1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
71 #include <net/flow_dissector.h>
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 struct cobalt_params
{
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
120 CAKE_SET_SPARSE_WAIT
, /* counted in SPARSE, actually in BULK */
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff
*head
;
128 struct sk_buff
*tail
;
129 struct list_head flowchain
;
132 struct cobalt_vars cvars
;
133 u16 srchost
; /* index into cake_host table */
136 }; /* please try to keep this structure <= 64 bytes */
141 u16 srchost_bulk_flow_count
;
142 u16 dsthost_bulk_flow_count
;
145 struct cake_heap_entry
{
149 struct cake_tin_data
{
150 struct cake_flow flows
[CAKE_QUEUES
];
151 u32 backlogs
[CAKE_QUEUES
];
152 u32 tags
[CAKE_QUEUES
]; /* for set association */
153 u16 overflow_idx
[CAKE_QUEUES
];
154 struct cake_host hosts
[CAKE_QUEUES
]; /* for triple isolation */
157 struct cobalt_params cparams
;
160 u16 sparse_flow_count
;
161 u16 decaying_flow_count
;
162 u16 unresponsive_flow_count
;
166 struct list_head new_flows
;
167 struct list_head old_flows
;
168 struct list_head decaying_flows
;
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet
;
187 /* moving averages */
192 /* hash function stats */
197 }; /* number of tins is small, so size of this struct doesn't matter much */
199 struct cake_sched_data
{
200 struct tcf_proto __rcu
*filter_list
; /* optional external classifier */
201 struct tcf_block
*block
;
202 struct cake_tin_data
*tins
;
204 struct cake_heap_entry overflow_heap
[CAKE_QUEUES
* CAKE_MAX_TINS
];
205 u16 overflow_timeout
;
216 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 ktime_t time_next_packet
;
219 ktime_t failsafe_next_packet
;
228 /* resource tracking */
232 u32 buffer_config_limit
;
234 /* indices for dequeue */
238 struct qdisc_watchdog watchdog
;
242 /* bandwidth capacity estimate */
243 ktime_t last_packet_time
;
244 ktime_t avg_window_begin
;
245 u64 avg_packet_interval
;
246 u64 avg_window_bytes
;
247 u64 avg_peak_bandwidth
;
248 ktime_t last_reconfig_time
;
250 /* packet length stats */
259 CAKE_FLAG_OVERHEAD
= BIT(0),
260 CAKE_FLAG_AUTORATE_INGRESS
= BIT(1),
261 CAKE_FLAG_INGRESS
= BIT(2),
262 CAKE_FLAG_WASH
= BIT(3),
263 CAKE_FLAG_SPLIT_GSO
= BIT(4)
266 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
267 * obtain the best features of each. Codel is excellent on flows which
268 * respond to congestion signals in a TCP-like way. BLUE is more effective on
269 * unresponsive flows.
272 struct cobalt_skb_cb
{
273 ktime_t enqueue_time
;
277 static u64
us_to_ns(u64 us
)
279 return us
* NSEC_PER_USEC
;
282 static struct cobalt_skb_cb
*get_cobalt_cb(const struct sk_buff
*skb
)
284 qdisc_cb_private_validate(skb
, sizeof(struct cobalt_skb_cb
));
285 return (struct cobalt_skb_cb
*)qdisc_skb_cb(skb
)->data
;
288 static ktime_t
cobalt_get_enqueue_time(const struct sk_buff
*skb
)
290 return get_cobalt_cb(skb
)->enqueue_time
;
293 static void cobalt_set_enqueue_time(struct sk_buff
*skb
,
296 get_cobalt_cb(skb
)->enqueue_time
= now
;
299 static u16 quantum_div
[CAKE_QUEUES
+ 1] = {0};
301 /* Diffserv lookup tables */
303 static const u8 precedence
[] = {
304 0, 0, 0, 0, 0, 0, 0, 0,
305 1, 1, 1, 1, 1, 1, 1, 1,
306 2, 2, 2, 2, 2, 2, 2, 2,
307 3, 3, 3, 3, 3, 3, 3, 3,
308 4, 4, 4, 4, 4, 4, 4, 4,
309 5, 5, 5, 5, 5, 5, 5, 5,
310 6, 6, 6, 6, 6, 6, 6, 6,
311 7, 7, 7, 7, 7, 7, 7, 7,
314 static const u8 diffserv8
[] = {
315 2, 5, 1, 2, 4, 2, 2, 2,
316 0, 2, 1, 2, 1, 2, 1, 2,
317 5, 2, 4, 2, 4, 2, 4, 2,
318 3, 2, 3, 2, 3, 2, 3, 2,
319 6, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 2, 2, 6, 2, 6, 2,
321 7, 2, 2, 2, 2, 2, 2, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
325 static const u8 diffserv4
[] = {
326 0, 2, 0, 0, 2, 0, 0, 0,
327 1, 0, 0, 0, 0, 0, 0, 0,
328 2, 0, 2, 0, 2, 0, 2, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 3, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 0, 0, 3, 0, 3, 0,
332 3, 0, 0, 0, 0, 0, 0, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
336 static const u8 diffserv3
[] = {
337 0, 0, 0, 0, 2, 0, 0, 0,
338 1, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 2, 0, 2, 0,
343 2, 0, 0, 0, 0, 0, 0, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
347 static const u8 besteffort
[] = {
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
358 /* tin priority order for stats dumping */
360 static const u8 normal_order
[] = {0, 1, 2, 3, 4, 5, 6, 7};
361 static const u8 bulk_order
[] = {1, 0, 2, 3};
363 #define REC_INV_SQRT_CACHE (16)
364 static u32 cobalt_rec_inv_sqrt_cache
[REC_INV_SQRT_CACHE
] = {0};
366 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
367 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
369 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
372 static void cobalt_newton_step(struct cobalt_vars
*vars
)
374 u32 invsqrt
, invsqrt2
;
377 invsqrt
= vars
->rec_inv_sqrt
;
378 invsqrt2
= ((u64
)invsqrt
* invsqrt
) >> 32;
379 val
= (3LL << 32) - ((u64
)vars
->count
* invsqrt2
);
381 val
>>= 2; /* avoid overflow in following multiply */
382 val
= (val
* invsqrt
) >> (32 - 2 + 1);
384 vars
->rec_inv_sqrt
= val
;
387 static void cobalt_invsqrt(struct cobalt_vars
*vars
)
389 if (vars
->count
< REC_INV_SQRT_CACHE
)
390 vars
->rec_inv_sqrt
= cobalt_rec_inv_sqrt_cache
[vars
->count
];
392 cobalt_newton_step(vars
);
395 /* There is a big difference in timing between the accurate values placed in
396 * the cache and the approximations given by a single Newton step for small
397 * count values, particularly when stepping from count 1 to 2 or vice versa.
398 * Above 16, a single Newton step gives sufficient accuracy in either
399 * direction, given the precision stored.
401 * The magnitude of the error when stepping up to count 2 is such as to give
402 * the value that *should* have been produced at count 4.
405 static void cobalt_cache_init(void)
407 struct cobalt_vars v
;
409 memset(&v
, 0, sizeof(v
));
410 v
.rec_inv_sqrt
= ~0U;
411 cobalt_rec_inv_sqrt_cache
[0] = v
.rec_inv_sqrt
;
413 for (v
.count
= 1; v
.count
< REC_INV_SQRT_CACHE
; v
.count
++) {
414 cobalt_newton_step(&v
);
415 cobalt_newton_step(&v
);
416 cobalt_newton_step(&v
);
417 cobalt_newton_step(&v
);
419 cobalt_rec_inv_sqrt_cache
[v
.count
] = v
.rec_inv_sqrt
;
423 static void cobalt_vars_init(struct cobalt_vars
*vars
)
425 memset(vars
, 0, sizeof(*vars
));
427 if (!cobalt_rec_inv_sqrt_cache
[0]) {
429 cobalt_rec_inv_sqrt_cache
[0] = ~0;
433 /* CoDel control_law is t + interval/sqrt(count)
434 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
435 * both sqrt() and divide operation.
437 static ktime_t
cobalt_control(ktime_t t
,
441 return ktime_add_ns(t
, reciprocal_scale(interval
,
445 /* Call this when a packet had to be dropped due to queue overflow. Returns
446 * true if the BLUE state was quiescent before but active after this call.
448 static bool cobalt_queue_full(struct cobalt_vars
*vars
,
449 struct cobalt_params
*p
,
454 if (ktime_to_ns(ktime_sub(now
, vars
->blue_timer
)) > p
->target
) {
456 vars
->p_drop
+= p
->p_inc
;
457 if (vars
->p_drop
< p
->p_inc
)
459 vars
->blue_timer
= now
;
461 vars
->dropping
= true;
462 vars
->drop_next
= now
;
469 /* Call this when the queue was serviced but turned out to be empty. Returns
470 * true if the BLUE state was active before but quiescent after this call.
472 static bool cobalt_queue_empty(struct cobalt_vars
*vars
,
473 struct cobalt_params
*p
,
479 ktime_to_ns(ktime_sub(now
, vars
->blue_timer
)) > p
->target
) {
480 if (vars
->p_drop
< p
->p_dec
)
483 vars
->p_drop
-= p
->p_dec
;
484 vars
->blue_timer
= now
;
485 down
= !vars
->p_drop
;
487 vars
->dropping
= false;
489 if (vars
->count
&& ktime_to_ns(ktime_sub(now
, vars
->drop_next
)) >= 0) {
491 cobalt_invsqrt(vars
);
492 vars
->drop_next
= cobalt_control(vars
->drop_next
,
500 /* Call this with a freshly dequeued packet for possible congestion marking.
501 * Returns true as an instruction to drop the packet, false for delivery.
503 static bool cobalt_should_drop(struct cobalt_vars
*vars
,
504 struct cobalt_params
*p
,
509 bool next_due
, over_target
, drop
= false;
513 /* The 'schedule' variable records, in its sign, whether 'now' is before or
514 * after 'drop_next'. This allows 'drop_next' to be updated before the next
515 * scheduling decision is actually branched, without destroying that
516 * information. Similarly, the first 'schedule' value calculated is preserved
517 * in the boolean 'next_due'.
519 * As for 'drop_next', we take advantage of the fact that 'interval' is both
520 * the delay between first exceeding 'target' and the first signalling event,
521 * *and* the scaling factor for the signalling frequency. It's therefore very
522 * natural to use a single mechanism for both purposes, and eliminates a
523 * significant amount of reference Codel's spaghetti code. To help with this,
524 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
525 * as possible to 1.0 in fixed-point.
528 sojourn
= ktime_to_ns(ktime_sub(now
, cobalt_get_enqueue_time(skb
)));
529 schedule
= ktime_sub(now
, vars
->drop_next
);
530 over_target
= sojourn
> p
->target
&&
531 sojourn
> p
->mtu_time
* bulk_flows
* 2 &&
532 sojourn
> p
->mtu_time
* 4;
533 next_due
= vars
->count
&& ktime_to_ns(schedule
) >= 0;
535 vars
->ecn_marked
= false;
538 if (!vars
->dropping
) {
539 vars
->dropping
= true;
540 vars
->drop_next
= cobalt_control(now
,
546 } else if (vars
->dropping
) {
547 vars
->dropping
= false;
550 if (next_due
&& vars
->dropping
) {
551 /* Use ECN mark if possible, otherwise drop */
552 drop
= !(vars
->ecn_marked
= INET_ECN_set_ce(skb
));
557 cobalt_invsqrt(vars
);
558 vars
->drop_next
= cobalt_control(vars
->drop_next
,
561 schedule
= ktime_sub(now
, vars
->drop_next
);
565 cobalt_invsqrt(vars
);
566 vars
->drop_next
= cobalt_control(vars
->drop_next
,
569 schedule
= ktime_sub(now
, vars
->drop_next
);
570 next_due
= vars
->count
&& ktime_to_ns(schedule
) >= 0;
574 /* Simple BLUE implementation. Lack of ECN is deliberate. */
576 drop
|= (prandom_u32() < vars
->p_drop
);
578 /* Overload the drop_next field as an activity timeout */
580 vars
->drop_next
= ktime_add_ns(now
, p
->interval
);
581 else if (ktime_to_ns(schedule
) > 0 && !drop
)
582 vars
->drop_next
= now
;
587 static void cake_update_flowkeys(struct flow_keys
*keys
,
588 const struct sk_buff
*skb
)
590 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
591 struct nf_conntrack_tuple tuple
= {};
592 bool rev
= !skb
->_nfct
;
594 if (tc_skb_protocol(skb
) != htons(ETH_P_IP
))
597 if (!nf_ct_get_tuple_skb(&tuple
, skb
))
600 keys
->addrs
.v4addrs
.src
= rev
? tuple
.dst
.u3
.ip
: tuple
.src
.u3
.ip
;
601 keys
->addrs
.v4addrs
.dst
= rev
? tuple
.src
.u3
.ip
: tuple
.dst
.u3
.ip
;
603 if (keys
->ports
.ports
) {
604 keys
->ports
.src
= rev
? tuple
.dst
.u
.all
: tuple
.src
.u
.all
;
605 keys
->ports
.dst
= rev
? tuple
.src
.u
.all
: tuple
.dst
.u
.all
;
610 /* Cake has several subtle multiple bit settings. In these cases you
611 * would be matching triple isolate mode as well.
614 static bool cake_dsrc(int flow_mode
)
616 return (flow_mode
& CAKE_FLOW_DUAL_SRC
) == CAKE_FLOW_DUAL_SRC
;
619 static bool cake_ddst(int flow_mode
)
621 return (flow_mode
& CAKE_FLOW_DUAL_DST
) == CAKE_FLOW_DUAL_DST
;
624 static u32
cake_hash(struct cake_tin_data
*q
, const struct sk_buff
*skb
,
625 int flow_mode
, u16 flow_override
, u16 host_override
)
627 u32 flow_hash
= 0, srchost_hash
= 0, dsthost_hash
= 0;
628 u16 reduced_hash
, srchost_idx
, dsthost_idx
;
629 struct flow_keys keys
, host_keys
;
631 if (unlikely(flow_mode
== CAKE_FLOW_NONE
))
634 /* If both overrides are set we can skip packet dissection entirely */
635 if ((flow_override
|| !(flow_mode
& CAKE_FLOW_FLOWS
)) &&
636 (host_override
|| !(flow_mode
& CAKE_FLOW_HOSTS
)))
639 skb_flow_dissect_flow_keys(skb
, &keys
,
640 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL
);
642 if (flow_mode
& CAKE_FLOW_NAT_FLAG
)
643 cake_update_flowkeys(&keys
, skb
);
645 /* flow_hash_from_keys() sorts the addresses by value, so we have
646 * to preserve their order in a separate data structure to treat
647 * src and dst host addresses as independently selectable.
650 host_keys
.ports
.ports
= 0;
651 host_keys
.basic
.ip_proto
= 0;
652 host_keys
.keyid
.keyid
= 0;
653 host_keys
.tags
.flow_label
= 0;
655 switch (host_keys
.control
.addr_type
) {
656 case FLOW_DISSECTOR_KEY_IPV4_ADDRS
:
657 host_keys
.addrs
.v4addrs
.src
= 0;
658 dsthost_hash
= flow_hash_from_keys(&host_keys
);
659 host_keys
.addrs
.v4addrs
.src
= keys
.addrs
.v4addrs
.src
;
660 host_keys
.addrs
.v4addrs
.dst
= 0;
661 srchost_hash
= flow_hash_from_keys(&host_keys
);
664 case FLOW_DISSECTOR_KEY_IPV6_ADDRS
:
665 memset(&host_keys
.addrs
.v6addrs
.src
, 0,
666 sizeof(host_keys
.addrs
.v6addrs
.src
));
667 dsthost_hash
= flow_hash_from_keys(&host_keys
);
668 host_keys
.addrs
.v6addrs
.src
= keys
.addrs
.v6addrs
.src
;
669 memset(&host_keys
.addrs
.v6addrs
.dst
, 0,
670 sizeof(host_keys
.addrs
.v6addrs
.dst
));
671 srchost_hash
= flow_hash_from_keys(&host_keys
);
679 /* This *must* be after the above switch, since as a
680 * side-effect it sorts the src and dst addresses.
682 if (flow_mode
& CAKE_FLOW_FLOWS
)
683 flow_hash
= flow_hash_from_keys(&keys
);
687 flow_hash
= flow_override
- 1;
689 dsthost_hash
= host_override
- 1;
690 srchost_hash
= host_override
- 1;
693 if (!(flow_mode
& CAKE_FLOW_FLOWS
)) {
694 if (flow_mode
& CAKE_FLOW_SRC_IP
)
695 flow_hash
^= srchost_hash
;
697 if (flow_mode
& CAKE_FLOW_DST_IP
)
698 flow_hash
^= dsthost_hash
;
701 reduced_hash
= flow_hash
% CAKE_QUEUES
;
703 /* set-associative hashing */
704 /* fast path if no hash collision (direct lookup succeeds) */
705 if (likely(q
->tags
[reduced_hash
] == flow_hash
&&
706 q
->flows
[reduced_hash
].set
)) {
709 u32 inner_hash
= reduced_hash
% CAKE_SET_WAYS
;
710 u32 outer_hash
= reduced_hash
- inner_hash
;
711 bool allocate_src
= false;
712 bool allocate_dst
= false;
715 /* check if any active queue in the set is reserved for
718 for (i
= 0, k
= inner_hash
; i
< CAKE_SET_WAYS
;
719 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
720 if (q
->tags
[outer_hash
+ k
] == flow_hash
) {
724 if (!q
->flows
[outer_hash
+ k
].set
) {
725 /* need to increment host refcnts */
726 allocate_src
= cake_dsrc(flow_mode
);
727 allocate_dst
= cake_ddst(flow_mode
);
734 /* no queue is reserved for this flow, look for an
737 for (i
= 0; i
< CAKE_SET_WAYS
;
738 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
739 if (!q
->flows
[outer_hash
+ k
].set
) {
741 allocate_src
= cake_dsrc(flow_mode
);
742 allocate_dst
= cake_ddst(flow_mode
);
747 /* With no empty queues, default to the original
748 * queue, accept the collision, update the host tags.
751 if (q
->flows
[outer_hash
+ k
].set
== CAKE_SET_BULK
) {
752 q
->hosts
[q
->flows
[reduced_hash
].srchost
].srchost_bulk_flow_count
--;
753 q
->hosts
[q
->flows
[reduced_hash
].dsthost
].dsthost_bulk_flow_count
--;
755 allocate_src
= cake_dsrc(flow_mode
);
756 allocate_dst
= cake_ddst(flow_mode
);
758 /* reserve queue for future packets in same flow */
759 reduced_hash
= outer_hash
+ k
;
760 q
->tags
[reduced_hash
] = flow_hash
;
763 srchost_idx
= srchost_hash
% CAKE_QUEUES
;
764 inner_hash
= srchost_idx
% CAKE_SET_WAYS
;
765 outer_hash
= srchost_idx
- inner_hash
;
766 for (i
= 0, k
= inner_hash
; i
< CAKE_SET_WAYS
;
767 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
768 if (q
->hosts
[outer_hash
+ k
].srchost_tag
==
772 for (i
= 0; i
< CAKE_SET_WAYS
;
773 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
774 if (!q
->hosts
[outer_hash
+ k
].srchost_bulk_flow_count
)
777 q
->hosts
[outer_hash
+ k
].srchost_tag
= srchost_hash
;
779 srchost_idx
= outer_hash
+ k
;
780 if (q
->flows
[reduced_hash
].set
== CAKE_SET_BULK
)
781 q
->hosts
[srchost_idx
].srchost_bulk_flow_count
++;
782 q
->flows
[reduced_hash
].srchost
= srchost_idx
;
786 dsthost_idx
= dsthost_hash
% CAKE_QUEUES
;
787 inner_hash
= dsthost_idx
% CAKE_SET_WAYS
;
788 outer_hash
= dsthost_idx
- inner_hash
;
789 for (i
= 0, k
= inner_hash
; i
< CAKE_SET_WAYS
;
790 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
791 if (q
->hosts
[outer_hash
+ k
].dsthost_tag
==
795 for (i
= 0; i
< CAKE_SET_WAYS
;
796 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
797 if (!q
->hosts
[outer_hash
+ k
].dsthost_bulk_flow_count
)
800 q
->hosts
[outer_hash
+ k
].dsthost_tag
= dsthost_hash
;
802 dsthost_idx
= outer_hash
+ k
;
803 if (q
->flows
[reduced_hash
].set
== CAKE_SET_BULK
)
804 q
->hosts
[dsthost_idx
].dsthost_bulk_flow_count
++;
805 q
->flows
[reduced_hash
].dsthost
= dsthost_idx
;
812 /* helper functions : might be changed when/if skb use a standard list_head */
813 /* remove one skb from head of slot queue */
815 static struct sk_buff
*dequeue_head(struct cake_flow
*flow
)
817 struct sk_buff
*skb
= flow
->head
;
820 flow
->head
= skb
->next
;
821 skb_mark_not_on_list(skb
);
827 /* add skb to flow queue (tail add) */
829 static void flow_queue_add(struct cake_flow
*flow
, struct sk_buff
*skb
)
834 flow
->tail
->next
= skb
;
839 static struct iphdr
*cake_get_iphdr(const struct sk_buff
*skb
,
842 unsigned int offset
= skb_network_offset(skb
);
845 iph
= skb_header_pointer(skb
, offset
, sizeof(struct iphdr
), buf
);
850 if (iph
->version
== 4 && iph
->protocol
== IPPROTO_IPV6
)
851 return skb_header_pointer(skb
, offset
+ iph
->ihl
* 4,
852 sizeof(struct ipv6hdr
), buf
);
854 else if (iph
->version
== 4)
857 else if (iph
->version
== 6)
858 return skb_header_pointer(skb
, offset
, sizeof(struct ipv6hdr
),
864 static struct tcphdr
*cake_get_tcphdr(const struct sk_buff
*skb
,
865 void *buf
, unsigned int bufsize
)
867 unsigned int offset
= skb_network_offset(skb
);
868 const struct ipv6hdr
*ipv6h
;
869 const struct tcphdr
*tcph
;
870 const struct iphdr
*iph
;
871 struct ipv6hdr _ipv6h
;
874 ipv6h
= skb_header_pointer(skb
, offset
, sizeof(_ipv6h
), &_ipv6h
);
879 if (ipv6h
->version
== 4) {
880 iph
= (struct iphdr
*)ipv6h
;
881 offset
+= iph
->ihl
* 4;
883 /* special-case 6in4 tunnelling, as that is a common way to get
884 * v6 connectivity in the home
886 if (iph
->protocol
== IPPROTO_IPV6
) {
887 ipv6h
= skb_header_pointer(skb
, offset
,
888 sizeof(_ipv6h
), &_ipv6h
);
890 if (!ipv6h
|| ipv6h
->nexthdr
!= IPPROTO_TCP
)
893 offset
+= sizeof(struct ipv6hdr
);
895 } else if (iph
->protocol
!= IPPROTO_TCP
) {
899 } else if (ipv6h
->version
== 6) {
900 if (ipv6h
->nexthdr
!= IPPROTO_TCP
)
903 offset
+= sizeof(struct ipv6hdr
);
908 tcph
= skb_header_pointer(skb
, offset
, sizeof(_tcph
), &_tcph
);
912 return skb_header_pointer(skb
, offset
,
913 min(__tcp_hdrlen(tcph
), bufsize
), buf
);
916 static const void *cake_get_tcpopt(const struct tcphdr
*tcph
,
917 int code
, int *oplen
)
919 /* inspired by tcp_parse_options in tcp_input.c */
920 int length
= __tcp_hdrlen(tcph
) - sizeof(struct tcphdr
);
921 const u8
*ptr
= (const u8
*)(tcph
+ 1);
927 if (opcode
== TCPOPT_EOL
)
929 if (opcode
== TCPOPT_NOP
) {
934 if (opsize
< 2 || opsize
> length
)
937 if (opcode
== code
) {
949 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
950 * bytes than the other. In the case where both sequences ACKs bytes that the
951 * other doesn't, A is considered greater. DSACKs in A also makes A be
952 * considered greater.
954 * @return -1, 0 or 1 as normal compare functions
956 static int cake_tcph_sack_compare(const struct tcphdr
*tcph_a
,
957 const struct tcphdr
*tcph_b
)
959 const struct tcp_sack_block_wire
*sack_a
, *sack_b
;
960 u32 ack_seq_a
= ntohl(tcph_a
->ack_seq
);
961 u32 bytes_a
= 0, bytes_b
= 0;
962 int oplen_a
, oplen_b
;
965 sack_a
= cake_get_tcpopt(tcph_a
, TCPOPT_SACK
, &oplen_a
);
966 sack_b
= cake_get_tcpopt(tcph_b
, TCPOPT_SACK
, &oplen_b
);
968 /* pointers point to option contents */
969 oplen_a
-= TCPOLEN_SACK_BASE
;
970 oplen_b
-= TCPOLEN_SACK_BASE
;
972 if (sack_a
&& oplen_a
>= sizeof(*sack_a
) &&
973 (!sack_b
|| oplen_b
< sizeof(*sack_b
)))
975 else if (sack_b
&& oplen_b
>= sizeof(*sack_b
) &&
976 (!sack_a
|| oplen_a
< sizeof(*sack_a
)))
978 else if ((!sack_a
|| oplen_a
< sizeof(*sack_a
)) &&
979 (!sack_b
|| oplen_b
< sizeof(*sack_b
)))
982 while (oplen_a
>= sizeof(*sack_a
)) {
983 const struct tcp_sack_block_wire
*sack_tmp
= sack_b
;
984 u32 start_a
= get_unaligned_be32(&sack_a
->start_seq
);
985 u32 end_a
= get_unaligned_be32(&sack_a
->end_seq
);
986 int oplen_tmp
= oplen_b
;
989 /* DSACK; always considered greater to prevent dropping */
990 if (before(start_a
, ack_seq_a
))
993 bytes_a
+= end_a
- start_a
;
995 while (oplen_tmp
>= sizeof(*sack_tmp
)) {
996 u32 start_b
= get_unaligned_be32(&sack_tmp
->start_seq
);
997 u32 end_b
= get_unaligned_be32(&sack_tmp
->end_seq
);
999 /* first time through we count the total size */
1001 bytes_b
+= end_b
- start_b
;
1003 if (!after(start_b
, start_a
) && !before(end_b
, end_a
)) {
1008 oplen_tmp
-= sizeof(*sack_tmp
);
1015 oplen_a
-= sizeof(*sack_a
);
1020 /* If we made it this far, all ranges SACKed by A are covered by B, so
1021 * either the SACKs are equal, or B SACKs more bytes.
1023 return bytes_b
> bytes_a
? 1 : 0;
1026 static void cake_tcph_get_tstamp(const struct tcphdr
*tcph
,
1027 u32
*tsval
, u32
*tsecr
)
1032 ptr
= cake_get_tcpopt(tcph
, TCPOPT_TIMESTAMP
, &opsize
);
1034 if (ptr
&& opsize
== TCPOLEN_TIMESTAMP
) {
1035 *tsval
= get_unaligned_be32(ptr
);
1036 *tsecr
= get_unaligned_be32(ptr
+ 4);
1040 static bool cake_tcph_may_drop(const struct tcphdr
*tcph
,
1041 u32 tstamp_new
, u32 tsecr_new
)
1043 /* inspired by tcp_parse_options in tcp_input.c */
1044 int length
= __tcp_hdrlen(tcph
) - sizeof(struct tcphdr
);
1045 const u8
*ptr
= (const u8
*)(tcph
+ 1);
1048 /* 3 reserved flags must be unset to avoid future breakage
1050 * ECE/CWR are handled separately
1051 * All other flags URG/PSH/RST/SYN/FIN must be unset
1052 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1053 * 0x00C00000 = CWR/ECE (handled separately)
1054 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1056 if (((tcp_flag_word(tcph
) &
1057 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK
))
1060 while (length
> 0) {
1061 int opcode
= *ptr
++;
1064 if (opcode
== TCPOPT_EOL
)
1066 if (opcode
== TCPOPT_NOP
) {
1071 if (opsize
< 2 || opsize
> length
)
1075 case TCPOPT_MD5SIG
: /* doesn't influence state */
1078 case TCPOPT_SACK
: /* stricter checking performed later */
1079 if (opsize
% 8 != 2)
1083 case TCPOPT_TIMESTAMP
:
1084 /* only drop timestamps lower than new */
1085 if (opsize
!= TCPOLEN_TIMESTAMP
)
1087 tstamp
= get_unaligned_be32(ptr
);
1088 tsecr
= get_unaligned_be32(ptr
+ 4);
1089 if (after(tstamp
, tstamp_new
) ||
1090 after(tsecr
, tsecr_new
))
1094 case TCPOPT_MSS
: /* these should only be set on SYN */
1096 case TCPOPT_SACK_PERM
:
1097 case TCPOPT_FASTOPEN
:
1099 default: /* don't drop if any unknown options are present */
1110 static struct sk_buff
*cake_ack_filter(struct cake_sched_data
*q
,
1111 struct cake_flow
*flow
)
1113 bool aggressive
= q
->ack_filter
== CAKE_ACK_AGGRESSIVE
;
1114 struct sk_buff
*elig_ack
= NULL
, *elig_ack_prev
= NULL
;
1115 struct sk_buff
*skb_check
, *skb_prev
= NULL
;
1116 const struct ipv6hdr
*ipv6h
, *ipv6h_check
;
1117 unsigned char _tcph
[64], _tcph_check
[64];
1118 const struct tcphdr
*tcph
, *tcph_check
;
1119 const struct iphdr
*iph
, *iph_check
;
1120 struct ipv6hdr _iph
, _iph_check
;
1121 const struct sk_buff
*skb
;
1122 int seglen
, num_found
= 0;
1123 u32 tstamp
= 0, tsecr
= 0;
1124 __be32 elig_flags
= 0;
1127 /* no other possible ACKs to filter */
1128 if (flow
->head
== flow
->tail
)
1132 tcph
= cake_get_tcphdr(skb
, _tcph
, sizeof(_tcph
));
1133 iph
= cake_get_iphdr(skb
, &_iph
);
1137 cake_tcph_get_tstamp(tcph
, &tstamp
, &tsecr
);
1139 /* the 'triggering' packet need only have the ACK flag set.
1140 * also check that SYN is not set, as there won't be any previous ACKs.
1142 if ((tcp_flag_word(tcph
) &
1143 (TCP_FLAG_ACK
| TCP_FLAG_SYN
)) != TCP_FLAG_ACK
)
1146 /* the 'triggering' ACK is at the tail of the queue, we have already
1147 * returned if it is the only packet in the flow. loop through the rest
1148 * of the queue looking for pure ACKs with the same 5-tuple as the
1151 for (skb_check
= flow
->head
;
1152 skb_check
&& skb_check
!= skb
;
1153 skb_prev
= skb_check
, skb_check
= skb_check
->next
) {
1154 iph_check
= cake_get_iphdr(skb_check
, &_iph_check
);
1155 tcph_check
= cake_get_tcphdr(skb_check
, &_tcph_check
,
1156 sizeof(_tcph_check
));
1158 /* only TCP packets with matching 5-tuple are eligible, and only
1161 if (!tcph_check
|| iph
->version
!= iph_check
->version
||
1162 tcph_check
->source
!= tcph
->source
||
1163 tcph_check
->dest
!= tcph
->dest
)
1166 if (iph_check
->version
== 4) {
1167 if (iph_check
->saddr
!= iph
->saddr
||
1168 iph_check
->daddr
!= iph
->daddr
)
1171 seglen
= ntohs(iph_check
->tot_len
) -
1172 (4 * iph_check
->ihl
);
1173 } else if (iph_check
->version
== 6) {
1174 ipv6h
= (struct ipv6hdr
*)iph
;
1175 ipv6h_check
= (struct ipv6hdr
*)iph_check
;
1177 if (ipv6_addr_cmp(&ipv6h_check
->saddr
, &ipv6h
->saddr
) ||
1178 ipv6_addr_cmp(&ipv6h_check
->daddr
, &ipv6h
->daddr
))
1181 seglen
= ntohs(ipv6h_check
->payload_len
);
1183 WARN_ON(1); /* shouldn't happen */
1187 /* If the ECE/CWR flags changed from the previous eligible
1188 * packet in the same flow, we should no longer be dropping that
1189 * previous packet as this would lose information.
1191 if (elig_ack
&& (tcp_flag_word(tcph_check
) &
1192 (TCP_FLAG_ECE
| TCP_FLAG_CWR
)) != elig_flags
) {
1194 elig_ack_prev
= NULL
;
1198 /* Check TCP options and flags, don't drop ACKs with segment
1199 * data, and don't drop ACKs with a higher cumulative ACK
1200 * counter than the triggering packet. Check ACK seqno here to
1201 * avoid parsing SACK options of packets we are going to exclude
1204 if (!cake_tcph_may_drop(tcph_check
, tstamp
, tsecr
) ||
1205 (seglen
- __tcp_hdrlen(tcph_check
)) != 0 ||
1206 after(ntohl(tcph_check
->ack_seq
), ntohl(tcph
->ack_seq
)))
1209 /* Check SACK options. The triggering packet must SACK more data
1210 * than the ACK under consideration, or SACK the same range but
1211 * have a larger cumulative ACK counter. The latter is a
1212 * pathological case, but is contained in the following check
1213 * anyway, just to be safe.
1215 sack_comp
= cake_tcph_sack_compare(tcph_check
, tcph
);
1217 if (sack_comp
< 0 ||
1218 (ntohl(tcph_check
->ack_seq
) == ntohl(tcph
->ack_seq
) &&
1222 /* At this point we have found an eligible pure ACK to drop; if
1223 * we are in aggressive mode, we are done. Otherwise, keep
1224 * searching unless this is the second eligible ACK we
1227 * Since we want to drop ACK closest to the head of the queue,
1228 * save the first eligible ACK we find, even if we need to loop
1232 elig_ack
= skb_check
;
1233 elig_ack_prev
= skb_prev
;
1234 elig_flags
= (tcp_flag_word(tcph_check
)
1235 & (TCP_FLAG_ECE
| TCP_FLAG_CWR
));
1238 if (num_found
++ > 0)
1242 /* We made it through the queue without finding two eligible ACKs . If
1243 * we found a single eligible ACK we can drop it in aggressive mode if
1244 * we can guarantee that this does not interfere with ECN flag
1245 * information. We ensure this by dropping it only if the enqueued
1246 * packet is consecutive with the eligible ACK, and their flags match.
1248 if (elig_ack
&& aggressive
&& elig_ack
->next
== skb
&&
1249 (elig_flags
== (tcp_flag_word(tcph
) &
1250 (TCP_FLAG_ECE
| TCP_FLAG_CWR
))))
1257 elig_ack_prev
->next
= elig_ack
->next
;
1259 flow
->head
= elig_ack
->next
;
1261 skb_mark_not_on_list(elig_ack
);
1266 static u64
cake_ewma(u64 avg
, u64 sample
, u32 shift
)
1268 avg
-= avg
>> shift
;
1269 avg
+= sample
>> shift
;
1273 static u32
cake_calc_overhead(struct cake_sched_data
*q
, u32 len
, u32 off
)
1275 if (q
->rate_flags
& CAKE_FLAG_OVERHEAD
)
1278 if (q
->max_netlen
< len
)
1279 q
->max_netlen
= len
;
1280 if (q
->min_netlen
> len
)
1281 q
->min_netlen
= len
;
1283 len
+= q
->rate_overhead
;
1285 if (len
< q
->rate_mpu
)
1288 if (q
->atm_mode
== CAKE_ATM_ATM
) {
1292 } else if (q
->atm_mode
== CAKE_ATM_PTM
) {
1293 /* Add one byte per 64 bytes or part thereof.
1294 * This is conservative and easier to calculate than the
1297 len
+= (len
+ 63) / 64;
1300 if (q
->max_adjlen
< len
)
1301 q
->max_adjlen
= len
;
1302 if (q
->min_adjlen
> len
)
1303 q
->min_adjlen
= len
;
1308 static u32
cake_overhead(struct cake_sched_data
*q
, const struct sk_buff
*skb
)
1310 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1311 unsigned int hdr_len
, last_len
= 0;
1312 u32 off
= skb_network_offset(skb
);
1313 u32 len
= qdisc_pkt_len(skb
);
1316 q
->avg_netoff
= cake_ewma(q
->avg_netoff
, off
<< 16, 8);
1318 if (!shinfo
->gso_size
)
1319 return cake_calc_overhead(q
, len
, off
);
1321 /* borrowed from qdisc_pkt_len_init() */
1322 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
1324 /* + transport layer */
1325 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
|
1327 const struct tcphdr
*th
;
1328 struct tcphdr _tcphdr
;
1330 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
1331 sizeof(_tcphdr
), &_tcphdr
);
1333 hdr_len
+= __tcp_hdrlen(th
);
1335 struct udphdr _udphdr
;
1337 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
1338 sizeof(_udphdr
), &_udphdr
))
1339 hdr_len
+= sizeof(struct udphdr
);
1342 if (unlikely(shinfo
->gso_type
& SKB_GSO_DODGY
))
1343 segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
1346 segs
= shinfo
->gso_segs
;
1348 len
= shinfo
->gso_size
+ hdr_len
;
1349 last_len
= skb
->len
- shinfo
->gso_size
* (segs
- 1);
1351 return (cake_calc_overhead(q
, len
, off
) * (segs
- 1) +
1352 cake_calc_overhead(q
, last_len
, off
));
1355 static void cake_heap_swap(struct cake_sched_data
*q
, u16 i
, u16 j
)
1357 struct cake_heap_entry ii
= q
->overflow_heap
[i
];
1358 struct cake_heap_entry jj
= q
->overflow_heap
[j
];
1360 q
->overflow_heap
[i
] = jj
;
1361 q
->overflow_heap
[j
] = ii
;
1363 q
->tins
[ii
.t
].overflow_idx
[ii
.b
] = j
;
1364 q
->tins
[jj
.t
].overflow_idx
[jj
.b
] = i
;
1367 static u32
cake_heap_get_backlog(const struct cake_sched_data
*q
, u16 i
)
1369 struct cake_heap_entry ii
= q
->overflow_heap
[i
];
1371 return q
->tins
[ii
.t
].backlogs
[ii
.b
];
1374 static void cake_heapify(struct cake_sched_data
*q
, u16 i
)
1376 static const u32 a
= CAKE_MAX_TINS
* CAKE_QUEUES
;
1377 u32 mb
= cake_heap_get_backlog(q
, i
);
1385 u32 lb
= cake_heap_get_backlog(q
, l
);
1394 u32 rb
= cake_heap_get_backlog(q
, r
);
1403 cake_heap_swap(q
, i
, m
);
1411 static void cake_heapify_up(struct cake_sched_data
*q
, u16 i
)
1413 while (i
> 0 && i
< CAKE_MAX_TINS
* CAKE_QUEUES
) {
1414 u16 p
= (i
- 1) >> 1;
1415 u32 ib
= cake_heap_get_backlog(q
, i
);
1416 u32 pb
= cake_heap_get_backlog(q
, p
);
1419 cake_heap_swap(q
, i
, p
);
1427 static int cake_advance_shaper(struct cake_sched_data
*q
,
1428 struct cake_tin_data
*b
,
1429 struct sk_buff
*skb
,
1430 ktime_t now
, bool drop
)
1432 u32 len
= get_cobalt_cb(skb
)->adjusted_len
;
1434 /* charge packet bandwidth to this tin
1435 * and to the global shaper.
1438 u64 tin_dur
= (len
* b
->tin_rate_ns
) >> b
->tin_rate_shft
;
1439 u64 global_dur
= (len
* q
->rate_ns
) >> q
->rate_shft
;
1440 u64 failsafe_dur
= global_dur
+ (global_dur
>> 1);
1442 if (ktime_before(b
->time_next_packet
, now
))
1443 b
->time_next_packet
= ktime_add_ns(b
->time_next_packet
,
1446 else if (ktime_before(b
->time_next_packet
,
1447 ktime_add_ns(now
, tin_dur
)))
1448 b
->time_next_packet
= ktime_add_ns(now
, tin_dur
);
1450 q
->time_next_packet
= ktime_add_ns(q
->time_next_packet
,
1453 q
->failsafe_next_packet
= \
1454 ktime_add_ns(q
->failsafe_next_packet
,
1460 static unsigned int cake_drop(struct Qdisc
*sch
, struct sk_buff
**to_free
)
1462 struct cake_sched_data
*q
= qdisc_priv(sch
);
1463 ktime_t now
= ktime_get();
1464 u32 idx
= 0, tin
= 0, len
;
1465 struct cake_heap_entry qq
;
1466 struct cake_tin_data
*b
;
1467 struct cake_flow
*flow
;
1468 struct sk_buff
*skb
;
1470 if (!q
->overflow_timeout
) {
1472 /* Build fresh max-heap */
1473 for (i
= CAKE_MAX_TINS
* CAKE_QUEUES
/ 2; i
>= 0; i
--)
1476 q
->overflow_timeout
= 65535;
1478 /* select longest queue for pruning */
1479 qq
= q
->overflow_heap
[0];
1484 flow
= &b
->flows
[idx
];
1485 skb
= dequeue_head(flow
);
1486 if (unlikely(!skb
)) {
1487 /* heap has gone wrong, rebuild it next time */
1488 q
->overflow_timeout
= 0;
1489 return idx
+ (tin
<< 16);
1492 if (cobalt_queue_full(&flow
->cvars
, &b
->cparams
, now
))
1493 b
->unresponsive_flow_count
++;
1495 len
= qdisc_pkt_len(skb
);
1496 q
->buffer_used
-= skb
->truesize
;
1497 b
->backlogs
[idx
] -= len
;
1498 b
->tin_backlog
-= len
;
1499 sch
->qstats
.backlog
-= len
;
1500 qdisc_tree_reduce_backlog(sch
, 1, len
);
1504 sch
->qstats
.drops
++;
1506 if (q
->rate_flags
& CAKE_FLAG_INGRESS
)
1507 cake_advance_shaper(q
, b
, skb
, now
, true);
1509 __qdisc_drop(skb
, to_free
);
1514 return idx
+ (tin
<< 16);
1517 static u8
cake_handle_diffserv(struct sk_buff
*skb
, bool wash
)
1519 const int offset
= skb_network_offset(skb
);
1523 switch (tc_skb_protocol(skb
)) {
1524 case htons(ETH_P_IP
):
1525 buf
= skb_header_pointer(skb
, offset
, sizeof(buf_
), &buf_
);
1529 /* ToS is in the second byte of iphdr */
1530 dscp
= ipv4_get_dsfield((struct iphdr
*)buf
) >> 2;
1533 const int wlen
= offset
+ sizeof(struct iphdr
);
1535 if (!pskb_may_pull(skb
, wlen
) ||
1536 skb_try_make_writable(skb
, wlen
))
1539 ipv4_change_dsfield(ip_hdr(skb
), INET_ECN_MASK
, 0);
1544 case htons(ETH_P_IPV6
):
1545 buf
= skb_header_pointer(skb
, offset
, sizeof(buf_
), &buf_
);
1549 /* Traffic class is in the first and second bytes of ipv6hdr */
1550 dscp
= ipv6_get_dsfield((struct ipv6hdr
*)buf
) >> 2;
1553 const int wlen
= offset
+ sizeof(struct ipv6hdr
);
1555 if (!pskb_may_pull(skb
, wlen
) ||
1556 skb_try_make_writable(skb
, wlen
))
1559 ipv6_change_dsfield(ipv6_hdr(skb
), INET_ECN_MASK
, 0);
1564 case htons(ETH_P_ARP
):
1565 return 0x38; /* CS7 - Net Control */
1568 /* If there is no Diffserv field, treat as best-effort */
1573 static struct cake_tin_data
*cake_select_tin(struct Qdisc
*sch
,
1574 struct sk_buff
*skb
)
1576 struct cake_sched_data
*q
= qdisc_priv(sch
);
1581 /* Tin selection: Default to diffserv-based selection, allow overriding
1582 * using firewall marks or skb->priority. Call DSCP parsing early if
1583 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1585 mark
= (skb
->mark
& q
->fwmark_mask
) >> q
->fwmark_shft
;
1586 wash
= !!(q
->rate_flags
& CAKE_FLAG_WASH
);
1588 dscp
= cake_handle_diffserv(skb
, wash
);
1590 if (q
->tin_mode
== CAKE_DIFFSERV_BESTEFFORT
)
1593 else if (mark
&& mark
<= q
->tin_cnt
)
1594 tin
= q
->tin_order
[mark
- 1];
1596 else if (TC_H_MAJ(skb
->priority
) == sch
->handle
&&
1597 TC_H_MIN(skb
->priority
) > 0 &&
1598 TC_H_MIN(skb
->priority
) <= q
->tin_cnt
)
1599 tin
= q
->tin_order
[TC_H_MIN(skb
->priority
) - 1];
1603 dscp
= cake_handle_diffserv(skb
, wash
);
1604 tin
= q
->tin_index
[dscp
];
1606 if (unlikely(tin
>= q
->tin_cnt
))
1610 return &q
->tins
[tin
];
1613 static u32
cake_classify(struct Qdisc
*sch
, struct cake_tin_data
**t
,
1614 struct sk_buff
*skb
, int flow_mode
, int *qerr
)
1616 struct cake_sched_data
*q
= qdisc_priv(sch
);
1617 struct tcf_proto
*filter
;
1618 struct tcf_result res
;
1619 u16 flow
= 0, host
= 0;
1622 filter
= rcu_dereference_bh(q
->filter_list
);
1626 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1627 result
= tcf_classify(skb
, filter
, &res
, false);
1630 #ifdef CONFIG_NET_CLS_ACT
1635 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1641 if (TC_H_MIN(res
.classid
) <= CAKE_QUEUES
)
1642 flow
= TC_H_MIN(res
.classid
);
1643 if (TC_H_MAJ(res
.classid
) <= (CAKE_QUEUES
<< 16))
1644 host
= TC_H_MAJ(res
.classid
) >> 16;
1647 *t
= cake_select_tin(sch
, skb
);
1648 return cake_hash(*t
, skb
, flow_mode
, flow
, host
) + 1;
1651 static void cake_reconfigure(struct Qdisc
*sch
);
1653 static s32
cake_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
1654 struct sk_buff
**to_free
)
1656 struct cake_sched_data
*q
= qdisc_priv(sch
);
1657 int len
= qdisc_pkt_len(skb
);
1658 int uninitialized_var(ret
);
1659 struct sk_buff
*ack
= NULL
;
1660 ktime_t now
= ktime_get();
1661 struct cake_tin_data
*b
;
1662 struct cake_flow
*flow
;
1665 /* choose flow to insert into */
1666 idx
= cake_classify(sch
, &b
, skb
, q
->flow_mode
, &ret
);
1668 if (ret
& __NET_XMIT_BYPASS
)
1669 qdisc_qstats_drop(sch
);
1670 __qdisc_drop(skb
, to_free
);
1674 flow
= &b
->flows
[idx
];
1676 /* ensure shaper state isn't stale */
1677 if (!b
->tin_backlog
) {
1678 if (ktime_before(b
->time_next_packet
, now
))
1679 b
->time_next_packet
= now
;
1682 if (ktime_before(q
->time_next_packet
, now
)) {
1683 q
->failsafe_next_packet
= now
;
1684 q
->time_next_packet
= now
;
1685 } else if (ktime_after(q
->time_next_packet
, now
) &&
1686 ktime_after(q
->failsafe_next_packet
, now
)) {
1688 min(ktime_to_ns(q
->time_next_packet
),
1690 q
->failsafe_next_packet
));
1691 sch
->qstats
.overlimits
++;
1692 qdisc_watchdog_schedule_ns(&q
->watchdog
, next
);
1697 if (unlikely(len
> b
->max_skblen
))
1698 b
->max_skblen
= len
;
1700 if (skb_is_gso(skb
) && q
->rate_flags
& CAKE_FLAG_SPLIT_GSO
) {
1701 struct sk_buff
*segs
, *nskb
;
1702 netdev_features_t features
= netif_skb_features(skb
);
1703 unsigned int slen
= 0, numsegs
= 0;
1705 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
1706 if (IS_ERR_OR_NULL(segs
))
1707 return qdisc_drop(skb
, sch
, to_free
);
1709 skb_list_walk_safe(segs
, segs
, nskb
) {
1710 skb_mark_not_on_list(segs
);
1711 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
1712 cobalt_set_enqueue_time(segs
, now
);
1713 get_cobalt_cb(segs
)->adjusted_len
= cake_overhead(q
,
1715 flow_queue_add(flow
, segs
);
1720 q
->buffer_used
+= segs
->truesize
;
1726 b
->backlogs
[idx
] += slen
;
1727 b
->tin_backlog
+= slen
;
1728 sch
->qstats
.backlog
+= slen
;
1729 q
->avg_window_bytes
+= slen
;
1731 qdisc_tree_reduce_backlog(sch
, 1-numsegs
, len
-slen
);
1735 cobalt_set_enqueue_time(skb
, now
);
1736 get_cobalt_cb(skb
)->adjusted_len
= cake_overhead(q
, skb
);
1737 flow_queue_add(flow
, skb
);
1740 ack
= cake_ack_filter(q
, flow
);
1744 sch
->qstats
.drops
++;
1745 b
->bytes
+= qdisc_pkt_len(ack
);
1746 len
-= qdisc_pkt_len(ack
);
1747 q
->buffer_used
+= skb
->truesize
- ack
->truesize
;
1748 if (q
->rate_flags
& CAKE_FLAG_INGRESS
)
1749 cake_advance_shaper(q
, b
, ack
, now
, true);
1751 qdisc_tree_reduce_backlog(sch
, 1, qdisc_pkt_len(ack
));
1755 q
->buffer_used
+= skb
->truesize
;
1761 b
->backlogs
[idx
] += len
;
1762 b
->tin_backlog
+= len
;
1763 sch
->qstats
.backlog
+= len
;
1764 q
->avg_window_bytes
+= len
;
1767 if (q
->overflow_timeout
)
1768 cake_heapify_up(q
, b
->overflow_idx
[idx
]);
1770 /* incoming bandwidth capacity estimate */
1771 if (q
->rate_flags
& CAKE_FLAG_AUTORATE_INGRESS
) {
1772 u64 packet_interval
= \
1773 ktime_to_ns(ktime_sub(now
, q
->last_packet_time
));
1775 if (packet_interval
> NSEC_PER_SEC
)
1776 packet_interval
= NSEC_PER_SEC
;
1778 /* filter out short-term bursts, eg. wifi aggregation */
1779 q
->avg_packet_interval
= \
1780 cake_ewma(q
->avg_packet_interval
,
1782 (packet_interval
> q
->avg_packet_interval
?
1785 q
->last_packet_time
= now
;
1787 if (packet_interval
> q
->avg_packet_interval
) {
1788 u64 window_interval
= \
1789 ktime_to_ns(ktime_sub(now
,
1790 q
->avg_window_begin
));
1791 u64 b
= q
->avg_window_bytes
* (u64
)NSEC_PER_SEC
;
1793 b
= div64_u64(b
, window_interval
);
1794 q
->avg_peak_bandwidth
=
1795 cake_ewma(q
->avg_peak_bandwidth
, b
,
1796 b
> q
->avg_peak_bandwidth
? 2 : 8);
1797 q
->avg_window_bytes
= 0;
1798 q
->avg_window_begin
= now
;
1800 if (ktime_after(now
,
1801 ktime_add_ms(q
->last_reconfig_time
,
1803 q
->rate_bps
= (q
->avg_peak_bandwidth
* 15) >> 4;
1804 cake_reconfigure(sch
);
1808 q
->avg_window_bytes
= 0;
1809 q
->last_packet_time
= now
;
1813 if (!flow
->set
|| flow
->set
== CAKE_SET_DECAYING
) {
1814 struct cake_host
*srchost
= &b
->hosts
[flow
->srchost
];
1815 struct cake_host
*dsthost
= &b
->hosts
[flow
->dsthost
];
1819 list_add_tail(&flow
->flowchain
, &b
->new_flows
);
1821 b
->decaying_flow_count
--;
1822 list_move_tail(&flow
->flowchain
, &b
->new_flows
);
1824 flow
->set
= CAKE_SET_SPARSE
;
1825 b
->sparse_flow_count
++;
1827 if (cake_dsrc(q
->flow_mode
))
1828 host_load
= max(host_load
, srchost
->srchost_bulk_flow_count
);
1830 if (cake_ddst(q
->flow_mode
))
1831 host_load
= max(host_load
, dsthost
->dsthost_bulk_flow_count
);
1833 flow
->deficit
= (b
->flow_quantum
*
1834 quantum_div
[host_load
]) >> 16;
1835 } else if (flow
->set
== CAKE_SET_SPARSE_WAIT
) {
1836 struct cake_host
*srchost
= &b
->hosts
[flow
->srchost
];
1837 struct cake_host
*dsthost
= &b
->hosts
[flow
->dsthost
];
1839 /* this flow was empty, accounted as a sparse flow, but actually
1840 * in the bulk rotation.
1842 flow
->set
= CAKE_SET_BULK
;
1843 b
->sparse_flow_count
--;
1844 b
->bulk_flow_count
++;
1846 if (cake_dsrc(q
->flow_mode
))
1847 srchost
->srchost_bulk_flow_count
++;
1849 if (cake_ddst(q
->flow_mode
))
1850 dsthost
->dsthost_bulk_flow_count
++;
1854 if (q
->buffer_used
> q
->buffer_max_used
)
1855 q
->buffer_max_used
= q
->buffer_used
;
1857 if (q
->buffer_used
> q
->buffer_limit
) {
1860 while (q
->buffer_used
> q
->buffer_limit
) {
1862 cake_drop(sch
, to_free
);
1864 b
->drop_overlimit
+= dropped
;
1866 return NET_XMIT_SUCCESS
;
1869 static struct sk_buff
*cake_dequeue_one(struct Qdisc
*sch
)
1871 struct cake_sched_data
*q
= qdisc_priv(sch
);
1872 struct cake_tin_data
*b
= &q
->tins
[q
->cur_tin
];
1873 struct cake_flow
*flow
= &b
->flows
[q
->cur_flow
];
1874 struct sk_buff
*skb
= NULL
;
1878 skb
= dequeue_head(flow
);
1879 len
= qdisc_pkt_len(skb
);
1880 b
->backlogs
[q
->cur_flow
] -= len
;
1881 b
->tin_backlog
-= len
;
1882 sch
->qstats
.backlog
-= len
;
1883 q
->buffer_used
-= skb
->truesize
;
1886 if (q
->overflow_timeout
)
1887 cake_heapify(q
, b
->overflow_idx
[q
->cur_flow
]);
1892 /* Discard leftover packets from a tin no longer in use. */
1893 static void cake_clear_tin(struct Qdisc
*sch
, u16 tin
)
1895 struct cake_sched_data
*q
= qdisc_priv(sch
);
1896 struct sk_buff
*skb
;
1899 for (q
->cur_flow
= 0; q
->cur_flow
< CAKE_QUEUES
; q
->cur_flow
++)
1900 while (!!(skb
= cake_dequeue_one(sch
)))
1904 static struct sk_buff
*cake_dequeue(struct Qdisc
*sch
)
1906 struct cake_sched_data
*q
= qdisc_priv(sch
);
1907 struct cake_tin_data
*b
= &q
->tins
[q
->cur_tin
];
1908 struct cake_host
*srchost
, *dsthost
;
1909 ktime_t now
= ktime_get();
1910 struct cake_flow
*flow
;
1911 struct list_head
*head
;
1912 bool first_flow
= true;
1913 struct sk_buff
*skb
;
1922 /* global hard shaper */
1923 if (ktime_after(q
->time_next_packet
, now
) &&
1924 ktime_after(q
->failsafe_next_packet
, now
)) {
1925 u64 next
= min(ktime_to_ns(q
->time_next_packet
),
1926 ktime_to_ns(q
->failsafe_next_packet
));
1928 sch
->qstats
.overlimits
++;
1929 qdisc_watchdog_schedule_ns(&q
->watchdog
, next
);
1933 /* Choose a class to work on. */
1935 /* In unlimited mode, can't rely on shaper timings, just balance
1938 bool wrapped
= false, empty
= true;
1940 while (b
->tin_deficit
< 0 ||
1941 !(b
->sparse_flow_count
+ b
->bulk_flow_count
)) {
1942 if (b
->tin_deficit
<= 0)
1943 b
->tin_deficit
+= b
->tin_quantum
;
1944 if (b
->sparse_flow_count
+ b
->bulk_flow_count
)
1949 if (q
->cur_tin
>= q
->tin_cnt
) {
1954 /* It's possible for q->qlen to be
1955 * nonzero when we actually have no
1966 /* In shaped mode, choose:
1967 * - Highest-priority tin with queue and meeting schedule, or
1968 * - The earliest-scheduled tin with queue.
1970 ktime_t best_time
= KTIME_MAX
;
1971 int tin
, best_tin
= 0;
1973 for (tin
= 0; tin
< q
->tin_cnt
; tin
++) {
1975 if ((b
->sparse_flow_count
+ b
->bulk_flow_count
) > 0) {
1976 ktime_t time_to_pkt
= \
1977 ktime_sub(b
->time_next_packet
, now
);
1979 if (ktime_to_ns(time_to_pkt
) <= 0 ||
1980 ktime_compare(time_to_pkt
,
1982 best_time
= time_to_pkt
;
1988 q
->cur_tin
= best_tin
;
1989 b
= q
->tins
+ best_tin
;
1991 /* No point in going further if no packets to deliver. */
1992 if (unlikely(!(b
->sparse_flow_count
+ b
->bulk_flow_count
)))
1997 /* service this class */
1998 head
= &b
->decaying_flows
;
1999 if (!first_flow
|| list_empty(head
)) {
2000 head
= &b
->new_flows
;
2001 if (list_empty(head
)) {
2002 head
= &b
->old_flows
;
2003 if (unlikely(list_empty(head
))) {
2004 head
= &b
->decaying_flows
;
2005 if (unlikely(list_empty(head
)))
2010 flow
= list_first_entry(head
, struct cake_flow
, flowchain
);
2011 q
->cur_flow
= flow
- b
->flows
;
2014 /* triple isolation (modified DRR++) */
2015 srchost
= &b
->hosts
[flow
->srchost
];
2016 dsthost
= &b
->hosts
[flow
->dsthost
];
2019 /* flow isolation (DRR++) */
2020 if (flow
->deficit
<= 0) {
2021 /* Keep all flows with deficits out of the sparse and decaying
2022 * rotations. No non-empty flow can go into the decaying
2023 * rotation, so they can't get deficits
2025 if (flow
->set
== CAKE_SET_SPARSE
) {
2027 b
->sparse_flow_count
--;
2028 b
->bulk_flow_count
++;
2030 if (cake_dsrc(q
->flow_mode
))
2031 srchost
->srchost_bulk_flow_count
++;
2033 if (cake_ddst(q
->flow_mode
))
2034 dsthost
->dsthost_bulk_flow_count
++;
2036 flow
->set
= CAKE_SET_BULK
;
2038 /* we've moved it to the bulk rotation for
2039 * correct deficit accounting but we still want
2040 * to count it as a sparse flow, not a bulk one.
2042 flow
->set
= CAKE_SET_SPARSE_WAIT
;
2046 if (cake_dsrc(q
->flow_mode
))
2047 host_load
= max(host_load
, srchost
->srchost_bulk_flow_count
);
2049 if (cake_ddst(q
->flow_mode
))
2050 host_load
= max(host_load
, dsthost
->dsthost_bulk_flow_count
);
2052 WARN_ON(host_load
> CAKE_QUEUES
);
2054 /* The shifted prandom_u32() is a way to apply dithering to
2055 * avoid accumulating roundoff errors
2057 flow
->deficit
+= (b
->flow_quantum
* quantum_div
[host_load
] +
2058 (prandom_u32() >> 16)) >> 16;
2059 list_move_tail(&flow
->flowchain
, &b
->old_flows
);
2064 /* Retrieve a packet via the AQM */
2066 skb
= cake_dequeue_one(sch
);
2068 /* this queue was actually empty */
2069 if (cobalt_queue_empty(&flow
->cvars
, &b
->cparams
, now
))
2070 b
->unresponsive_flow_count
--;
2072 if (flow
->cvars
.p_drop
|| flow
->cvars
.count
||
2073 ktime_before(now
, flow
->cvars
.drop_next
)) {
2074 /* keep in the flowchain until the state has
2077 list_move_tail(&flow
->flowchain
,
2078 &b
->decaying_flows
);
2079 if (flow
->set
== CAKE_SET_BULK
) {
2080 b
->bulk_flow_count
--;
2082 if (cake_dsrc(q
->flow_mode
))
2083 srchost
->srchost_bulk_flow_count
--;
2085 if (cake_ddst(q
->flow_mode
))
2086 dsthost
->dsthost_bulk_flow_count
--;
2088 b
->decaying_flow_count
++;
2089 } else if (flow
->set
== CAKE_SET_SPARSE
||
2090 flow
->set
== CAKE_SET_SPARSE_WAIT
) {
2091 b
->sparse_flow_count
--;
2092 b
->decaying_flow_count
++;
2094 flow
->set
= CAKE_SET_DECAYING
;
2096 /* remove empty queue from the flowchain */
2097 list_del_init(&flow
->flowchain
);
2098 if (flow
->set
== CAKE_SET_SPARSE
||
2099 flow
->set
== CAKE_SET_SPARSE_WAIT
)
2100 b
->sparse_flow_count
--;
2101 else if (flow
->set
== CAKE_SET_BULK
) {
2102 b
->bulk_flow_count
--;
2104 if (cake_dsrc(q
->flow_mode
))
2105 srchost
->srchost_bulk_flow_count
--;
2107 if (cake_ddst(q
->flow_mode
))
2108 dsthost
->dsthost_bulk_flow_count
--;
2111 b
->decaying_flow_count
--;
2113 flow
->set
= CAKE_SET_NONE
;
2118 /* Last packet in queue may be marked, shouldn't be dropped */
2119 if (!cobalt_should_drop(&flow
->cvars
, &b
->cparams
, now
, skb
,
2120 (b
->bulk_flow_count
*
2122 CAKE_FLAG_INGRESS
))) ||
2126 /* drop this packet, get another one */
2127 if (q
->rate_flags
& CAKE_FLAG_INGRESS
) {
2128 len
= cake_advance_shaper(q
, b
, skb
,
2130 flow
->deficit
-= len
;
2131 b
->tin_deficit
-= len
;
2135 qdisc_tree_reduce_backlog(sch
, 1, qdisc_pkt_len(skb
));
2136 qdisc_qstats_drop(sch
);
2138 if (q
->rate_flags
& CAKE_FLAG_INGRESS
)
2142 b
->tin_ecn_mark
+= !!flow
->cvars
.ecn_marked
;
2143 qdisc_bstats_update(sch
, skb
);
2145 /* collect delay stats */
2146 delay
= ktime_to_ns(ktime_sub(now
, cobalt_get_enqueue_time(skb
)));
2147 b
->avge_delay
= cake_ewma(b
->avge_delay
, delay
, 8);
2148 b
->peak_delay
= cake_ewma(b
->peak_delay
, delay
,
2149 delay
> b
->peak_delay
? 2 : 8);
2150 b
->base_delay
= cake_ewma(b
->base_delay
, delay
,
2151 delay
< b
->base_delay
? 2 : 8);
2153 len
= cake_advance_shaper(q
, b
, skb
, now
, false);
2154 flow
->deficit
-= len
;
2155 b
->tin_deficit
-= len
;
2157 if (ktime_after(q
->time_next_packet
, now
) && sch
->q
.qlen
) {
2158 u64 next
= min(ktime_to_ns(q
->time_next_packet
),
2159 ktime_to_ns(q
->failsafe_next_packet
));
2161 qdisc_watchdog_schedule_ns(&q
->watchdog
, next
);
2162 } else if (!sch
->q
.qlen
) {
2165 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2166 if (q
->tins
[i
].decaying_flow_count
) {
2169 q
->tins
[i
].cparams
.target
);
2171 qdisc_watchdog_schedule_ns(&q
->watchdog
,
2178 if (q
->overflow_timeout
)
2179 q
->overflow_timeout
--;
2184 static void cake_reset(struct Qdisc
*sch
)
2188 for (c
= 0; c
< CAKE_MAX_TINS
; c
++)
2189 cake_clear_tin(sch
, c
);
2192 static const struct nla_policy cake_policy
[TCA_CAKE_MAX
+ 1] = {
2193 [TCA_CAKE_BASE_RATE64
] = { .type
= NLA_U64
},
2194 [TCA_CAKE_DIFFSERV_MODE
] = { .type
= NLA_U32
},
2195 [TCA_CAKE_ATM
] = { .type
= NLA_U32
},
2196 [TCA_CAKE_FLOW_MODE
] = { .type
= NLA_U32
},
2197 [TCA_CAKE_OVERHEAD
] = { .type
= NLA_S32
},
2198 [TCA_CAKE_RTT
] = { .type
= NLA_U32
},
2199 [TCA_CAKE_TARGET
] = { .type
= NLA_U32
},
2200 [TCA_CAKE_AUTORATE
] = { .type
= NLA_U32
},
2201 [TCA_CAKE_MEMORY
] = { .type
= NLA_U32
},
2202 [TCA_CAKE_NAT
] = { .type
= NLA_U32
},
2203 [TCA_CAKE_RAW
] = { .type
= NLA_U32
},
2204 [TCA_CAKE_WASH
] = { .type
= NLA_U32
},
2205 [TCA_CAKE_MPU
] = { .type
= NLA_U32
},
2206 [TCA_CAKE_INGRESS
] = { .type
= NLA_U32
},
2207 [TCA_CAKE_ACK_FILTER
] = { .type
= NLA_U32
},
2208 [TCA_CAKE_SPLIT_GSO
] = { .type
= NLA_U32
},
2209 [TCA_CAKE_FWMARK
] = { .type
= NLA_U32
},
2212 static void cake_set_rate(struct cake_tin_data
*b
, u64 rate
, u32 mtu
,
2213 u64 target_ns
, u64 rtt_est_ns
)
2215 /* convert byte-rate into time-per-byte
2216 * so it will always unwedge in reasonable time.
2218 static const u64 MIN_RATE
= 64;
2219 u32 byte_target
= mtu
;
2224 b
->flow_quantum
= 1514;
2226 b
->flow_quantum
= max(min(rate
>> 12, 1514ULL), 300ULL);
2228 rate_ns
= ((u64
)NSEC_PER_SEC
) << rate_shft
;
2229 rate_ns
= div64_u64(rate_ns
, max(MIN_RATE
, rate
));
2230 while (!!(rate_ns
>> 34)) {
2234 } /* else unlimited, ie. zero delay */
2236 b
->tin_rate_bps
= rate
;
2237 b
->tin_rate_ns
= rate_ns
;
2238 b
->tin_rate_shft
= rate_shft
;
2240 byte_target_ns
= (byte_target
* rate_ns
) >> rate_shft
;
2242 b
->cparams
.target
= max((byte_target_ns
* 3) / 2, target_ns
);
2243 b
->cparams
.interval
= max(rtt_est_ns
+
2244 b
->cparams
.target
- target_ns
,
2245 b
->cparams
.target
* 2);
2246 b
->cparams
.mtu_time
= byte_target_ns
;
2247 b
->cparams
.p_inc
= 1 << 24; /* 1/256 */
2248 b
->cparams
.p_dec
= 1 << 20; /* 1/4096 */
2251 static int cake_config_besteffort(struct Qdisc
*sch
)
2253 struct cake_sched_data
*q
= qdisc_priv(sch
);
2254 struct cake_tin_data
*b
= &q
->tins
[0];
2255 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2256 u64 rate
= q
->rate_bps
;
2260 q
->tin_index
= besteffort
;
2261 q
->tin_order
= normal_order
;
2263 cake_set_rate(b
, rate
, mtu
,
2264 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2265 b
->tin_quantum
= 65535;
2270 static int cake_config_precedence(struct Qdisc
*sch
)
2272 /* convert high-level (user visible) parameters into internal format */
2273 struct cake_sched_data
*q
= qdisc_priv(sch
);
2274 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2275 u64 rate
= q
->rate_bps
;
2280 q
->tin_index
= precedence
;
2281 q
->tin_order
= normal_order
;
2283 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2284 struct cake_tin_data
*b
= &q
->tins
[i
];
2286 cake_set_rate(b
, rate
, mtu
, us_to_ns(q
->target
),
2287 us_to_ns(q
->interval
));
2289 b
->tin_quantum
= max_t(u16
, 1U, quantum
);
2291 /* calculate next class's parameters */
2302 /* List of known Diffserv codepoints:
2304 * Least Effort (CS1)
2306 * Max Reliability & LLT "Lo" (TOS1)
2307 * Max Throughput (TOS2)
2310 * Assured Forwarding 1 (AF1x) - x3
2311 * Assured Forwarding 2 (AF2x) - x3
2312 * Assured Forwarding 3 (AF3x) - x3
2313 * Assured Forwarding 4 (AF4x) - x3
2314 * Precedence Class 2 (CS2)
2315 * Precedence Class 3 (CS3)
2316 * Precedence Class 4 (CS4)
2317 * Precedence Class 5 (CS5)
2318 * Precedence Class 6 (CS6)
2319 * Precedence Class 7 (CS7)
2321 * Expedited Forwarding (EF)
2323 * Total 25 codepoints.
2326 /* List of traffic classes in RFC 4594:
2327 * (roughly descending order of contended priority)
2328 * (roughly ascending order of uncontended throughput)
2330 * Network Control (CS6,CS7) - routing traffic
2331 * Telephony (EF,VA) - aka. VoIP streams
2332 * Signalling (CS5) - VoIP setup
2333 * Multimedia Conferencing (AF4x) - aka. video calls
2334 * Realtime Interactive (CS4) - eg. games
2335 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2336 * Broadcast Video (CS3)
2337 * Low Latency Data (AF2x,TOS4) - eg. database
2338 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2339 * Standard Service (CS0 & unrecognised codepoints)
2340 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2341 * Low Priority Data (CS1) - eg. BitTorrent
2343 * Total 12 traffic classes.
2346 static int cake_config_diffserv8(struct Qdisc
*sch
)
2348 /* Pruned list of traffic classes for typical applications:
2350 * Network Control (CS6, CS7)
2351 * Minimum Latency (EF, VA, CS5, CS4)
2352 * Interactive Shell (CS2, TOS1)
2353 * Low Latency Transactions (AF2x, TOS4)
2354 * Video Streaming (AF4x, AF3x, CS3)
2355 * Bog Standard (CS0 etc.)
2356 * High Throughput (AF1x, TOS2)
2357 * Background Traffic (CS1)
2359 * Total 8 traffic classes.
2362 struct cake_sched_data
*q
= qdisc_priv(sch
);
2363 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2364 u64 rate
= q
->rate_bps
;
2370 /* codepoint to class mapping */
2371 q
->tin_index
= diffserv8
;
2372 q
->tin_order
= normal_order
;
2374 /* class characteristics */
2375 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2376 struct cake_tin_data
*b
= &q
->tins
[i
];
2378 cake_set_rate(b
, rate
, mtu
, us_to_ns(q
->target
),
2379 us_to_ns(q
->interval
));
2381 b
->tin_quantum
= max_t(u16
, 1U, quantum
);
2383 /* calculate next class's parameters */
2394 static int cake_config_diffserv4(struct Qdisc
*sch
)
2396 /* Further pruned list of traffic classes for four-class system:
2398 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2399 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2400 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2401 * Background Traffic (CS1)
2403 * Total 4 traffic classes.
2406 struct cake_sched_data
*q
= qdisc_priv(sch
);
2407 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2408 u64 rate
= q
->rate_bps
;
2413 /* codepoint to class mapping */
2414 q
->tin_index
= diffserv4
;
2415 q
->tin_order
= bulk_order
;
2417 /* class characteristics */
2418 cake_set_rate(&q
->tins
[0], rate
, mtu
,
2419 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2420 cake_set_rate(&q
->tins
[1], rate
>> 4, mtu
,
2421 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2422 cake_set_rate(&q
->tins
[2], rate
>> 1, mtu
,
2423 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2424 cake_set_rate(&q
->tins
[3], rate
>> 2, mtu
,
2425 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2427 /* bandwidth-sharing weights */
2428 q
->tins
[0].tin_quantum
= quantum
;
2429 q
->tins
[1].tin_quantum
= quantum
>> 4;
2430 q
->tins
[2].tin_quantum
= quantum
>> 1;
2431 q
->tins
[3].tin_quantum
= quantum
>> 2;
2436 static int cake_config_diffserv3(struct Qdisc
*sch
)
2438 /* Simplified Diffserv structure with 3 tins.
2439 * Low Priority (CS1)
2441 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2443 struct cake_sched_data
*q
= qdisc_priv(sch
);
2444 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2445 u64 rate
= q
->rate_bps
;
2450 /* codepoint to class mapping */
2451 q
->tin_index
= diffserv3
;
2452 q
->tin_order
= bulk_order
;
2454 /* class characteristics */
2455 cake_set_rate(&q
->tins
[0], rate
, mtu
,
2456 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2457 cake_set_rate(&q
->tins
[1], rate
>> 4, mtu
,
2458 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2459 cake_set_rate(&q
->tins
[2], rate
>> 2, mtu
,
2460 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2462 /* bandwidth-sharing weights */
2463 q
->tins
[0].tin_quantum
= quantum
;
2464 q
->tins
[1].tin_quantum
= quantum
>> 4;
2465 q
->tins
[2].tin_quantum
= quantum
>> 2;
2470 static void cake_reconfigure(struct Qdisc
*sch
)
2472 struct cake_sched_data
*q
= qdisc_priv(sch
);
2475 switch (q
->tin_mode
) {
2476 case CAKE_DIFFSERV_BESTEFFORT
:
2477 ft
= cake_config_besteffort(sch
);
2480 case CAKE_DIFFSERV_PRECEDENCE
:
2481 ft
= cake_config_precedence(sch
);
2484 case CAKE_DIFFSERV_DIFFSERV8
:
2485 ft
= cake_config_diffserv8(sch
);
2488 case CAKE_DIFFSERV_DIFFSERV4
:
2489 ft
= cake_config_diffserv4(sch
);
2492 case CAKE_DIFFSERV_DIFFSERV3
:
2494 ft
= cake_config_diffserv3(sch
);
2498 for (c
= q
->tin_cnt
; c
< CAKE_MAX_TINS
; c
++) {
2499 cake_clear_tin(sch
, c
);
2500 q
->tins
[c
].cparams
.mtu_time
= q
->tins
[ft
].cparams
.mtu_time
;
2503 q
->rate_ns
= q
->tins
[ft
].tin_rate_ns
;
2504 q
->rate_shft
= q
->tins
[ft
].tin_rate_shft
;
2506 if (q
->buffer_config_limit
) {
2507 q
->buffer_limit
= q
->buffer_config_limit
;
2508 } else if (q
->rate_bps
) {
2509 u64 t
= q
->rate_bps
* q
->interval
;
2511 do_div(t
, USEC_PER_SEC
/ 4);
2512 q
->buffer_limit
= max_t(u32
, t
, 4U << 20);
2514 q
->buffer_limit
= ~0;
2517 sch
->flags
&= ~TCQ_F_CAN_BYPASS
;
2519 q
->buffer_limit
= min(q
->buffer_limit
,
2520 max(sch
->limit
* psched_mtu(qdisc_dev(sch
)),
2521 q
->buffer_config_limit
));
2524 static int cake_change(struct Qdisc
*sch
, struct nlattr
*opt
,
2525 struct netlink_ext_ack
*extack
)
2527 struct cake_sched_data
*q
= qdisc_priv(sch
);
2528 struct nlattr
*tb
[TCA_CAKE_MAX
+ 1];
2534 err
= nla_parse_nested_deprecated(tb
, TCA_CAKE_MAX
, opt
, cake_policy
,
2539 if (tb
[TCA_CAKE_NAT
]) {
2540 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2541 q
->flow_mode
&= ~CAKE_FLOW_NAT_FLAG
;
2542 q
->flow_mode
|= CAKE_FLOW_NAT_FLAG
*
2543 !!nla_get_u32(tb
[TCA_CAKE_NAT
]);
2545 NL_SET_ERR_MSG_ATTR(extack
, tb
[TCA_CAKE_NAT
],
2546 "No conntrack support in kernel");
2551 if (tb
[TCA_CAKE_BASE_RATE64
])
2552 q
->rate_bps
= nla_get_u64(tb
[TCA_CAKE_BASE_RATE64
]);
2554 if (tb
[TCA_CAKE_DIFFSERV_MODE
])
2555 q
->tin_mode
= nla_get_u32(tb
[TCA_CAKE_DIFFSERV_MODE
]);
2557 if (tb
[TCA_CAKE_WASH
]) {
2558 if (!!nla_get_u32(tb
[TCA_CAKE_WASH
]))
2559 q
->rate_flags
|= CAKE_FLAG_WASH
;
2561 q
->rate_flags
&= ~CAKE_FLAG_WASH
;
2564 if (tb
[TCA_CAKE_FLOW_MODE
])
2565 q
->flow_mode
= ((q
->flow_mode
& CAKE_FLOW_NAT_FLAG
) |
2566 (nla_get_u32(tb
[TCA_CAKE_FLOW_MODE
]) &
2569 if (tb
[TCA_CAKE_ATM
])
2570 q
->atm_mode
= nla_get_u32(tb
[TCA_CAKE_ATM
]);
2572 if (tb
[TCA_CAKE_OVERHEAD
]) {
2573 q
->rate_overhead
= nla_get_s32(tb
[TCA_CAKE_OVERHEAD
]);
2574 q
->rate_flags
|= CAKE_FLAG_OVERHEAD
;
2582 if (tb
[TCA_CAKE_RAW
]) {
2583 q
->rate_flags
&= ~CAKE_FLAG_OVERHEAD
;
2591 if (tb
[TCA_CAKE_MPU
])
2592 q
->rate_mpu
= nla_get_u32(tb
[TCA_CAKE_MPU
]);
2594 if (tb
[TCA_CAKE_RTT
]) {
2595 q
->interval
= nla_get_u32(tb
[TCA_CAKE_RTT
]);
2601 if (tb
[TCA_CAKE_TARGET
]) {
2602 q
->target
= nla_get_u32(tb
[TCA_CAKE_TARGET
]);
2608 if (tb
[TCA_CAKE_AUTORATE
]) {
2609 if (!!nla_get_u32(tb
[TCA_CAKE_AUTORATE
]))
2610 q
->rate_flags
|= CAKE_FLAG_AUTORATE_INGRESS
;
2612 q
->rate_flags
&= ~CAKE_FLAG_AUTORATE_INGRESS
;
2615 if (tb
[TCA_CAKE_INGRESS
]) {
2616 if (!!nla_get_u32(tb
[TCA_CAKE_INGRESS
]))
2617 q
->rate_flags
|= CAKE_FLAG_INGRESS
;
2619 q
->rate_flags
&= ~CAKE_FLAG_INGRESS
;
2622 if (tb
[TCA_CAKE_ACK_FILTER
])
2623 q
->ack_filter
= nla_get_u32(tb
[TCA_CAKE_ACK_FILTER
]);
2625 if (tb
[TCA_CAKE_MEMORY
])
2626 q
->buffer_config_limit
= nla_get_u32(tb
[TCA_CAKE_MEMORY
]);
2628 if (tb
[TCA_CAKE_SPLIT_GSO
]) {
2629 if (!!nla_get_u32(tb
[TCA_CAKE_SPLIT_GSO
]))
2630 q
->rate_flags
|= CAKE_FLAG_SPLIT_GSO
;
2632 q
->rate_flags
&= ~CAKE_FLAG_SPLIT_GSO
;
2635 if (tb
[TCA_CAKE_FWMARK
]) {
2636 q
->fwmark_mask
= nla_get_u32(tb
[TCA_CAKE_FWMARK
]);
2637 q
->fwmark_shft
= q
->fwmark_mask
? __ffs(q
->fwmark_mask
) : 0;
2642 cake_reconfigure(sch
);
2643 sch_tree_unlock(sch
);
2649 static void cake_destroy(struct Qdisc
*sch
)
2651 struct cake_sched_data
*q
= qdisc_priv(sch
);
2653 qdisc_watchdog_cancel(&q
->watchdog
);
2654 tcf_block_put(q
->block
);
2658 static int cake_init(struct Qdisc
*sch
, struct nlattr
*opt
,
2659 struct netlink_ext_ack
*extack
)
2661 struct cake_sched_data
*q
= qdisc_priv(sch
);
2665 q
->tin_mode
= CAKE_DIFFSERV_DIFFSERV3
;
2666 q
->flow_mode
= CAKE_FLOW_TRIPLE
;
2668 q
->rate_bps
= 0; /* unlimited by default */
2670 q
->interval
= 100000; /* 100ms default */
2671 q
->target
= 5000; /* 5ms: codel RFC argues
2672 * for 5 to 10% of interval
2674 q
->rate_flags
|= CAKE_FLAG_SPLIT_GSO
;
2678 qdisc_watchdog_init(&q
->watchdog
, sch
);
2681 err
= cake_change(sch
, opt
, extack
);
2687 err
= tcf_block_get(&q
->block
, &q
->filter_list
, sch
, extack
);
2691 quantum_div
[0] = ~0;
2692 for (i
= 1; i
<= CAKE_QUEUES
; i
++)
2693 quantum_div
[i
] = 65535 / i
;
2695 q
->tins
= kvcalloc(CAKE_MAX_TINS
, sizeof(struct cake_tin_data
),
2700 for (i
= 0; i
< CAKE_MAX_TINS
; i
++) {
2701 struct cake_tin_data
*b
= q
->tins
+ i
;
2703 INIT_LIST_HEAD(&b
->new_flows
);
2704 INIT_LIST_HEAD(&b
->old_flows
);
2705 INIT_LIST_HEAD(&b
->decaying_flows
);
2706 b
->sparse_flow_count
= 0;
2707 b
->bulk_flow_count
= 0;
2708 b
->decaying_flow_count
= 0;
2710 for (j
= 0; j
< CAKE_QUEUES
; j
++) {
2711 struct cake_flow
*flow
= b
->flows
+ j
;
2712 u32 k
= j
* CAKE_MAX_TINS
+ i
;
2714 INIT_LIST_HEAD(&flow
->flowchain
);
2715 cobalt_vars_init(&flow
->cvars
);
2717 q
->overflow_heap
[k
].t
= i
;
2718 q
->overflow_heap
[k
].b
= j
;
2719 b
->overflow_idx
[j
] = k
;
2723 cake_reconfigure(sch
);
2724 q
->avg_peak_bandwidth
= q
->rate_bps
;
2734 static int cake_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
2736 struct cake_sched_data
*q
= qdisc_priv(sch
);
2737 struct nlattr
*opts
;
2739 opts
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
2741 goto nla_put_failure
;
2743 if (nla_put_u64_64bit(skb
, TCA_CAKE_BASE_RATE64
, q
->rate_bps
,
2745 goto nla_put_failure
;
2747 if (nla_put_u32(skb
, TCA_CAKE_FLOW_MODE
,
2748 q
->flow_mode
& CAKE_FLOW_MASK
))
2749 goto nla_put_failure
;
2751 if (nla_put_u32(skb
, TCA_CAKE_RTT
, q
->interval
))
2752 goto nla_put_failure
;
2754 if (nla_put_u32(skb
, TCA_CAKE_TARGET
, q
->target
))
2755 goto nla_put_failure
;
2757 if (nla_put_u32(skb
, TCA_CAKE_MEMORY
, q
->buffer_config_limit
))
2758 goto nla_put_failure
;
2760 if (nla_put_u32(skb
, TCA_CAKE_AUTORATE
,
2761 !!(q
->rate_flags
& CAKE_FLAG_AUTORATE_INGRESS
)))
2762 goto nla_put_failure
;
2764 if (nla_put_u32(skb
, TCA_CAKE_INGRESS
,
2765 !!(q
->rate_flags
& CAKE_FLAG_INGRESS
)))
2766 goto nla_put_failure
;
2768 if (nla_put_u32(skb
, TCA_CAKE_ACK_FILTER
, q
->ack_filter
))
2769 goto nla_put_failure
;
2771 if (nla_put_u32(skb
, TCA_CAKE_NAT
,
2772 !!(q
->flow_mode
& CAKE_FLOW_NAT_FLAG
)))
2773 goto nla_put_failure
;
2775 if (nla_put_u32(skb
, TCA_CAKE_DIFFSERV_MODE
, q
->tin_mode
))
2776 goto nla_put_failure
;
2778 if (nla_put_u32(skb
, TCA_CAKE_WASH
,
2779 !!(q
->rate_flags
& CAKE_FLAG_WASH
)))
2780 goto nla_put_failure
;
2782 if (nla_put_u32(skb
, TCA_CAKE_OVERHEAD
, q
->rate_overhead
))
2783 goto nla_put_failure
;
2785 if (!(q
->rate_flags
& CAKE_FLAG_OVERHEAD
))
2786 if (nla_put_u32(skb
, TCA_CAKE_RAW
, 0))
2787 goto nla_put_failure
;
2789 if (nla_put_u32(skb
, TCA_CAKE_ATM
, q
->atm_mode
))
2790 goto nla_put_failure
;
2792 if (nla_put_u32(skb
, TCA_CAKE_MPU
, q
->rate_mpu
))
2793 goto nla_put_failure
;
2795 if (nla_put_u32(skb
, TCA_CAKE_SPLIT_GSO
,
2796 !!(q
->rate_flags
& CAKE_FLAG_SPLIT_GSO
)))
2797 goto nla_put_failure
;
2799 if (nla_put_u32(skb
, TCA_CAKE_FWMARK
, q
->fwmark_mask
))
2800 goto nla_put_failure
;
2802 return nla_nest_end(skb
, opts
);
2808 static int cake_dump_stats(struct Qdisc
*sch
, struct gnet_dump
*d
)
2810 struct nlattr
*stats
= nla_nest_start_noflag(d
->skb
, TCA_STATS_APP
);
2811 struct cake_sched_data
*q
= qdisc_priv(sch
);
2812 struct nlattr
*tstats
, *ts
;
2818 #define PUT_STAT_U32(attr, data) do { \
2819 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2820 goto nla_put_failure; \
2822 #define PUT_STAT_U64(attr, data) do { \
2823 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2824 data, TCA_CAKE_STATS_PAD)) \
2825 goto nla_put_failure; \
2828 PUT_STAT_U64(CAPACITY_ESTIMATE64
, q
->avg_peak_bandwidth
);
2829 PUT_STAT_U32(MEMORY_LIMIT
, q
->buffer_limit
);
2830 PUT_STAT_U32(MEMORY_USED
, q
->buffer_max_used
);
2831 PUT_STAT_U32(AVG_NETOFF
, ((q
->avg_netoff
+ 0x8000) >> 16));
2832 PUT_STAT_U32(MAX_NETLEN
, q
->max_netlen
);
2833 PUT_STAT_U32(MAX_ADJLEN
, q
->max_adjlen
);
2834 PUT_STAT_U32(MIN_NETLEN
, q
->min_netlen
);
2835 PUT_STAT_U32(MIN_ADJLEN
, q
->min_adjlen
);
2840 tstats
= nla_nest_start_noflag(d
->skb
, TCA_CAKE_STATS_TIN_STATS
);
2842 goto nla_put_failure
;
2844 #define PUT_TSTAT_U32(attr, data) do { \
2845 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2846 goto nla_put_failure; \
2848 #define PUT_TSTAT_U64(attr, data) do { \
2849 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2850 data, TCA_CAKE_TIN_STATS_PAD)) \
2851 goto nla_put_failure; \
2854 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2855 struct cake_tin_data
*b
= &q
->tins
[q
->tin_order
[i
]];
2857 ts
= nla_nest_start_noflag(d
->skb
, i
+ 1);
2859 goto nla_put_failure
;
2861 PUT_TSTAT_U64(THRESHOLD_RATE64
, b
->tin_rate_bps
);
2862 PUT_TSTAT_U64(SENT_BYTES64
, b
->bytes
);
2863 PUT_TSTAT_U32(BACKLOG_BYTES
, b
->tin_backlog
);
2865 PUT_TSTAT_U32(TARGET_US
,
2866 ktime_to_us(ns_to_ktime(b
->cparams
.target
)));
2867 PUT_TSTAT_U32(INTERVAL_US
,
2868 ktime_to_us(ns_to_ktime(b
->cparams
.interval
)));
2870 PUT_TSTAT_U32(SENT_PACKETS
, b
->packets
);
2871 PUT_TSTAT_U32(DROPPED_PACKETS
, b
->tin_dropped
);
2872 PUT_TSTAT_U32(ECN_MARKED_PACKETS
, b
->tin_ecn_mark
);
2873 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS
, b
->ack_drops
);
2875 PUT_TSTAT_U32(PEAK_DELAY_US
,
2876 ktime_to_us(ns_to_ktime(b
->peak_delay
)));
2877 PUT_TSTAT_U32(AVG_DELAY_US
,
2878 ktime_to_us(ns_to_ktime(b
->avge_delay
)));
2879 PUT_TSTAT_U32(BASE_DELAY_US
,
2880 ktime_to_us(ns_to_ktime(b
->base_delay
)));
2882 PUT_TSTAT_U32(WAY_INDIRECT_HITS
, b
->way_hits
);
2883 PUT_TSTAT_U32(WAY_MISSES
, b
->way_misses
);
2884 PUT_TSTAT_U32(WAY_COLLISIONS
, b
->way_collisions
);
2886 PUT_TSTAT_U32(SPARSE_FLOWS
, b
->sparse_flow_count
+
2887 b
->decaying_flow_count
);
2888 PUT_TSTAT_U32(BULK_FLOWS
, b
->bulk_flow_count
);
2889 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS
, b
->unresponsive_flow_count
);
2890 PUT_TSTAT_U32(MAX_SKBLEN
, b
->max_skblen
);
2892 PUT_TSTAT_U32(FLOW_QUANTUM
, b
->flow_quantum
);
2893 nla_nest_end(d
->skb
, ts
);
2896 #undef PUT_TSTAT_U32
2897 #undef PUT_TSTAT_U64
2899 nla_nest_end(d
->skb
, tstats
);
2900 return nla_nest_end(d
->skb
, stats
);
2903 nla_nest_cancel(d
->skb
, stats
);
2907 static struct Qdisc
*cake_leaf(struct Qdisc
*sch
, unsigned long arg
)
2912 static unsigned long cake_find(struct Qdisc
*sch
, u32 classid
)
2917 static unsigned long cake_bind(struct Qdisc
*sch
, unsigned long parent
,
2923 static void cake_unbind(struct Qdisc
*q
, unsigned long cl
)
2927 static struct tcf_block
*cake_tcf_block(struct Qdisc
*sch
, unsigned long cl
,
2928 struct netlink_ext_ack
*extack
)
2930 struct cake_sched_data
*q
= qdisc_priv(sch
);
2937 static int cake_dump_class(struct Qdisc
*sch
, unsigned long cl
,
2938 struct sk_buff
*skb
, struct tcmsg
*tcm
)
2940 tcm
->tcm_handle
|= TC_H_MIN(cl
);
2944 static int cake_dump_class_stats(struct Qdisc
*sch
, unsigned long cl
,
2945 struct gnet_dump
*d
)
2947 struct cake_sched_data
*q
= qdisc_priv(sch
);
2948 const struct cake_flow
*flow
= NULL
;
2949 struct gnet_stats_queue qs
= { 0 };
2950 struct nlattr
*stats
;
2953 if (idx
< CAKE_QUEUES
* q
->tin_cnt
) {
2954 const struct cake_tin_data
*b
= \
2955 &q
->tins
[q
->tin_order
[idx
/ CAKE_QUEUES
]];
2956 const struct sk_buff
*skb
;
2958 flow
= &b
->flows
[idx
% CAKE_QUEUES
];
2967 sch_tree_unlock(sch
);
2969 qs
.backlog
= b
->backlogs
[idx
% CAKE_QUEUES
];
2970 qs
.drops
= flow
->dropped
;
2972 if (gnet_stats_copy_queue(d
, NULL
, &qs
, qs
.qlen
) < 0)
2975 ktime_t now
= ktime_get();
2977 stats
= nla_nest_start_noflag(d
->skb
, TCA_STATS_APP
);
2981 #define PUT_STAT_U32(attr, data) do { \
2982 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2983 goto nla_put_failure; \
2985 #define PUT_STAT_S32(attr, data) do { \
2986 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2987 goto nla_put_failure; \
2990 PUT_STAT_S32(DEFICIT
, flow
->deficit
);
2991 PUT_STAT_U32(DROPPING
, flow
->cvars
.dropping
);
2992 PUT_STAT_U32(COBALT_COUNT
, flow
->cvars
.count
);
2993 PUT_STAT_U32(P_DROP
, flow
->cvars
.p_drop
);
2994 if (flow
->cvars
.p_drop
) {
2995 PUT_STAT_S32(BLUE_TIMER_US
,
2998 flow
->cvars
.blue_timer
)));
3000 if (flow
->cvars
.dropping
) {
3001 PUT_STAT_S32(DROP_NEXT_US
,
3004 flow
->cvars
.drop_next
)));
3007 if (nla_nest_end(d
->skb
, stats
) < 0)
3014 nla_nest_cancel(d
->skb
, stats
);
3018 static void cake_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
3020 struct cake_sched_data
*q
= qdisc_priv(sch
);
3026 for (i
= 0; i
< q
->tin_cnt
; i
++) {
3027 struct cake_tin_data
*b
= &q
->tins
[q
->tin_order
[i
]];
3029 for (j
= 0; j
< CAKE_QUEUES
; j
++) {
3030 if (list_empty(&b
->flows
[j
].flowchain
) ||
3031 arg
->count
< arg
->skip
) {
3035 if (arg
->fn(sch
, i
* CAKE_QUEUES
+ j
+ 1, arg
) < 0) {
3044 static const struct Qdisc_class_ops cake_class_ops
= {
3047 .tcf_block
= cake_tcf_block
,
3048 .bind_tcf
= cake_bind
,
3049 .unbind_tcf
= cake_unbind
,
3050 .dump
= cake_dump_class
,
3051 .dump_stats
= cake_dump_class_stats
,
3055 static struct Qdisc_ops cake_qdisc_ops __read_mostly
= {
3056 .cl_ops
= &cake_class_ops
,
3058 .priv_size
= sizeof(struct cake_sched_data
),
3059 .enqueue
= cake_enqueue
,
3060 .dequeue
= cake_dequeue
,
3061 .peek
= qdisc_peek_dequeued
,
3063 .reset
= cake_reset
,
3064 .destroy
= cake_destroy
,
3065 .change
= cake_change
,
3067 .dump_stats
= cake_dump_stats
,
3068 .owner
= THIS_MODULE
,
3071 static int __init
cake_module_init(void)
3073 return register_qdisc(&cake_qdisc_ops
);
3076 static void __exit
cake_module_exit(void)
3078 unregister_qdisc(&cake_qdisc_ops
);
3081 module_init(cake_module_init
)
3082 module_exit(cake_module_exit
)
3083 MODULE_AUTHOR("Jonathan Morton");
3084 MODULE_LICENSE("Dual BSD/GPL");
3085 MODULE_DESCRIPTION("The CAKE shaper.");