RDS: Add rds_conn_path_error()
[linux/fpc-iii.git] / fs / libfs.c
blob3db2721144c27d133cc7f8652d269900c9865ea5
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19 #include <asm/uaccess.h>
21 #include "internal.h"
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 struct kstat *stat)
26 struct inode *inode = d_inode(dentry);
27 generic_fillattr(inode, stat);
28 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 return 0;
31 EXPORT_SYMBOL(simple_getattr);
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
40 EXPORT_SYMBOL(simple_statfs);
43 * Retaining negative dentries for an in-memory filesystem just wastes
44 * memory and lookup time: arrange for them to be deleted immediately.
46 int always_delete_dentry(const struct dentry *dentry)
48 return 1;
50 EXPORT_SYMBOL(always_delete_dentry);
52 const struct dentry_operations simple_dentry_operations = {
53 .d_delete = always_delete_dentry,
55 EXPORT_SYMBOL(simple_dentry_operations);
58 * Lookup the data. This is trivial - if the dentry didn't already
59 * exist, we know it is negative. Set d_op to delete negative dentries.
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 if (dentry->d_name.len > NAME_MAX)
64 return ERR_PTR(-ENAMETOOLONG);
65 if (!dentry->d_sb->s_d_op)
66 d_set_d_op(dentry, &simple_dentry_operations);
67 d_add(dentry, NULL);
68 return NULL;
70 EXPORT_SYMBOL(simple_lookup);
72 int dcache_dir_open(struct inode *inode, struct file *file)
74 static struct qstr cursor_name = QSTR_INIT(".", 1);
76 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
78 return file->private_data ? 0 : -ENOMEM;
80 EXPORT_SYMBOL(dcache_dir_open);
82 int dcache_dir_close(struct inode *inode, struct file *file)
84 dput(file->private_data);
85 return 0;
87 EXPORT_SYMBOL(dcache_dir_close);
89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
91 struct dentry *dentry = file->f_path.dentry;
92 switch (whence) {
93 case 1:
94 offset += file->f_pos;
95 case 0:
96 if (offset >= 0)
97 break;
98 default:
99 return -EINVAL;
101 if (offset != file->f_pos) {
102 file->f_pos = offset;
103 if (file->f_pos >= 2) {
104 struct list_head *p;
105 struct dentry *cursor = file->private_data;
106 loff_t n = file->f_pos - 2;
108 spin_lock(&dentry->d_lock);
109 /* d_lock not required for cursor */
110 list_del(&cursor->d_child);
111 p = dentry->d_subdirs.next;
112 while (n && p != &dentry->d_subdirs) {
113 struct dentry *next;
114 next = list_entry(p, struct dentry, d_child);
115 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
116 if (simple_positive(next))
117 n--;
118 spin_unlock(&next->d_lock);
119 p = p->next;
121 list_add_tail(&cursor->d_child, p);
122 spin_unlock(&dentry->d_lock);
125 return offset;
127 EXPORT_SYMBOL(dcache_dir_lseek);
129 /* Relationship between i_mode and the DT_xxx types */
130 static inline unsigned char dt_type(struct inode *inode)
132 return (inode->i_mode >> 12) & 15;
136 * Directory is locked and all positive dentries in it are safe, since
137 * for ramfs-type trees they can't go away without unlink() or rmdir(),
138 * both impossible due to the lock on directory.
141 int dcache_readdir(struct file *file, struct dir_context *ctx)
143 struct dentry *dentry = file->f_path.dentry;
144 struct dentry *cursor = file->private_data;
145 struct list_head *p, *q = &cursor->d_child;
147 if (!dir_emit_dots(file, ctx))
148 return 0;
149 spin_lock(&dentry->d_lock);
150 if (ctx->pos == 2)
151 list_move(q, &dentry->d_subdirs);
153 for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
154 struct dentry *next = list_entry(p, struct dentry, d_child);
155 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
156 if (!simple_positive(next)) {
157 spin_unlock(&next->d_lock);
158 continue;
161 spin_unlock(&next->d_lock);
162 spin_unlock(&dentry->d_lock);
163 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
164 d_inode(next)->i_ino, dt_type(d_inode(next))))
165 return 0;
166 spin_lock(&dentry->d_lock);
167 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
168 /* next is still alive */
169 list_move(q, p);
170 spin_unlock(&next->d_lock);
171 p = q;
172 ctx->pos++;
174 spin_unlock(&dentry->d_lock);
175 return 0;
177 EXPORT_SYMBOL(dcache_readdir);
179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
181 return -EISDIR;
183 EXPORT_SYMBOL(generic_read_dir);
185 const struct file_operations simple_dir_operations = {
186 .open = dcache_dir_open,
187 .release = dcache_dir_close,
188 .llseek = dcache_dir_lseek,
189 .read = generic_read_dir,
190 .iterate_shared = dcache_readdir,
191 .fsync = noop_fsync,
193 EXPORT_SYMBOL(simple_dir_operations);
195 const struct inode_operations simple_dir_inode_operations = {
196 .lookup = simple_lookup,
198 EXPORT_SYMBOL(simple_dir_inode_operations);
200 static const struct super_operations simple_super_operations = {
201 .statfs = simple_statfs,
205 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
206 * will never be mountable)
208 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
209 const struct super_operations *ops,
210 const struct dentry_operations *dops, unsigned long magic)
212 struct super_block *s;
213 struct dentry *dentry;
214 struct inode *root;
215 struct qstr d_name = QSTR_INIT(name, strlen(name));
217 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
218 if (IS_ERR(s))
219 return ERR_CAST(s);
221 s->s_maxbytes = MAX_LFS_FILESIZE;
222 s->s_blocksize = PAGE_SIZE;
223 s->s_blocksize_bits = PAGE_SHIFT;
224 s->s_magic = magic;
225 s->s_op = ops ? ops : &simple_super_operations;
226 s->s_time_gran = 1;
227 root = new_inode(s);
228 if (!root)
229 goto Enomem;
231 * since this is the first inode, make it number 1. New inodes created
232 * after this must take care not to collide with it (by passing
233 * max_reserved of 1 to iunique).
235 root->i_ino = 1;
236 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
237 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
238 dentry = __d_alloc(s, &d_name);
239 if (!dentry) {
240 iput(root);
241 goto Enomem;
243 d_instantiate(dentry, root);
244 s->s_root = dentry;
245 s->s_d_op = dops;
246 s->s_flags |= MS_ACTIVE;
247 return dget(s->s_root);
249 Enomem:
250 deactivate_locked_super(s);
251 return ERR_PTR(-ENOMEM);
253 EXPORT_SYMBOL(mount_pseudo);
255 int simple_open(struct inode *inode, struct file *file)
257 if (inode->i_private)
258 file->private_data = inode->i_private;
259 return 0;
261 EXPORT_SYMBOL(simple_open);
263 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
265 struct inode *inode = d_inode(old_dentry);
267 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
268 inc_nlink(inode);
269 ihold(inode);
270 dget(dentry);
271 d_instantiate(dentry, inode);
272 return 0;
274 EXPORT_SYMBOL(simple_link);
276 int simple_empty(struct dentry *dentry)
278 struct dentry *child;
279 int ret = 0;
281 spin_lock(&dentry->d_lock);
282 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
283 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
284 if (simple_positive(child)) {
285 spin_unlock(&child->d_lock);
286 goto out;
288 spin_unlock(&child->d_lock);
290 ret = 1;
291 out:
292 spin_unlock(&dentry->d_lock);
293 return ret;
295 EXPORT_SYMBOL(simple_empty);
297 int simple_unlink(struct inode *dir, struct dentry *dentry)
299 struct inode *inode = d_inode(dentry);
301 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
302 drop_nlink(inode);
303 dput(dentry);
304 return 0;
306 EXPORT_SYMBOL(simple_unlink);
308 int simple_rmdir(struct inode *dir, struct dentry *dentry)
310 if (!simple_empty(dentry))
311 return -ENOTEMPTY;
313 drop_nlink(d_inode(dentry));
314 simple_unlink(dir, dentry);
315 drop_nlink(dir);
316 return 0;
318 EXPORT_SYMBOL(simple_rmdir);
320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 struct inode *new_dir, struct dentry *new_dentry)
323 struct inode *inode = d_inode(old_dentry);
324 int they_are_dirs = d_is_dir(old_dentry);
326 if (!simple_empty(new_dentry))
327 return -ENOTEMPTY;
329 if (d_really_is_positive(new_dentry)) {
330 simple_unlink(new_dir, new_dentry);
331 if (they_are_dirs) {
332 drop_nlink(d_inode(new_dentry));
333 drop_nlink(old_dir);
335 } else if (they_are_dirs) {
336 drop_nlink(old_dir);
337 inc_nlink(new_dir);
340 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
341 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
343 return 0;
345 EXPORT_SYMBOL(simple_rename);
348 * simple_setattr - setattr for simple filesystem
349 * @dentry: dentry
350 * @iattr: iattr structure
352 * Returns 0 on success, -error on failure.
354 * simple_setattr is a simple ->setattr implementation without a proper
355 * implementation of size changes.
357 * It can either be used for in-memory filesystems or special files
358 * on simple regular filesystems. Anything that needs to change on-disk
359 * or wire state on size changes needs its own setattr method.
361 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
363 struct inode *inode = d_inode(dentry);
364 int error;
366 error = inode_change_ok(inode, iattr);
367 if (error)
368 return error;
370 if (iattr->ia_valid & ATTR_SIZE)
371 truncate_setsize(inode, iattr->ia_size);
372 setattr_copy(inode, iattr);
373 mark_inode_dirty(inode);
374 return 0;
376 EXPORT_SYMBOL(simple_setattr);
378 int simple_readpage(struct file *file, struct page *page)
380 clear_highpage(page);
381 flush_dcache_page(page);
382 SetPageUptodate(page);
383 unlock_page(page);
384 return 0;
386 EXPORT_SYMBOL(simple_readpage);
388 int simple_write_begin(struct file *file, struct address_space *mapping,
389 loff_t pos, unsigned len, unsigned flags,
390 struct page **pagep, void **fsdata)
392 struct page *page;
393 pgoff_t index;
395 index = pos >> PAGE_SHIFT;
397 page = grab_cache_page_write_begin(mapping, index, flags);
398 if (!page)
399 return -ENOMEM;
401 *pagep = page;
403 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
404 unsigned from = pos & (PAGE_SIZE - 1);
406 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
408 return 0;
410 EXPORT_SYMBOL(simple_write_begin);
413 * simple_write_end - .write_end helper for non-block-device FSes
414 * @available: See .write_end of address_space_operations
415 * @file: "
416 * @mapping: "
417 * @pos: "
418 * @len: "
419 * @copied: "
420 * @page: "
421 * @fsdata: "
423 * simple_write_end does the minimum needed for updating a page after writing is
424 * done. It has the same API signature as the .write_end of
425 * address_space_operations vector. So it can just be set onto .write_end for
426 * FSes that don't need any other processing. i_mutex is assumed to be held.
427 * Block based filesystems should use generic_write_end().
428 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
429 * is not called, so a filesystem that actually does store data in .write_inode
430 * should extend on what's done here with a call to mark_inode_dirty() in the
431 * case that i_size has changed.
433 int simple_write_end(struct file *file, struct address_space *mapping,
434 loff_t pos, unsigned len, unsigned copied,
435 struct page *page, void *fsdata)
437 struct inode *inode = page->mapping->host;
438 loff_t last_pos = pos + copied;
440 /* zero the stale part of the page if we did a short copy */
441 if (copied < len) {
442 unsigned from = pos & (PAGE_SIZE - 1);
444 zero_user(page, from + copied, len - copied);
447 if (!PageUptodate(page))
448 SetPageUptodate(page);
450 * No need to use i_size_read() here, the i_size
451 * cannot change under us because we hold the i_mutex.
453 if (last_pos > inode->i_size)
454 i_size_write(inode, last_pos);
456 set_page_dirty(page);
457 unlock_page(page);
458 put_page(page);
460 return copied;
462 EXPORT_SYMBOL(simple_write_end);
465 * the inodes created here are not hashed. If you use iunique to generate
466 * unique inode values later for this filesystem, then you must take care
467 * to pass it an appropriate max_reserved value to avoid collisions.
469 int simple_fill_super(struct super_block *s, unsigned long magic,
470 struct tree_descr *files)
472 struct inode *inode;
473 struct dentry *root;
474 struct dentry *dentry;
475 int i;
477 s->s_blocksize = PAGE_SIZE;
478 s->s_blocksize_bits = PAGE_SHIFT;
479 s->s_magic = magic;
480 s->s_op = &simple_super_operations;
481 s->s_time_gran = 1;
483 inode = new_inode(s);
484 if (!inode)
485 return -ENOMEM;
487 * because the root inode is 1, the files array must not contain an
488 * entry at index 1
490 inode->i_ino = 1;
491 inode->i_mode = S_IFDIR | 0755;
492 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
493 inode->i_op = &simple_dir_inode_operations;
494 inode->i_fop = &simple_dir_operations;
495 set_nlink(inode, 2);
496 root = d_make_root(inode);
497 if (!root)
498 return -ENOMEM;
499 for (i = 0; !files->name || files->name[0]; i++, files++) {
500 if (!files->name)
501 continue;
503 /* warn if it tries to conflict with the root inode */
504 if (unlikely(i == 1))
505 printk(KERN_WARNING "%s: %s passed in a files array"
506 "with an index of 1!\n", __func__,
507 s->s_type->name);
509 dentry = d_alloc_name(root, files->name);
510 if (!dentry)
511 goto out;
512 inode = new_inode(s);
513 if (!inode) {
514 dput(dentry);
515 goto out;
517 inode->i_mode = S_IFREG | files->mode;
518 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
519 inode->i_fop = files->ops;
520 inode->i_ino = i;
521 d_add(dentry, inode);
523 s->s_root = root;
524 return 0;
525 out:
526 d_genocide(root);
527 shrink_dcache_parent(root);
528 dput(root);
529 return -ENOMEM;
531 EXPORT_SYMBOL(simple_fill_super);
533 static DEFINE_SPINLOCK(pin_fs_lock);
535 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
537 struct vfsmount *mnt = NULL;
538 spin_lock(&pin_fs_lock);
539 if (unlikely(!*mount)) {
540 spin_unlock(&pin_fs_lock);
541 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
542 if (IS_ERR(mnt))
543 return PTR_ERR(mnt);
544 spin_lock(&pin_fs_lock);
545 if (!*mount)
546 *mount = mnt;
548 mntget(*mount);
549 ++*count;
550 spin_unlock(&pin_fs_lock);
551 mntput(mnt);
552 return 0;
554 EXPORT_SYMBOL(simple_pin_fs);
556 void simple_release_fs(struct vfsmount **mount, int *count)
558 struct vfsmount *mnt;
559 spin_lock(&pin_fs_lock);
560 mnt = *mount;
561 if (!--*count)
562 *mount = NULL;
563 spin_unlock(&pin_fs_lock);
564 mntput(mnt);
566 EXPORT_SYMBOL(simple_release_fs);
569 * simple_read_from_buffer - copy data from the buffer to user space
570 * @to: the user space buffer to read to
571 * @count: the maximum number of bytes to read
572 * @ppos: the current position in the buffer
573 * @from: the buffer to read from
574 * @available: the size of the buffer
576 * The simple_read_from_buffer() function reads up to @count bytes from the
577 * buffer @from at offset @ppos into the user space address starting at @to.
579 * On success, the number of bytes read is returned and the offset @ppos is
580 * advanced by this number, or negative value is returned on error.
582 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
583 const void *from, size_t available)
585 loff_t pos = *ppos;
586 size_t ret;
588 if (pos < 0)
589 return -EINVAL;
590 if (pos >= available || !count)
591 return 0;
592 if (count > available - pos)
593 count = available - pos;
594 ret = copy_to_user(to, from + pos, count);
595 if (ret == count)
596 return -EFAULT;
597 count -= ret;
598 *ppos = pos + count;
599 return count;
601 EXPORT_SYMBOL(simple_read_from_buffer);
604 * simple_write_to_buffer - copy data from user space to the buffer
605 * @to: the buffer to write to
606 * @available: the size of the buffer
607 * @ppos: the current position in the buffer
608 * @from: the user space buffer to read from
609 * @count: the maximum number of bytes to read
611 * The simple_write_to_buffer() function reads up to @count bytes from the user
612 * space address starting at @from into the buffer @to at offset @ppos.
614 * On success, the number of bytes written is returned and the offset @ppos is
615 * advanced by this number, or negative value is returned on error.
617 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
618 const void __user *from, size_t count)
620 loff_t pos = *ppos;
621 size_t res;
623 if (pos < 0)
624 return -EINVAL;
625 if (pos >= available || !count)
626 return 0;
627 if (count > available - pos)
628 count = available - pos;
629 res = copy_from_user(to + pos, from, count);
630 if (res == count)
631 return -EFAULT;
632 count -= res;
633 *ppos = pos + count;
634 return count;
636 EXPORT_SYMBOL(simple_write_to_buffer);
639 * memory_read_from_buffer - copy data from the buffer
640 * @to: the kernel space buffer to read to
641 * @count: the maximum number of bytes to read
642 * @ppos: the current position in the buffer
643 * @from: the buffer to read from
644 * @available: the size of the buffer
646 * The memory_read_from_buffer() function reads up to @count bytes from the
647 * buffer @from at offset @ppos into the kernel space address starting at @to.
649 * On success, the number of bytes read is returned and the offset @ppos is
650 * advanced by this number, or negative value is returned on error.
652 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
653 const void *from, size_t available)
655 loff_t pos = *ppos;
657 if (pos < 0)
658 return -EINVAL;
659 if (pos >= available)
660 return 0;
661 if (count > available - pos)
662 count = available - pos;
663 memcpy(to, from + pos, count);
664 *ppos = pos + count;
666 return count;
668 EXPORT_SYMBOL(memory_read_from_buffer);
671 * Transaction based IO.
672 * The file expects a single write which triggers the transaction, and then
673 * possibly a read which collects the result - which is stored in a
674 * file-local buffer.
677 void simple_transaction_set(struct file *file, size_t n)
679 struct simple_transaction_argresp *ar = file->private_data;
681 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
684 * The barrier ensures that ar->size will really remain zero until
685 * ar->data is ready for reading.
687 smp_mb();
688 ar->size = n;
690 EXPORT_SYMBOL(simple_transaction_set);
692 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
694 struct simple_transaction_argresp *ar;
695 static DEFINE_SPINLOCK(simple_transaction_lock);
697 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
698 return ERR_PTR(-EFBIG);
700 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
701 if (!ar)
702 return ERR_PTR(-ENOMEM);
704 spin_lock(&simple_transaction_lock);
706 /* only one write allowed per open */
707 if (file->private_data) {
708 spin_unlock(&simple_transaction_lock);
709 free_page((unsigned long)ar);
710 return ERR_PTR(-EBUSY);
713 file->private_data = ar;
715 spin_unlock(&simple_transaction_lock);
717 if (copy_from_user(ar->data, buf, size))
718 return ERR_PTR(-EFAULT);
720 return ar->data;
722 EXPORT_SYMBOL(simple_transaction_get);
724 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
726 struct simple_transaction_argresp *ar = file->private_data;
728 if (!ar)
729 return 0;
730 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
732 EXPORT_SYMBOL(simple_transaction_read);
734 int simple_transaction_release(struct inode *inode, struct file *file)
736 free_page((unsigned long)file->private_data);
737 return 0;
739 EXPORT_SYMBOL(simple_transaction_release);
741 /* Simple attribute files */
743 struct simple_attr {
744 int (*get)(void *, u64 *);
745 int (*set)(void *, u64);
746 char get_buf[24]; /* enough to store a u64 and "\n\0" */
747 char set_buf[24];
748 void *data;
749 const char *fmt; /* format for read operation */
750 struct mutex mutex; /* protects access to these buffers */
753 /* simple_attr_open is called by an actual attribute open file operation
754 * to set the attribute specific access operations. */
755 int simple_attr_open(struct inode *inode, struct file *file,
756 int (*get)(void *, u64 *), int (*set)(void *, u64),
757 const char *fmt)
759 struct simple_attr *attr;
761 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
762 if (!attr)
763 return -ENOMEM;
765 attr->get = get;
766 attr->set = set;
767 attr->data = inode->i_private;
768 attr->fmt = fmt;
769 mutex_init(&attr->mutex);
771 file->private_data = attr;
773 return nonseekable_open(inode, file);
775 EXPORT_SYMBOL_GPL(simple_attr_open);
777 int simple_attr_release(struct inode *inode, struct file *file)
779 kfree(file->private_data);
780 return 0;
782 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
784 /* read from the buffer that is filled with the get function */
785 ssize_t simple_attr_read(struct file *file, char __user *buf,
786 size_t len, loff_t *ppos)
788 struct simple_attr *attr;
789 size_t size;
790 ssize_t ret;
792 attr = file->private_data;
794 if (!attr->get)
795 return -EACCES;
797 ret = mutex_lock_interruptible(&attr->mutex);
798 if (ret)
799 return ret;
801 if (*ppos) { /* continued read */
802 size = strlen(attr->get_buf);
803 } else { /* first read */
804 u64 val;
805 ret = attr->get(attr->data, &val);
806 if (ret)
807 goto out;
809 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
810 attr->fmt, (unsigned long long)val);
813 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
814 out:
815 mutex_unlock(&attr->mutex);
816 return ret;
818 EXPORT_SYMBOL_GPL(simple_attr_read);
820 /* interpret the buffer as a number to call the set function with */
821 ssize_t simple_attr_write(struct file *file, const char __user *buf,
822 size_t len, loff_t *ppos)
824 struct simple_attr *attr;
825 u64 val;
826 size_t size;
827 ssize_t ret;
829 attr = file->private_data;
830 if (!attr->set)
831 return -EACCES;
833 ret = mutex_lock_interruptible(&attr->mutex);
834 if (ret)
835 return ret;
837 ret = -EFAULT;
838 size = min(sizeof(attr->set_buf) - 1, len);
839 if (copy_from_user(attr->set_buf, buf, size))
840 goto out;
842 attr->set_buf[size] = '\0';
843 val = simple_strtoll(attr->set_buf, NULL, 0);
844 ret = attr->set(attr->data, val);
845 if (ret == 0)
846 ret = len; /* on success, claim we got the whole input */
847 out:
848 mutex_unlock(&attr->mutex);
849 return ret;
851 EXPORT_SYMBOL_GPL(simple_attr_write);
854 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
855 * @sb: filesystem to do the file handle conversion on
856 * @fid: file handle to convert
857 * @fh_len: length of the file handle in bytes
858 * @fh_type: type of file handle
859 * @get_inode: filesystem callback to retrieve inode
861 * This function decodes @fid as long as it has one of the well-known
862 * Linux filehandle types and calls @get_inode on it to retrieve the
863 * inode for the object specified in the file handle.
865 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
866 int fh_len, int fh_type, struct inode *(*get_inode)
867 (struct super_block *sb, u64 ino, u32 gen))
869 struct inode *inode = NULL;
871 if (fh_len < 2)
872 return NULL;
874 switch (fh_type) {
875 case FILEID_INO32_GEN:
876 case FILEID_INO32_GEN_PARENT:
877 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
878 break;
881 return d_obtain_alias(inode);
883 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
886 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
887 * @sb: filesystem to do the file handle conversion on
888 * @fid: file handle to convert
889 * @fh_len: length of the file handle in bytes
890 * @fh_type: type of file handle
891 * @get_inode: filesystem callback to retrieve inode
893 * This function decodes @fid as long as it has one of the well-known
894 * Linux filehandle types and calls @get_inode on it to retrieve the
895 * inode for the _parent_ object specified in the file handle if it
896 * is specified in the file handle, or NULL otherwise.
898 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
899 int fh_len, int fh_type, struct inode *(*get_inode)
900 (struct super_block *sb, u64 ino, u32 gen))
902 struct inode *inode = NULL;
904 if (fh_len <= 2)
905 return NULL;
907 switch (fh_type) {
908 case FILEID_INO32_GEN_PARENT:
909 inode = get_inode(sb, fid->i32.parent_ino,
910 (fh_len > 3 ? fid->i32.parent_gen : 0));
911 break;
914 return d_obtain_alias(inode);
916 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
919 * __generic_file_fsync - generic fsync implementation for simple filesystems
921 * @file: file to synchronize
922 * @start: start offset in bytes
923 * @end: end offset in bytes (inclusive)
924 * @datasync: only synchronize essential metadata if true
926 * This is a generic implementation of the fsync method for simple
927 * filesystems which track all non-inode metadata in the buffers list
928 * hanging off the address_space structure.
930 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
931 int datasync)
933 struct inode *inode = file->f_mapping->host;
934 int err;
935 int ret;
937 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
938 if (err)
939 return err;
941 inode_lock(inode);
942 ret = sync_mapping_buffers(inode->i_mapping);
943 if (!(inode->i_state & I_DIRTY_ALL))
944 goto out;
945 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
946 goto out;
948 err = sync_inode_metadata(inode, 1);
949 if (ret == 0)
950 ret = err;
952 out:
953 inode_unlock(inode);
954 return ret;
956 EXPORT_SYMBOL(__generic_file_fsync);
959 * generic_file_fsync - generic fsync implementation for simple filesystems
960 * with flush
961 * @file: file to synchronize
962 * @start: start offset in bytes
963 * @end: end offset in bytes (inclusive)
964 * @datasync: only synchronize essential metadata if true
968 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
969 int datasync)
971 struct inode *inode = file->f_mapping->host;
972 int err;
974 err = __generic_file_fsync(file, start, end, datasync);
975 if (err)
976 return err;
977 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
979 EXPORT_SYMBOL(generic_file_fsync);
982 * generic_check_addressable - Check addressability of file system
983 * @blocksize_bits: log of file system block size
984 * @num_blocks: number of blocks in file system
986 * Determine whether a file system with @num_blocks blocks (and a
987 * block size of 2**@blocksize_bits) is addressable by the sector_t
988 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
990 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
992 u64 last_fs_block = num_blocks - 1;
993 u64 last_fs_page =
994 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
996 if (unlikely(num_blocks == 0))
997 return 0;
999 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1000 return -EINVAL;
1002 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1003 (last_fs_page > (pgoff_t)(~0ULL))) {
1004 return -EFBIG;
1006 return 0;
1008 EXPORT_SYMBOL(generic_check_addressable);
1011 * No-op implementation of ->fsync for in-memory filesystems.
1013 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1015 return 0;
1017 EXPORT_SYMBOL(noop_fsync);
1019 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1020 void kfree_link(void *p)
1022 kfree(p);
1024 EXPORT_SYMBOL(kfree_link);
1027 * nop .set_page_dirty method so that people can use .page_mkwrite on
1028 * anon inodes.
1030 static int anon_set_page_dirty(struct page *page)
1032 return 0;
1036 * A single inode exists for all anon_inode files. Contrary to pipes,
1037 * anon_inode inodes have no associated per-instance data, so we need
1038 * only allocate one of them.
1040 struct inode *alloc_anon_inode(struct super_block *s)
1042 static const struct address_space_operations anon_aops = {
1043 .set_page_dirty = anon_set_page_dirty,
1045 struct inode *inode = new_inode_pseudo(s);
1047 if (!inode)
1048 return ERR_PTR(-ENOMEM);
1050 inode->i_ino = get_next_ino();
1051 inode->i_mapping->a_ops = &anon_aops;
1054 * Mark the inode dirty from the very beginning,
1055 * that way it will never be moved to the dirty
1056 * list because mark_inode_dirty() will think
1057 * that it already _is_ on the dirty list.
1059 inode->i_state = I_DIRTY;
1060 inode->i_mode = S_IRUSR | S_IWUSR;
1061 inode->i_uid = current_fsuid();
1062 inode->i_gid = current_fsgid();
1063 inode->i_flags |= S_PRIVATE;
1064 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1065 return inode;
1067 EXPORT_SYMBOL(alloc_anon_inode);
1070 * simple_nosetlease - generic helper for prohibiting leases
1071 * @filp: file pointer
1072 * @arg: type of lease to obtain
1073 * @flp: new lease supplied for insertion
1074 * @priv: private data for lm_setup operation
1076 * Generic helper for filesystems that do not wish to allow leases to be set.
1077 * All arguments are ignored and it just returns -EINVAL.
1080 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1081 void **priv)
1083 return -EINVAL;
1085 EXPORT_SYMBOL(simple_nosetlease);
1087 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1088 struct delayed_call *done)
1090 return inode->i_link;
1092 EXPORT_SYMBOL(simple_get_link);
1094 const struct inode_operations simple_symlink_inode_operations = {
1095 .get_link = simple_get_link,
1096 .readlink = generic_readlink
1098 EXPORT_SYMBOL(simple_symlink_inode_operations);
1101 * Operations for a permanently empty directory.
1103 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1105 return ERR_PTR(-ENOENT);
1108 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1109 struct kstat *stat)
1111 struct inode *inode = d_inode(dentry);
1112 generic_fillattr(inode, stat);
1113 return 0;
1116 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1118 return -EPERM;
1121 static int empty_dir_setxattr(struct dentry *dentry, struct inode *inode,
1122 const char *name, const void *value,
1123 size_t size, int flags)
1125 return -EOPNOTSUPP;
1128 static ssize_t empty_dir_getxattr(struct dentry *dentry, struct inode *inode,
1129 const char *name, void *value, size_t size)
1131 return -EOPNOTSUPP;
1134 static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1136 return -EOPNOTSUPP;
1139 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1141 return -EOPNOTSUPP;
1144 static const struct inode_operations empty_dir_inode_operations = {
1145 .lookup = empty_dir_lookup,
1146 .permission = generic_permission,
1147 .setattr = empty_dir_setattr,
1148 .getattr = empty_dir_getattr,
1149 .setxattr = empty_dir_setxattr,
1150 .getxattr = empty_dir_getxattr,
1151 .removexattr = empty_dir_removexattr,
1152 .listxattr = empty_dir_listxattr,
1155 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1157 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1158 return generic_file_llseek_size(file, offset, whence, 2, 2);
1161 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1163 dir_emit_dots(file, ctx);
1164 return 0;
1167 static const struct file_operations empty_dir_operations = {
1168 .llseek = empty_dir_llseek,
1169 .read = generic_read_dir,
1170 .iterate_shared = empty_dir_readdir,
1171 .fsync = noop_fsync,
1175 void make_empty_dir_inode(struct inode *inode)
1177 set_nlink(inode, 2);
1178 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1179 inode->i_uid = GLOBAL_ROOT_UID;
1180 inode->i_gid = GLOBAL_ROOT_GID;
1181 inode->i_rdev = 0;
1182 inode->i_size = 0;
1183 inode->i_blkbits = PAGE_SHIFT;
1184 inode->i_blocks = 0;
1186 inode->i_op = &empty_dir_inode_operations;
1187 inode->i_fop = &empty_dir_operations;
1190 bool is_empty_dir_inode(struct inode *inode)
1192 return (inode->i_fop == &empty_dir_operations) &&
1193 (inode->i_op == &empty_dir_inode_operations);