radix tree: use GFP_ZONEMASK bits of gfp_t for flags
[linux/fpc-iii.git] / drivers / dma / mv_xor_v2.c
blob3548caa9e9339f17208a62066ad055c842491e3b
1 /*
2 * Copyright (C) 2015-2016 Marvell International Ltd.
4 * This program is free software: you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation, either version 2 of the
7 * License, or any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
15 #include <linux/clk.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/platform_device.h>
24 #include <linux/spinlock.h>
26 #include "dmaengine.h"
28 /* DMA Engine Registers */
29 #define MV_XOR_V2_DMA_DESQ_BALR_OFF 0x000
30 #define MV_XOR_V2_DMA_DESQ_BAHR_OFF 0x004
31 #define MV_XOR_V2_DMA_DESQ_SIZE_OFF 0x008
32 #define MV_XOR_V2_DMA_DESQ_DONE_OFF 0x00C
33 #define MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK 0x7FFF
34 #define MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT 0
35 #define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK 0x1FFF
36 #define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT 16
37 #define MV_XOR_V2_DMA_DESQ_ARATTR_OFF 0x010
38 #define MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK 0x3F3F
39 #define MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE 0x202
40 #define MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE 0x3C3C
41 #define MV_XOR_V2_DMA_IMSG_CDAT_OFF 0x014
42 #define MV_XOR_V2_DMA_IMSG_THRD_OFF 0x018
43 #define MV_XOR_V2_DMA_IMSG_THRD_MASK 0x7FFF
44 #define MV_XOR_V2_DMA_IMSG_THRD_SHIFT 0x0
45 #define MV_XOR_V2_DMA_IMSG_TIMER_EN BIT(18)
46 #define MV_XOR_V2_DMA_DESQ_AWATTR_OFF 0x01C
47 /* Same flags as MV_XOR_V2_DMA_DESQ_ARATTR_OFF */
48 #define MV_XOR_V2_DMA_DESQ_ALLOC_OFF 0x04C
49 #define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_MASK 0xFFFF
50 #define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_SHIFT 16
51 #define MV_XOR_V2_DMA_IMSG_BALR_OFF 0x050
52 #define MV_XOR_V2_DMA_IMSG_BAHR_OFF 0x054
53 #define MV_XOR_V2_DMA_DESQ_CTRL_OFF 0x100
54 #define MV_XOR_V2_DMA_DESQ_CTRL_32B 1
55 #define MV_XOR_V2_DMA_DESQ_CTRL_128B 7
56 #define MV_XOR_V2_DMA_DESQ_STOP_OFF 0x800
57 #define MV_XOR_V2_DMA_DESQ_DEALLOC_OFF 0x804
58 #define MV_XOR_V2_DMA_DESQ_ADD_OFF 0x808
59 #define MV_XOR_V2_DMA_IMSG_TMOT 0x810
60 #define MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK 0x1FFF
61 #define MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT 0
63 /* XOR Global registers */
64 #define MV_XOR_V2_GLOB_BW_CTRL 0x4
65 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT 0
66 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL 64
67 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT 8
68 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL 8
69 #define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT 12
70 #define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL 4
71 #define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT 16
72 #define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL 4
73 #define MV_XOR_V2_GLOB_PAUSE 0x014
74 #define MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL 0x8
75 #define MV_XOR_V2_GLOB_SYS_INT_CAUSE 0x200
76 #define MV_XOR_V2_GLOB_SYS_INT_MASK 0x204
77 #define MV_XOR_V2_GLOB_MEM_INT_CAUSE 0x220
78 #define MV_XOR_V2_GLOB_MEM_INT_MASK 0x224
80 #define MV_XOR_V2_MIN_DESC_SIZE 32
81 #define MV_XOR_V2_EXT_DESC_SIZE 128
83 #define MV_XOR_V2_DESC_RESERVED_SIZE 12
84 #define MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE 12
86 #define MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF 8
89 * Descriptors queue size. With 32 bytes descriptors, up to 2^14
90 * descriptors are allowed, with 128 bytes descriptors, up to 2^12
91 * descriptors are allowed. This driver uses 128 bytes descriptors,
92 * but experimentation has shown that a set of 1024 descriptors is
93 * sufficient to reach a good level of performance.
95 #define MV_XOR_V2_DESC_NUM 1024
98 * Threshold values for descriptors and timeout, determined by
99 * experimentation as giving a good level of performance.
101 #define MV_XOR_V2_DONE_IMSG_THRD 0x14
102 #define MV_XOR_V2_TIMER_THRD 0xB0
105 * struct mv_xor_v2_descriptor - DMA HW descriptor
106 * @desc_id: used by S/W and is not affected by H/W.
107 * @flags: error and status flags
108 * @crc32_result: CRC32 calculation result
109 * @desc_ctrl: operation mode and control flags
110 * @buff_size: amount of bytes to be processed
111 * @fill_pattern_src_addr: Fill-Pattern or Source-Address and
112 * AW-Attributes
113 * @data_buff_addr: Source (and might be RAID6 destination)
114 * addresses of data buffers in RAID5 and RAID6
115 * @reserved: reserved
117 struct mv_xor_v2_descriptor {
118 u16 desc_id;
119 u16 flags;
120 u32 crc32_result;
121 u32 desc_ctrl;
123 /* Definitions for desc_ctrl */
124 #define DESC_NUM_ACTIVE_D_BUF_SHIFT 22
125 #define DESC_OP_MODE_SHIFT 28
126 #define DESC_OP_MODE_NOP 0 /* Idle operation */
127 #define DESC_OP_MODE_MEMCPY 1 /* Pure-DMA operation */
128 #define DESC_OP_MODE_MEMSET 2 /* Mem-Fill operation */
129 #define DESC_OP_MODE_MEMINIT 3 /* Mem-Init operation */
130 #define DESC_OP_MODE_MEM_COMPARE 4 /* Mem-Compare operation */
131 #define DESC_OP_MODE_CRC32 5 /* CRC32 calculation */
132 #define DESC_OP_MODE_XOR 6 /* RAID5 (XOR) operation */
133 #define DESC_OP_MODE_RAID6 7 /* RAID6 P&Q-generation */
134 #define DESC_OP_MODE_RAID6_REC 8 /* RAID6 Recovery */
135 #define DESC_Q_BUFFER_ENABLE BIT(16)
136 #define DESC_P_BUFFER_ENABLE BIT(17)
137 #define DESC_IOD BIT(27)
139 u32 buff_size;
140 u32 fill_pattern_src_addr[4];
141 u32 data_buff_addr[MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE];
142 u32 reserved[MV_XOR_V2_DESC_RESERVED_SIZE];
146 * struct mv_xor_v2_device - implements a xor device
147 * @lock: lock for the engine
148 * @dma_base: memory mapped DMA register base
149 * @glob_base: memory mapped global register base
150 * @irq_tasklet:
151 * @free_sw_desc: linked list of free SW descriptors
152 * @dmadev: dma device
153 * @dmachan: dma channel
154 * @hw_desq: HW descriptors queue
155 * @hw_desq_virt: virtual address of DESCQ
156 * @sw_desq: SW descriptors queue
157 * @desc_size: HW descriptor size
158 * @npendings: number of pending descriptors (for which tx_submit has
159 * been called, but not yet issue_pending)
161 struct mv_xor_v2_device {
162 spinlock_t lock;
163 void __iomem *dma_base;
164 void __iomem *glob_base;
165 struct clk *clk;
166 struct clk *reg_clk;
167 struct tasklet_struct irq_tasklet;
168 struct list_head free_sw_desc;
169 struct dma_device dmadev;
170 struct dma_chan dmachan;
171 dma_addr_t hw_desq;
172 struct mv_xor_v2_descriptor *hw_desq_virt;
173 struct mv_xor_v2_sw_desc *sw_desq;
174 int desc_size;
175 unsigned int npendings;
176 unsigned int hw_queue_idx;
180 * struct mv_xor_v2_sw_desc - implements a xor SW descriptor
181 * @idx: descriptor index
182 * @async_tx: support for the async_tx api
183 * @hw_desc: assosiated HW descriptor
184 * @free_list: node of the free SW descriprots list
186 struct mv_xor_v2_sw_desc {
187 int idx;
188 struct dma_async_tx_descriptor async_tx;
189 struct mv_xor_v2_descriptor hw_desc;
190 struct list_head free_list;
194 * Fill the data buffers to a HW descriptor
196 static void mv_xor_v2_set_data_buffers(struct mv_xor_v2_device *xor_dev,
197 struct mv_xor_v2_descriptor *desc,
198 dma_addr_t src, int index)
200 int arr_index = ((index >> 1) * 3);
203 * Fill the buffer's addresses to the descriptor.
205 * The format of the buffers address for 2 sequential buffers
206 * X and X + 1:
208 * First word: Buffer-DX-Address-Low[31:0]
209 * Second word: Buffer-DX+1-Address-Low[31:0]
210 * Third word: DX+1-Buffer-Address-High[47:32] [31:16]
211 * DX-Buffer-Address-High[47:32] [15:0]
213 if ((index & 0x1) == 0) {
214 desc->data_buff_addr[arr_index] = lower_32_bits(src);
216 desc->data_buff_addr[arr_index + 2] &= ~0xFFFF;
217 desc->data_buff_addr[arr_index + 2] |=
218 upper_32_bits(src) & 0xFFFF;
219 } else {
220 desc->data_buff_addr[arr_index + 1] =
221 lower_32_bits(src);
223 desc->data_buff_addr[arr_index + 2] &= ~0xFFFF0000;
224 desc->data_buff_addr[arr_index + 2] |=
225 (upper_32_bits(src) & 0xFFFF) << 16;
230 * notify the engine of new descriptors, and update the available index.
232 static void mv_xor_v2_add_desc_to_desq(struct mv_xor_v2_device *xor_dev,
233 int num_of_desc)
235 /* write the number of new descriptors in the DESQ. */
236 writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ADD_OFF);
240 * free HW descriptors
242 static void mv_xor_v2_free_desc_from_desq(struct mv_xor_v2_device *xor_dev,
243 int num_of_desc)
245 /* write the number of new descriptors in the DESQ. */
246 writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DEALLOC_OFF);
250 * Set descriptor size
251 * Return the HW descriptor size in bytes
253 static int mv_xor_v2_set_desc_size(struct mv_xor_v2_device *xor_dev)
255 writel(MV_XOR_V2_DMA_DESQ_CTRL_128B,
256 xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_CTRL_OFF);
258 return MV_XOR_V2_EXT_DESC_SIZE;
262 * Set the IMSG threshold
264 static inline
265 void mv_xor_v2_enable_imsg_thrd(struct mv_xor_v2_device *xor_dev)
267 u32 reg;
269 /* Configure threshold of number of descriptors, and enable timer */
270 reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF);
271 reg &= (~MV_XOR_V2_DMA_IMSG_THRD_MASK << MV_XOR_V2_DMA_IMSG_THRD_SHIFT);
272 reg |= (MV_XOR_V2_DONE_IMSG_THRD << MV_XOR_V2_DMA_IMSG_THRD_SHIFT);
273 reg |= MV_XOR_V2_DMA_IMSG_TIMER_EN;
274 writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF);
276 /* Configure Timer Threshold */
277 reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT);
278 reg &= (~MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK <<
279 MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT);
280 reg |= (MV_XOR_V2_TIMER_THRD << MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT);
281 writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT);
284 static irqreturn_t mv_xor_v2_interrupt_handler(int irq, void *data)
286 struct mv_xor_v2_device *xor_dev = data;
287 unsigned int ndescs;
288 u32 reg;
290 reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF);
292 ndescs = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) &
293 MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK);
295 /* No descriptors to process */
296 if (!ndescs)
297 return IRQ_NONE;
299 /* schedule a tasklet to handle descriptors callbacks */
300 tasklet_schedule(&xor_dev->irq_tasklet);
302 return IRQ_HANDLED;
306 * submit a descriptor to the DMA engine
308 static dma_cookie_t
309 mv_xor_v2_tx_submit(struct dma_async_tx_descriptor *tx)
311 void *dest_hw_desc;
312 dma_cookie_t cookie;
313 struct mv_xor_v2_sw_desc *sw_desc =
314 container_of(tx, struct mv_xor_v2_sw_desc, async_tx);
315 struct mv_xor_v2_device *xor_dev =
316 container_of(tx->chan, struct mv_xor_v2_device, dmachan);
318 dev_dbg(xor_dev->dmadev.dev,
319 "%s sw_desc %p: async_tx %p\n",
320 __func__, sw_desc, &sw_desc->async_tx);
322 /* assign coookie */
323 spin_lock_bh(&xor_dev->lock);
324 cookie = dma_cookie_assign(tx);
326 /* copy the HW descriptor from the SW descriptor to the DESQ */
327 dest_hw_desc = xor_dev->hw_desq_virt + xor_dev->hw_queue_idx;
329 memcpy(dest_hw_desc, &sw_desc->hw_desc, xor_dev->desc_size);
331 xor_dev->npendings++;
332 xor_dev->hw_queue_idx++;
333 if (xor_dev->hw_queue_idx >= MV_XOR_V2_DESC_NUM)
334 xor_dev->hw_queue_idx = 0;
336 spin_unlock_bh(&xor_dev->lock);
338 return cookie;
342 * Prepare a SW descriptor
344 static struct mv_xor_v2_sw_desc *
345 mv_xor_v2_prep_sw_desc(struct mv_xor_v2_device *xor_dev)
347 struct mv_xor_v2_sw_desc *sw_desc;
348 bool found = false;
350 /* Lock the channel */
351 spin_lock_bh(&xor_dev->lock);
353 if (list_empty(&xor_dev->free_sw_desc)) {
354 spin_unlock_bh(&xor_dev->lock);
355 /* schedule tasklet to free some descriptors */
356 tasklet_schedule(&xor_dev->irq_tasklet);
357 return NULL;
360 list_for_each_entry(sw_desc, &xor_dev->free_sw_desc, free_list) {
361 if (async_tx_test_ack(&sw_desc->async_tx)) {
362 found = true;
363 break;
367 if (!found) {
368 spin_unlock_bh(&xor_dev->lock);
369 return NULL;
372 list_del(&sw_desc->free_list);
374 /* Release the channel */
375 spin_unlock_bh(&xor_dev->lock);
377 return sw_desc;
381 * Prepare a HW descriptor for a memcpy operation
383 static struct dma_async_tx_descriptor *
384 mv_xor_v2_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
385 dma_addr_t src, size_t len, unsigned long flags)
387 struct mv_xor_v2_sw_desc *sw_desc;
388 struct mv_xor_v2_descriptor *hw_descriptor;
389 struct mv_xor_v2_device *xor_dev;
391 xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan);
393 dev_dbg(xor_dev->dmadev.dev,
394 "%s len: %zu src %pad dest %pad flags: %ld\n",
395 __func__, len, &src, &dest, flags);
397 sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
398 if (!sw_desc)
399 return NULL;
401 sw_desc->async_tx.flags = flags;
403 /* set the HW descriptor */
404 hw_descriptor = &sw_desc->hw_desc;
406 /* save the SW descriptor ID to restore when operation is done */
407 hw_descriptor->desc_id = sw_desc->idx;
409 /* Set the MEMCPY control word */
410 hw_descriptor->desc_ctrl =
411 DESC_OP_MODE_MEMCPY << DESC_OP_MODE_SHIFT;
413 if (flags & DMA_PREP_INTERRUPT)
414 hw_descriptor->desc_ctrl |= DESC_IOD;
416 /* Set source address */
417 hw_descriptor->fill_pattern_src_addr[0] = lower_32_bits(src);
418 hw_descriptor->fill_pattern_src_addr[1] =
419 upper_32_bits(src) & 0xFFFF;
421 /* Set Destination address */
422 hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest);
423 hw_descriptor->fill_pattern_src_addr[3] =
424 upper_32_bits(dest) & 0xFFFF;
426 /* Set buffers size */
427 hw_descriptor->buff_size = len;
429 /* return the async tx descriptor */
430 return &sw_desc->async_tx;
434 * Prepare a HW descriptor for a XOR operation
436 static struct dma_async_tx_descriptor *
437 mv_xor_v2_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
438 unsigned int src_cnt, size_t len, unsigned long flags)
440 struct mv_xor_v2_sw_desc *sw_desc;
441 struct mv_xor_v2_descriptor *hw_descriptor;
442 struct mv_xor_v2_device *xor_dev =
443 container_of(chan, struct mv_xor_v2_device, dmachan);
444 int i;
446 if (src_cnt > MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF || src_cnt < 1)
447 return NULL;
449 dev_dbg(xor_dev->dmadev.dev,
450 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
451 __func__, src_cnt, len, &dest, flags);
453 sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
454 if (!sw_desc)
455 return NULL;
457 sw_desc->async_tx.flags = flags;
459 /* set the HW descriptor */
460 hw_descriptor = &sw_desc->hw_desc;
462 /* save the SW descriptor ID to restore when operation is done */
463 hw_descriptor->desc_id = sw_desc->idx;
465 /* Set the XOR control word */
466 hw_descriptor->desc_ctrl =
467 DESC_OP_MODE_XOR << DESC_OP_MODE_SHIFT;
468 hw_descriptor->desc_ctrl |= DESC_P_BUFFER_ENABLE;
470 if (flags & DMA_PREP_INTERRUPT)
471 hw_descriptor->desc_ctrl |= DESC_IOD;
473 /* Set the data buffers */
474 for (i = 0; i < src_cnt; i++)
475 mv_xor_v2_set_data_buffers(xor_dev, hw_descriptor, src[i], i);
477 hw_descriptor->desc_ctrl |=
478 src_cnt << DESC_NUM_ACTIVE_D_BUF_SHIFT;
480 /* Set Destination address */
481 hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest);
482 hw_descriptor->fill_pattern_src_addr[3] =
483 upper_32_bits(dest) & 0xFFFF;
485 /* Set buffers size */
486 hw_descriptor->buff_size = len;
488 /* return the async tx descriptor */
489 return &sw_desc->async_tx;
493 * Prepare a HW descriptor for interrupt operation.
495 static struct dma_async_tx_descriptor *
496 mv_xor_v2_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
498 struct mv_xor_v2_sw_desc *sw_desc;
499 struct mv_xor_v2_descriptor *hw_descriptor;
500 struct mv_xor_v2_device *xor_dev =
501 container_of(chan, struct mv_xor_v2_device, dmachan);
503 sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
504 if (!sw_desc)
505 return NULL;
507 /* set the HW descriptor */
508 hw_descriptor = &sw_desc->hw_desc;
510 /* save the SW descriptor ID to restore when operation is done */
511 hw_descriptor->desc_id = sw_desc->idx;
513 /* Set the INTERRUPT control word */
514 hw_descriptor->desc_ctrl =
515 DESC_OP_MODE_NOP << DESC_OP_MODE_SHIFT;
516 hw_descriptor->desc_ctrl |= DESC_IOD;
518 /* return the async tx descriptor */
519 return &sw_desc->async_tx;
523 * push pending transactions to hardware
525 static void mv_xor_v2_issue_pending(struct dma_chan *chan)
527 struct mv_xor_v2_device *xor_dev =
528 container_of(chan, struct mv_xor_v2_device, dmachan);
530 spin_lock_bh(&xor_dev->lock);
533 * update the engine with the number of descriptors to
534 * process
536 mv_xor_v2_add_desc_to_desq(xor_dev, xor_dev->npendings);
537 xor_dev->npendings = 0;
539 spin_unlock_bh(&xor_dev->lock);
542 static inline
543 int mv_xor_v2_get_pending_params(struct mv_xor_v2_device *xor_dev,
544 int *pending_ptr)
546 u32 reg;
548 reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF);
550 /* get the next pending descriptor index */
551 *pending_ptr = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT) &
552 MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK);
554 /* get the number of descriptors pending handle */
555 return ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) &
556 MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK);
560 * handle the descriptors after HW process
562 static void mv_xor_v2_tasklet(unsigned long data)
564 struct mv_xor_v2_device *xor_dev = (struct mv_xor_v2_device *) data;
565 int pending_ptr, num_of_pending, i;
566 struct mv_xor_v2_sw_desc *next_pending_sw_desc = NULL;
568 dev_dbg(xor_dev->dmadev.dev, "%s %d\n", __func__, __LINE__);
570 /* get the pending descriptors parameters */
571 num_of_pending = mv_xor_v2_get_pending_params(xor_dev, &pending_ptr);
573 /* loop over free descriptors */
574 for (i = 0; i < num_of_pending; i++) {
575 struct mv_xor_v2_descriptor *next_pending_hw_desc =
576 xor_dev->hw_desq_virt + pending_ptr;
578 /* get the SW descriptor related to the HW descriptor */
579 next_pending_sw_desc =
580 &xor_dev->sw_desq[next_pending_hw_desc->desc_id];
582 /* call the callback */
583 if (next_pending_sw_desc->async_tx.cookie > 0) {
585 * update the channel's completed cookie - no
586 * lock is required the IMSG threshold provide
587 * the locking
589 dma_cookie_complete(&next_pending_sw_desc->async_tx);
591 if (next_pending_sw_desc->async_tx.callback)
592 next_pending_sw_desc->async_tx.callback(
593 next_pending_sw_desc->async_tx.callback_param);
595 dma_descriptor_unmap(&next_pending_sw_desc->async_tx);
598 dma_run_dependencies(&next_pending_sw_desc->async_tx);
600 /* Lock the channel */
601 spin_lock_bh(&xor_dev->lock);
603 /* add the SW descriptor to the free descriptors list */
604 list_add(&next_pending_sw_desc->free_list,
605 &xor_dev->free_sw_desc);
607 /* Release the channel */
608 spin_unlock_bh(&xor_dev->lock);
610 /* increment the next descriptor */
611 pending_ptr++;
612 if (pending_ptr >= MV_XOR_V2_DESC_NUM)
613 pending_ptr = 0;
616 if (num_of_pending != 0) {
617 /* free the descriptores */
618 mv_xor_v2_free_desc_from_desq(xor_dev, num_of_pending);
623 * Set DMA Interrupt-message (IMSG) parameters
625 static void mv_xor_v2_set_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
627 struct mv_xor_v2_device *xor_dev = dev_get_drvdata(desc->dev);
629 writel(msg->address_lo,
630 xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BALR_OFF);
631 writel(msg->address_hi & 0xFFFF,
632 xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BAHR_OFF);
633 writel(msg->data,
634 xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_CDAT_OFF);
637 static int mv_xor_v2_descq_init(struct mv_xor_v2_device *xor_dev)
639 u32 reg;
641 /* write the DESQ size to the DMA engine */
642 writel(MV_XOR_V2_DESC_NUM,
643 xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_SIZE_OFF);
645 /* write the DESQ address to the DMA enngine*/
646 writel(xor_dev->hw_desq & 0xFFFFFFFF,
647 xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BALR_OFF);
648 writel((xor_dev->hw_desq & 0xFFFF00000000) >> 32,
649 xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BAHR_OFF);
652 * This is a temporary solution, until we activate the
653 * SMMU. Set the attributes for reading & writing data buffers
654 * & descriptors to:
656 * - OuterShareable - Snoops will be performed on CPU caches
657 * - Enable cacheable - Bufferable, Modifiable, Other Allocate
658 * and Allocate
660 reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF);
661 reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK;
662 reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE |
663 MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE;
664 writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF);
666 reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF);
667 reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK;
668 reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE |
669 MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE;
670 writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF);
672 /* BW CTRL - set values to optimize the XOR performance:
674 * - Set WrBurstLen & RdBurstLen - the unit will issue
675 * maximum of 256B write/read transactions.
676 * - Limit the number of outstanding write & read data
677 * (OBB/IBB) requests to the maximal value.
679 reg = ((MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL <<
680 MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT) |
681 (MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL <<
682 MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT) |
683 (MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL <<
684 MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT) |
685 (MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL <<
686 MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT));
687 writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_BW_CTRL);
689 /* Disable the AXI timer feature */
690 reg = readl(xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE);
691 reg |= MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL;
692 writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE);
694 /* enable the DMA engine */
695 writel(0, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF);
697 return 0;
700 static int mv_xor_v2_suspend(struct platform_device *dev, pm_message_t state)
702 struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev);
704 /* Set this bit to disable to stop the XOR unit. */
705 writel(0x1, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF);
707 return 0;
710 static int mv_xor_v2_resume(struct platform_device *dev)
712 struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev);
714 mv_xor_v2_set_desc_size(xor_dev);
715 mv_xor_v2_enable_imsg_thrd(xor_dev);
716 mv_xor_v2_descq_init(xor_dev);
718 return 0;
721 static int mv_xor_v2_probe(struct platform_device *pdev)
723 struct mv_xor_v2_device *xor_dev;
724 struct resource *res;
725 int i, ret = 0;
726 struct dma_device *dma_dev;
727 struct mv_xor_v2_sw_desc *sw_desc;
728 struct msi_desc *msi_desc;
730 BUILD_BUG_ON(sizeof(struct mv_xor_v2_descriptor) !=
731 MV_XOR_V2_EXT_DESC_SIZE);
733 xor_dev = devm_kzalloc(&pdev->dev, sizeof(*xor_dev), GFP_KERNEL);
734 if (!xor_dev)
735 return -ENOMEM;
737 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
738 xor_dev->dma_base = devm_ioremap_resource(&pdev->dev, res);
739 if (IS_ERR(xor_dev->dma_base))
740 return PTR_ERR(xor_dev->dma_base);
742 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
743 xor_dev->glob_base = devm_ioremap_resource(&pdev->dev, res);
744 if (IS_ERR(xor_dev->glob_base))
745 return PTR_ERR(xor_dev->glob_base);
747 platform_set_drvdata(pdev, xor_dev);
749 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
750 if (ret)
751 return ret;
753 xor_dev->reg_clk = devm_clk_get(&pdev->dev, "reg");
754 if (PTR_ERR(xor_dev->reg_clk) != -ENOENT) {
755 if (!IS_ERR(xor_dev->reg_clk)) {
756 ret = clk_prepare_enable(xor_dev->reg_clk);
757 if (ret)
758 return ret;
759 } else {
760 return PTR_ERR(xor_dev->reg_clk);
764 xor_dev->clk = devm_clk_get(&pdev->dev, NULL);
765 if (IS_ERR(xor_dev->clk) && PTR_ERR(xor_dev->clk) == -EPROBE_DEFER) {
766 ret = EPROBE_DEFER;
767 goto disable_reg_clk;
769 if (!IS_ERR(xor_dev->clk)) {
770 ret = clk_prepare_enable(xor_dev->clk);
771 if (ret)
772 goto disable_reg_clk;
775 ret = platform_msi_domain_alloc_irqs(&pdev->dev, 1,
776 mv_xor_v2_set_msi_msg);
777 if (ret)
778 goto disable_clk;
780 msi_desc = first_msi_entry(&pdev->dev);
781 if (!msi_desc)
782 goto free_msi_irqs;
784 ret = devm_request_irq(&pdev->dev, msi_desc->irq,
785 mv_xor_v2_interrupt_handler, 0,
786 dev_name(&pdev->dev), xor_dev);
787 if (ret)
788 goto free_msi_irqs;
790 tasklet_init(&xor_dev->irq_tasklet, mv_xor_v2_tasklet,
791 (unsigned long) xor_dev);
793 xor_dev->desc_size = mv_xor_v2_set_desc_size(xor_dev);
795 dma_cookie_init(&xor_dev->dmachan);
798 * allocate coherent memory for hardware descriptors
799 * note: writecombine gives slightly better performance, but
800 * requires that we explicitly flush the writes
802 xor_dev->hw_desq_virt =
803 dma_alloc_coherent(&pdev->dev,
804 xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
805 &xor_dev->hw_desq, GFP_KERNEL);
806 if (!xor_dev->hw_desq_virt) {
807 ret = -ENOMEM;
808 goto free_msi_irqs;
811 /* alloc memory for the SW descriptors */
812 xor_dev->sw_desq = devm_kzalloc(&pdev->dev, sizeof(*sw_desc) *
813 MV_XOR_V2_DESC_NUM, GFP_KERNEL);
814 if (!xor_dev->sw_desq) {
815 ret = -ENOMEM;
816 goto free_hw_desq;
819 spin_lock_init(&xor_dev->lock);
821 /* init the free SW descriptors list */
822 INIT_LIST_HEAD(&xor_dev->free_sw_desc);
824 /* add all SW descriptors to the free list */
825 for (i = 0; i < MV_XOR_V2_DESC_NUM; i++) {
826 struct mv_xor_v2_sw_desc *sw_desc =
827 xor_dev->sw_desq + i;
828 sw_desc->idx = i;
829 dma_async_tx_descriptor_init(&sw_desc->async_tx,
830 &xor_dev->dmachan);
831 sw_desc->async_tx.tx_submit = mv_xor_v2_tx_submit;
832 async_tx_ack(&sw_desc->async_tx);
834 list_add(&sw_desc->free_list,
835 &xor_dev->free_sw_desc);
838 dma_dev = &xor_dev->dmadev;
840 /* set DMA capabilities */
841 dma_cap_zero(dma_dev->cap_mask);
842 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
843 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
844 dma_cap_set(DMA_INTERRUPT, dma_dev->cap_mask);
846 /* init dma link list */
847 INIT_LIST_HEAD(&dma_dev->channels);
849 /* set base routines */
850 dma_dev->device_tx_status = dma_cookie_status;
851 dma_dev->device_issue_pending = mv_xor_v2_issue_pending;
852 dma_dev->dev = &pdev->dev;
854 dma_dev->device_prep_dma_memcpy = mv_xor_v2_prep_dma_memcpy;
855 dma_dev->device_prep_dma_interrupt = mv_xor_v2_prep_dma_interrupt;
856 dma_dev->max_xor = 8;
857 dma_dev->device_prep_dma_xor = mv_xor_v2_prep_dma_xor;
859 xor_dev->dmachan.device = dma_dev;
861 list_add_tail(&xor_dev->dmachan.device_node,
862 &dma_dev->channels);
864 mv_xor_v2_enable_imsg_thrd(xor_dev);
866 mv_xor_v2_descq_init(xor_dev);
868 ret = dma_async_device_register(dma_dev);
869 if (ret)
870 goto free_hw_desq;
872 dev_notice(&pdev->dev, "Marvell Version 2 XOR driver\n");
874 return 0;
876 free_hw_desq:
877 dma_free_coherent(&pdev->dev,
878 xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
879 xor_dev->hw_desq_virt, xor_dev->hw_desq);
880 free_msi_irqs:
881 platform_msi_domain_free_irqs(&pdev->dev);
882 disable_clk:
883 clk_disable_unprepare(xor_dev->clk);
884 disable_reg_clk:
885 clk_disable_unprepare(xor_dev->reg_clk);
886 return ret;
889 static int mv_xor_v2_remove(struct platform_device *pdev)
891 struct mv_xor_v2_device *xor_dev = platform_get_drvdata(pdev);
893 dma_async_device_unregister(&xor_dev->dmadev);
895 dma_free_coherent(&pdev->dev,
896 xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
897 xor_dev->hw_desq_virt, xor_dev->hw_desq);
899 platform_msi_domain_free_irqs(&pdev->dev);
901 clk_disable_unprepare(xor_dev->clk);
903 return 0;
906 #ifdef CONFIG_OF
907 static const struct of_device_id mv_xor_v2_dt_ids[] = {
908 { .compatible = "marvell,xor-v2", },
911 MODULE_DEVICE_TABLE(of, mv_xor_v2_dt_ids);
912 #endif
914 static struct platform_driver mv_xor_v2_driver = {
915 .probe = mv_xor_v2_probe,
916 .suspend = mv_xor_v2_suspend,
917 .resume = mv_xor_v2_resume,
918 .remove = mv_xor_v2_remove,
919 .driver = {
920 .name = "mv_xor_v2",
921 .of_match_table = of_match_ptr(mv_xor_v2_dt_ids),
925 module_platform_driver(mv_xor_v2_driver);
927 MODULE_DESCRIPTION("DMA engine driver for Marvell's Version 2 of XOR engine");
928 MODULE_LICENSE("GPL");