Linux 5.7.7
[linux/fpc-iii.git] / net / sched / sch_cake.c
blob9475fa81ea7f66c32153a487202fbc3825f8be99
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
70 #include <net/tcp.h>
71 #include <net/flow_dissector.h>
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
75 #endif
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
107 struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
117 enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
125 struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136 }; /* please try to keep this structure <= 64 bytes */
138 struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
141 u16 srchost_bulk_flow_count;
142 u16 dsthost_bulk_flow_count;
145 struct cake_heap_entry {
146 u16 t:3, b:10;
149 struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
164 u32 max_skblen;
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
176 u16 tin_quantum;
177 s32 tin_deficit;
178 u32 tin_backlog;
179 u32 tin_dropped;
180 u32 tin_ecn_mark;
182 u32 packets;
183 u64 bytes;
185 u32 ack_drops;
187 /* moving averages */
188 u64 avge_delay;
189 u64 peak_delay;
190 u64 base_delay;
192 /* hash function stats */
193 u32 way_directs;
194 u32 way_hits;
195 u32 way_misses;
196 u32 way_collisions;
197 }; /* number of tins is small, so size of this struct doesn't matter much */
199 struct cake_sched_data {
200 struct tcf_proto __rcu *filter_list; /* optional external classifier */
201 struct tcf_block *block;
202 struct cake_tin_data *tins;
204 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
205 u16 overflow_timeout;
207 u16 tin_cnt;
208 u8 tin_mode;
209 u8 flow_mode;
210 u8 ack_filter;
211 u8 atm_mode;
213 u32 fwmark_mask;
214 u16 fwmark_shft;
216 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
217 u16 rate_shft;
218 ktime_t time_next_packet;
219 ktime_t failsafe_next_packet;
220 u64 rate_ns;
221 u64 rate_bps;
222 u16 rate_flags;
223 s16 rate_overhead;
224 u16 rate_mpu;
225 u64 interval;
226 u64 target;
228 /* resource tracking */
229 u32 buffer_used;
230 u32 buffer_max_used;
231 u32 buffer_limit;
232 u32 buffer_config_limit;
234 /* indices for dequeue */
235 u16 cur_tin;
236 u16 cur_flow;
238 struct qdisc_watchdog watchdog;
239 const u8 *tin_index;
240 const u8 *tin_order;
242 /* bandwidth capacity estimate */
243 ktime_t last_packet_time;
244 ktime_t avg_window_begin;
245 u64 avg_packet_interval;
246 u64 avg_window_bytes;
247 u64 avg_peak_bandwidth;
248 ktime_t last_reconfig_time;
250 /* packet length stats */
251 u32 avg_netoff;
252 u16 max_netlen;
253 u16 max_adjlen;
254 u16 min_netlen;
255 u16 min_adjlen;
258 enum {
259 CAKE_FLAG_OVERHEAD = BIT(0),
260 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
261 CAKE_FLAG_INGRESS = BIT(2),
262 CAKE_FLAG_WASH = BIT(3),
263 CAKE_FLAG_SPLIT_GSO = BIT(4)
266 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
267 * obtain the best features of each. Codel is excellent on flows which
268 * respond to congestion signals in a TCP-like way. BLUE is more effective on
269 * unresponsive flows.
272 struct cobalt_skb_cb {
273 ktime_t enqueue_time;
274 u32 adjusted_len;
277 static u64 us_to_ns(u64 us)
279 return us * NSEC_PER_USEC;
282 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
285 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
288 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 return get_cobalt_cb(skb)->enqueue_time;
293 static void cobalt_set_enqueue_time(struct sk_buff *skb,
294 ktime_t now)
296 get_cobalt_cb(skb)->enqueue_time = now;
299 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301 /* Diffserv lookup tables */
303 static const u8 precedence[] = {
304 0, 0, 0, 0, 0, 0, 0, 0,
305 1, 1, 1, 1, 1, 1, 1, 1,
306 2, 2, 2, 2, 2, 2, 2, 2,
307 3, 3, 3, 3, 3, 3, 3, 3,
308 4, 4, 4, 4, 4, 4, 4, 4,
309 5, 5, 5, 5, 5, 5, 5, 5,
310 6, 6, 6, 6, 6, 6, 6, 6,
311 7, 7, 7, 7, 7, 7, 7, 7,
314 static const u8 diffserv8[] = {
315 2, 5, 1, 2, 4, 2, 2, 2,
316 0, 2, 1, 2, 1, 2, 1, 2,
317 5, 2, 4, 2, 4, 2, 4, 2,
318 3, 2, 3, 2, 3, 2, 3, 2,
319 6, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 2, 2, 6, 2, 6, 2,
321 7, 2, 2, 2, 2, 2, 2, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
325 static const u8 diffserv4[] = {
326 0, 2, 0, 0, 2, 0, 0, 0,
327 1, 0, 0, 0, 0, 0, 0, 0,
328 2, 0, 2, 0, 2, 0, 2, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 3, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 0, 0, 3, 0, 3, 0,
332 3, 0, 0, 0, 0, 0, 0, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
336 static const u8 diffserv3[] = {
337 0, 0, 0, 0, 2, 0, 0, 0,
338 1, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 2, 0, 2, 0,
343 2, 0, 0, 0, 0, 0, 0, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
347 static const u8 besteffort[] = {
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
358 /* tin priority order for stats dumping */
360 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
361 static const u8 bulk_order[] = {1, 0, 2, 3};
363 #define REC_INV_SQRT_CACHE (16)
364 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
366 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
367 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
369 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
372 static void cobalt_newton_step(struct cobalt_vars *vars)
374 u32 invsqrt, invsqrt2;
375 u64 val;
377 invsqrt = vars->rec_inv_sqrt;
378 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
379 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
381 val >>= 2; /* avoid overflow in following multiply */
382 val = (val * invsqrt) >> (32 - 2 + 1);
384 vars->rec_inv_sqrt = val;
387 static void cobalt_invsqrt(struct cobalt_vars *vars)
389 if (vars->count < REC_INV_SQRT_CACHE)
390 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
391 else
392 cobalt_newton_step(vars);
395 /* There is a big difference in timing between the accurate values placed in
396 * the cache and the approximations given by a single Newton step for small
397 * count values, particularly when stepping from count 1 to 2 or vice versa.
398 * Above 16, a single Newton step gives sufficient accuracy in either
399 * direction, given the precision stored.
401 * The magnitude of the error when stepping up to count 2 is such as to give
402 * the value that *should* have been produced at count 4.
405 static void cobalt_cache_init(void)
407 struct cobalt_vars v;
409 memset(&v, 0, sizeof(v));
410 v.rec_inv_sqrt = ~0U;
411 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
413 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
414 cobalt_newton_step(&v);
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
419 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
423 static void cobalt_vars_init(struct cobalt_vars *vars)
425 memset(vars, 0, sizeof(*vars));
427 if (!cobalt_rec_inv_sqrt_cache[0]) {
428 cobalt_cache_init();
429 cobalt_rec_inv_sqrt_cache[0] = ~0;
433 /* CoDel control_law is t + interval/sqrt(count)
434 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
435 * both sqrt() and divide operation.
437 static ktime_t cobalt_control(ktime_t t,
438 u64 interval,
439 u32 rec_inv_sqrt)
441 return ktime_add_ns(t, reciprocal_scale(interval,
442 rec_inv_sqrt));
445 /* Call this when a packet had to be dropped due to queue overflow. Returns
446 * true if the BLUE state was quiescent before but active after this call.
448 static bool cobalt_queue_full(struct cobalt_vars *vars,
449 struct cobalt_params *p,
450 ktime_t now)
452 bool up = false;
454 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
455 up = !vars->p_drop;
456 vars->p_drop += p->p_inc;
457 if (vars->p_drop < p->p_inc)
458 vars->p_drop = ~0;
459 vars->blue_timer = now;
461 vars->dropping = true;
462 vars->drop_next = now;
463 if (!vars->count)
464 vars->count = 1;
466 return up;
469 /* Call this when the queue was serviced but turned out to be empty. Returns
470 * true if the BLUE state was active before but quiescent after this call.
472 static bool cobalt_queue_empty(struct cobalt_vars *vars,
473 struct cobalt_params *p,
474 ktime_t now)
476 bool down = false;
478 if (vars->p_drop &&
479 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
480 if (vars->p_drop < p->p_dec)
481 vars->p_drop = 0;
482 else
483 vars->p_drop -= p->p_dec;
484 vars->blue_timer = now;
485 down = !vars->p_drop;
487 vars->dropping = false;
489 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
490 vars->count--;
491 cobalt_invsqrt(vars);
492 vars->drop_next = cobalt_control(vars->drop_next,
493 p->interval,
494 vars->rec_inv_sqrt);
497 return down;
500 /* Call this with a freshly dequeued packet for possible congestion marking.
501 * Returns true as an instruction to drop the packet, false for delivery.
503 static bool cobalt_should_drop(struct cobalt_vars *vars,
504 struct cobalt_params *p,
505 ktime_t now,
506 struct sk_buff *skb,
507 u32 bulk_flows)
509 bool next_due, over_target, drop = false;
510 ktime_t schedule;
511 u64 sojourn;
513 /* The 'schedule' variable records, in its sign, whether 'now' is before or
514 * after 'drop_next'. This allows 'drop_next' to be updated before the next
515 * scheduling decision is actually branched, without destroying that
516 * information. Similarly, the first 'schedule' value calculated is preserved
517 * in the boolean 'next_due'.
519 * As for 'drop_next', we take advantage of the fact that 'interval' is both
520 * the delay between first exceeding 'target' and the first signalling event,
521 * *and* the scaling factor for the signalling frequency. It's therefore very
522 * natural to use a single mechanism for both purposes, and eliminates a
523 * significant amount of reference Codel's spaghetti code. To help with this,
524 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
525 * as possible to 1.0 in fixed-point.
528 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
529 schedule = ktime_sub(now, vars->drop_next);
530 over_target = sojourn > p->target &&
531 sojourn > p->mtu_time * bulk_flows * 2 &&
532 sojourn > p->mtu_time * 4;
533 next_due = vars->count && ktime_to_ns(schedule) >= 0;
535 vars->ecn_marked = false;
537 if (over_target) {
538 if (!vars->dropping) {
539 vars->dropping = true;
540 vars->drop_next = cobalt_control(now,
541 p->interval,
542 vars->rec_inv_sqrt);
544 if (!vars->count)
545 vars->count = 1;
546 } else if (vars->dropping) {
547 vars->dropping = false;
550 if (next_due && vars->dropping) {
551 /* Use ECN mark if possible, otherwise drop */
552 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
554 vars->count++;
555 if (!vars->count)
556 vars->count--;
557 cobalt_invsqrt(vars);
558 vars->drop_next = cobalt_control(vars->drop_next,
559 p->interval,
560 vars->rec_inv_sqrt);
561 schedule = ktime_sub(now, vars->drop_next);
562 } else {
563 while (next_due) {
564 vars->count--;
565 cobalt_invsqrt(vars);
566 vars->drop_next = cobalt_control(vars->drop_next,
567 p->interval,
568 vars->rec_inv_sqrt);
569 schedule = ktime_sub(now, vars->drop_next);
570 next_due = vars->count && ktime_to_ns(schedule) >= 0;
574 /* Simple BLUE implementation. Lack of ECN is deliberate. */
575 if (vars->p_drop)
576 drop |= (prandom_u32() < vars->p_drop);
578 /* Overload the drop_next field as an activity timeout */
579 if (!vars->count)
580 vars->drop_next = ktime_add_ns(now, p->interval);
581 else if (ktime_to_ns(schedule) > 0 && !drop)
582 vars->drop_next = now;
584 return drop;
587 static void cake_update_flowkeys(struct flow_keys *keys,
588 const struct sk_buff *skb)
590 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
591 struct nf_conntrack_tuple tuple = {};
592 bool rev = !skb->_nfct;
594 if (tc_skb_protocol(skb) != htons(ETH_P_IP))
595 return;
597 if (!nf_ct_get_tuple_skb(&tuple, skb))
598 return;
600 keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
601 keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
603 if (keys->ports.ports) {
604 keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
605 keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
607 #endif
610 /* Cake has several subtle multiple bit settings. In these cases you
611 * would be matching triple isolate mode as well.
614 static bool cake_dsrc(int flow_mode)
616 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
619 static bool cake_ddst(int flow_mode)
621 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
624 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
625 int flow_mode, u16 flow_override, u16 host_override)
627 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
628 u16 reduced_hash, srchost_idx, dsthost_idx;
629 struct flow_keys keys, host_keys;
631 if (unlikely(flow_mode == CAKE_FLOW_NONE))
632 return 0;
634 /* If both overrides are set we can skip packet dissection entirely */
635 if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
636 (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
637 goto skip_hash;
639 skb_flow_dissect_flow_keys(skb, &keys,
640 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
642 if (flow_mode & CAKE_FLOW_NAT_FLAG)
643 cake_update_flowkeys(&keys, skb);
645 /* flow_hash_from_keys() sorts the addresses by value, so we have
646 * to preserve their order in a separate data structure to treat
647 * src and dst host addresses as independently selectable.
649 host_keys = keys;
650 host_keys.ports.ports = 0;
651 host_keys.basic.ip_proto = 0;
652 host_keys.keyid.keyid = 0;
653 host_keys.tags.flow_label = 0;
655 switch (host_keys.control.addr_type) {
656 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
657 host_keys.addrs.v4addrs.src = 0;
658 dsthost_hash = flow_hash_from_keys(&host_keys);
659 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
660 host_keys.addrs.v4addrs.dst = 0;
661 srchost_hash = flow_hash_from_keys(&host_keys);
662 break;
664 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
665 memset(&host_keys.addrs.v6addrs.src, 0,
666 sizeof(host_keys.addrs.v6addrs.src));
667 dsthost_hash = flow_hash_from_keys(&host_keys);
668 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
669 memset(&host_keys.addrs.v6addrs.dst, 0,
670 sizeof(host_keys.addrs.v6addrs.dst));
671 srchost_hash = flow_hash_from_keys(&host_keys);
672 break;
674 default:
675 dsthost_hash = 0;
676 srchost_hash = 0;
679 /* This *must* be after the above switch, since as a
680 * side-effect it sorts the src and dst addresses.
682 if (flow_mode & CAKE_FLOW_FLOWS)
683 flow_hash = flow_hash_from_keys(&keys);
685 skip_hash:
686 if (flow_override)
687 flow_hash = flow_override - 1;
688 if (host_override) {
689 dsthost_hash = host_override - 1;
690 srchost_hash = host_override - 1;
693 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
694 if (flow_mode & CAKE_FLOW_SRC_IP)
695 flow_hash ^= srchost_hash;
697 if (flow_mode & CAKE_FLOW_DST_IP)
698 flow_hash ^= dsthost_hash;
701 reduced_hash = flow_hash % CAKE_QUEUES;
703 /* set-associative hashing */
704 /* fast path if no hash collision (direct lookup succeeds) */
705 if (likely(q->tags[reduced_hash] == flow_hash &&
706 q->flows[reduced_hash].set)) {
707 q->way_directs++;
708 } else {
709 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
710 u32 outer_hash = reduced_hash - inner_hash;
711 bool allocate_src = false;
712 bool allocate_dst = false;
713 u32 i, k;
715 /* check if any active queue in the set is reserved for
716 * this flow.
718 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
719 i++, k = (k + 1) % CAKE_SET_WAYS) {
720 if (q->tags[outer_hash + k] == flow_hash) {
721 if (i)
722 q->way_hits++;
724 if (!q->flows[outer_hash + k].set) {
725 /* need to increment host refcnts */
726 allocate_src = cake_dsrc(flow_mode);
727 allocate_dst = cake_ddst(flow_mode);
730 goto found;
734 /* no queue is reserved for this flow, look for an
735 * empty one.
737 for (i = 0; i < CAKE_SET_WAYS;
738 i++, k = (k + 1) % CAKE_SET_WAYS) {
739 if (!q->flows[outer_hash + k].set) {
740 q->way_misses++;
741 allocate_src = cake_dsrc(flow_mode);
742 allocate_dst = cake_ddst(flow_mode);
743 goto found;
747 /* With no empty queues, default to the original
748 * queue, accept the collision, update the host tags.
750 q->way_collisions++;
751 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
752 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
753 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
755 allocate_src = cake_dsrc(flow_mode);
756 allocate_dst = cake_ddst(flow_mode);
757 found:
758 /* reserve queue for future packets in same flow */
759 reduced_hash = outer_hash + k;
760 q->tags[reduced_hash] = flow_hash;
762 if (allocate_src) {
763 srchost_idx = srchost_hash % CAKE_QUEUES;
764 inner_hash = srchost_idx % CAKE_SET_WAYS;
765 outer_hash = srchost_idx - inner_hash;
766 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
767 i++, k = (k + 1) % CAKE_SET_WAYS) {
768 if (q->hosts[outer_hash + k].srchost_tag ==
769 srchost_hash)
770 goto found_src;
772 for (i = 0; i < CAKE_SET_WAYS;
773 i++, k = (k + 1) % CAKE_SET_WAYS) {
774 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
775 break;
777 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
778 found_src:
779 srchost_idx = outer_hash + k;
780 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
781 q->hosts[srchost_idx].srchost_bulk_flow_count++;
782 q->flows[reduced_hash].srchost = srchost_idx;
785 if (allocate_dst) {
786 dsthost_idx = dsthost_hash % CAKE_QUEUES;
787 inner_hash = dsthost_idx % CAKE_SET_WAYS;
788 outer_hash = dsthost_idx - inner_hash;
789 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
790 i++, k = (k + 1) % CAKE_SET_WAYS) {
791 if (q->hosts[outer_hash + k].dsthost_tag ==
792 dsthost_hash)
793 goto found_dst;
795 for (i = 0; i < CAKE_SET_WAYS;
796 i++, k = (k + 1) % CAKE_SET_WAYS) {
797 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
798 break;
800 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
801 found_dst:
802 dsthost_idx = outer_hash + k;
803 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
804 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
805 q->flows[reduced_hash].dsthost = dsthost_idx;
809 return reduced_hash;
812 /* helper functions : might be changed when/if skb use a standard list_head */
813 /* remove one skb from head of slot queue */
815 static struct sk_buff *dequeue_head(struct cake_flow *flow)
817 struct sk_buff *skb = flow->head;
819 if (skb) {
820 flow->head = skb->next;
821 skb_mark_not_on_list(skb);
824 return skb;
827 /* add skb to flow queue (tail add) */
829 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
831 if (!flow->head)
832 flow->head = skb;
833 else
834 flow->tail->next = skb;
835 flow->tail = skb;
836 skb->next = NULL;
839 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
840 struct ipv6hdr *buf)
842 unsigned int offset = skb_network_offset(skb);
843 struct iphdr *iph;
845 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
847 if (!iph)
848 return NULL;
850 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
851 return skb_header_pointer(skb, offset + iph->ihl * 4,
852 sizeof(struct ipv6hdr), buf);
854 else if (iph->version == 4)
855 return iph;
857 else if (iph->version == 6)
858 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
859 buf);
861 return NULL;
864 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
865 void *buf, unsigned int bufsize)
867 unsigned int offset = skb_network_offset(skb);
868 const struct ipv6hdr *ipv6h;
869 const struct tcphdr *tcph;
870 const struct iphdr *iph;
871 struct ipv6hdr _ipv6h;
872 struct tcphdr _tcph;
874 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
876 if (!ipv6h)
877 return NULL;
879 if (ipv6h->version == 4) {
880 iph = (struct iphdr *)ipv6h;
881 offset += iph->ihl * 4;
883 /* special-case 6in4 tunnelling, as that is a common way to get
884 * v6 connectivity in the home
886 if (iph->protocol == IPPROTO_IPV6) {
887 ipv6h = skb_header_pointer(skb, offset,
888 sizeof(_ipv6h), &_ipv6h);
890 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
891 return NULL;
893 offset += sizeof(struct ipv6hdr);
895 } else if (iph->protocol != IPPROTO_TCP) {
896 return NULL;
899 } else if (ipv6h->version == 6) {
900 if (ipv6h->nexthdr != IPPROTO_TCP)
901 return NULL;
903 offset += sizeof(struct ipv6hdr);
904 } else {
905 return NULL;
908 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
909 if (!tcph)
910 return NULL;
912 return skb_header_pointer(skb, offset,
913 min(__tcp_hdrlen(tcph), bufsize), buf);
916 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
917 int code, int *oplen)
919 /* inspired by tcp_parse_options in tcp_input.c */
920 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
921 const u8 *ptr = (const u8 *)(tcph + 1);
923 while (length > 0) {
924 int opcode = *ptr++;
925 int opsize;
927 if (opcode == TCPOPT_EOL)
928 break;
929 if (opcode == TCPOPT_NOP) {
930 length--;
931 continue;
933 opsize = *ptr++;
934 if (opsize < 2 || opsize > length)
935 break;
937 if (opcode == code) {
938 *oplen = opsize;
939 return ptr;
942 ptr += opsize - 2;
943 length -= opsize;
946 return NULL;
949 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
950 * bytes than the other. In the case where both sequences ACKs bytes that the
951 * other doesn't, A is considered greater. DSACKs in A also makes A be
952 * considered greater.
954 * @return -1, 0 or 1 as normal compare functions
956 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
957 const struct tcphdr *tcph_b)
959 const struct tcp_sack_block_wire *sack_a, *sack_b;
960 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
961 u32 bytes_a = 0, bytes_b = 0;
962 int oplen_a, oplen_b;
963 bool first = true;
965 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
966 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
968 /* pointers point to option contents */
969 oplen_a -= TCPOLEN_SACK_BASE;
970 oplen_b -= TCPOLEN_SACK_BASE;
972 if (sack_a && oplen_a >= sizeof(*sack_a) &&
973 (!sack_b || oplen_b < sizeof(*sack_b)))
974 return -1;
975 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
976 (!sack_a || oplen_a < sizeof(*sack_a)))
977 return 1;
978 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
979 (!sack_b || oplen_b < sizeof(*sack_b)))
980 return 0;
982 while (oplen_a >= sizeof(*sack_a)) {
983 const struct tcp_sack_block_wire *sack_tmp = sack_b;
984 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
985 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
986 int oplen_tmp = oplen_b;
987 bool found = false;
989 /* DSACK; always considered greater to prevent dropping */
990 if (before(start_a, ack_seq_a))
991 return -1;
993 bytes_a += end_a - start_a;
995 while (oplen_tmp >= sizeof(*sack_tmp)) {
996 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
997 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
999 /* first time through we count the total size */
1000 if (first)
1001 bytes_b += end_b - start_b;
1003 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1004 found = true;
1005 if (!first)
1006 break;
1008 oplen_tmp -= sizeof(*sack_tmp);
1009 sack_tmp++;
1012 if (!found)
1013 return -1;
1015 oplen_a -= sizeof(*sack_a);
1016 sack_a++;
1017 first = false;
1020 /* If we made it this far, all ranges SACKed by A are covered by B, so
1021 * either the SACKs are equal, or B SACKs more bytes.
1023 return bytes_b > bytes_a ? 1 : 0;
1026 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1027 u32 *tsval, u32 *tsecr)
1029 const u8 *ptr;
1030 int opsize;
1032 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1034 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1035 *tsval = get_unaligned_be32(ptr);
1036 *tsecr = get_unaligned_be32(ptr + 4);
1040 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1041 u32 tstamp_new, u32 tsecr_new)
1043 /* inspired by tcp_parse_options in tcp_input.c */
1044 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1045 const u8 *ptr = (const u8 *)(tcph + 1);
1046 u32 tstamp, tsecr;
1048 /* 3 reserved flags must be unset to avoid future breakage
1049 * ACK must be set
1050 * ECE/CWR are handled separately
1051 * All other flags URG/PSH/RST/SYN/FIN must be unset
1052 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1053 * 0x00C00000 = CWR/ECE (handled separately)
1054 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1056 if (((tcp_flag_word(tcph) &
1057 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1058 return false;
1060 while (length > 0) {
1061 int opcode = *ptr++;
1062 int opsize;
1064 if (opcode == TCPOPT_EOL)
1065 break;
1066 if (opcode == TCPOPT_NOP) {
1067 length--;
1068 continue;
1070 opsize = *ptr++;
1071 if (opsize < 2 || opsize > length)
1072 break;
1074 switch (opcode) {
1075 case TCPOPT_MD5SIG: /* doesn't influence state */
1076 break;
1078 case TCPOPT_SACK: /* stricter checking performed later */
1079 if (opsize % 8 != 2)
1080 return false;
1081 break;
1083 case TCPOPT_TIMESTAMP:
1084 /* only drop timestamps lower than new */
1085 if (opsize != TCPOLEN_TIMESTAMP)
1086 return false;
1087 tstamp = get_unaligned_be32(ptr);
1088 tsecr = get_unaligned_be32(ptr + 4);
1089 if (after(tstamp, tstamp_new) ||
1090 after(tsecr, tsecr_new))
1091 return false;
1092 break;
1094 case TCPOPT_MSS: /* these should only be set on SYN */
1095 case TCPOPT_WINDOW:
1096 case TCPOPT_SACK_PERM:
1097 case TCPOPT_FASTOPEN:
1098 case TCPOPT_EXP:
1099 default: /* don't drop if any unknown options are present */
1100 return false;
1103 ptr += opsize - 2;
1104 length -= opsize;
1107 return true;
1110 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1111 struct cake_flow *flow)
1113 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1114 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1115 struct sk_buff *skb_check, *skb_prev = NULL;
1116 const struct ipv6hdr *ipv6h, *ipv6h_check;
1117 unsigned char _tcph[64], _tcph_check[64];
1118 const struct tcphdr *tcph, *tcph_check;
1119 const struct iphdr *iph, *iph_check;
1120 struct ipv6hdr _iph, _iph_check;
1121 const struct sk_buff *skb;
1122 int seglen, num_found = 0;
1123 u32 tstamp = 0, tsecr = 0;
1124 __be32 elig_flags = 0;
1125 int sack_comp;
1127 /* no other possible ACKs to filter */
1128 if (flow->head == flow->tail)
1129 return NULL;
1131 skb = flow->tail;
1132 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1133 iph = cake_get_iphdr(skb, &_iph);
1134 if (!tcph)
1135 return NULL;
1137 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1139 /* the 'triggering' packet need only have the ACK flag set.
1140 * also check that SYN is not set, as there won't be any previous ACKs.
1142 if ((tcp_flag_word(tcph) &
1143 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1144 return NULL;
1146 /* the 'triggering' ACK is at the tail of the queue, we have already
1147 * returned if it is the only packet in the flow. loop through the rest
1148 * of the queue looking for pure ACKs with the same 5-tuple as the
1149 * triggering one.
1151 for (skb_check = flow->head;
1152 skb_check && skb_check != skb;
1153 skb_prev = skb_check, skb_check = skb_check->next) {
1154 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1155 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1156 sizeof(_tcph_check));
1158 /* only TCP packets with matching 5-tuple are eligible, and only
1159 * drop safe headers
1161 if (!tcph_check || iph->version != iph_check->version ||
1162 tcph_check->source != tcph->source ||
1163 tcph_check->dest != tcph->dest)
1164 continue;
1166 if (iph_check->version == 4) {
1167 if (iph_check->saddr != iph->saddr ||
1168 iph_check->daddr != iph->daddr)
1169 continue;
1171 seglen = ntohs(iph_check->tot_len) -
1172 (4 * iph_check->ihl);
1173 } else if (iph_check->version == 6) {
1174 ipv6h = (struct ipv6hdr *)iph;
1175 ipv6h_check = (struct ipv6hdr *)iph_check;
1177 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1178 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1179 continue;
1181 seglen = ntohs(ipv6h_check->payload_len);
1182 } else {
1183 WARN_ON(1); /* shouldn't happen */
1184 continue;
1187 /* If the ECE/CWR flags changed from the previous eligible
1188 * packet in the same flow, we should no longer be dropping that
1189 * previous packet as this would lose information.
1191 if (elig_ack && (tcp_flag_word(tcph_check) &
1192 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1193 elig_ack = NULL;
1194 elig_ack_prev = NULL;
1195 num_found--;
1198 /* Check TCP options and flags, don't drop ACKs with segment
1199 * data, and don't drop ACKs with a higher cumulative ACK
1200 * counter than the triggering packet. Check ACK seqno here to
1201 * avoid parsing SACK options of packets we are going to exclude
1202 * anyway.
1204 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1205 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1206 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1207 continue;
1209 /* Check SACK options. The triggering packet must SACK more data
1210 * than the ACK under consideration, or SACK the same range but
1211 * have a larger cumulative ACK counter. The latter is a
1212 * pathological case, but is contained in the following check
1213 * anyway, just to be safe.
1215 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1217 if (sack_comp < 0 ||
1218 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1219 sack_comp == 0))
1220 continue;
1222 /* At this point we have found an eligible pure ACK to drop; if
1223 * we are in aggressive mode, we are done. Otherwise, keep
1224 * searching unless this is the second eligible ACK we
1225 * found.
1227 * Since we want to drop ACK closest to the head of the queue,
1228 * save the first eligible ACK we find, even if we need to loop
1229 * again.
1231 if (!elig_ack) {
1232 elig_ack = skb_check;
1233 elig_ack_prev = skb_prev;
1234 elig_flags = (tcp_flag_word(tcph_check)
1235 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1238 if (num_found++ > 0)
1239 goto found;
1242 /* We made it through the queue without finding two eligible ACKs . If
1243 * we found a single eligible ACK we can drop it in aggressive mode if
1244 * we can guarantee that this does not interfere with ECN flag
1245 * information. We ensure this by dropping it only if the enqueued
1246 * packet is consecutive with the eligible ACK, and their flags match.
1248 if (elig_ack && aggressive && elig_ack->next == skb &&
1249 (elig_flags == (tcp_flag_word(tcph) &
1250 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1251 goto found;
1253 return NULL;
1255 found:
1256 if (elig_ack_prev)
1257 elig_ack_prev->next = elig_ack->next;
1258 else
1259 flow->head = elig_ack->next;
1261 skb_mark_not_on_list(elig_ack);
1263 return elig_ack;
1266 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1268 avg -= avg >> shift;
1269 avg += sample >> shift;
1270 return avg;
1273 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1275 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1276 len -= off;
1278 if (q->max_netlen < len)
1279 q->max_netlen = len;
1280 if (q->min_netlen > len)
1281 q->min_netlen = len;
1283 len += q->rate_overhead;
1285 if (len < q->rate_mpu)
1286 len = q->rate_mpu;
1288 if (q->atm_mode == CAKE_ATM_ATM) {
1289 len += 47;
1290 len /= 48;
1291 len *= 53;
1292 } else if (q->atm_mode == CAKE_ATM_PTM) {
1293 /* Add one byte per 64 bytes or part thereof.
1294 * This is conservative and easier to calculate than the
1295 * precise value.
1297 len += (len + 63) / 64;
1300 if (q->max_adjlen < len)
1301 q->max_adjlen = len;
1302 if (q->min_adjlen > len)
1303 q->min_adjlen = len;
1305 return len;
1308 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1310 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1311 unsigned int hdr_len, last_len = 0;
1312 u32 off = skb_network_offset(skb);
1313 u32 len = qdisc_pkt_len(skb);
1314 u16 segs = 1;
1316 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1318 if (!shinfo->gso_size)
1319 return cake_calc_overhead(q, len, off);
1321 /* borrowed from qdisc_pkt_len_init() */
1322 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1324 /* + transport layer */
1325 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1326 SKB_GSO_TCPV6))) {
1327 const struct tcphdr *th;
1328 struct tcphdr _tcphdr;
1330 th = skb_header_pointer(skb, skb_transport_offset(skb),
1331 sizeof(_tcphdr), &_tcphdr);
1332 if (likely(th))
1333 hdr_len += __tcp_hdrlen(th);
1334 } else {
1335 struct udphdr _udphdr;
1337 if (skb_header_pointer(skb, skb_transport_offset(skb),
1338 sizeof(_udphdr), &_udphdr))
1339 hdr_len += sizeof(struct udphdr);
1342 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1343 segs = DIV_ROUND_UP(skb->len - hdr_len,
1344 shinfo->gso_size);
1345 else
1346 segs = shinfo->gso_segs;
1348 len = shinfo->gso_size + hdr_len;
1349 last_len = skb->len - shinfo->gso_size * (segs - 1);
1351 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1352 cake_calc_overhead(q, last_len, off));
1355 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1357 struct cake_heap_entry ii = q->overflow_heap[i];
1358 struct cake_heap_entry jj = q->overflow_heap[j];
1360 q->overflow_heap[i] = jj;
1361 q->overflow_heap[j] = ii;
1363 q->tins[ii.t].overflow_idx[ii.b] = j;
1364 q->tins[jj.t].overflow_idx[jj.b] = i;
1367 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1369 struct cake_heap_entry ii = q->overflow_heap[i];
1371 return q->tins[ii.t].backlogs[ii.b];
1374 static void cake_heapify(struct cake_sched_data *q, u16 i)
1376 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1377 u32 mb = cake_heap_get_backlog(q, i);
1378 u32 m = i;
1380 while (m < a) {
1381 u32 l = m + m + 1;
1382 u32 r = l + 1;
1384 if (l < a) {
1385 u32 lb = cake_heap_get_backlog(q, l);
1387 if (lb > mb) {
1388 m = l;
1389 mb = lb;
1393 if (r < a) {
1394 u32 rb = cake_heap_get_backlog(q, r);
1396 if (rb > mb) {
1397 m = r;
1398 mb = rb;
1402 if (m != i) {
1403 cake_heap_swap(q, i, m);
1404 i = m;
1405 } else {
1406 break;
1411 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1413 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1414 u16 p = (i - 1) >> 1;
1415 u32 ib = cake_heap_get_backlog(q, i);
1416 u32 pb = cake_heap_get_backlog(q, p);
1418 if (ib > pb) {
1419 cake_heap_swap(q, i, p);
1420 i = p;
1421 } else {
1422 break;
1427 static int cake_advance_shaper(struct cake_sched_data *q,
1428 struct cake_tin_data *b,
1429 struct sk_buff *skb,
1430 ktime_t now, bool drop)
1432 u32 len = get_cobalt_cb(skb)->adjusted_len;
1434 /* charge packet bandwidth to this tin
1435 * and to the global shaper.
1437 if (q->rate_ns) {
1438 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1439 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1440 u64 failsafe_dur = global_dur + (global_dur >> 1);
1442 if (ktime_before(b->time_next_packet, now))
1443 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1444 tin_dur);
1446 else if (ktime_before(b->time_next_packet,
1447 ktime_add_ns(now, tin_dur)))
1448 b->time_next_packet = ktime_add_ns(now, tin_dur);
1450 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1451 global_dur);
1452 if (!drop)
1453 q->failsafe_next_packet = \
1454 ktime_add_ns(q->failsafe_next_packet,
1455 failsafe_dur);
1457 return len;
1460 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1462 struct cake_sched_data *q = qdisc_priv(sch);
1463 ktime_t now = ktime_get();
1464 u32 idx = 0, tin = 0, len;
1465 struct cake_heap_entry qq;
1466 struct cake_tin_data *b;
1467 struct cake_flow *flow;
1468 struct sk_buff *skb;
1470 if (!q->overflow_timeout) {
1471 int i;
1472 /* Build fresh max-heap */
1473 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1474 cake_heapify(q, i);
1476 q->overflow_timeout = 65535;
1478 /* select longest queue for pruning */
1479 qq = q->overflow_heap[0];
1480 tin = qq.t;
1481 idx = qq.b;
1483 b = &q->tins[tin];
1484 flow = &b->flows[idx];
1485 skb = dequeue_head(flow);
1486 if (unlikely(!skb)) {
1487 /* heap has gone wrong, rebuild it next time */
1488 q->overflow_timeout = 0;
1489 return idx + (tin << 16);
1492 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1493 b->unresponsive_flow_count++;
1495 len = qdisc_pkt_len(skb);
1496 q->buffer_used -= skb->truesize;
1497 b->backlogs[idx] -= len;
1498 b->tin_backlog -= len;
1499 sch->qstats.backlog -= len;
1500 qdisc_tree_reduce_backlog(sch, 1, len);
1502 flow->dropped++;
1503 b->tin_dropped++;
1504 sch->qstats.drops++;
1506 if (q->rate_flags & CAKE_FLAG_INGRESS)
1507 cake_advance_shaper(q, b, skb, now, true);
1509 __qdisc_drop(skb, to_free);
1510 sch->q.qlen--;
1512 cake_heapify(q, 0);
1514 return idx + (tin << 16);
1517 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1519 const int offset = skb_network_offset(skb);
1520 u16 *buf, buf_;
1521 u8 dscp;
1523 switch (tc_skb_protocol(skb)) {
1524 case htons(ETH_P_IP):
1525 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1526 if (unlikely(!buf))
1527 return 0;
1529 /* ToS is in the second byte of iphdr */
1530 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1532 if (wash && dscp) {
1533 const int wlen = offset + sizeof(struct iphdr);
1535 if (!pskb_may_pull(skb, wlen) ||
1536 skb_try_make_writable(skb, wlen))
1537 return 0;
1539 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1542 return dscp;
1544 case htons(ETH_P_IPV6):
1545 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1546 if (unlikely(!buf))
1547 return 0;
1549 /* Traffic class is in the first and second bytes of ipv6hdr */
1550 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1552 if (wash && dscp) {
1553 const int wlen = offset + sizeof(struct ipv6hdr);
1555 if (!pskb_may_pull(skb, wlen) ||
1556 skb_try_make_writable(skb, wlen))
1557 return 0;
1559 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1562 return dscp;
1564 case htons(ETH_P_ARP):
1565 return 0x38; /* CS7 - Net Control */
1567 default:
1568 /* If there is no Diffserv field, treat as best-effort */
1569 return 0;
1573 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1574 struct sk_buff *skb)
1576 struct cake_sched_data *q = qdisc_priv(sch);
1577 u32 tin, mark;
1578 bool wash;
1579 u8 dscp;
1581 /* Tin selection: Default to diffserv-based selection, allow overriding
1582 * using firewall marks or skb->priority. Call DSCP parsing early if
1583 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1585 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1586 wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1587 if (wash)
1588 dscp = cake_handle_diffserv(skb, wash);
1590 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1591 tin = 0;
1593 else if (mark && mark <= q->tin_cnt)
1594 tin = q->tin_order[mark - 1];
1596 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1597 TC_H_MIN(skb->priority) > 0 &&
1598 TC_H_MIN(skb->priority) <= q->tin_cnt)
1599 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1601 else {
1602 if (!wash)
1603 dscp = cake_handle_diffserv(skb, wash);
1604 tin = q->tin_index[dscp];
1606 if (unlikely(tin >= q->tin_cnt))
1607 tin = 0;
1610 return &q->tins[tin];
1613 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1614 struct sk_buff *skb, int flow_mode, int *qerr)
1616 struct cake_sched_data *q = qdisc_priv(sch);
1617 struct tcf_proto *filter;
1618 struct tcf_result res;
1619 u16 flow = 0, host = 0;
1620 int result;
1622 filter = rcu_dereference_bh(q->filter_list);
1623 if (!filter)
1624 goto hash;
1626 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1627 result = tcf_classify(skb, filter, &res, false);
1629 if (result >= 0) {
1630 #ifdef CONFIG_NET_CLS_ACT
1631 switch (result) {
1632 case TC_ACT_STOLEN:
1633 case TC_ACT_QUEUED:
1634 case TC_ACT_TRAP:
1635 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1636 /* fall through */
1637 case TC_ACT_SHOT:
1638 return 0;
1640 #endif
1641 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1642 flow = TC_H_MIN(res.classid);
1643 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1644 host = TC_H_MAJ(res.classid) >> 16;
1646 hash:
1647 *t = cake_select_tin(sch, skb);
1648 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1651 static void cake_reconfigure(struct Qdisc *sch);
1653 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1654 struct sk_buff **to_free)
1656 struct cake_sched_data *q = qdisc_priv(sch);
1657 int len = qdisc_pkt_len(skb);
1658 int uninitialized_var(ret);
1659 struct sk_buff *ack = NULL;
1660 ktime_t now = ktime_get();
1661 struct cake_tin_data *b;
1662 struct cake_flow *flow;
1663 u32 idx;
1665 /* choose flow to insert into */
1666 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1667 if (idx == 0) {
1668 if (ret & __NET_XMIT_BYPASS)
1669 qdisc_qstats_drop(sch);
1670 __qdisc_drop(skb, to_free);
1671 return ret;
1673 idx--;
1674 flow = &b->flows[idx];
1676 /* ensure shaper state isn't stale */
1677 if (!b->tin_backlog) {
1678 if (ktime_before(b->time_next_packet, now))
1679 b->time_next_packet = now;
1681 if (!sch->q.qlen) {
1682 if (ktime_before(q->time_next_packet, now)) {
1683 q->failsafe_next_packet = now;
1684 q->time_next_packet = now;
1685 } else if (ktime_after(q->time_next_packet, now) &&
1686 ktime_after(q->failsafe_next_packet, now)) {
1687 u64 next = \
1688 min(ktime_to_ns(q->time_next_packet),
1689 ktime_to_ns(
1690 q->failsafe_next_packet));
1691 sch->qstats.overlimits++;
1692 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1697 if (unlikely(len > b->max_skblen))
1698 b->max_skblen = len;
1700 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1701 struct sk_buff *segs, *nskb;
1702 netdev_features_t features = netif_skb_features(skb);
1703 unsigned int slen = 0, numsegs = 0;
1705 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1706 if (IS_ERR_OR_NULL(segs))
1707 return qdisc_drop(skb, sch, to_free);
1709 skb_list_walk_safe(segs, segs, nskb) {
1710 skb_mark_not_on_list(segs);
1711 qdisc_skb_cb(segs)->pkt_len = segs->len;
1712 cobalt_set_enqueue_time(segs, now);
1713 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1714 segs);
1715 flow_queue_add(flow, segs);
1717 sch->q.qlen++;
1718 numsegs++;
1719 slen += segs->len;
1720 q->buffer_used += segs->truesize;
1721 b->packets++;
1724 /* stats */
1725 b->bytes += slen;
1726 b->backlogs[idx] += slen;
1727 b->tin_backlog += slen;
1728 sch->qstats.backlog += slen;
1729 q->avg_window_bytes += slen;
1731 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1732 consume_skb(skb);
1733 } else {
1734 /* not splitting */
1735 cobalt_set_enqueue_time(skb, now);
1736 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1737 flow_queue_add(flow, skb);
1739 if (q->ack_filter)
1740 ack = cake_ack_filter(q, flow);
1742 if (ack) {
1743 b->ack_drops++;
1744 sch->qstats.drops++;
1745 b->bytes += qdisc_pkt_len(ack);
1746 len -= qdisc_pkt_len(ack);
1747 q->buffer_used += skb->truesize - ack->truesize;
1748 if (q->rate_flags & CAKE_FLAG_INGRESS)
1749 cake_advance_shaper(q, b, ack, now, true);
1751 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1752 consume_skb(ack);
1753 } else {
1754 sch->q.qlen++;
1755 q->buffer_used += skb->truesize;
1758 /* stats */
1759 b->packets++;
1760 b->bytes += len;
1761 b->backlogs[idx] += len;
1762 b->tin_backlog += len;
1763 sch->qstats.backlog += len;
1764 q->avg_window_bytes += len;
1767 if (q->overflow_timeout)
1768 cake_heapify_up(q, b->overflow_idx[idx]);
1770 /* incoming bandwidth capacity estimate */
1771 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1772 u64 packet_interval = \
1773 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1775 if (packet_interval > NSEC_PER_SEC)
1776 packet_interval = NSEC_PER_SEC;
1778 /* filter out short-term bursts, eg. wifi aggregation */
1779 q->avg_packet_interval = \
1780 cake_ewma(q->avg_packet_interval,
1781 packet_interval,
1782 (packet_interval > q->avg_packet_interval ?
1783 2 : 8));
1785 q->last_packet_time = now;
1787 if (packet_interval > q->avg_packet_interval) {
1788 u64 window_interval = \
1789 ktime_to_ns(ktime_sub(now,
1790 q->avg_window_begin));
1791 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1793 b = div64_u64(b, window_interval);
1794 q->avg_peak_bandwidth =
1795 cake_ewma(q->avg_peak_bandwidth, b,
1796 b > q->avg_peak_bandwidth ? 2 : 8);
1797 q->avg_window_bytes = 0;
1798 q->avg_window_begin = now;
1800 if (ktime_after(now,
1801 ktime_add_ms(q->last_reconfig_time,
1802 250))) {
1803 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1804 cake_reconfigure(sch);
1807 } else {
1808 q->avg_window_bytes = 0;
1809 q->last_packet_time = now;
1812 /* flowchain */
1813 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1814 struct cake_host *srchost = &b->hosts[flow->srchost];
1815 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1816 u16 host_load = 1;
1818 if (!flow->set) {
1819 list_add_tail(&flow->flowchain, &b->new_flows);
1820 } else {
1821 b->decaying_flow_count--;
1822 list_move_tail(&flow->flowchain, &b->new_flows);
1824 flow->set = CAKE_SET_SPARSE;
1825 b->sparse_flow_count++;
1827 if (cake_dsrc(q->flow_mode))
1828 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1830 if (cake_ddst(q->flow_mode))
1831 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1833 flow->deficit = (b->flow_quantum *
1834 quantum_div[host_load]) >> 16;
1835 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1836 struct cake_host *srchost = &b->hosts[flow->srchost];
1837 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1839 /* this flow was empty, accounted as a sparse flow, but actually
1840 * in the bulk rotation.
1842 flow->set = CAKE_SET_BULK;
1843 b->sparse_flow_count--;
1844 b->bulk_flow_count++;
1846 if (cake_dsrc(q->flow_mode))
1847 srchost->srchost_bulk_flow_count++;
1849 if (cake_ddst(q->flow_mode))
1850 dsthost->dsthost_bulk_flow_count++;
1854 if (q->buffer_used > q->buffer_max_used)
1855 q->buffer_max_used = q->buffer_used;
1857 if (q->buffer_used > q->buffer_limit) {
1858 u32 dropped = 0;
1860 while (q->buffer_used > q->buffer_limit) {
1861 dropped++;
1862 cake_drop(sch, to_free);
1864 b->drop_overlimit += dropped;
1866 return NET_XMIT_SUCCESS;
1869 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1871 struct cake_sched_data *q = qdisc_priv(sch);
1872 struct cake_tin_data *b = &q->tins[q->cur_tin];
1873 struct cake_flow *flow = &b->flows[q->cur_flow];
1874 struct sk_buff *skb = NULL;
1875 u32 len;
1877 if (flow->head) {
1878 skb = dequeue_head(flow);
1879 len = qdisc_pkt_len(skb);
1880 b->backlogs[q->cur_flow] -= len;
1881 b->tin_backlog -= len;
1882 sch->qstats.backlog -= len;
1883 q->buffer_used -= skb->truesize;
1884 sch->q.qlen--;
1886 if (q->overflow_timeout)
1887 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1889 return skb;
1892 /* Discard leftover packets from a tin no longer in use. */
1893 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1895 struct cake_sched_data *q = qdisc_priv(sch);
1896 struct sk_buff *skb;
1898 q->cur_tin = tin;
1899 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1900 while (!!(skb = cake_dequeue_one(sch)))
1901 kfree_skb(skb);
1904 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1906 struct cake_sched_data *q = qdisc_priv(sch);
1907 struct cake_tin_data *b = &q->tins[q->cur_tin];
1908 struct cake_host *srchost, *dsthost;
1909 ktime_t now = ktime_get();
1910 struct cake_flow *flow;
1911 struct list_head *head;
1912 bool first_flow = true;
1913 struct sk_buff *skb;
1914 u16 host_load;
1915 u64 delay;
1916 u32 len;
1918 begin:
1919 if (!sch->q.qlen)
1920 return NULL;
1922 /* global hard shaper */
1923 if (ktime_after(q->time_next_packet, now) &&
1924 ktime_after(q->failsafe_next_packet, now)) {
1925 u64 next = min(ktime_to_ns(q->time_next_packet),
1926 ktime_to_ns(q->failsafe_next_packet));
1928 sch->qstats.overlimits++;
1929 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1930 return NULL;
1933 /* Choose a class to work on. */
1934 if (!q->rate_ns) {
1935 /* In unlimited mode, can't rely on shaper timings, just balance
1936 * with DRR
1938 bool wrapped = false, empty = true;
1940 while (b->tin_deficit < 0 ||
1941 !(b->sparse_flow_count + b->bulk_flow_count)) {
1942 if (b->tin_deficit <= 0)
1943 b->tin_deficit += b->tin_quantum;
1944 if (b->sparse_flow_count + b->bulk_flow_count)
1945 empty = false;
1947 q->cur_tin++;
1948 b++;
1949 if (q->cur_tin >= q->tin_cnt) {
1950 q->cur_tin = 0;
1951 b = q->tins;
1953 if (wrapped) {
1954 /* It's possible for q->qlen to be
1955 * nonzero when we actually have no
1956 * packets anywhere.
1958 if (empty)
1959 return NULL;
1960 } else {
1961 wrapped = true;
1965 } else {
1966 /* In shaped mode, choose:
1967 * - Highest-priority tin with queue and meeting schedule, or
1968 * - The earliest-scheduled tin with queue.
1970 ktime_t best_time = KTIME_MAX;
1971 int tin, best_tin = 0;
1973 for (tin = 0; tin < q->tin_cnt; tin++) {
1974 b = q->tins + tin;
1975 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1976 ktime_t time_to_pkt = \
1977 ktime_sub(b->time_next_packet, now);
1979 if (ktime_to_ns(time_to_pkt) <= 0 ||
1980 ktime_compare(time_to_pkt,
1981 best_time) <= 0) {
1982 best_time = time_to_pkt;
1983 best_tin = tin;
1988 q->cur_tin = best_tin;
1989 b = q->tins + best_tin;
1991 /* No point in going further if no packets to deliver. */
1992 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1993 return NULL;
1996 retry:
1997 /* service this class */
1998 head = &b->decaying_flows;
1999 if (!first_flow || list_empty(head)) {
2000 head = &b->new_flows;
2001 if (list_empty(head)) {
2002 head = &b->old_flows;
2003 if (unlikely(list_empty(head))) {
2004 head = &b->decaying_flows;
2005 if (unlikely(list_empty(head)))
2006 goto begin;
2010 flow = list_first_entry(head, struct cake_flow, flowchain);
2011 q->cur_flow = flow - b->flows;
2012 first_flow = false;
2014 /* triple isolation (modified DRR++) */
2015 srchost = &b->hosts[flow->srchost];
2016 dsthost = &b->hosts[flow->dsthost];
2017 host_load = 1;
2019 /* flow isolation (DRR++) */
2020 if (flow->deficit <= 0) {
2021 /* Keep all flows with deficits out of the sparse and decaying
2022 * rotations. No non-empty flow can go into the decaying
2023 * rotation, so they can't get deficits
2025 if (flow->set == CAKE_SET_SPARSE) {
2026 if (flow->head) {
2027 b->sparse_flow_count--;
2028 b->bulk_flow_count++;
2030 if (cake_dsrc(q->flow_mode))
2031 srchost->srchost_bulk_flow_count++;
2033 if (cake_ddst(q->flow_mode))
2034 dsthost->dsthost_bulk_flow_count++;
2036 flow->set = CAKE_SET_BULK;
2037 } else {
2038 /* we've moved it to the bulk rotation for
2039 * correct deficit accounting but we still want
2040 * to count it as a sparse flow, not a bulk one.
2042 flow->set = CAKE_SET_SPARSE_WAIT;
2046 if (cake_dsrc(q->flow_mode))
2047 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2049 if (cake_ddst(q->flow_mode))
2050 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2052 WARN_ON(host_load > CAKE_QUEUES);
2054 /* The shifted prandom_u32() is a way to apply dithering to
2055 * avoid accumulating roundoff errors
2057 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2058 (prandom_u32() >> 16)) >> 16;
2059 list_move_tail(&flow->flowchain, &b->old_flows);
2061 goto retry;
2064 /* Retrieve a packet via the AQM */
2065 while (1) {
2066 skb = cake_dequeue_one(sch);
2067 if (!skb) {
2068 /* this queue was actually empty */
2069 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2070 b->unresponsive_flow_count--;
2072 if (flow->cvars.p_drop || flow->cvars.count ||
2073 ktime_before(now, flow->cvars.drop_next)) {
2074 /* keep in the flowchain until the state has
2075 * decayed to rest
2077 list_move_tail(&flow->flowchain,
2078 &b->decaying_flows);
2079 if (flow->set == CAKE_SET_BULK) {
2080 b->bulk_flow_count--;
2082 if (cake_dsrc(q->flow_mode))
2083 srchost->srchost_bulk_flow_count--;
2085 if (cake_ddst(q->flow_mode))
2086 dsthost->dsthost_bulk_flow_count--;
2088 b->decaying_flow_count++;
2089 } else if (flow->set == CAKE_SET_SPARSE ||
2090 flow->set == CAKE_SET_SPARSE_WAIT) {
2091 b->sparse_flow_count--;
2092 b->decaying_flow_count++;
2094 flow->set = CAKE_SET_DECAYING;
2095 } else {
2096 /* remove empty queue from the flowchain */
2097 list_del_init(&flow->flowchain);
2098 if (flow->set == CAKE_SET_SPARSE ||
2099 flow->set == CAKE_SET_SPARSE_WAIT)
2100 b->sparse_flow_count--;
2101 else if (flow->set == CAKE_SET_BULK) {
2102 b->bulk_flow_count--;
2104 if (cake_dsrc(q->flow_mode))
2105 srchost->srchost_bulk_flow_count--;
2107 if (cake_ddst(q->flow_mode))
2108 dsthost->dsthost_bulk_flow_count--;
2110 } else
2111 b->decaying_flow_count--;
2113 flow->set = CAKE_SET_NONE;
2115 goto begin;
2118 /* Last packet in queue may be marked, shouldn't be dropped */
2119 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2120 (b->bulk_flow_count *
2121 !!(q->rate_flags &
2122 CAKE_FLAG_INGRESS))) ||
2123 !flow->head)
2124 break;
2126 /* drop this packet, get another one */
2127 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2128 len = cake_advance_shaper(q, b, skb,
2129 now, true);
2130 flow->deficit -= len;
2131 b->tin_deficit -= len;
2133 flow->dropped++;
2134 b->tin_dropped++;
2135 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2136 qdisc_qstats_drop(sch);
2137 kfree_skb(skb);
2138 if (q->rate_flags & CAKE_FLAG_INGRESS)
2139 goto retry;
2142 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2143 qdisc_bstats_update(sch, skb);
2145 /* collect delay stats */
2146 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2147 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2148 b->peak_delay = cake_ewma(b->peak_delay, delay,
2149 delay > b->peak_delay ? 2 : 8);
2150 b->base_delay = cake_ewma(b->base_delay, delay,
2151 delay < b->base_delay ? 2 : 8);
2153 len = cake_advance_shaper(q, b, skb, now, false);
2154 flow->deficit -= len;
2155 b->tin_deficit -= len;
2157 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2158 u64 next = min(ktime_to_ns(q->time_next_packet),
2159 ktime_to_ns(q->failsafe_next_packet));
2161 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2162 } else if (!sch->q.qlen) {
2163 int i;
2165 for (i = 0; i < q->tin_cnt; i++) {
2166 if (q->tins[i].decaying_flow_count) {
2167 ktime_t next = \
2168 ktime_add_ns(now,
2169 q->tins[i].cparams.target);
2171 qdisc_watchdog_schedule_ns(&q->watchdog,
2172 ktime_to_ns(next));
2173 break;
2178 if (q->overflow_timeout)
2179 q->overflow_timeout--;
2181 return skb;
2184 static void cake_reset(struct Qdisc *sch)
2186 u32 c;
2188 for (c = 0; c < CAKE_MAX_TINS; c++)
2189 cake_clear_tin(sch, c);
2192 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2193 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2194 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2195 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2196 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2197 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2198 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2199 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2200 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2201 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2202 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2203 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2204 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2205 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2206 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2207 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2208 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
2209 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2212 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2213 u64 target_ns, u64 rtt_est_ns)
2215 /* convert byte-rate into time-per-byte
2216 * so it will always unwedge in reasonable time.
2218 static const u64 MIN_RATE = 64;
2219 u32 byte_target = mtu;
2220 u64 byte_target_ns;
2221 u8 rate_shft = 0;
2222 u64 rate_ns = 0;
2224 b->flow_quantum = 1514;
2225 if (rate) {
2226 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2227 rate_shft = 34;
2228 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2229 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2230 while (!!(rate_ns >> 34)) {
2231 rate_ns >>= 1;
2232 rate_shft--;
2234 } /* else unlimited, ie. zero delay */
2236 b->tin_rate_bps = rate;
2237 b->tin_rate_ns = rate_ns;
2238 b->tin_rate_shft = rate_shft;
2240 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2242 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2243 b->cparams.interval = max(rtt_est_ns +
2244 b->cparams.target - target_ns,
2245 b->cparams.target * 2);
2246 b->cparams.mtu_time = byte_target_ns;
2247 b->cparams.p_inc = 1 << 24; /* 1/256 */
2248 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2251 static int cake_config_besteffort(struct Qdisc *sch)
2253 struct cake_sched_data *q = qdisc_priv(sch);
2254 struct cake_tin_data *b = &q->tins[0];
2255 u32 mtu = psched_mtu(qdisc_dev(sch));
2256 u64 rate = q->rate_bps;
2258 q->tin_cnt = 1;
2260 q->tin_index = besteffort;
2261 q->tin_order = normal_order;
2263 cake_set_rate(b, rate, mtu,
2264 us_to_ns(q->target), us_to_ns(q->interval));
2265 b->tin_quantum = 65535;
2267 return 0;
2270 static int cake_config_precedence(struct Qdisc *sch)
2272 /* convert high-level (user visible) parameters into internal format */
2273 struct cake_sched_data *q = qdisc_priv(sch);
2274 u32 mtu = psched_mtu(qdisc_dev(sch));
2275 u64 rate = q->rate_bps;
2276 u32 quantum = 256;
2277 u32 i;
2279 q->tin_cnt = 8;
2280 q->tin_index = precedence;
2281 q->tin_order = normal_order;
2283 for (i = 0; i < q->tin_cnt; i++) {
2284 struct cake_tin_data *b = &q->tins[i];
2286 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2287 us_to_ns(q->interval));
2289 b->tin_quantum = max_t(u16, 1U, quantum);
2291 /* calculate next class's parameters */
2292 rate *= 7;
2293 rate >>= 3;
2295 quantum *= 7;
2296 quantum >>= 3;
2299 return 0;
2302 /* List of known Diffserv codepoints:
2304 * Least Effort (CS1)
2305 * Best Effort (CS0)
2306 * Max Reliability & LLT "Lo" (TOS1)
2307 * Max Throughput (TOS2)
2308 * Min Delay (TOS4)
2309 * LLT "La" (TOS5)
2310 * Assured Forwarding 1 (AF1x) - x3
2311 * Assured Forwarding 2 (AF2x) - x3
2312 * Assured Forwarding 3 (AF3x) - x3
2313 * Assured Forwarding 4 (AF4x) - x3
2314 * Precedence Class 2 (CS2)
2315 * Precedence Class 3 (CS3)
2316 * Precedence Class 4 (CS4)
2317 * Precedence Class 5 (CS5)
2318 * Precedence Class 6 (CS6)
2319 * Precedence Class 7 (CS7)
2320 * Voice Admit (VA)
2321 * Expedited Forwarding (EF)
2323 * Total 25 codepoints.
2326 /* List of traffic classes in RFC 4594:
2327 * (roughly descending order of contended priority)
2328 * (roughly ascending order of uncontended throughput)
2330 * Network Control (CS6,CS7) - routing traffic
2331 * Telephony (EF,VA) - aka. VoIP streams
2332 * Signalling (CS5) - VoIP setup
2333 * Multimedia Conferencing (AF4x) - aka. video calls
2334 * Realtime Interactive (CS4) - eg. games
2335 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2336 * Broadcast Video (CS3)
2337 * Low Latency Data (AF2x,TOS4) - eg. database
2338 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2339 * Standard Service (CS0 & unrecognised codepoints)
2340 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2341 * Low Priority Data (CS1) - eg. BitTorrent
2343 * Total 12 traffic classes.
2346 static int cake_config_diffserv8(struct Qdisc *sch)
2348 /* Pruned list of traffic classes for typical applications:
2350 * Network Control (CS6, CS7)
2351 * Minimum Latency (EF, VA, CS5, CS4)
2352 * Interactive Shell (CS2, TOS1)
2353 * Low Latency Transactions (AF2x, TOS4)
2354 * Video Streaming (AF4x, AF3x, CS3)
2355 * Bog Standard (CS0 etc.)
2356 * High Throughput (AF1x, TOS2)
2357 * Background Traffic (CS1)
2359 * Total 8 traffic classes.
2362 struct cake_sched_data *q = qdisc_priv(sch);
2363 u32 mtu = psched_mtu(qdisc_dev(sch));
2364 u64 rate = q->rate_bps;
2365 u32 quantum = 256;
2366 u32 i;
2368 q->tin_cnt = 8;
2370 /* codepoint to class mapping */
2371 q->tin_index = diffserv8;
2372 q->tin_order = normal_order;
2374 /* class characteristics */
2375 for (i = 0; i < q->tin_cnt; i++) {
2376 struct cake_tin_data *b = &q->tins[i];
2378 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2379 us_to_ns(q->interval));
2381 b->tin_quantum = max_t(u16, 1U, quantum);
2383 /* calculate next class's parameters */
2384 rate *= 7;
2385 rate >>= 3;
2387 quantum *= 7;
2388 quantum >>= 3;
2391 return 0;
2394 static int cake_config_diffserv4(struct Qdisc *sch)
2396 /* Further pruned list of traffic classes for four-class system:
2398 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2399 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2400 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2401 * Background Traffic (CS1)
2403 * Total 4 traffic classes.
2406 struct cake_sched_data *q = qdisc_priv(sch);
2407 u32 mtu = psched_mtu(qdisc_dev(sch));
2408 u64 rate = q->rate_bps;
2409 u32 quantum = 1024;
2411 q->tin_cnt = 4;
2413 /* codepoint to class mapping */
2414 q->tin_index = diffserv4;
2415 q->tin_order = bulk_order;
2417 /* class characteristics */
2418 cake_set_rate(&q->tins[0], rate, mtu,
2419 us_to_ns(q->target), us_to_ns(q->interval));
2420 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2421 us_to_ns(q->target), us_to_ns(q->interval));
2422 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2423 us_to_ns(q->target), us_to_ns(q->interval));
2424 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2425 us_to_ns(q->target), us_to_ns(q->interval));
2427 /* bandwidth-sharing weights */
2428 q->tins[0].tin_quantum = quantum;
2429 q->tins[1].tin_quantum = quantum >> 4;
2430 q->tins[2].tin_quantum = quantum >> 1;
2431 q->tins[3].tin_quantum = quantum >> 2;
2433 return 0;
2436 static int cake_config_diffserv3(struct Qdisc *sch)
2438 /* Simplified Diffserv structure with 3 tins.
2439 * Low Priority (CS1)
2440 * Best Effort
2441 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2443 struct cake_sched_data *q = qdisc_priv(sch);
2444 u32 mtu = psched_mtu(qdisc_dev(sch));
2445 u64 rate = q->rate_bps;
2446 u32 quantum = 1024;
2448 q->tin_cnt = 3;
2450 /* codepoint to class mapping */
2451 q->tin_index = diffserv3;
2452 q->tin_order = bulk_order;
2454 /* class characteristics */
2455 cake_set_rate(&q->tins[0], rate, mtu,
2456 us_to_ns(q->target), us_to_ns(q->interval));
2457 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2458 us_to_ns(q->target), us_to_ns(q->interval));
2459 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2460 us_to_ns(q->target), us_to_ns(q->interval));
2462 /* bandwidth-sharing weights */
2463 q->tins[0].tin_quantum = quantum;
2464 q->tins[1].tin_quantum = quantum >> 4;
2465 q->tins[2].tin_quantum = quantum >> 2;
2467 return 0;
2470 static void cake_reconfigure(struct Qdisc *sch)
2472 struct cake_sched_data *q = qdisc_priv(sch);
2473 int c, ft;
2475 switch (q->tin_mode) {
2476 case CAKE_DIFFSERV_BESTEFFORT:
2477 ft = cake_config_besteffort(sch);
2478 break;
2480 case CAKE_DIFFSERV_PRECEDENCE:
2481 ft = cake_config_precedence(sch);
2482 break;
2484 case CAKE_DIFFSERV_DIFFSERV8:
2485 ft = cake_config_diffserv8(sch);
2486 break;
2488 case CAKE_DIFFSERV_DIFFSERV4:
2489 ft = cake_config_diffserv4(sch);
2490 break;
2492 case CAKE_DIFFSERV_DIFFSERV3:
2493 default:
2494 ft = cake_config_diffserv3(sch);
2495 break;
2498 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2499 cake_clear_tin(sch, c);
2500 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2503 q->rate_ns = q->tins[ft].tin_rate_ns;
2504 q->rate_shft = q->tins[ft].tin_rate_shft;
2506 if (q->buffer_config_limit) {
2507 q->buffer_limit = q->buffer_config_limit;
2508 } else if (q->rate_bps) {
2509 u64 t = q->rate_bps * q->interval;
2511 do_div(t, USEC_PER_SEC / 4);
2512 q->buffer_limit = max_t(u32, t, 4U << 20);
2513 } else {
2514 q->buffer_limit = ~0;
2517 sch->flags &= ~TCQ_F_CAN_BYPASS;
2519 q->buffer_limit = min(q->buffer_limit,
2520 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2521 q->buffer_config_limit));
2524 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2525 struct netlink_ext_ack *extack)
2527 struct cake_sched_data *q = qdisc_priv(sch);
2528 struct nlattr *tb[TCA_CAKE_MAX + 1];
2529 int err;
2531 if (!opt)
2532 return -EINVAL;
2534 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2535 extack);
2536 if (err < 0)
2537 return err;
2539 if (tb[TCA_CAKE_NAT]) {
2540 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2541 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2542 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2543 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2544 #else
2545 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2546 "No conntrack support in kernel");
2547 return -EOPNOTSUPP;
2548 #endif
2551 if (tb[TCA_CAKE_BASE_RATE64])
2552 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2554 if (tb[TCA_CAKE_DIFFSERV_MODE])
2555 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2557 if (tb[TCA_CAKE_WASH]) {
2558 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2559 q->rate_flags |= CAKE_FLAG_WASH;
2560 else
2561 q->rate_flags &= ~CAKE_FLAG_WASH;
2564 if (tb[TCA_CAKE_FLOW_MODE])
2565 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2566 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2567 CAKE_FLOW_MASK));
2569 if (tb[TCA_CAKE_ATM])
2570 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2572 if (tb[TCA_CAKE_OVERHEAD]) {
2573 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2574 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2576 q->max_netlen = 0;
2577 q->max_adjlen = 0;
2578 q->min_netlen = ~0;
2579 q->min_adjlen = ~0;
2582 if (tb[TCA_CAKE_RAW]) {
2583 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2585 q->max_netlen = 0;
2586 q->max_adjlen = 0;
2587 q->min_netlen = ~0;
2588 q->min_adjlen = ~0;
2591 if (tb[TCA_CAKE_MPU])
2592 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2594 if (tb[TCA_CAKE_RTT]) {
2595 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2597 if (!q->interval)
2598 q->interval = 1;
2601 if (tb[TCA_CAKE_TARGET]) {
2602 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2604 if (!q->target)
2605 q->target = 1;
2608 if (tb[TCA_CAKE_AUTORATE]) {
2609 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2610 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2611 else
2612 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2615 if (tb[TCA_CAKE_INGRESS]) {
2616 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2617 q->rate_flags |= CAKE_FLAG_INGRESS;
2618 else
2619 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2622 if (tb[TCA_CAKE_ACK_FILTER])
2623 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2625 if (tb[TCA_CAKE_MEMORY])
2626 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2628 if (tb[TCA_CAKE_SPLIT_GSO]) {
2629 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2630 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2631 else
2632 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2635 if (tb[TCA_CAKE_FWMARK]) {
2636 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2637 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2640 if (q->tins) {
2641 sch_tree_lock(sch);
2642 cake_reconfigure(sch);
2643 sch_tree_unlock(sch);
2646 return 0;
2649 static void cake_destroy(struct Qdisc *sch)
2651 struct cake_sched_data *q = qdisc_priv(sch);
2653 qdisc_watchdog_cancel(&q->watchdog);
2654 tcf_block_put(q->block);
2655 kvfree(q->tins);
2658 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2659 struct netlink_ext_ack *extack)
2661 struct cake_sched_data *q = qdisc_priv(sch);
2662 int i, j, err;
2664 sch->limit = 10240;
2665 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2666 q->flow_mode = CAKE_FLOW_TRIPLE;
2668 q->rate_bps = 0; /* unlimited by default */
2670 q->interval = 100000; /* 100ms default */
2671 q->target = 5000; /* 5ms: codel RFC argues
2672 * for 5 to 10% of interval
2674 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2675 q->cur_tin = 0;
2676 q->cur_flow = 0;
2678 qdisc_watchdog_init(&q->watchdog, sch);
2680 if (opt) {
2681 err = cake_change(sch, opt, extack);
2683 if (err)
2684 return err;
2687 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2688 if (err)
2689 return err;
2691 quantum_div[0] = ~0;
2692 for (i = 1; i <= CAKE_QUEUES; i++)
2693 quantum_div[i] = 65535 / i;
2695 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2696 GFP_KERNEL);
2697 if (!q->tins)
2698 goto nomem;
2700 for (i = 0; i < CAKE_MAX_TINS; i++) {
2701 struct cake_tin_data *b = q->tins + i;
2703 INIT_LIST_HEAD(&b->new_flows);
2704 INIT_LIST_HEAD(&b->old_flows);
2705 INIT_LIST_HEAD(&b->decaying_flows);
2706 b->sparse_flow_count = 0;
2707 b->bulk_flow_count = 0;
2708 b->decaying_flow_count = 0;
2710 for (j = 0; j < CAKE_QUEUES; j++) {
2711 struct cake_flow *flow = b->flows + j;
2712 u32 k = j * CAKE_MAX_TINS + i;
2714 INIT_LIST_HEAD(&flow->flowchain);
2715 cobalt_vars_init(&flow->cvars);
2717 q->overflow_heap[k].t = i;
2718 q->overflow_heap[k].b = j;
2719 b->overflow_idx[j] = k;
2723 cake_reconfigure(sch);
2724 q->avg_peak_bandwidth = q->rate_bps;
2725 q->min_netlen = ~0;
2726 q->min_adjlen = ~0;
2727 return 0;
2729 nomem:
2730 cake_destroy(sch);
2731 return -ENOMEM;
2734 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2736 struct cake_sched_data *q = qdisc_priv(sch);
2737 struct nlattr *opts;
2739 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2740 if (!opts)
2741 goto nla_put_failure;
2743 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2744 TCA_CAKE_PAD))
2745 goto nla_put_failure;
2747 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2748 q->flow_mode & CAKE_FLOW_MASK))
2749 goto nla_put_failure;
2751 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2752 goto nla_put_failure;
2754 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2755 goto nla_put_failure;
2757 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2758 goto nla_put_failure;
2760 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2761 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2762 goto nla_put_failure;
2764 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2765 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2766 goto nla_put_failure;
2768 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2769 goto nla_put_failure;
2771 if (nla_put_u32(skb, TCA_CAKE_NAT,
2772 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2773 goto nla_put_failure;
2775 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2776 goto nla_put_failure;
2778 if (nla_put_u32(skb, TCA_CAKE_WASH,
2779 !!(q->rate_flags & CAKE_FLAG_WASH)))
2780 goto nla_put_failure;
2782 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2783 goto nla_put_failure;
2785 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2786 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2787 goto nla_put_failure;
2789 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2790 goto nla_put_failure;
2792 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2793 goto nla_put_failure;
2795 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2796 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2797 goto nla_put_failure;
2799 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2800 goto nla_put_failure;
2802 return nla_nest_end(skb, opts);
2804 nla_put_failure:
2805 return -1;
2808 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2810 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2811 struct cake_sched_data *q = qdisc_priv(sch);
2812 struct nlattr *tstats, *ts;
2813 int i;
2815 if (!stats)
2816 return -1;
2818 #define PUT_STAT_U32(attr, data) do { \
2819 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2820 goto nla_put_failure; \
2821 } while (0)
2822 #define PUT_STAT_U64(attr, data) do { \
2823 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2824 data, TCA_CAKE_STATS_PAD)) \
2825 goto nla_put_failure; \
2826 } while (0)
2828 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2829 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2830 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2831 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2832 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2833 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2834 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2835 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2837 #undef PUT_STAT_U32
2838 #undef PUT_STAT_U64
2840 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2841 if (!tstats)
2842 goto nla_put_failure;
2844 #define PUT_TSTAT_U32(attr, data) do { \
2845 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2846 goto nla_put_failure; \
2847 } while (0)
2848 #define PUT_TSTAT_U64(attr, data) do { \
2849 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2850 data, TCA_CAKE_TIN_STATS_PAD)) \
2851 goto nla_put_failure; \
2852 } while (0)
2854 for (i = 0; i < q->tin_cnt; i++) {
2855 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2857 ts = nla_nest_start_noflag(d->skb, i + 1);
2858 if (!ts)
2859 goto nla_put_failure;
2861 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2862 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2863 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2865 PUT_TSTAT_U32(TARGET_US,
2866 ktime_to_us(ns_to_ktime(b->cparams.target)));
2867 PUT_TSTAT_U32(INTERVAL_US,
2868 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2870 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2871 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2872 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2873 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2875 PUT_TSTAT_U32(PEAK_DELAY_US,
2876 ktime_to_us(ns_to_ktime(b->peak_delay)));
2877 PUT_TSTAT_U32(AVG_DELAY_US,
2878 ktime_to_us(ns_to_ktime(b->avge_delay)));
2879 PUT_TSTAT_U32(BASE_DELAY_US,
2880 ktime_to_us(ns_to_ktime(b->base_delay)));
2882 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2883 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2884 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2886 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2887 b->decaying_flow_count);
2888 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2889 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2890 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2892 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2893 nla_nest_end(d->skb, ts);
2896 #undef PUT_TSTAT_U32
2897 #undef PUT_TSTAT_U64
2899 nla_nest_end(d->skb, tstats);
2900 return nla_nest_end(d->skb, stats);
2902 nla_put_failure:
2903 nla_nest_cancel(d->skb, stats);
2904 return -1;
2907 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2909 return NULL;
2912 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2914 return 0;
2917 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2918 u32 classid)
2920 return 0;
2923 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2927 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2928 struct netlink_ext_ack *extack)
2930 struct cake_sched_data *q = qdisc_priv(sch);
2932 if (cl)
2933 return NULL;
2934 return q->block;
2937 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2938 struct sk_buff *skb, struct tcmsg *tcm)
2940 tcm->tcm_handle |= TC_H_MIN(cl);
2941 return 0;
2944 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2945 struct gnet_dump *d)
2947 struct cake_sched_data *q = qdisc_priv(sch);
2948 const struct cake_flow *flow = NULL;
2949 struct gnet_stats_queue qs = { 0 };
2950 struct nlattr *stats;
2951 u32 idx = cl - 1;
2953 if (idx < CAKE_QUEUES * q->tin_cnt) {
2954 const struct cake_tin_data *b = \
2955 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2956 const struct sk_buff *skb;
2958 flow = &b->flows[idx % CAKE_QUEUES];
2960 if (flow->head) {
2961 sch_tree_lock(sch);
2962 skb = flow->head;
2963 while (skb) {
2964 qs.qlen++;
2965 skb = skb->next;
2967 sch_tree_unlock(sch);
2969 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2970 qs.drops = flow->dropped;
2972 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2973 return -1;
2974 if (flow) {
2975 ktime_t now = ktime_get();
2977 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2978 if (!stats)
2979 return -1;
2981 #define PUT_STAT_U32(attr, data) do { \
2982 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2983 goto nla_put_failure; \
2984 } while (0)
2985 #define PUT_STAT_S32(attr, data) do { \
2986 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2987 goto nla_put_failure; \
2988 } while (0)
2990 PUT_STAT_S32(DEFICIT, flow->deficit);
2991 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2992 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2993 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2994 if (flow->cvars.p_drop) {
2995 PUT_STAT_S32(BLUE_TIMER_US,
2996 ktime_to_us(
2997 ktime_sub(now,
2998 flow->cvars.blue_timer)));
3000 if (flow->cvars.dropping) {
3001 PUT_STAT_S32(DROP_NEXT_US,
3002 ktime_to_us(
3003 ktime_sub(now,
3004 flow->cvars.drop_next)));
3007 if (nla_nest_end(d->skb, stats) < 0)
3008 return -1;
3011 return 0;
3013 nla_put_failure:
3014 nla_nest_cancel(d->skb, stats);
3015 return -1;
3018 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3020 struct cake_sched_data *q = qdisc_priv(sch);
3021 unsigned int i, j;
3023 if (arg->stop)
3024 return;
3026 for (i = 0; i < q->tin_cnt; i++) {
3027 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3029 for (j = 0; j < CAKE_QUEUES; j++) {
3030 if (list_empty(&b->flows[j].flowchain) ||
3031 arg->count < arg->skip) {
3032 arg->count++;
3033 continue;
3035 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3036 arg->stop = 1;
3037 break;
3039 arg->count++;
3044 static const struct Qdisc_class_ops cake_class_ops = {
3045 .leaf = cake_leaf,
3046 .find = cake_find,
3047 .tcf_block = cake_tcf_block,
3048 .bind_tcf = cake_bind,
3049 .unbind_tcf = cake_unbind,
3050 .dump = cake_dump_class,
3051 .dump_stats = cake_dump_class_stats,
3052 .walk = cake_walk,
3055 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3056 .cl_ops = &cake_class_ops,
3057 .id = "cake",
3058 .priv_size = sizeof(struct cake_sched_data),
3059 .enqueue = cake_enqueue,
3060 .dequeue = cake_dequeue,
3061 .peek = qdisc_peek_dequeued,
3062 .init = cake_init,
3063 .reset = cake_reset,
3064 .destroy = cake_destroy,
3065 .change = cake_change,
3066 .dump = cake_dump,
3067 .dump_stats = cake_dump_stats,
3068 .owner = THIS_MODULE,
3071 static int __init cake_module_init(void)
3073 return register_qdisc(&cake_qdisc_ops);
3076 static void __exit cake_module_exit(void)
3078 unregister_qdisc(&cake_qdisc_ops);
3081 module_init(cake_module_init)
3082 module_exit(cake_module_exit)
3083 MODULE_AUTHOR("Jonathan Morton");
3084 MODULE_LICENSE("Dual BSD/GPL");
3085 MODULE_DESCRIPTION("The CAKE shaper.");