4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->fcnt
* sizeof(struct free_nid
)) >>
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 } else if (type
== DIRTY_DENTS
) {
56 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
58 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
59 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
60 } else if (type
== INO_ENTRIES
) {
63 for (i
= 0; i
<= UPDATE_INO
; i
++)
64 mem_size
+= (sbi
->im
[i
].ino_num
*
65 sizeof(struct ino_entry
)) >> PAGE_SHIFT
;
66 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
67 } else if (type
== EXTENT_CACHE
) {
68 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
69 sizeof(struct extent_tree
) +
70 atomic_read(&sbi
->total_ext_node
) *
71 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
72 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
74 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
80 static void clear_node_page_dirty(struct page
*page
)
82 struct address_space
*mapping
= page
->mapping
;
83 unsigned int long flags
;
85 if (PageDirty(page
)) {
86 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
87 radix_tree_tag_clear(&mapping
->page_tree
,
90 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
92 clear_page_dirty_for_io(page
);
93 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
95 ClearPageUptodate(page
);
98 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
100 pgoff_t index
= current_nat_addr(sbi
, nid
);
101 return get_meta_page(sbi
, index
);
104 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
106 struct page
*src_page
;
107 struct page
*dst_page
;
112 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
114 src_off
= current_nat_addr(sbi
, nid
);
115 dst_off
= next_nat_addr(sbi
, src_off
);
117 /* get current nat block page with lock */
118 src_page
= get_meta_page(sbi
, src_off
);
119 dst_page
= grab_meta_page(sbi
, dst_off
);
120 f2fs_bug_on(sbi
, PageDirty(src_page
));
122 src_addr
= page_address(src_page
);
123 dst_addr
= page_address(dst_page
);
124 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
125 set_page_dirty(dst_page
);
126 f2fs_put_page(src_page
, 1);
128 set_to_next_nat(nm_i
, nid
);
133 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
135 return radix_tree_lookup(&nm_i
->nat_root
, n
);
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
139 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
141 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
144 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
147 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
149 kmem_cache_free(nat_entry_slab
, e
);
152 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
153 struct nat_entry
*ne
)
155 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
156 struct nat_entry_set
*head
;
158 if (get_nat_flag(ne
, IS_DIRTY
))
161 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
163 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
165 INIT_LIST_HEAD(&head
->entry_list
);
166 INIT_LIST_HEAD(&head
->set_list
);
169 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
171 list_move_tail(&ne
->list
, &head
->entry_list
);
172 nm_i
->dirty_nat_cnt
++;
174 set_nat_flag(ne
, IS_DIRTY
, true);
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
178 struct nat_entry
*ne
)
180 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
181 struct nat_entry_set
*head
;
183 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
185 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
186 set_nat_flag(ne
, IS_DIRTY
, false);
188 nm_i
->dirty_nat_cnt
--;
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
193 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
195 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
199 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
201 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
205 down_read(&nm_i
->nat_tree_lock
);
206 e
= __lookup_nat_cache(nm_i
, nid
);
208 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
209 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
212 up_read(&nm_i
->nat_tree_lock
);
216 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
218 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
222 down_read(&nm_i
->nat_tree_lock
);
223 e
= __lookup_nat_cache(nm_i
, nid
);
224 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
226 up_read(&nm_i
->nat_tree_lock
);
230 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
232 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
234 bool need_update
= true;
236 down_read(&nm_i
->nat_tree_lock
);
237 e
= __lookup_nat_cache(nm_i
, ino
);
238 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
239 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
240 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
242 up_read(&nm_i
->nat_tree_lock
);
246 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
248 struct nat_entry
*new;
250 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
251 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
252 memset(new, 0, sizeof(struct nat_entry
));
253 nat_set_nid(new, nid
);
255 list_add_tail(&new->list
, &nm_i
->nat_entries
);
260 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
261 struct f2fs_nat_entry
*ne
)
263 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
266 e
= __lookup_nat_cache(nm_i
, nid
);
268 e
= grab_nat_entry(nm_i
, nid
);
269 node_info_from_raw_nat(&e
->ni
, ne
);
271 f2fs_bug_on(sbi
, nat_get_ino(e
) != ne
->ino
||
272 nat_get_blkaddr(e
) != ne
->block_addr
||
273 nat_get_version(e
) != ne
->version
);
277 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
278 block_t new_blkaddr
, bool fsync_done
)
280 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
283 down_write(&nm_i
->nat_tree_lock
);
284 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
286 e
= grab_nat_entry(nm_i
, ni
->nid
);
287 copy_node_info(&e
->ni
, ni
);
288 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
289 } else if (new_blkaddr
== NEW_ADDR
) {
291 * when nid is reallocated,
292 * previous nat entry can be remained in nat cache.
293 * So, reinitialize it with new information.
295 copy_node_info(&e
->ni
, ni
);
296 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
300 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
301 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
302 new_blkaddr
== NULL_ADDR
);
303 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
304 new_blkaddr
== NEW_ADDR
);
305 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
306 nat_get_blkaddr(e
) != NULL_ADDR
&&
307 new_blkaddr
== NEW_ADDR
);
309 /* increment version no as node is removed */
310 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
311 unsigned char version
= nat_get_version(e
);
312 nat_set_version(e
, inc_node_version(version
));
314 /* in order to reuse the nid */
315 if (nm_i
->next_scan_nid
> ni
->nid
)
316 nm_i
->next_scan_nid
= ni
->nid
;
320 nat_set_blkaddr(e
, new_blkaddr
);
321 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
322 set_nat_flag(e
, IS_CHECKPOINTED
, false);
323 __set_nat_cache_dirty(nm_i
, e
);
325 /* update fsync_mark if its inode nat entry is still alive */
326 if (ni
->nid
!= ni
->ino
)
327 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
329 if (fsync_done
&& ni
->nid
== ni
->ino
)
330 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
331 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
333 up_write(&nm_i
->nat_tree_lock
);
336 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
338 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
341 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
344 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
345 struct nat_entry
*ne
;
346 ne
= list_first_entry(&nm_i
->nat_entries
,
347 struct nat_entry
, list
);
348 __del_from_nat_cache(nm_i
, ne
);
351 up_write(&nm_i
->nat_tree_lock
);
352 return nr
- nr_shrink
;
356 * This function always returns success
358 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
360 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
361 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
362 struct f2fs_journal
*journal
= curseg
->journal
;
363 nid_t start_nid
= START_NID(nid
);
364 struct f2fs_nat_block
*nat_blk
;
365 struct page
*page
= NULL
;
366 struct f2fs_nat_entry ne
;
372 /* Check nat cache */
373 down_read(&nm_i
->nat_tree_lock
);
374 e
= __lookup_nat_cache(nm_i
, nid
);
376 ni
->ino
= nat_get_ino(e
);
377 ni
->blk_addr
= nat_get_blkaddr(e
);
378 ni
->version
= nat_get_version(e
);
379 up_read(&nm_i
->nat_tree_lock
);
383 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
385 /* Check current segment summary */
386 down_read(&curseg
->journal_rwsem
);
387 i
= lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
389 ne
= nat_in_journal(journal
, i
);
390 node_info_from_raw_nat(ni
, &ne
);
392 up_read(&curseg
->journal_rwsem
);
396 /* Fill node_info from nat page */
397 page
= get_current_nat_page(sbi
, start_nid
);
398 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
399 ne
= nat_blk
->entries
[nid
- start_nid
];
400 node_info_from_raw_nat(ni
, &ne
);
401 f2fs_put_page(page
, 1);
403 up_read(&nm_i
->nat_tree_lock
);
404 /* cache nat entry */
405 down_write(&nm_i
->nat_tree_lock
);
406 cache_nat_entry(sbi
, nid
, &ne
);
407 up_write(&nm_i
->nat_tree_lock
);
411 * readahead MAX_RA_NODE number of node pages.
413 static void ra_node_pages(struct page
*parent
, int start
, int n
)
415 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
416 struct blk_plug plug
;
420 blk_start_plug(&plug
);
422 /* Then, try readahead for siblings of the desired node */
424 end
= min(end
, NIDS_PER_BLOCK
);
425 for (i
= start
; i
< end
; i
++) {
426 nid
= get_nid(parent
, i
, false);
427 ra_node_page(sbi
, nid
);
430 blk_finish_plug(&plug
);
433 pgoff_t
get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
435 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
436 const long direct_blks
= ADDRS_PER_BLOCK
;
437 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
438 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
439 int cur_level
= dn
->cur_level
;
440 int max_level
= dn
->max_level
;
446 while (max_level
-- > cur_level
)
447 skipped_unit
*= NIDS_PER_BLOCK
;
449 switch (dn
->max_level
) {
451 base
+= 2 * indirect_blks
;
453 base
+= 2 * direct_blks
;
455 base
+= direct_index
;
458 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
461 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
465 * The maximum depth is four.
466 * Offset[0] will have raw inode offset.
468 static int get_node_path(struct inode
*inode
, long block
,
469 int offset
[4], unsigned int noffset
[4])
471 const long direct_index
= ADDRS_PER_INODE(inode
);
472 const long direct_blks
= ADDRS_PER_BLOCK
;
473 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
474 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
475 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
481 if (block
< direct_index
) {
485 block
-= direct_index
;
486 if (block
< direct_blks
) {
487 offset
[n
++] = NODE_DIR1_BLOCK
;
493 block
-= direct_blks
;
494 if (block
< direct_blks
) {
495 offset
[n
++] = NODE_DIR2_BLOCK
;
501 block
-= direct_blks
;
502 if (block
< indirect_blks
) {
503 offset
[n
++] = NODE_IND1_BLOCK
;
505 offset
[n
++] = block
/ direct_blks
;
506 noffset
[n
] = 4 + offset
[n
- 1];
507 offset
[n
] = block
% direct_blks
;
511 block
-= indirect_blks
;
512 if (block
< indirect_blks
) {
513 offset
[n
++] = NODE_IND2_BLOCK
;
514 noffset
[n
] = 4 + dptrs_per_blk
;
515 offset
[n
++] = block
/ direct_blks
;
516 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
517 offset
[n
] = block
% direct_blks
;
521 block
-= indirect_blks
;
522 if (block
< dindirect_blks
) {
523 offset
[n
++] = NODE_DIND_BLOCK
;
524 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
525 offset
[n
++] = block
/ indirect_blks
;
526 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
527 offset
[n
- 1] * (dptrs_per_blk
+ 1);
528 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
529 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
530 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
532 offset
[n
] = block
% direct_blks
;
543 * Caller should call f2fs_put_dnode(dn).
544 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
545 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
546 * In the case of RDONLY_NODE, we don't need to care about mutex.
548 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
550 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
551 struct page
*npage
[4];
552 struct page
*parent
= NULL
;
554 unsigned int noffset
[4];
559 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
561 nids
[0] = dn
->inode
->i_ino
;
562 npage
[0] = dn
->inode_page
;
565 npage
[0] = get_node_page(sbi
, nids
[0]);
566 if (IS_ERR(npage
[0]))
567 return PTR_ERR(npage
[0]);
570 /* if inline_data is set, should not report any block indices */
571 if (f2fs_has_inline_data(dn
->inode
) && index
) {
573 f2fs_put_page(npage
[0], 1);
579 nids
[1] = get_nid(parent
, offset
[0], true);
580 dn
->inode_page
= npage
[0];
581 dn
->inode_page_locked
= true;
583 /* get indirect or direct nodes */
584 for (i
= 1; i
<= level
; i
++) {
587 if (!nids
[i
] && mode
== ALLOC_NODE
) {
589 if (!alloc_nid(sbi
, &(nids
[i
]))) {
595 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
596 if (IS_ERR(npage
[i
])) {
597 alloc_nid_failed(sbi
, nids
[i
]);
598 err
= PTR_ERR(npage
[i
]);
602 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
603 alloc_nid_done(sbi
, nids
[i
]);
605 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
606 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
607 if (IS_ERR(npage
[i
])) {
608 err
= PTR_ERR(npage
[i
]);
614 dn
->inode_page_locked
= false;
617 f2fs_put_page(parent
, 1);
621 npage
[i
] = get_node_page(sbi
, nids
[i
]);
622 if (IS_ERR(npage
[i
])) {
623 err
= PTR_ERR(npage
[i
]);
624 f2fs_put_page(npage
[0], 0);
630 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
633 dn
->nid
= nids
[level
];
634 dn
->ofs_in_node
= offset
[level
];
635 dn
->node_page
= npage
[level
];
636 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
640 f2fs_put_page(parent
, 1);
642 f2fs_put_page(npage
[0], 0);
644 dn
->inode_page
= NULL
;
645 dn
->node_page
= NULL
;
646 if (err
== -ENOENT
) {
648 dn
->max_level
= level
;
653 static void truncate_node(struct dnode_of_data
*dn
)
655 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
658 get_node_info(sbi
, dn
->nid
, &ni
);
659 if (dn
->inode
->i_blocks
== 0) {
660 f2fs_bug_on(sbi
, ni
.blk_addr
!= NULL_ADDR
);
663 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
665 /* Deallocate node address */
666 invalidate_blocks(sbi
, ni
.blk_addr
);
667 dec_valid_node_count(sbi
, dn
->inode
);
668 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
670 if (dn
->nid
== dn
->inode
->i_ino
) {
671 remove_orphan_inode(sbi
, dn
->nid
);
672 dec_valid_inode_count(sbi
);
677 clear_node_page_dirty(dn
->node_page
);
678 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
680 f2fs_put_page(dn
->node_page
, 1);
682 invalidate_mapping_pages(NODE_MAPPING(sbi
),
683 dn
->node_page
->index
, dn
->node_page
->index
);
685 dn
->node_page
= NULL
;
686 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
689 static int truncate_dnode(struct dnode_of_data
*dn
)
696 /* get direct node */
697 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
698 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
700 else if (IS_ERR(page
))
701 return PTR_ERR(page
);
703 /* Make dnode_of_data for parameter */
704 dn
->node_page
= page
;
706 truncate_data_blocks(dn
);
711 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
714 struct dnode_of_data rdn
= *dn
;
716 struct f2fs_node
*rn
;
718 unsigned int child_nofs
;
723 return NIDS_PER_BLOCK
+ 1;
725 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
727 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
729 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
730 return PTR_ERR(page
);
733 ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
735 rn
= F2FS_NODE(page
);
737 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
738 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
742 ret
= truncate_dnode(&rdn
);
745 if (set_nid(page
, i
, 0, false))
746 dn
->node_changed
= true;
749 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
750 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
751 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
752 if (child_nid
== 0) {
753 child_nofs
+= NIDS_PER_BLOCK
+ 1;
757 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
758 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
759 if (set_nid(page
, i
, 0, false))
760 dn
->node_changed
= true;
762 } else if (ret
< 0 && ret
!= -ENOENT
) {
770 /* remove current indirect node */
771 dn
->node_page
= page
;
775 f2fs_put_page(page
, 1);
777 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
781 f2fs_put_page(page
, 1);
782 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
786 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
787 struct f2fs_inode
*ri
, int *offset
, int depth
)
789 struct page
*pages
[2];
796 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
800 /* get indirect nodes in the path */
801 for (i
= 0; i
< idx
+ 1; i
++) {
802 /* reference count'll be increased */
803 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
804 if (IS_ERR(pages
[i
])) {
805 err
= PTR_ERR(pages
[i
]);
809 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
812 ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
814 /* free direct nodes linked to a partial indirect node */
815 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
816 child_nid
= get_nid(pages
[idx
], i
, false);
820 err
= truncate_dnode(dn
);
823 if (set_nid(pages
[idx
], i
, 0, false))
824 dn
->node_changed
= true;
827 if (offset
[idx
+ 1] == 0) {
828 dn
->node_page
= pages
[idx
];
832 f2fs_put_page(pages
[idx
], 1);
838 for (i
= idx
; i
>= 0; i
--)
839 f2fs_put_page(pages
[i
], 1);
841 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
847 * All the block addresses of data and nodes should be nullified.
849 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
851 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
852 int err
= 0, cont
= 1;
853 int level
, offset
[4], noffset
[4];
854 unsigned int nofs
= 0;
855 struct f2fs_inode
*ri
;
856 struct dnode_of_data dn
;
859 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
861 level
= get_node_path(inode
, from
, offset
, noffset
);
863 page
= get_node_page(sbi
, inode
->i_ino
);
865 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
866 return PTR_ERR(page
);
869 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
872 ri
= F2FS_INODE(page
);
880 if (!offset
[level
- 1])
882 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
883 if (err
< 0 && err
!= -ENOENT
)
885 nofs
+= 1 + NIDS_PER_BLOCK
;
888 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
889 if (!offset
[level
- 1])
891 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
892 if (err
< 0 && err
!= -ENOENT
)
901 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
903 case NODE_DIR1_BLOCK
:
904 case NODE_DIR2_BLOCK
:
905 err
= truncate_dnode(&dn
);
908 case NODE_IND1_BLOCK
:
909 case NODE_IND2_BLOCK
:
910 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
913 case NODE_DIND_BLOCK
:
914 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
921 if (err
< 0 && err
!= -ENOENT
)
923 if (offset
[1] == 0 &&
924 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
926 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
927 f2fs_wait_on_page_writeback(page
, NODE
, true);
928 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
929 set_page_dirty(page
);
937 f2fs_put_page(page
, 0);
938 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
939 return err
> 0 ? 0 : err
;
942 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
944 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
945 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
946 struct dnode_of_data dn
;
952 npage
= get_node_page(sbi
, nid
);
954 return PTR_ERR(npage
);
956 F2FS_I(inode
)->i_xattr_nid
= 0;
958 /* need to do checkpoint during fsync */
959 F2FS_I(inode
)->xattr_ver
= cur_cp_version(F2FS_CKPT(sbi
));
961 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
964 dn
.inode_page_locked
= true;
970 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
973 int remove_inode_page(struct inode
*inode
)
975 struct dnode_of_data dn
;
978 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
979 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
983 err
= truncate_xattr_node(inode
, dn
.inode_page
);
989 /* remove potential inline_data blocks */
990 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
991 S_ISLNK(inode
->i_mode
))
992 truncate_data_blocks_range(&dn
, 1);
994 /* 0 is possible, after f2fs_new_inode() has failed */
995 f2fs_bug_on(F2FS_I_SB(inode
),
996 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
998 /* will put inode & node pages */
1003 struct page
*new_inode_page(struct inode
*inode
)
1005 struct dnode_of_data dn
;
1007 /* allocate inode page for new inode */
1008 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1010 /* caller should f2fs_put_page(page, 1); */
1011 return new_node_page(&dn
, 0, NULL
);
1014 struct page
*new_node_page(struct dnode_of_data
*dn
,
1015 unsigned int ofs
, struct page
*ipage
)
1017 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1018 struct node_info old_ni
, new_ni
;
1022 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
1023 return ERR_PTR(-EPERM
);
1025 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1027 return ERR_PTR(-ENOMEM
);
1029 if (unlikely(!inc_valid_node_count(sbi
, dn
->inode
))) {
1034 get_node_info(sbi
, dn
->nid
, &old_ni
);
1036 /* Reinitialize old_ni with new node page */
1037 f2fs_bug_on(sbi
, old_ni
.blk_addr
!= NULL_ADDR
);
1039 new_ni
.ino
= dn
->inode
->i_ino
;
1040 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1042 f2fs_wait_on_page_writeback(page
, NODE
, true);
1043 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1044 set_cold_node(dn
->inode
, page
);
1045 SetPageUptodate(page
);
1046 if (set_page_dirty(page
))
1047 dn
->node_changed
= true;
1049 if (f2fs_has_xattr_block(ofs
))
1050 F2FS_I(dn
->inode
)->i_xattr_nid
= dn
->nid
;
1052 dn
->node_page
= page
;
1054 update_inode(dn
->inode
, ipage
);
1056 sync_inode_page(dn
);
1058 inc_valid_inode_count(sbi
);
1063 clear_node_page_dirty(page
);
1064 f2fs_put_page(page
, 1);
1065 return ERR_PTR(err
);
1069 * Caller should do after getting the following values.
1070 * 0: f2fs_put_page(page, 0)
1071 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1073 static int read_node_page(struct page
*page
, int rw
)
1075 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1076 struct node_info ni
;
1077 struct f2fs_io_info fio
= {
1082 .encrypted_page
= NULL
,
1085 get_node_info(sbi
, page
->index
, &ni
);
1087 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1088 ClearPageUptodate(page
);
1092 if (PageUptodate(page
))
1095 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1096 return f2fs_submit_page_bio(&fio
);
1100 * Readahead a node page
1102 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1109 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1112 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->page_tree
, nid
);
1117 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1121 err
= read_node_page(apage
, READA
);
1122 f2fs_put_page(apage
, err
? 1 : 0);
1125 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1126 struct page
*parent
, int start
)
1132 return ERR_PTR(-ENOENT
);
1133 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1135 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1137 return ERR_PTR(-ENOMEM
);
1139 err
= read_node_page(page
, READ_SYNC
);
1141 f2fs_put_page(page
, 1);
1142 return ERR_PTR(err
);
1143 } else if (err
== LOCKED_PAGE
) {
1148 ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1152 if (unlikely(!PageUptodate(page
))) {
1153 f2fs_put_page(page
, 1);
1154 return ERR_PTR(-EIO
);
1156 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1157 f2fs_put_page(page
, 1);
1161 f2fs_bug_on(sbi
, nid
!= nid_of_node(page
));
1165 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1167 return __get_node_page(sbi
, nid
, NULL
, 0);
1170 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1172 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1173 nid_t nid
= get_nid(parent
, start
, false);
1175 return __get_node_page(sbi
, nid
, parent
, start
);
1178 void sync_inode_page(struct dnode_of_data
*dn
)
1182 if (IS_INODE(dn
->node_page
) || dn
->inode_page
== dn
->node_page
) {
1183 ret
= update_inode(dn
->inode
, dn
->node_page
);
1184 } else if (dn
->inode_page
) {
1185 if (!dn
->inode_page_locked
)
1186 lock_page(dn
->inode_page
);
1187 ret
= update_inode(dn
->inode
, dn
->inode_page
);
1188 if (!dn
->inode_page_locked
)
1189 unlock_page(dn
->inode_page
);
1191 ret
= update_inode_page(dn
->inode
);
1193 dn
->node_changed
= ret
? true: false;
1196 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1198 struct inode
*inode
;
1202 /* should flush inline_data before evict_inode */
1203 inode
= ilookup(sbi
->sb
, ino
);
1207 page
= pagecache_get_page(inode
->i_mapping
, 0, FGP_LOCK
|FGP_NOWAIT
, 0);
1211 if (!PageUptodate(page
))
1214 if (!PageDirty(page
))
1217 if (!clear_page_dirty_for_io(page
))
1220 ret
= f2fs_write_inline_data(inode
, page
);
1221 inode_dec_dirty_pages(inode
);
1223 set_page_dirty(page
);
1225 f2fs_put_page(page
, 1);
1230 void move_node_page(struct page
*node_page
, int gc_type
)
1232 if (gc_type
== FG_GC
) {
1233 struct f2fs_sb_info
*sbi
= F2FS_P_SB(node_page
);
1234 struct writeback_control wbc
= {
1235 .sync_mode
= WB_SYNC_ALL
,
1240 set_page_dirty(node_page
);
1241 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1243 f2fs_bug_on(sbi
, PageWriteback(node_page
));
1244 if (!clear_page_dirty_for_io(node_page
))
1247 if (NODE_MAPPING(sbi
)->a_ops
->writepage(node_page
, &wbc
))
1248 unlock_page(node_page
);
1251 /* set page dirty and write it */
1252 if (!PageWriteback(node_page
))
1253 set_page_dirty(node_page
);
1256 unlock_page(node_page
);
1258 f2fs_put_page(node_page
, 0);
1261 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1264 struct pagevec pvec
;
1265 struct page
*last_page
= NULL
;
1267 pagevec_init(&pvec
, 0);
1271 while (index
<= end
) {
1273 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1274 PAGECACHE_TAG_DIRTY
,
1275 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1279 for (i
= 0; i
< nr_pages
; i
++) {
1280 struct page
*page
= pvec
.pages
[i
];
1282 if (unlikely(f2fs_cp_error(sbi
))) {
1283 f2fs_put_page(last_page
, 0);
1284 pagevec_release(&pvec
);
1285 return ERR_PTR(-EIO
);
1288 if (!IS_DNODE(page
) || !is_cold_node(page
))
1290 if (ino_of_node(page
) != ino
)
1295 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1300 if (ino_of_node(page
) != ino
)
1301 goto continue_unlock
;
1303 if (!PageDirty(page
)) {
1304 /* someone wrote it for us */
1305 goto continue_unlock
;
1309 f2fs_put_page(last_page
, 0);
1315 pagevec_release(&pvec
);
1321 int fsync_node_pages(struct f2fs_sb_info
*sbi
, nid_t ino
,
1322 struct writeback_control
*wbc
, bool atomic
)
1325 struct pagevec pvec
;
1327 struct page
*last_page
= NULL
;
1328 bool marked
= false;
1331 last_page
= last_fsync_dnode(sbi
, ino
);
1332 if (IS_ERR_OR_NULL(last_page
))
1333 return PTR_ERR_OR_ZERO(last_page
);
1336 pagevec_init(&pvec
, 0);
1340 while (index
<= end
) {
1342 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1343 PAGECACHE_TAG_DIRTY
,
1344 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1348 for (i
= 0; i
< nr_pages
; i
++) {
1349 struct page
*page
= pvec
.pages
[i
];
1351 if (unlikely(f2fs_cp_error(sbi
))) {
1352 f2fs_put_page(last_page
, 0);
1353 pagevec_release(&pvec
);
1357 if (!IS_DNODE(page
) || !is_cold_node(page
))
1359 if (ino_of_node(page
) != ino
)
1364 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1369 if (ino_of_node(page
) != ino
)
1370 goto continue_unlock
;
1372 if (!PageDirty(page
) && page
!= last_page
) {
1373 /* someone wrote it for us */
1374 goto continue_unlock
;
1377 f2fs_wait_on_page_writeback(page
, NODE
, true);
1378 BUG_ON(PageWriteback(page
));
1380 if (!atomic
|| page
== last_page
) {
1381 set_fsync_mark(page
, 1);
1383 set_dentry_mark(page
,
1384 need_dentry_mark(sbi
, ino
));
1385 /* may be written by other thread */
1386 if (!PageDirty(page
))
1387 set_page_dirty(page
);
1390 if (!clear_page_dirty_for_io(page
))
1391 goto continue_unlock
;
1393 ret
= NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
);
1396 f2fs_put_page(last_page
, 0);
1399 if (page
== last_page
) {
1400 f2fs_put_page(page
, 0);
1405 pagevec_release(&pvec
);
1411 if (!ret
&& atomic
&& !marked
) {
1412 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1413 "Retry to write fsync mark: ino=%u, idx=%lx",
1414 ino
, last_page
->index
);
1415 lock_page(last_page
);
1416 set_page_dirty(last_page
);
1417 unlock_page(last_page
);
1420 return ret
? -EIO
: 0;
1423 int sync_node_pages(struct f2fs_sb_info
*sbi
, struct writeback_control
*wbc
)
1426 struct pagevec pvec
;
1430 pagevec_init(&pvec
, 0);
1436 while (index
<= end
) {
1438 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1439 PAGECACHE_TAG_DIRTY
,
1440 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1444 for (i
= 0; i
< nr_pages
; i
++) {
1445 struct page
*page
= pvec
.pages
[i
];
1447 if (unlikely(f2fs_cp_error(sbi
))) {
1448 pagevec_release(&pvec
);
1453 * flushing sequence with step:
1458 if (step
== 0 && IS_DNODE(page
))
1460 if (step
== 1 && (!IS_DNODE(page
) ||
1461 is_cold_node(page
)))
1463 if (step
== 2 && (!IS_DNODE(page
) ||
1464 !is_cold_node(page
)))
1467 if (!trylock_page(page
))
1470 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1476 if (!PageDirty(page
)) {
1477 /* someone wrote it for us */
1478 goto continue_unlock
;
1481 /* flush inline_data */
1482 if (is_inline_node(page
)) {
1483 clear_inline_node(page
);
1485 flush_inline_data(sbi
, ino_of_node(page
));
1489 f2fs_wait_on_page_writeback(page
, NODE
, true);
1491 BUG_ON(PageWriteback(page
));
1492 if (!clear_page_dirty_for_io(page
))
1493 goto continue_unlock
;
1495 set_fsync_mark(page
, 0);
1496 set_dentry_mark(page
, 0);
1498 if (NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
))
1501 if (--wbc
->nr_to_write
== 0)
1504 pagevec_release(&pvec
);
1507 if (wbc
->nr_to_write
== 0) {
1520 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1522 pgoff_t index
= 0, end
= ULONG_MAX
;
1523 struct pagevec pvec
;
1524 int ret2
= 0, ret
= 0;
1526 pagevec_init(&pvec
, 0);
1528 while (index
<= end
) {
1530 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1531 PAGECACHE_TAG_WRITEBACK
,
1532 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1536 for (i
= 0; i
< nr_pages
; i
++) {
1537 struct page
*page
= pvec
.pages
[i
];
1539 /* until radix tree lookup accepts end_index */
1540 if (unlikely(page
->index
> end
))
1543 if (ino
&& ino_of_node(page
) == ino
) {
1544 f2fs_wait_on_page_writeback(page
, NODE
, true);
1545 if (TestClearPageError(page
))
1549 pagevec_release(&pvec
);
1553 if (unlikely(test_and_clear_bit(AS_ENOSPC
, &NODE_MAPPING(sbi
)->flags
)))
1555 if (unlikely(test_and_clear_bit(AS_EIO
, &NODE_MAPPING(sbi
)->flags
)))
1562 static int f2fs_write_node_page(struct page
*page
,
1563 struct writeback_control
*wbc
)
1565 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1567 struct node_info ni
;
1568 struct f2fs_io_info fio
= {
1571 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
1573 .encrypted_page
= NULL
,
1576 trace_f2fs_writepage(page
, NODE
);
1578 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1580 if (unlikely(f2fs_cp_error(sbi
)))
1583 /* get old block addr of this node page */
1584 nid
= nid_of_node(page
);
1585 f2fs_bug_on(sbi
, page
->index
!= nid
);
1587 if (wbc
->for_reclaim
) {
1588 if (!down_read_trylock(&sbi
->node_write
))
1591 down_read(&sbi
->node_write
);
1594 get_node_info(sbi
, nid
, &ni
);
1596 /* This page is already truncated */
1597 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1598 ClearPageUptodate(page
);
1599 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1600 up_read(&sbi
->node_write
);
1605 set_page_writeback(page
);
1606 fio
.old_blkaddr
= ni
.blk_addr
;
1607 write_node_page(nid
, &fio
);
1608 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1609 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1610 up_read(&sbi
->node_write
);
1612 if (wbc
->for_reclaim
)
1613 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, NODE
, WRITE
);
1617 if (unlikely(f2fs_cp_error(sbi
)))
1618 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1623 redirty_page_for_writepage(wbc
, page
);
1624 return AOP_WRITEPAGE_ACTIVATE
;
1627 static int f2fs_write_node_pages(struct address_space
*mapping
,
1628 struct writeback_control
*wbc
)
1630 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1633 /* balancing f2fs's metadata in background */
1634 f2fs_balance_fs_bg(sbi
);
1636 /* collect a number of dirty node pages and write together */
1637 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1640 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1642 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1643 wbc
->sync_mode
= WB_SYNC_NONE
;
1644 sync_node_pages(sbi
, wbc
);
1645 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1649 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1650 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1654 static int f2fs_set_node_page_dirty(struct page
*page
)
1656 trace_f2fs_set_page_dirty(page
, NODE
);
1658 SetPageUptodate(page
);
1659 if (!PageDirty(page
)) {
1660 __set_page_dirty_nobuffers(page
);
1661 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1662 SetPagePrivate(page
);
1663 f2fs_trace_pid(page
);
1670 * Structure of the f2fs node operations
1672 const struct address_space_operations f2fs_node_aops
= {
1673 .writepage
= f2fs_write_node_page
,
1674 .writepages
= f2fs_write_node_pages
,
1675 .set_page_dirty
= f2fs_set_node_page_dirty
,
1676 .invalidatepage
= f2fs_invalidate_page
,
1677 .releasepage
= f2fs_release_page
,
1680 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1683 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1686 static void __del_from_free_nid_list(struct f2fs_nm_info
*nm_i
,
1690 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1693 static int add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1695 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1697 struct nat_entry
*ne
;
1699 if (!available_free_memory(sbi
, FREE_NIDS
))
1702 /* 0 nid should not be used */
1703 if (unlikely(nid
== 0))
1707 /* do not add allocated nids */
1708 ne
= __lookup_nat_cache(nm_i
, nid
);
1709 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1710 nat_get_blkaddr(ne
) != NULL_ADDR
))
1714 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1718 if (radix_tree_preload(GFP_NOFS
)) {
1719 kmem_cache_free(free_nid_slab
, i
);
1723 spin_lock(&nm_i
->free_nid_list_lock
);
1724 if (radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
)) {
1725 spin_unlock(&nm_i
->free_nid_list_lock
);
1726 radix_tree_preload_end();
1727 kmem_cache_free(free_nid_slab
, i
);
1730 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1732 spin_unlock(&nm_i
->free_nid_list_lock
);
1733 radix_tree_preload_end();
1737 static void remove_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1740 bool need_free
= false;
1742 spin_lock(&nm_i
->free_nid_list_lock
);
1743 i
= __lookup_free_nid_list(nm_i
, nid
);
1744 if (i
&& i
->state
== NID_NEW
) {
1745 __del_from_free_nid_list(nm_i
, i
);
1749 spin_unlock(&nm_i
->free_nid_list_lock
);
1752 kmem_cache_free(free_nid_slab
, i
);
1755 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1756 struct page
*nat_page
, nid_t start_nid
)
1758 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1759 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1763 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1765 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1767 if (unlikely(start_nid
>= nm_i
->max_nid
))
1770 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1771 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1772 if (blk_addr
== NULL_ADDR
) {
1773 if (add_free_nid(sbi
, start_nid
, true) < 0)
1779 static void build_free_nids(struct f2fs_sb_info
*sbi
)
1781 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1782 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1783 struct f2fs_journal
*journal
= curseg
->journal
;
1785 nid_t nid
= nm_i
->next_scan_nid
;
1787 /* Enough entries */
1788 if (nm_i
->fcnt
> NAT_ENTRY_PER_BLOCK
)
1791 /* readahead nat pages to be scanned */
1792 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
1795 down_read(&nm_i
->nat_tree_lock
);
1798 struct page
*page
= get_current_nat_page(sbi
, nid
);
1800 scan_nat_page(sbi
, page
, nid
);
1801 f2fs_put_page(page
, 1);
1803 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1804 if (unlikely(nid
>= nm_i
->max_nid
))
1807 if (++i
>= FREE_NID_PAGES
)
1811 /* go to the next free nat pages to find free nids abundantly */
1812 nm_i
->next_scan_nid
= nid
;
1814 /* find free nids from current sum_pages */
1815 down_read(&curseg
->journal_rwsem
);
1816 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1819 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
1820 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1821 if (addr
== NULL_ADDR
)
1822 add_free_nid(sbi
, nid
, true);
1824 remove_free_nid(nm_i
, nid
);
1826 up_read(&curseg
->journal_rwsem
);
1827 up_read(&nm_i
->nat_tree_lock
);
1829 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
1830 nm_i
->ra_nid_pages
, META_NAT
, false);
1834 * If this function returns success, caller can obtain a new nid
1835 * from second parameter of this function.
1836 * The returned nid could be used ino as well as nid when inode is created.
1838 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1840 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1841 struct free_nid
*i
= NULL
;
1843 #ifdef CONFIG_F2FS_FAULT_INJECTION
1844 if (time_to_inject(FAULT_ALLOC_NID
))
1847 if (unlikely(sbi
->total_valid_node_count
+ 1 > nm_i
->available_nids
))
1850 spin_lock(&nm_i
->free_nid_list_lock
);
1852 /* We should not use stale free nids created by build_free_nids */
1853 if (nm_i
->fcnt
&& !on_build_free_nids(nm_i
)) {
1854 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
1855 list_for_each_entry(i
, &nm_i
->free_nid_list
, list
)
1856 if (i
->state
== NID_NEW
)
1859 f2fs_bug_on(sbi
, i
->state
!= NID_NEW
);
1861 i
->state
= NID_ALLOC
;
1863 spin_unlock(&nm_i
->free_nid_list_lock
);
1866 spin_unlock(&nm_i
->free_nid_list_lock
);
1868 /* Let's scan nat pages and its caches to get free nids */
1869 mutex_lock(&nm_i
->build_lock
);
1870 build_free_nids(sbi
);
1871 mutex_unlock(&nm_i
->build_lock
);
1876 * alloc_nid() should be called prior to this function.
1878 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1880 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1883 spin_lock(&nm_i
->free_nid_list_lock
);
1884 i
= __lookup_free_nid_list(nm_i
, nid
);
1885 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1886 __del_from_free_nid_list(nm_i
, i
);
1887 spin_unlock(&nm_i
->free_nid_list_lock
);
1889 kmem_cache_free(free_nid_slab
, i
);
1893 * alloc_nid() should be called prior to this function.
1895 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1897 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1899 bool need_free
= false;
1904 spin_lock(&nm_i
->free_nid_list_lock
);
1905 i
= __lookup_free_nid_list(nm_i
, nid
);
1906 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1907 if (!available_free_memory(sbi
, FREE_NIDS
)) {
1908 __del_from_free_nid_list(nm_i
, i
);
1914 spin_unlock(&nm_i
->free_nid_list_lock
);
1917 kmem_cache_free(free_nid_slab
, i
);
1920 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
1922 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1923 struct free_nid
*i
, *next
;
1926 if (!mutex_trylock(&nm_i
->build_lock
))
1929 spin_lock(&nm_i
->free_nid_list_lock
);
1930 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
1931 if (nr_shrink
<= 0 || nm_i
->fcnt
<= NAT_ENTRY_PER_BLOCK
)
1933 if (i
->state
== NID_ALLOC
)
1935 __del_from_free_nid_list(nm_i
, i
);
1936 kmem_cache_free(free_nid_slab
, i
);
1940 spin_unlock(&nm_i
->free_nid_list_lock
);
1941 mutex_unlock(&nm_i
->build_lock
);
1943 return nr
- nr_shrink
;
1946 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
1948 void *src_addr
, *dst_addr
;
1951 struct f2fs_inode
*ri
;
1953 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
1954 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
1956 ri
= F2FS_INODE(page
);
1957 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
1958 clear_inode_flag(F2FS_I(inode
), FI_INLINE_XATTR
);
1962 dst_addr
= inline_xattr_addr(ipage
);
1963 src_addr
= inline_xattr_addr(page
);
1964 inline_size
= inline_xattr_size(inode
);
1966 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
1967 memcpy(dst_addr
, src_addr
, inline_size
);
1969 update_inode(inode
, ipage
);
1970 f2fs_put_page(ipage
, 1);
1973 void recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
1975 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1976 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
1977 nid_t new_xnid
= nid_of_node(page
);
1978 struct node_info ni
;
1980 /* 1: invalidate the previous xattr nid */
1984 /* Deallocate node address */
1985 get_node_info(sbi
, prev_xnid
, &ni
);
1986 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
1987 invalidate_blocks(sbi
, ni
.blk_addr
);
1988 dec_valid_node_count(sbi
, inode
);
1989 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
1992 /* 2: allocate new xattr nid */
1993 if (unlikely(!inc_valid_node_count(sbi
, inode
)))
1994 f2fs_bug_on(sbi
, 1);
1996 remove_free_nid(NM_I(sbi
), new_xnid
);
1997 get_node_info(sbi
, new_xnid
, &ni
);
1998 ni
.ino
= inode
->i_ino
;
1999 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
2000 F2FS_I(inode
)->i_xattr_nid
= new_xnid
;
2002 /* 3: update xattr blkaddr */
2003 refresh_sit_entry(sbi
, NEW_ADDR
, blkaddr
);
2004 set_node_addr(sbi
, &ni
, blkaddr
, false);
2006 update_inode_page(inode
);
2009 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2011 struct f2fs_inode
*src
, *dst
;
2012 nid_t ino
= ino_of_node(page
);
2013 struct node_info old_ni
, new_ni
;
2016 get_node_info(sbi
, ino
, &old_ni
);
2018 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2021 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2025 /* Should not use this inode from free nid list */
2026 remove_free_nid(NM_I(sbi
), ino
);
2028 SetPageUptodate(ipage
);
2029 fill_node_footer(ipage
, ino
, ino
, 0, true);
2031 src
= F2FS_INODE(page
);
2032 dst
= F2FS_INODE(ipage
);
2034 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2036 dst
->i_blocks
= cpu_to_le64(1);
2037 dst
->i_links
= cpu_to_le32(1);
2038 dst
->i_xattr_nid
= 0;
2039 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
2044 if (unlikely(!inc_valid_node_count(sbi
, NULL
)))
2046 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2047 inc_valid_inode_count(sbi
);
2048 set_page_dirty(ipage
);
2049 f2fs_put_page(ipage
, 1);
2053 int restore_node_summary(struct f2fs_sb_info
*sbi
,
2054 unsigned int segno
, struct f2fs_summary_block
*sum
)
2056 struct f2fs_node
*rn
;
2057 struct f2fs_summary
*sum_entry
;
2059 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
2060 int i
, idx
, last_offset
, nrpages
;
2062 /* scan the node segment */
2063 last_offset
= sbi
->blocks_per_seg
;
2064 addr
= START_BLOCK(sbi
, segno
);
2065 sum_entry
= &sum
->entries
[0];
2067 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2068 nrpages
= min(last_offset
- i
, bio_blocks
);
2070 /* readahead node pages */
2071 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2073 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2074 struct page
*page
= get_tmp_page(sbi
, idx
);
2076 rn
= F2FS_NODE(page
);
2077 sum_entry
->nid
= rn
->footer
.nid
;
2078 sum_entry
->version
= 0;
2079 sum_entry
->ofs_in_node
= 0;
2081 f2fs_put_page(page
, 1);
2084 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2090 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2092 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2093 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2094 struct f2fs_journal
*journal
= curseg
->journal
;
2097 down_write(&curseg
->journal_rwsem
);
2098 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2099 struct nat_entry
*ne
;
2100 struct f2fs_nat_entry raw_ne
;
2101 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2103 raw_ne
= nat_in_journal(journal
, i
);
2105 ne
= __lookup_nat_cache(nm_i
, nid
);
2107 ne
= grab_nat_entry(nm_i
, nid
);
2108 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
2110 __set_nat_cache_dirty(nm_i
, ne
);
2112 update_nats_in_cursum(journal
, -i
);
2113 up_write(&curseg
->journal_rwsem
);
2116 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2117 struct list_head
*head
, int max
)
2119 struct nat_entry_set
*cur
;
2121 if (nes
->entry_cnt
>= max
)
2124 list_for_each_entry(cur
, head
, set_list
) {
2125 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2126 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2131 list_add_tail(&nes
->set_list
, head
);
2134 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2135 struct nat_entry_set
*set
)
2137 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2138 struct f2fs_journal
*journal
= curseg
->journal
;
2139 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2140 bool to_journal
= true;
2141 struct f2fs_nat_block
*nat_blk
;
2142 struct nat_entry
*ne
, *cur
;
2143 struct page
*page
= NULL
;
2146 * there are two steps to flush nat entries:
2147 * #1, flush nat entries to journal in current hot data summary block.
2148 * #2, flush nat entries to nat page.
2150 if (!__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2154 down_write(&curseg
->journal_rwsem
);
2156 page
= get_next_nat_page(sbi
, start_nid
);
2157 nat_blk
= page_address(page
);
2158 f2fs_bug_on(sbi
, !nat_blk
);
2161 /* flush dirty nats in nat entry set */
2162 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2163 struct f2fs_nat_entry
*raw_ne
;
2164 nid_t nid
= nat_get_nid(ne
);
2167 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
2171 offset
= lookup_journal_in_cursum(journal
,
2172 NAT_JOURNAL
, nid
, 1);
2173 f2fs_bug_on(sbi
, offset
< 0);
2174 raw_ne
= &nat_in_journal(journal
, offset
);
2175 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2177 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2179 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2181 __clear_nat_cache_dirty(NM_I(sbi
), ne
);
2182 if (nat_get_blkaddr(ne
) == NULL_ADDR
)
2183 add_free_nid(sbi
, nid
, false);
2187 up_write(&curseg
->journal_rwsem
);
2189 f2fs_put_page(page
, 1);
2191 f2fs_bug_on(sbi
, set
->entry_cnt
);
2193 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2194 kmem_cache_free(nat_entry_set_slab
, set
);
2198 * This function is called during the checkpointing process.
2200 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
2202 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2203 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2204 struct f2fs_journal
*journal
= curseg
->journal
;
2205 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2206 struct nat_entry_set
*set
, *tmp
;
2211 if (!nm_i
->dirty_nat_cnt
)
2214 down_write(&nm_i
->nat_tree_lock
);
2217 * if there are no enough space in journal to store dirty nat
2218 * entries, remove all entries from journal and merge them
2219 * into nat entry set.
2221 if (!__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2222 remove_nats_in_journal(sbi
);
2224 while ((found
= __gang_lookup_nat_set(nm_i
,
2225 set_idx
, SETVEC_SIZE
, setvec
))) {
2227 set_idx
= setvec
[found
- 1]->set
+ 1;
2228 for (idx
= 0; idx
< found
; idx
++)
2229 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2230 MAX_NAT_JENTRIES(journal
));
2233 /* flush dirty nats in nat entry set */
2234 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2235 __flush_nat_entry_set(sbi
, set
);
2237 up_write(&nm_i
->nat_tree_lock
);
2239 f2fs_bug_on(sbi
, nm_i
->dirty_nat_cnt
);
2242 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2244 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2245 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2246 unsigned char *version_bitmap
;
2247 unsigned int nat_segs
, nat_blocks
;
2249 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2251 /* segment_count_nat includes pair segment so divide to 2. */
2252 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2253 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2255 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
2257 /* not used nids: 0, node, meta, (and root counted as valid node) */
2258 nm_i
->available_nids
= nm_i
->max_nid
- F2FS_RESERVED_NODE_NUM
;
2261 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2262 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2263 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2265 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2266 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2267 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2268 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2269 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2271 mutex_init(&nm_i
->build_lock
);
2272 spin_lock_init(&nm_i
->free_nid_list_lock
);
2273 init_rwsem(&nm_i
->nat_tree_lock
);
2275 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2276 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2277 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2278 if (!version_bitmap
)
2281 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2283 if (!nm_i
->nat_bitmap
)
2288 int build_node_manager(struct f2fs_sb_info
*sbi
)
2292 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
2296 err
= init_node_manager(sbi
);
2300 build_free_nids(sbi
);
2304 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2306 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2307 struct free_nid
*i
, *next_i
;
2308 struct nat_entry
*natvec
[NATVEC_SIZE
];
2309 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2316 /* destroy free nid list */
2317 spin_lock(&nm_i
->free_nid_list_lock
);
2318 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2319 f2fs_bug_on(sbi
, i
->state
== NID_ALLOC
);
2320 __del_from_free_nid_list(nm_i
, i
);
2322 spin_unlock(&nm_i
->free_nid_list_lock
);
2323 kmem_cache_free(free_nid_slab
, i
);
2324 spin_lock(&nm_i
->free_nid_list_lock
);
2326 f2fs_bug_on(sbi
, nm_i
->fcnt
);
2327 spin_unlock(&nm_i
->free_nid_list_lock
);
2329 /* destroy nat cache */
2330 down_write(&nm_i
->nat_tree_lock
);
2331 while ((found
= __gang_lookup_nat_cache(nm_i
,
2332 nid
, NATVEC_SIZE
, natvec
))) {
2335 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2336 for (idx
= 0; idx
< found
; idx
++)
2337 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2339 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2341 /* destroy nat set cache */
2343 while ((found
= __gang_lookup_nat_set(nm_i
,
2344 nid
, SETVEC_SIZE
, setvec
))) {
2347 nid
= setvec
[found
- 1]->set
+ 1;
2348 for (idx
= 0; idx
< found
; idx
++) {
2349 /* entry_cnt is not zero, when cp_error was occurred */
2350 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2351 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2352 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2355 up_write(&nm_i
->nat_tree_lock
);
2357 kfree(nm_i
->nat_bitmap
);
2358 sbi
->nm_info
= NULL
;
2362 int __init
create_node_manager_caches(void)
2364 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2365 sizeof(struct nat_entry
));
2366 if (!nat_entry_slab
)
2369 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2370 sizeof(struct free_nid
));
2372 goto destroy_nat_entry
;
2374 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2375 sizeof(struct nat_entry_set
));
2376 if (!nat_entry_set_slab
)
2377 goto destroy_free_nid
;
2381 kmem_cache_destroy(free_nid_slab
);
2383 kmem_cache_destroy(nat_entry_slab
);
2388 void destroy_node_manager_caches(void)
2390 kmem_cache_destroy(nat_entry_set_slab
);
2391 kmem_cache_destroy(free_nid_slab
);
2392 kmem_cache_destroy(nat_entry_slab
);