2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
30 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/preempt.h>
36 #include <linux/spinlock.h>
37 #include <linux/memblock.h>
39 #include <asm/tlbflush.h>
41 #include <asm/code-patching.h>
45 #ifdef CONFIG_PPC_BOOK3E
46 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
] = {
50 .enc
= BOOK3E_PAGESZ_4K
,
54 .enc
= BOOK3E_PAGESZ_16K
,
59 .enc
= BOOK3E_PAGESZ_64K
,
63 .enc
= BOOK3E_PAGESZ_1M
,
68 .enc
= BOOK3E_PAGESZ_16M
,
72 .enc
= BOOK3E_PAGESZ_256M
,
76 .enc
= BOOK3E_PAGESZ_1GB
,
79 static inline int mmu_get_tsize(int psize
)
81 return mmu_psize_defs
[psize
].enc
;
84 static inline int mmu_get_tsize(int psize
)
86 /* This isn't used on !Book3E for now */
91 /* The variables below are currently only used on 64-bit Book3E
92 * though this will probably be made common with other nohash
93 * implementations at some point
97 int mmu_linear_psize
; /* Page size used for the linear mapping */
98 int mmu_pte_psize
; /* Page size used for PTE pages */
99 int mmu_vmemmap_psize
; /* Page size used for the virtual mem map */
100 int book3e_htw_enabled
; /* Is HW tablewalk enabled ? */
101 unsigned long linear_map_top
; /* Top of linear mapping */
103 #endif /* CONFIG_PPC64 */
106 * Base TLB flushing operations:
108 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
109 * - flush_tlb_page(vma, vmaddr) flushes one page
110 * - flush_tlb_range(vma, start, end) flushes a range of pages
111 * - flush_tlb_kernel_range(start, end) flushes kernel pages
113 * - local_* variants of page and mm only apply to the current
118 * These are the base non-SMP variants of page and mm flushing
120 void local_flush_tlb_mm(struct mm_struct
*mm
)
125 pid
= mm
->context
.id
;
126 if (pid
!= MMU_NO_CONTEXT
)
130 EXPORT_SYMBOL(local_flush_tlb_mm
);
132 void __local_flush_tlb_page(struct mm_struct
*mm
, unsigned long vmaddr
,
138 pid
= mm
? mm
->context
.id
: 0;
139 if (pid
!= MMU_NO_CONTEXT
)
140 _tlbil_va(vmaddr
, pid
, tsize
, ind
);
144 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long vmaddr
)
146 __local_flush_tlb_page(vma
? vma
->vm_mm
: NULL
, vmaddr
,
147 mmu_get_tsize(mmu_virtual_psize
), 0);
149 EXPORT_SYMBOL(local_flush_tlb_page
);
152 * And here are the SMP non-local implementations
156 static DEFINE_RAW_SPINLOCK(tlbivax_lock
);
158 static int mm_is_core_local(struct mm_struct
*mm
)
160 return cpumask_subset(mm_cpumask(mm
),
161 topology_thread_cpumask(smp_processor_id()));
164 struct tlb_flush_param
{
171 static void do_flush_tlb_mm_ipi(void *param
)
173 struct tlb_flush_param
*p
= param
;
175 _tlbil_pid(p
? p
->pid
: 0);
178 static void do_flush_tlb_page_ipi(void *param
)
180 struct tlb_flush_param
*p
= param
;
182 _tlbil_va(p
->addr
, p
->pid
, p
->tsize
, p
->ind
);
186 /* Note on invalidations and PID:
188 * We snapshot the PID with preempt disabled. At this point, it can still
189 * change either because:
190 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
191 * - we are invaliating some target that isn't currently running here
192 * and is concurrently acquiring a new PID on another CPU
193 * - some other CPU is re-acquiring a lost PID for this mm
196 * However, this shouldn't be a problem as we only guarantee
197 * invalidation of TLB entries present prior to this call, so we
198 * don't care about the PID changing, and invalidating a stale PID
199 * is generally harmless.
202 void flush_tlb_mm(struct mm_struct
*mm
)
207 pid
= mm
->context
.id
;
208 if (unlikely(pid
== MMU_NO_CONTEXT
))
210 if (!mm_is_core_local(mm
)) {
211 struct tlb_flush_param p
= { .pid
= pid
};
212 /* Ignores smp_processor_id() even if set. */
213 smp_call_function_many(mm_cpumask(mm
),
214 do_flush_tlb_mm_ipi
, &p
, 1);
220 EXPORT_SYMBOL(flush_tlb_mm
);
222 void __flush_tlb_page(struct mm_struct
*mm
, unsigned long vmaddr
,
225 struct cpumask
*cpu_mask
;
229 pid
= mm
? mm
->context
.id
: 0;
230 if (unlikely(pid
== MMU_NO_CONTEXT
))
232 cpu_mask
= mm_cpumask(mm
);
233 if (!mm_is_core_local(mm
)) {
234 /* If broadcast tlbivax is supported, use it */
235 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST
)) {
236 int lock
= mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL
);
238 raw_spin_lock(&tlbivax_lock
);
239 _tlbivax_bcast(vmaddr
, pid
, tsize
, ind
);
241 raw_spin_unlock(&tlbivax_lock
);
244 struct tlb_flush_param p
= {
250 /* Ignores smp_processor_id() even if set in cpu_mask */
251 smp_call_function_many(cpu_mask
,
252 do_flush_tlb_page_ipi
, &p
, 1);
255 _tlbil_va(vmaddr
, pid
, tsize
, ind
);
260 void flush_tlb_page(struct vm_area_struct
*vma
, unsigned long vmaddr
)
262 __flush_tlb_page(vma
? vma
->vm_mm
: NULL
, vmaddr
,
263 mmu_get_tsize(mmu_virtual_psize
), 0);
265 EXPORT_SYMBOL(flush_tlb_page
);
267 #endif /* CONFIG_SMP */
270 * Flush kernel TLB entries in the given range
272 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
276 smp_call_function(do_flush_tlb_mm_ipi
, NULL
, 1);
283 EXPORT_SYMBOL(flush_tlb_kernel_range
);
286 * Currently, for range flushing, we just do a full mm flush. This should
287 * be optimized based on a threshold on the size of the range, since
288 * some implementation can stack multiple tlbivax before a tlbsync but
289 * for now, we keep it that way
291 void flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
295 flush_tlb_mm(vma
->vm_mm
);
297 EXPORT_SYMBOL(flush_tlb_range
);
299 void tlb_flush(struct mmu_gather
*tlb
)
301 flush_tlb_mm(tlb
->mm
);
303 /* Push out batch of freed page tables */
308 * Below are functions specific to the 64-bit variant of Book3E though that
309 * may change in the future
315 * Handling of virtual linear page tables or indirect TLB entries
316 * flushing when PTE pages are freed
318 void tlb_flush_pgtable(struct mmu_gather
*tlb
, unsigned long address
)
320 int tsize
= mmu_psize_defs
[mmu_pte_psize
].enc
;
322 if (book3e_htw_enabled
) {
323 unsigned long start
= address
& PMD_MASK
;
324 unsigned long end
= address
+ PMD_SIZE
;
325 unsigned long size
= 1UL << mmu_psize_defs
[mmu_pte_psize
].shift
;
327 /* This isn't the most optimal, ideally we would factor out the
328 * while preempt & CPU mask mucking around, or even the IPI but
331 while (start
< end
) {
332 __flush_tlb_page(tlb
->mm
, start
, tsize
, 1);
336 unsigned long rmask
= 0xf000000000000000ul
;
337 unsigned long rid
= (address
& rmask
) | 0x1000000000000000ul
;
338 unsigned long vpte
= address
& ~rmask
;
340 #ifdef CONFIG_PPC_64K_PAGES
341 vpte
= (vpte
>> (PAGE_SHIFT
- 4)) & ~0xfffful
;
343 vpte
= (vpte
>> (PAGE_SHIFT
- 3)) & ~0xffful
;
346 __flush_tlb_page(tlb
->mm
, vpte
, tsize
, 0);
350 static void setup_page_sizes(void)
352 unsigned int tlb0cfg
;
357 #ifdef CONFIG_PPC_FSL_BOOK3E
358 unsigned int mmucfg
= mfspr(SPRN_MMUCFG
);
360 if (((mmucfg
& MMUCFG_MAVN
) == MMUCFG_MAVN_V1
) &&
361 (mmu_has_feature(MMU_FTR_TYPE_FSL_E
))) {
362 unsigned int tlb1cfg
= mfspr(SPRN_TLB1CFG
);
363 unsigned int min_pg
, max_pg
;
365 min_pg
= (tlb1cfg
& TLBnCFG_MINSIZE
) >> TLBnCFG_MINSIZE_SHIFT
;
366 max_pg
= (tlb1cfg
& TLBnCFG_MAXSIZE
) >> TLBnCFG_MAXSIZE_SHIFT
;
368 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
369 struct mmu_psize_def
*def
;
372 def
= &mmu_psize_defs
[psize
];
378 /* adjust to be in terms of 4^shift Kb */
379 shift
= (shift
- 10) >> 1;
381 if ((shift
>= min_pg
) && (shift
<= max_pg
))
382 def
->flags
|= MMU_PAGE_SIZE_DIRECT
;
389 tlb0cfg
= mfspr(SPRN_TLB0CFG
);
390 tlb0ps
= mfspr(SPRN_TLB0PS
);
391 eptcfg
= mfspr(SPRN_EPTCFG
);
393 /* Look for supported direct sizes */
394 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
395 struct mmu_psize_def
*def
= &mmu_psize_defs
[psize
];
397 if (tlb0ps
& (1U << (def
->shift
- 10)))
398 def
->flags
|= MMU_PAGE_SIZE_DIRECT
;
401 /* Indirect page sizes supported ? */
402 if ((tlb0cfg
& TLBnCFG_IND
) == 0)
405 /* Now, we only deal with one IND page size for each
406 * direct size. Hopefully all implementations today are
407 * unambiguous, but we might want to be careful in the
410 for (i
= 0; i
< 3; i
++) {
411 unsigned int ps
, sps
;
419 for (psize
= 0; psize
< MMU_PAGE_COUNT
; psize
++) {
420 struct mmu_psize_def
*def
= &mmu_psize_defs
[psize
];
422 if (ps
== (def
->shift
- 10))
423 def
->flags
|= MMU_PAGE_SIZE_INDIRECT
;
424 if (sps
== (def
->shift
- 10))
430 /* Cleanup array and print summary */
431 pr_info("MMU: Supported page sizes\n");
432 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
433 struct mmu_psize_def
*def
= &mmu_psize_defs
[psize
];
434 const char *__page_type_names
[] = {
440 if (def
->flags
== 0) {
444 pr_info(" %8ld KB as %s\n", 1ul << (def
->shift
- 10),
445 __page_type_names
[def
->flags
& 0x3]);
449 static void setup_mmu_htw(void)
451 extern unsigned int interrupt_base_book3e
;
452 extern unsigned int exc_data_tlb_miss_htw_book3e
;
453 extern unsigned int exc_instruction_tlb_miss_htw_book3e
;
455 unsigned int *ibase
= &interrupt_base_book3e
;
457 /* Check if HW tablewalk is present, and if yes, enable it by:
459 * - patching the TLB miss handlers to branch to the
460 * one dedicates to it
462 * - setting the global book3e_htw_enabled
464 unsigned int tlb0cfg
= mfspr(SPRN_TLB0CFG
);
466 if ((tlb0cfg
& TLBnCFG_IND
) &&
467 (tlb0cfg
& TLBnCFG_PT
)) {
468 /* Our exceptions vectors start with a NOP and -then- a branch
469 * to deal with single stepping from userspace which stops on
470 * the second instruction. Thus we need to patch the second
471 * instruction of the exception, not the first one
473 patch_branch(ibase
+ (0x1c0 / 4) + 1,
474 (unsigned long)&exc_data_tlb_miss_htw_book3e
, 0);
475 patch_branch(ibase
+ (0x1e0 / 4) + 1,
476 (unsigned long)&exc_instruction_tlb_miss_htw_book3e
, 0);
477 book3e_htw_enabled
= 1;
479 pr_info("MMU: Book3E Page Tables %s\n",
480 book3e_htw_enabled
? "Enabled" : "Disabled");
484 * Early initialization of the MMU TLB code
486 static void __early_init_mmu(int boot_cpu
)
490 /* XXX This will have to be decided at runtime, but right
491 * now our boot and TLB miss code hard wires it. Ideally
492 * we should find out a suitable page size and patch the
493 * TLB miss code (either that or use the PACA to store
496 mmu_linear_psize
= MMU_PAGE_1G
;
498 /* XXX This should be decided at runtime based on supported
499 * page sizes in the TLB, but for now let's assume 16M is
500 * always there and a good fit (which it probably is)
502 mmu_vmemmap_psize
= MMU_PAGE_16M
;
504 /* XXX This code only checks for TLB 0 capabilities and doesn't
505 * check what page size combos are supported by the HW. It
506 * also doesn't handle the case where a separate array holds
507 * the IND entries from the array loaded by the PT.
510 /* Look for supported page sizes */
513 /* Look for HW tablewalk support */
517 /* Set MAS4 based on page table setting */
519 mas4
= 0x4 << MAS4_WIMGED_SHIFT
;
520 if (book3e_htw_enabled
) {
521 mas4
|= mas4
| MAS4_INDD
;
522 #ifdef CONFIG_PPC_64K_PAGES
523 mas4
|= BOOK3E_PAGESZ_256M
<< MAS4_TSIZED_SHIFT
;
524 mmu_pte_psize
= MMU_PAGE_256M
;
526 mas4
|= BOOK3E_PAGESZ_1M
<< MAS4_TSIZED_SHIFT
;
527 mmu_pte_psize
= MMU_PAGE_1M
;
530 #ifdef CONFIG_PPC_64K_PAGES
531 mas4
|= BOOK3E_PAGESZ_64K
<< MAS4_TSIZED_SHIFT
;
533 mas4
|= BOOK3E_PAGESZ_4K
<< MAS4_TSIZED_SHIFT
;
535 mmu_pte_psize
= mmu_virtual_psize
;
537 mtspr(SPRN_MAS4
, mas4
);
539 /* Set the global containing the top of the linear mapping
540 * for use by the TLB miss code
542 linear_map_top
= memblock_end_of_DRAM();
544 #ifdef CONFIG_PPC_FSL_BOOK3E
545 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E
)) {
546 unsigned int num_cams
;
548 /* use a quarter of the TLBCAM for bolted linear map */
549 num_cams
= (mfspr(SPRN_TLB1CFG
) & TLBnCFG_N_ENTRY
) / 4;
550 linear_map_top
= map_mem_in_cams(linear_map_top
, num_cams
);
552 /* limit memory so we dont have linear faults */
553 memblock_enforce_memory_limit(linear_map_top
);
558 /* A sync won't hurt us after mucking around with
559 * the MMU configuration
563 memblock_set_current_limit(linear_map_top
);
566 void __init
early_init_mmu(void)
571 void __cpuinit
early_init_mmu_secondary(void)
576 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
577 phys_addr_t first_memblock_size
)
579 /* On Embedded 64-bit, we adjust the RMA size to match
580 * the bolted TLB entry. We know for now that only 1G
581 * entries are supported though that may eventually
582 * change. We crop it to the size of the first MEMBLOCK to
583 * avoid going over total available memory just in case...
585 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
587 /* Finally limit subsequent allocations */
588 memblock_set_current_limit(first_memblock_base
+ ppc64_rma_size
);
590 #endif /* CONFIG_PPC64 */