hw_desc->phy_next_desc);
94 hw_desc->phy_next_desc = next_desc_addr;
97 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
98 int index, dma_addr_t addr)
100 struct mv_xor_desc *hw_desc = desc->hw_desc;
101 hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
102 if (desc->type == DMA_XOR)
103 hw_desc->desc_command |= (1 << index);
106 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
108 return readl_relaxed(XOR_CURR_DESC(chan));
111 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
112 u32 next_desc_addr)
114 writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
117 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
119 u32 val = readl_relaxed(XOR_INTR_MASK(chan));
120 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
121 writel_relaxed(val, XOR_INTR_MASK(chan));
124 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
126 u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
127 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
128 return intr_cause;
131 static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan)
133 u32 val;
135 val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
136 val = ~(val << (chan->idx * 16));
137 dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
138 writel_relaxed(val, XOR_INTR_CAUSE(chan));
141 static void mv_chan_clear_err_status(struct mv_xor_chan *chan)
143 u32 val = 0xFFFF0000 >> (chan->idx * 16);
144 writel_relaxed(val, XOR_INTR_CAUSE(chan));
147 static void mv_chan_set_mode(struct mv_xor_chan *chan,
148 u32 op_mode)
150 u32 config = readl_relaxed(XOR_CONFIG(chan));
152 config &= ~0x7;
153 config |= op_mode;
155 #if defined(__BIG_ENDIAN)
156 config |= XOR_DESCRIPTOR_SWAP;
157 #else
158 config &= ~XOR_DESCRIPTOR_SWAP;
159 #endif
161 writel_relaxed(config, XOR_CONFIG(chan));
164 static void mv_chan_activate(struct mv_xor_chan *chan)
166 dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
168 /* writel ensures all descriptors are flushed before activation */
169 writel(BIT(0), XOR_ACTIVATION(chan));
172 static char mv_chan_is_busy(struct mv_xor_chan *chan)
174 u32 state = readl_relaxed(XOR_ACTIVATION(chan));
176 state = (state >> 4) & 0x3;
178 return (state == 1) ? 1 : 0;
182 * mv_chan_start_new_chain - program the engine to operate on new
183 * chain headed by sw_desc
184 * Caller must hold &mv_chan->lock while calling this function
186 static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan,
187 struct mv_xor_desc_slot *sw_desc)
189 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
190 __func__, __LINE__, sw_desc);
192 /* set the hardware chain */
193 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
195 mv_chan->pending++;
196 mv_xor_issue_pending(&mv_chan->dmachan);
199 static dma_cookie_t
200 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
201 struct mv_xor_chan *mv_chan,
202 dma_cookie_t cookie)
204 BUG_ON(desc->async_tx.cookie < 0);
206 if (desc->async_tx.cookie > 0) {
207 cookie = desc->async_tx.cookie;
209 dma_descriptor_unmap(&desc->async_tx);
210 /* call the callback (must not sleep or submit new
211 * operations to this channel)
213 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
216 /* run dependent operations */
217 dma_run_dependencies(&desc->async_tx);
219 return cookie;
222 static int
223 mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan)
225 struct mv_xor_desc_slot *iter, *_iter;
227 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
228 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
229 node) {
231 if (async_tx_test_ack(&iter->async_tx)) {
232 list_move_tail(&iter->node, &mv_chan->free_slots);
233 if (!list_empty(&iter->sg_tx_list)) {
234 list_splice_tail_init(&iter->sg_tx_list,
235 &mv_chan->free_slots);
239 return 0;
242 static int
243 mv_desc_clean_slot(struct mv_xor_desc_slot *desc,
244 struct mv_xor_chan *mv_chan)
246 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
247 __func__, __LINE__, desc, desc->async_tx.flags);
249 /* the client is allowed to attach dependent operations
250 * until 'ack' is set
252 if (!async_tx_test_ack(&desc->async_tx)) {
253 /* move this slot to the completed_slots */
254 list_move_tail(&desc->node, &mv_chan->completed_slots);
255 if (!list_empty(&desc->sg_tx_list)) {
256 list_splice_tail_init(&desc->sg_tx_list,
257 &mv_chan->completed_slots);
259 } else {
260 list_move_tail(&desc->node, &mv_chan->free_slots);
261 if (!list_empty(&desc->sg_tx_list)) {
262 list_splice_tail_init(&desc->sg_tx_list,
263 &mv_chan->free_slots);
267 return 0;
270 /* This function must be called with the mv_xor_chan spinlock held */
271 static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan)
273 struct mv_xor_desc_slot *iter, *_iter;
274 dma_cookie_t cookie = 0;
275 int busy = mv_chan_is_busy(mv_chan);
276 u32 current_desc = mv_chan_get_current_desc(mv_chan);
277 int current_cleaned = 0;
278 struct mv_xor_desc *hw_desc;
280 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
281 dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
282 mv_chan_clean_completed_slots(mv_chan);
284 /* free completed slots from the chain starting with
285 * the oldest descriptor
288 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
289 node) {
291 /* clean finished descriptors */
292 hw_desc = iter->hw_desc;
293 if (hw_desc->status & XOR_DESC_SUCCESS) {
294 cookie = mv_desc_run_tx_complete_actions(iter, mv_chan,
295 cookie);
297 /* done processing desc, clean slot */
298 mv_desc_clean_slot(iter, mv_chan);
300 /* break if we did cleaned the current */
301 if (iter->async_tx.phys == current_desc) {
302 current_cleaned = 1;
303 break;
305 } else {
306 if (iter->async_tx.phys == current_desc) {
307 current_cleaned = 0;
308 break;
313 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
314 if (current_cleaned) {
316 * current descriptor cleaned and removed, run
317 * from list head
319 iter = list_entry(mv_chan->chain.next,
320 struct mv_xor_desc_slot,
321 node);
322 mv_chan_start_new_chain(mv_chan, iter);
323 } else {
324 if (!list_is_last(&iter->node, &mv_chan->chain)) {
326 * descriptors are still waiting after
327 * current, trigger them
329 iter = list_entry(iter->node.next,
330 struct mv_xor_desc_slot,
331 node);
332 mv_chan_start_new_chain(mv_chan, iter);
333 } else {
335 * some descriptors are still waiting
336 * to be cleaned
338 tasklet_schedule(&mv_chan->irq_tasklet);
343 if (cookie > 0)
344 mv_chan->dmachan.completed_cookie = cookie;
347 static void mv_xor_tasklet(unsigned long data)
349 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
351 spin_lock_bh(&chan->lock);
352 mv_chan_slot_cleanup(chan);
353 spin_unlock_bh(&chan->lock);
356 static struct mv_xor_desc_slot *
357 mv_chan_alloc_slot(struct mv_xor_chan *mv_chan)
359 struct mv_xor_desc_slot *iter;
361 spin_lock_bh(&mv_chan->lock);
363 if (!list_empty(&mv_chan->free_slots)) {
364 iter = list_first_entry(&mv_chan->free_slots,
365 struct mv_xor_desc_slot,
366 node);
368 list_move_tail(&iter->node, &mv_chan->allocated_slots);
370 spin_unlock_bh(&mv_chan->lock);
372 /* pre-ack descriptor */
373 async_tx_ack(&iter->async_tx);
374 iter->async_tx.cookie = -EBUSY;
376 return iter;
380 spin_unlock_bh(&mv_chan->lock);
382 /* try to free some slots if the allocation fails */
383 tasklet_schedule(&mv_chan->irq_tasklet);
385 return NULL;
388 /************************ DMA engine API functions ****************************/
389 static dma_cookie_t
390 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
392 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
393 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
394 struct mv_xor_desc_slot *old_chain_tail;
395 dma_cookie_t cookie;
396 int new_hw_chain = 1;
398 dev_dbg(mv_chan_to_devp(mv_chan),
399 "%s sw_desc %p: async_tx %p\n",
400 __func__, sw_desc, &sw_desc->async_tx);
402 spin_lock_bh(&mv_chan->lock);
403 cookie = dma_cookie_assign(tx);
405 if (list_empty(&mv_chan->chain))
406 list_move_tail(&sw_desc->node, &mv_chan->chain);
407 else {
408 new_hw_chain = 0;
410 old_chain_tail = list_entry(mv_chan->chain.prev,
411 struct mv_xor_desc_slot,
412 node);
413 list_move_tail(&sw_desc->node, &mv_chan->chain);
415 dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
416 &old_chain_tail->async_tx.phys);
418 /* fix up the hardware chain */
419 mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
421 /* if the channel is not busy */
422 if (!mv_chan_is_busy(mv_chan)) {
423 u32 current_desc = mv_chan_get_current_desc(mv_chan);
425 * and the curren desc is the end of the chain before
426 * the append, then we need to start the channel
428 if (current_desc == old_chain_tail->async_tx.phys)
429 new_hw_chain = 1;
433 if (new_hw_chain)
434 mv_chan_start_new_chain(mv_chan, sw_desc);
436 spin_unlock_bh(&mv_chan->lock);
438 return cookie;
441 /* returns the number of allocated descriptors */
442 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
444 void *virt_desc;
445 dma_addr_t dma_desc;
446 int idx;
447 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
448 struct mv_xor_desc_slot *slot = NULL;
449 int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
451 /* Allocate descriptor slots */
452 idx = mv_chan->slots_allocated;
453 while (idx < num_descs_in_pool) {
454 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
455 if (!slot) {
456 dev_info(mv_chan_to_devp(mv_chan),
457 "channel only initialized %d descriptor slots",
458 idx);
459 break;
461 virt_desc = mv_chan->dma_desc_pool_virt;
462 slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
464 dma_async_tx_descriptor_init(&slot->async_tx, chan);
465 slot->async_tx.tx_submit = mv_xor_tx_submit;
466 INIT_LIST_HEAD(&slot->node);
467 INIT_LIST_HEAD(&slot->sg_tx_list);
468 dma_desc = mv_chan->dma_desc_pool;
469 slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
470 slot->idx = idx++;
472 spin_lock_bh(&mv_chan->lock);
473 mv_chan->slots_allocated = idx;
474 list_add_tail(&slot->node, &mv_chan->free_slots);
475 spin_unlock_bh(&mv_chan->lock);
478 dev_dbg(mv_chan_to_devp(mv_chan),
479 "allocated %d descriptor slots\n",
480 mv_chan->slots_allocated);
482 return mv_chan->slots_allocated ? : -ENOMEM;
486 * Check if source or destination is an PCIe/IO address (non-SDRAM) and add
487 * a new MBus window if necessary. Use a cache for these check so that
488 * the MMIO mapped registers don't have to be accessed for this check
489 * to speed up this process.
491 static int mv_xor_add_io_win(struct mv_xor_chan *mv_chan, u32 addr)
493 struct mv_xor_device *xordev = mv_chan->xordev;
494 void __iomem *base = mv_chan->mmr_high_base;
495 u32 win_enable;
496 u32 size;
497 u8 target, attr;
498 int ret;
499 int i;
501 /* Nothing needs to get done for the Armada 3700 */
502 if (xordev->xor_type == XOR_ARMADA_37XX)
503 return 0;
506 * Loop over the cached windows to check, if the requested area
507 * is already mapped. If this the case, nothing needs to be done
508 * and we can return.
510 for (i = 0; i < WINDOW_COUNT; i++) {
511 if (addr >= xordev->win_start[i] &&
512 addr <= xordev->win_end[i]) {
513 /* Window is already mapped */
514 return 0;
519 * The window is not mapped, so we need to create the new mapping
522 /* If no IO window is found that addr has to be located in SDRAM */
523 ret = mvebu_mbus_get_io_win_info(addr, &size, &target, &attr);
524 if (ret < 0)
525 return 0;
528 * Mask the base addr 'addr' according to 'size' read back from the
529 * MBus window. Otherwise we might end up with an address located
530 * somewhere in the middle of this area here.
532 size -= 1;
533 addr &= ~size;
536 * Reading one of both enabled register is enough, as they are always
537 * programmed to the identical values
539 win_enable = readl(base + WINDOW_BAR_ENABLE(0));
541 /* Set 'i' to the first free window to write the new values to */
542 i = ffs(~win_enable) - 1;
543 if (i >= WINDOW_COUNT)
544 return -ENOMEM;
546 writel((addr & 0xffff0000) | (attr << 8) | target,
547 base + WINDOW_BASE(i));
548 writel(size & 0xffff0000, base + WINDOW_SIZE(i));
550 /* Fill the caching variables for later use */
551 xordev->win_start[i] = addr;
552 xordev->win_end[i] = addr + size;
554 win_enable |= (1 << i);
555 win_enable |= 3 << (16 + (2 * i));
556 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
557 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
559 return 0;
562 static struct dma_async_tx_descriptor *
563 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
564 unsigned int src_cnt, size_t len, unsigned long flags)
566 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
567 struct mv_xor_desc_slot *sw_desc;
568 int ret;
570 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
571 return NULL;
573 BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
575 dev_dbg(mv_chan_to_devp(mv_chan),
576 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
577 __func__, src_cnt, len, &dest, flags);
579 /* Check if a new window needs to get added for 'dest' */
580 ret = mv_xor_add_io_win(mv_chan, dest);
581 if (ret)
582 return NULL;
584 sw_desc = mv_chan_alloc_slot(mv_chan);
585 if (sw_desc) {
586 sw_desc->type = DMA_XOR;
587 sw_desc->async_tx.flags = flags;
588 mv_desc_init(sw_desc, dest, len, flags);
589 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
590 mv_desc_set_mode(sw_desc);
591 while (src_cnt--) {
592 /* Check if a new window needs to get added for 'src' */
593 ret = mv_xor_add_io_win(mv_chan, src[src_cnt]);
594 if (ret)
595 return NULL;
596 mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
600 dev_dbg(mv_chan_to_devp(mv_chan),
601 "%s sw_desc %p async_tx %p \n",
602 __func__, sw_desc, &sw_desc->async_tx);
603 return sw_desc ? &sw_desc->async_tx : NULL;
606 static struct dma_async_tx_descriptor *
607 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
608 size_t len, unsigned long flags)
611 * A MEMCPY operation is identical to an XOR operation with only
612 * a single source address.
614 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
617 static struct dma_async_tx_descriptor *
618 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
620 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
621 dma_addr_t src, dest;
622 size_t len;
624 src = mv_chan->dummy_src_addr;
625 dest = mv_chan->dummy_dst_addr;
626 len = MV_XOR_MIN_BYTE_COUNT;
629 * We implement the DMA_INTERRUPT operation as a minimum sized
630 * XOR operation with a single dummy source address.
632 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
635 static void mv_xor_free_chan_resources(struct dma_chan *chan)
637 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
638 struct mv_xor_desc_slot *iter, *_iter;
639 int in_use_descs = 0;
641 spin_lock_bh(&mv_chan->lock);
643 mv_chan_slot_cleanup(mv_chan);
645 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
646 node) {
647 in_use_descs++;
648 list_move_tail(&iter->node, &mv_chan->free_slots);
650 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
651 node) {
652 in_use_descs++;
653 list_move_tail(&iter->node, &mv_chan->free_slots);
655 list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots,
656 node) {
657 in_use_descs++;
658 list_move_tail(&iter->node, &mv_chan->free_slots);
660 list_for_each_entry_safe_reverse(
661 iter, _iter, &mv_chan->free_slots, node) {
662 list_del(&iter->node);
663 kfree(iter);
664 mv_chan->slots_allocated--;
667 dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
668 __func__, mv_chan->slots_allocated);
669 spin_unlock_bh(&mv_chan->lock);
671 if (in_use_descs)
672 dev_err(mv_chan_to_devp(mv_chan),
673 "freeing %d in use descriptors!\n", in_use_descs);
677 * mv_xor_status - poll the status of an XOR transaction
678 * @chan: XOR channel handle
679 * @cookie: XOR transaction identifier
680 * @txstate: XOR transactions state holder (or NULL)
682 static enum dma_status mv_xor_status(struct dma_chan *chan,
683 dma_cookie_t cookie,
684 struct dma_tx_state *txstate)
686 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
687 enum dma_status ret;
689 ret = dma_cookie_status(chan, cookie, txstate);
690 if (ret == DMA_COMPLETE)
691 return ret;
693 spin_lock_bh(&mv_chan->lock);
694 mv_chan_slot_cleanup(mv_chan);
695 spin_unlock_bh(&mv_chan->lock);
697 return dma_cookie_status(chan, cookie, txstate);
700 static void mv_chan_dump_regs(struct mv_xor_chan *chan)
702 u32 val;
704 val = readl_relaxed(XOR_CONFIG(chan));
705 dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val);
707 val = readl_relaxed(XOR_ACTIVATION(chan));
708 dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val);
710 val = readl_relaxed(XOR_INTR_CAUSE(chan));
711 dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val);
713 val = readl_relaxed(XOR_INTR_MASK(chan));
714 dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val);
716 val = readl_relaxed(XOR_ERROR_CAUSE(chan));
717 dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val);
719 val = readl_relaxed(XOR_ERROR_ADDR(chan));
720 dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val);
723 static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan,
724 u32 intr_cause)
726 if (intr_cause & XOR_INT_ERR_DECODE) {
727 dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
728 return;
731 dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
732 chan->idx, intr_cause);
734 mv_chan_dump_regs(chan);
735 WARN_ON(1);
738 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
740 struct mv_xor_chan *chan = data;
741 u32 intr_cause = mv_chan_get_intr_cause(chan);
743 dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
745 if (intr_cause & XOR_INTR_ERRORS)
746 mv_chan_err_interrupt_handler(chan, intr_cause);
748 tasklet_schedule(&chan->irq_tasklet);
750 mv_chan_clear_eoc_cause(chan);
752 return IRQ_HANDLED;
755 static void mv_xor_issue_pending(struct dma_chan *chan)
757 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
759 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
760 mv_chan->pending = 0;
761 mv_chan_activate(mv_chan);
766 * Perform a transaction to verify the HW works.
769 static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan)
771 int i, ret;
772 void *src, *dest;
773 dma_addr_t src_dma, dest_dma;
774 struct dma_chan *dma_chan;
775 dma_cookie_t cookie;
776 struct dma_async_tx_descriptor *tx;
777 struct dmaengine_unmap_data *unmap;
778 int err = 0;
780 src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
781 if (!src)
782 return -ENOMEM;
784 dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
785 if (!dest) {
786 kfree(src);
787 return -ENOMEM;
790 /* Fill in src buffer */
791 for (i = 0; i < PAGE_SIZE; i++)
792 ((u8 *) src)[i] = (u8)i;
794 dma_chan = &mv_chan->dmachan;
795 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
796 err = -ENODEV;
797 goto out;
800 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
801 if (!unmap) {
802 err = -ENOMEM;
803 goto free_resources;
806 src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src),
807 offset_in_page(src), PAGE_SIZE,
808 DMA_TO_DEVICE);
809 unmap->addr[0] = src_dma;
811 ret = dma_mapping_error(dma_chan->device->dev, src_dma);
812 if (ret) {
813 err = -ENOMEM;
814 goto free_resources;
816 unmap->to_cnt = 1;
818 dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest),
819 offset_in_page(dest), PAGE_SIZE,
820 DMA_FROM_DEVICE);
821 unmap->addr[1] = dest_dma;
823 ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
824 if (ret) {
825 err = -ENOMEM;
826 goto free_resources;
828 unmap->from_cnt = 1;
829 unmap->len = PAGE_SIZE;
831 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
832 PAGE_SIZE, 0);
833 if (!tx) {
834 dev_err(dma_chan->device->dev,
835 "Self-test cannot prepare operation, disabling\n");
836 err = -ENODEV;
837 goto free_resources;
840 cookie = mv_xor_tx_submit(tx);
841 if (dma_submit_error(cookie)) {
842 dev_err(dma_chan->device->dev,
843 "Self-test submit error, disabling\n");
844 err = -ENODEV;
845 goto free_resources;
848 mv_xor_issue_pending(dma_chan);
849 async_tx_ack(tx);
850 msleep(1);
852 if (mv_xor_status(dma_chan, cookie, NULL) !=
853 DMA_COMPLETE) {
854 dev_err(dma_chan->device->dev,
855 "Self-test copy timed out, disabling\n");
856 err = -ENODEV;
857 goto free_resources;
860 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
861 PAGE_SIZE, DMA_FROM_DEVICE);
862 if (memcmp(src, dest, PAGE_SIZE)) {
863 dev_err(dma_chan->device->dev,
864 "Self-test copy failed compare, disabling\n");
865 err = -ENODEV;
866 goto free_resources;
869 free_resources:
870 dmaengine_unmap_put(unmap);
871 mv_xor_free_chan_resources(dma_chan);
872 out:
873 kfree(src);
874 kfree(dest);
875 return err;
878 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
879 static int
880 mv_chan_xor_self_test(struct mv_xor_chan *mv_chan)
882 int i, src_idx, ret;
883 struct page *dest;
884 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
885 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
886 dma_addr_t dest_dma;
887 struct dma_async_tx_descriptor *tx;
888 struct dmaengine_unmap_data *unmap;
889 struct dma_chan *dma_chan;
890 dma_cookie_t cookie;
891 u8 cmp_byte = 0;
892 u32 cmp_word;
893 int err = 0;
894 int src_count = MV_XOR_NUM_SRC_TEST;
896 for (src_idx = 0; src_idx < src_count; src_idx++) {
897 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
898 if (!xor_srcs[src_idx]) {
899 while (src_idx--)
900 __free_page(xor_srcs[src_idx]);
901 return -ENOMEM;
905 dest = alloc_page(GFP_KERNEL);
906 if (!dest) {
907 while (src_idx--)
908 __free_page(xor_srcs[src_idx]);
909 return -ENOMEM;
912 /* Fill in src buffers */
913 for (src_idx = 0; src_idx < src_count; src_idx++) {
914 u8 *ptr = page_address(xor_srcs[src_idx]);
915 for (i = 0; i < PAGE_SIZE; i++)
916 ptr[i] = (1 << src_idx);
919 for (src_idx = 0; src_idx < src_count; src_idx++)
920 cmp_byte ^= (u8) (1 << src_idx);
922 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
923 (cmp_byte << 8) | cmp_byte;
925 memset(page_address(dest), 0, PAGE_SIZE);
927 dma_chan = &mv_chan->dmachan;
928 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
929 err = -ENODEV;
930 goto out;
933 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
934 GFP_KERNEL);
935 if (!unmap) {
936 err = -ENOMEM;
937 goto free_resources;
940 /* test xor */
941 for (i = 0; i < src_count; i++) {
942 unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
943 0, PAGE_SIZE, DMA_TO_DEVICE);
944 dma_srcs[i] = unmap->addr[i];
945 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
946 if (ret) {
947 err = -ENOMEM;
948 goto free_resources;
950 unmap->to_cnt++;
953 unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
954 DMA_FROM_DEVICE);
955 dest_dma = unmap->addr[src_count];
956 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
957 if (ret) {
958 err = -ENOMEM;
959 goto free_resources;
961 unmap->from_cnt = 1;
962 unmap->len = PAGE_SIZE;
964 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
965 src_count, PAGE_SIZE, 0);
966 if (!tx) {
967 dev_err(dma_chan->device->dev,
968 "Self-test cannot prepare operation, disabling\n");
969 err = -ENODEV;
970 goto free_resources;
973 cookie = mv_xor_tx_submit(tx);
974 if (dma_submit_error(cookie)) {
975 dev_err(dma_chan->device->dev,
976 "Self-test submit error, disabling\n");
977 err = -ENODEV;
978 goto free_resources;
981 mv_xor_issue_pending(dma_chan);
982 async_tx_ack(tx);
983 msleep(8);
985 if (mv_xor_status(dma_chan, cookie, NULL) !=
986 DMA_COMPLETE) {
987 dev_err(dma_chan->device->dev,
988 "Self-test xor timed out, disabling\n");
989 err = -ENODEV;
990 goto free_resources;
993 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
994 PAGE_SIZE, DMA_FROM_DEVICE);
995 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
996 u32 *ptr = page_address(dest);
997 if (ptr[i] != cmp_word) {
998 dev_err(dma_chan->device->dev,
999 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
1000 i, ptr[i], cmp_word);
1001 err = -ENODEV;
1002 goto free_resources;
1006 free_resources:
1007 dmaengine_unmap_put(unmap);
1008 mv_xor_free_chan_resources(dma_chan);
1009 out:
1010 src_idx = src_count;
1011 while (src_idx--)
1012 __free_page(xor_srcs[src_idx]);
1013 __free_page(dest);
1014 return err;
1017 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
1019 struct dma_chan *chan, *_chan;
1020 struct device *dev = mv_chan->dmadev.dev;
1022 dma_async_device_unregister(&mv_chan->dmadev);
1024 dma_free_coherent(dev, MV_XOR_POOL_SIZE,
1025 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1026 dma_unmap_single(dev, mv_chan->dummy_src_addr,
1027 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1028 dma_unmap_single(dev, mv_chan->dummy_dst_addr,
1029 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1031 list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
1032 device_node) {
1033 list_del(&chan->device_node);
1036 free_irq(mv_chan->irq, mv_chan);
1038 return 0;
1041 static struct mv_xor_chan *
1042 mv_xor_channel_add(struct mv_xor_device *xordev,
1043 struct platform_device *pdev,
1044 int idx, dma_cap_mask_t cap_mask, int irq)
1046 int ret = 0;
1047 struct mv_xor_chan *mv_chan;
1048 struct dma_device *dma_dev;
1050 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1051 if (!mv_chan)
1052 return ERR_PTR(-ENOMEM);
1054 mv_chan->idx = idx;
1055 mv_chan->irq = irq;
1056 if (xordev->xor_type == XOR_ORION)
1057 mv_chan->op_in_desc = XOR_MODE_IN_REG;
1058 else
1059 mv_chan->op_in_desc = XOR_MODE_IN_DESC;
1061 dma_dev = &mv_chan->dmadev;
1062 mv_chan->xordev = xordev;
1065 * These source and destination dummy buffers are used to implement
1066 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
1067 * Hence, we only need to map the buffers at initialization-time.
1069 mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
1070 mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1071 mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
1072 mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1074 /* allocate coherent memory for hardware descriptors
1075 * note: writecombine gives slightly better performance, but
1076 * requires that we explicitly flush the writes
1078 mv_chan->dma_desc_pool_virt =
1079 dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool,
1080 GFP_KERNEL);
1081 if (!mv_chan->dma_desc_pool_virt)
1082 return ERR_PTR(-ENOMEM);
1084 /* discover transaction capabilites from the platform data */
1085 dma_dev->cap_mask = cap_mask;
1087 INIT_LIST_HEAD(&dma_dev->channels);
1089 /* set base routines */
1090 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1091 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1092 dma_dev->device_tx_status = mv_xor_status;
1093 dma_dev->device_issue_pending = mv_xor_issue_pending;
1094 dma_dev->dev = &pdev->dev;
1096 /* set prep routines based on capability */
1097 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1098 dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1099 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1100 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1101 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1102 dma_dev->max_xor = 8;
1103 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1106 mv_chan->mmr_base = xordev->xor_base;
1107 mv_chan->mmr_high_base = xordev->xor_high_base;
1108 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1109 mv_chan);
1111 /* clear errors before enabling interrupts */
1112 mv_chan_clear_err_status(mv_chan);
1114 ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1115 0, dev_name(&pdev->dev), mv_chan);
1116 if (ret)
1117 goto err_free_dma;
1119 mv_chan_unmask_interrupts(mv_chan);
1121 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
1122 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC);
1123 else
1124 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR);
1126 spin_lock_init(&mv_chan->lock);
1127 INIT_LIST_HEAD(&mv_chan->chain);
1128 INIT_LIST_HEAD(&mv_chan->completed_slots);
1129 INIT_LIST_HEAD(&mv_chan->free_slots);
1130 INIT_LIST_HEAD(&mv_chan->allocated_slots);
1131 mv_chan->dmachan.device = dma_dev;
1132 dma_cookie_init(&mv_chan->dmachan);
1134 list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1136 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1137 ret = mv_chan_memcpy_self_test(mv_chan);
1138 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1139 if (ret)
1140 goto err_free_irq;
1143 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1144 ret = mv_chan_xor_self_test(mv_chan);
1145 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1146 if (ret)
1147 goto err_free_irq;
1150 dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s)\n",
1151 mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode",
1152 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1153 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1154 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1156 dma_async_device_register(dma_dev);
1157 return mv_chan;
1159 err_free_irq:
1160 free_irq(mv_chan->irq, mv_chan);
1161 err_free_dma:
1162 dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1163 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1164 return ERR_PTR(ret);
1167 static void
1168 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1169 const struct mbus_dram_target_info *dram)
1171 void __iomem *base = xordev->xor_high_base;
1172 u32 win_enable = 0;
1173 int i;
1175 for (i = 0; i < 8; i++) {
1176 writel(0, base + WINDOW_BASE(i));
1177 writel(0, base + WINDOW_SIZE(i));
1178 if (i < 4)
1179 writel(0, base + WINDOW_REMAP_HIGH(i));
1182 for (i = 0; i < dram->num_cs; i++) {
1183 const struct mbus_dram_window *cs = dram->cs + i;
1185 writel((cs->base & 0xffff0000) |
1186 (cs->mbus_attr << 8) |
1187 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1188 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1190 /* Fill the caching variables for later use */
1191 xordev->win_start[i] = cs->base;
1192 xordev->win_end[i] = cs->base + cs->size - 1;
1194 win_enable |= (1 << i);
1195 win_enable |= 3 << (16 + (2 * i));
1198 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1199 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1200 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1201 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1204 static void
1205 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device *xordev)
1207 void __iomem *base = xordev->xor_high_base;
1208 u32 win_enable = 0;
1209 int i;
1211 for (i = 0; i < 8; i++) {
1212 writel(0, base + WINDOW_BASE(i));
1213 writel(0, base + WINDOW_SIZE(i));
1214 if (i < 4)
1215 writel(0, base + WINDOW_REMAP_HIGH(i));
1218 * For Armada3700 open default 4GB Mbus window. The dram
1219 * related configuration are done at AXIS level.
1221 writel(0xffff0000, base + WINDOW_SIZE(0));
1222 win_enable |= 1;
1223 win_enable |= 3 << 16;
1225 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1226 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1227 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1228 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1232 * Since this XOR driver is basically used only for RAID5, we don't
1233 * need to care about synchronizing ->suspend with DMA activity,
1234 * because the DMA engine will naturally be quiet due to the block
1235 * devices being suspended.
1237 static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state)
1239 struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1240 int i;
1242 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1243 struct mv_xor_chan *mv_chan = xordev->channels[i];
1245 if (!mv_chan)
1246 continue;
1248 mv_chan->saved_config_reg =
1249 readl_relaxed(XOR_CONFIG(mv_chan));
1250 mv_chan->saved_int_mask_reg =
1251 readl_relaxed(XOR_INTR_MASK(mv_chan));
1254 return 0;
1257 static int mv_xor_resume(struct platform_device *dev)
1259 struct mv_xor_device *xordev = platform_get_drvdata(dev);
1260 const struct mbus_dram_target_info *dram;
1261 int i;
1263 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1264 struct mv_xor_chan *mv_chan = xordev->channels[i];
1266 if (!mv_chan)
1267 continue;
1269 writel_relaxed(mv_chan->saved_config_reg,
1270 XOR_CONFIG(mv_chan));
1271 writel_relaxed(mv_chan->saved_int_mask_reg,
1272 XOR_INTR_MASK(mv_chan));
1275 if (xordev->xor_type == XOR_ARMADA_37XX) {
1276 mv_xor_conf_mbus_windows_a3700(xordev);
1277 return 0;
1280 dram = mv_mbus_dram_info();
1281 if (dram)
1282 mv_xor_conf_mbus_windows(xordev, dram);
1284 return 0;
1287 static const struct of_device_id mv_xor_dt_ids[] = {
1288 { .compatible = "marvell,orion-xor", .data = (void *)XOR_ORION },
1289 { .compatible = "marvell,armada-380-xor", .data = (void *)XOR_ARMADA_38X },
1290 { .compatible = "marvell,armada-3700-xor", .data = (void *)XOR_ARMADA_37XX },
1294 static unsigned int mv_xor_engine_count;
1296 static int mv_xor_probe(struct platform_device *pdev)
1298 const struct mbus_dram_target_info *dram;
1299 struct mv_xor_device *xordev;
1300 struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1301 struct resource *res;
1302 unsigned int max_engines, max_channels;
1303 int i, ret;
1305 dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1307 xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1308 if (!xordev)
1309 return -ENOMEM;
1311 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1312 if (!res)
1313 return -ENODEV;
1315 xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1316 resource_size(res));
1317 if (!xordev->xor_base)
1318 return -EBUSY;
1320 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1321 if (!res)
1322 return -ENODEV;
1324 xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1325 resource_size(res));
1326 if (!xordev->xor_high_base)
1327 return -EBUSY;
1329 platform_set_drvdata(pdev, xordev);
1333 * We need to know which type of XOR device we use before
1334 * setting up. In non-dt case it can only be the legacy one.
1336 xordev->xor_type = XOR_ORION;
1337 if (pdev->dev.of_node) {
1338 const struct of_device_id *of_id =
1339 of_match_device(mv_xor_dt_ids,
1340 &pdev->dev);
1342 xordev->xor_type = (uintptr_t)of_id->data;
1346 * (Re-)program MBUS remapping windows if we are asked to.
1348 if (xordev->xor_type == XOR_ARMADA_37XX) {
1349 mv_xor_conf_mbus_windows_a3700(xordev);
1350 } else {
1351 dram = mv_mbus_dram_info();
1352 if (dram)
1353 mv_xor_conf_mbus_windows(xordev, dram);
1356 /* Not all platforms can gate the clock, so it is not
1357 * an error if the clock does not exists.
1359 xordev->clk = clk_get(&pdev->dev, NULL);
1360 if (!IS_ERR(xordev->clk))
1361 clk_prepare_enable(xordev->clk);
1364 * We don't want to have more than one channel per CPU in
1365 * order for async_tx to perform well. So we limit the number
1366 * of engines and channels so that we take into account this
1367 * constraint. Note that we also want to use channels from
1368 * separate engines when possible. For dual-CPU Armada 3700
1369 * SoC with single XOR engine allow using its both channels.
1371 max_engines = num_present_cpus();
1372 if (xordev->xor_type == XOR_ARMADA_37XX)
1373 max_channels = num_present_cpus();
1374 else
1375 max_channels = min_t(unsigned int,
1376 MV_XOR_MAX_CHANNELS,
1377 DIV_ROUND_UP(num_present_cpus(), 2));
1379 if (mv_xor_engine_count >= max_engines)
1380 return 0;
1382 if (pdev->dev.of_node) {
1383 struct device_node *np;
1384 int i = 0;
1386 for_each_child_of_node(pdev->dev.of_node, np) {
1387 struct mv_xor_chan *chan;
1388 dma_cap_mask_t cap_mask;
1389 int irq;
1391 if (i >= max_channels)
1392 continue;
1394 dma_cap_zero(cap_mask);
1395 dma_cap_set(DMA_MEMCPY, cap_mask);
1396 dma_cap_set(DMA_XOR, cap_mask);
1397 dma_cap_set(DMA_INTERRUPT, cap_mask);
1399 irq = irq_of_parse_and_map(np, 0);
1400 if (!irq) {
1401 ret = -ENODEV;
1402 goto err_channel_add;
1405 chan = mv_xor_channel_add(xordev, pdev, i,
1406 cap_mask, irq);
1407 if (IS_ERR(chan)) {
1408 ret = PTR_ERR(chan);
1409 irq_dispose_mapping(irq);
1410 goto err_channel_add;
1413 xordev->channels[i] = chan;
1414 i++;
1416 } else if (pdata && pdata->channels) {
1417 for (i = 0; i < max_channels; i++) {
1418 struct mv_xor_channel_data *cd;
1419 struct mv_xor_chan *chan;
1420 int irq;
1422 cd = &pdata->channels[i];
1423 irq = platform_get_irq(pdev, i);
1424 if (irq < 0) {
1425 ret = irq;
1426 goto err_channel_add;
1429 chan = mv_xor_channel_add(xordev, pdev, i,
1430 cd->cap_mask, irq);
1431 if (IS_ERR(chan)) {
1432 ret = PTR_ERR(chan);
1433 goto err_channel_add;
1436 xordev->channels[i] = chan;
1440 return 0;
1442 err_channel_add:
1443 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1444 if (xordev->channels[i]) {
1445 mv_xor_channel_remove(xordev->channels[i]);
1446 if (pdev->dev.of_node)
1447 irq_dispose_mapping(xordev->channels[i]->irq);
1450 if (!IS_ERR(xordev->clk)) {
1451 clk_disable_unprepare(xordev->clk);
1452 clk_put(xordev->clk);
1455 return ret;
1458 static struct platform_driver mv_xor_driver = {
1459 .probe = mv_xor_probe,
1460 .suspend = mv_xor_suspend,
1461 .resume = mv_xor_resume,
1462 .driver = {
1463 .name = MV_XOR_NAME,
1464 .of_match_table = of_match_ptr(mv_xor_dt_ids),
1468 builtin_platform_driver(mv_xor_driver);
1471 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1472 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1473 MODULE_LICENSE("GPL");