1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
20 #include "btrfs_inode.h"
22 #include "check-integrity.h"
24 #include "rcu-string.h"
28 static struct kmem_cache
*extent_state_cache
;
29 static struct kmem_cache
*extent_buffer_cache
;
30 static struct bio_set btrfs_bioset
;
32 static inline bool extent_state_in_tree(const struct extent_state
*state
)
34 return !RB_EMPTY_NODE(&state
->rb_node
);
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states
);
39 static DEFINE_SPINLOCK(leak_lock
);
41 static inline void btrfs_leak_debug_add(spinlock_t
*lock
,
42 struct list_head
*new,
43 struct list_head
*head
)
47 spin_lock_irqsave(lock
, flags
);
49 spin_unlock_irqrestore(lock
, flags
);
52 static inline void btrfs_leak_debug_del(spinlock_t
*lock
,
53 struct list_head
*entry
)
57 spin_lock_irqsave(lock
, flags
);
59 spin_unlock_irqrestore(lock
, flags
);
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info
*fs_info
)
64 struct extent_buffer
*eb
;
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
71 if (!fs_info
->allocated_ebs
.next
)
74 spin_lock_irqsave(&fs_info
->eb_leak_lock
, flags
);
75 while (!list_empty(&fs_info
->allocated_ebs
)) {
76 eb
= list_first_entry(&fs_info
->allocated_ebs
,
77 struct extent_buffer
, leak_list
);
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb
->start
, eb
->len
, atomic_read(&eb
->refs
), eb
->bflags
,
81 btrfs_header_owner(eb
));
82 list_del(&eb
->leak_list
);
83 kmem_cache_free(extent_buffer_cache
, eb
);
85 spin_unlock_irqrestore(&fs_info
->eb_leak_lock
, flags
);
88 static inline void btrfs_extent_state_leak_debug_check(void)
90 struct extent_state
*state
;
92 while (!list_empty(&states
)) {
93 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state
->start
, state
->end
, state
->state
,
96 extent_state_in_tree(state
),
97 refcount_read(&state
->refs
));
98 list_del(&state
->leak_list
);
99 kmem_cache_free(extent_state_cache
, state
);
103 #define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
106 struct extent_io_tree
*tree
, u64 start
, u64 end
)
108 struct inode
*inode
= tree
->private_data
;
111 if (!inode
|| !is_data_inode(inode
))
114 isize
= i_size_read(inode
);
115 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
116 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
124 #define btrfs_extent_state_leak_debug_check() do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
131 struct rb_node rb_node
;
134 struct extent_page_data
{
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
139 unsigned int extent_locked
:1;
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io
:1;
145 static int add_extent_changeset(struct extent_state
*state
, u32 bits
,
146 struct extent_changeset
*changeset
,
153 if (set
&& (state
->state
& bits
) == bits
)
155 if (!set
&& (state
->state
& bits
) == 0)
157 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
158 ret
= ulist_add(&changeset
->range_changed
, state
->start
, state
->end
,
163 int __must_check
submit_one_bio(struct bio
*bio
, int mirror_num
,
164 unsigned long bio_flags
)
166 blk_status_t ret
= 0;
167 struct extent_io_tree
*tree
= bio
->bi_private
;
169 bio
->bi_private
= NULL
;
171 if (is_data_inode(tree
->private_data
))
172 ret
= btrfs_submit_data_bio(tree
->private_data
, bio
, mirror_num
,
175 ret
= btrfs_submit_metadata_bio(tree
->private_data
, bio
,
176 mirror_num
, bio_flags
);
178 return blk_status_to_errno(ret
);
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data
*epd
, int ret
)
185 epd
->bio
->bi_status
= errno_to_blk_status(ret
);
192 * Submit bio from extent page data via submit_one_bio
194 * Return 0 if everything is OK.
195 * Return <0 for error.
197 static int __must_check
flush_write_bio(struct extent_page_data
*epd
)
202 ret
= submit_one_bio(epd
->bio
, 0, 0);
204 * Clean up of epd->bio is handled by its endio function.
205 * And endio is either triggered by successful bio execution
206 * or the error handler of submit bio hook.
207 * So at this point, no matter what happened, we don't need
208 * to clean up epd->bio.
215 int __init
extent_state_cache_init(void)
217 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
218 sizeof(struct extent_state
), 0,
219 SLAB_MEM_SPREAD
, NULL
);
220 if (!extent_state_cache
)
225 int __init
extent_io_init(void)
227 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
228 sizeof(struct extent_buffer
), 0,
229 SLAB_MEM_SPREAD
, NULL
);
230 if (!extent_buffer_cache
)
233 if (bioset_init(&btrfs_bioset
, BIO_POOL_SIZE
,
234 offsetof(struct btrfs_io_bio
, bio
),
236 goto free_buffer_cache
;
238 if (bioset_integrity_create(&btrfs_bioset
, BIO_POOL_SIZE
))
244 bioset_exit(&btrfs_bioset
);
247 kmem_cache_destroy(extent_buffer_cache
);
248 extent_buffer_cache
= NULL
;
252 void __cold
extent_state_cache_exit(void)
254 btrfs_extent_state_leak_debug_check();
255 kmem_cache_destroy(extent_state_cache
);
258 void __cold
extent_io_exit(void)
261 * Make sure all delayed rcu free are flushed before we
265 kmem_cache_destroy(extent_buffer_cache
);
266 bioset_exit(&btrfs_bioset
);
270 * For the file_extent_tree, we want to hold the inode lock when we lookup and
271 * update the disk_i_size, but lockdep will complain because our io_tree we hold
272 * the tree lock and get the inode lock when setting delalloc. These two things
273 * are unrelated, so make a class for the file_extent_tree so we don't get the
274 * two locking patterns mixed up.
276 static struct lock_class_key file_extent_tree_class
;
278 void extent_io_tree_init(struct btrfs_fs_info
*fs_info
,
279 struct extent_io_tree
*tree
, unsigned int owner
,
282 tree
->fs_info
= fs_info
;
283 tree
->state
= RB_ROOT
;
284 tree
->dirty_bytes
= 0;
285 spin_lock_init(&tree
->lock
);
286 tree
->private_data
= private_data
;
288 if (owner
== IO_TREE_INODE_FILE_EXTENT
)
289 lockdep_set_class(&tree
->lock
, &file_extent_tree_class
);
292 void extent_io_tree_release(struct extent_io_tree
*tree
)
294 spin_lock(&tree
->lock
);
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
301 while (!RB_EMPTY_ROOT(&tree
->state
)) {
302 struct rb_node
*node
;
303 struct extent_state
*state
;
305 node
= rb_first(&tree
->state
);
306 state
= rb_entry(node
, struct extent_state
, rb_node
);
307 rb_erase(&state
->rb_node
, &tree
->state
);
308 RB_CLEAR_NODE(&state
->rb_node
);
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
313 ASSERT(!waitqueue_active(&state
->wq
));
314 free_extent_state(state
);
316 cond_resched_lock(&tree
->lock
);
318 spin_unlock(&tree
->lock
);
321 static struct extent_state
*alloc_extent_state(gfp_t mask
)
323 struct extent_state
*state
;
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
329 mask
&= ~(__GFP_DMA32
|__GFP_HIGHMEM
);
330 state
= kmem_cache_alloc(extent_state_cache
, mask
);
334 state
->failrec
= NULL
;
335 RB_CLEAR_NODE(&state
->rb_node
);
336 btrfs_leak_debug_add(&leak_lock
, &state
->leak_list
, &states
);
337 refcount_set(&state
->refs
, 1);
338 init_waitqueue_head(&state
->wq
);
339 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
343 void free_extent_state(struct extent_state
*state
)
347 if (refcount_dec_and_test(&state
->refs
)) {
348 WARN_ON(extent_state_in_tree(state
));
349 btrfs_leak_debug_del(&leak_lock
, &state
->leak_list
);
350 trace_free_extent_state(state
, _RET_IP_
);
351 kmem_cache_free(extent_state_cache
, state
);
355 static struct rb_node
*tree_insert(struct rb_root
*root
,
356 struct rb_node
*search_start
,
358 struct rb_node
*node
,
359 struct rb_node
***p_in
,
360 struct rb_node
**parent_in
)
363 struct rb_node
*parent
= NULL
;
364 struct tree_entry
*entry
;
366 if (p_in
&& parent_in
) {
372 p
= search_start
? &search_start
: &root
->rb_node
;
375 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
377 if (offset
< entry
->start
)
379 else if (offset
> entry
->end
)
386 rb_link_node(node
, parent
, p
);
387 rb_insert_color(node
, root
);
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
401 * @parent_ret - points to entry which would have been the parent of the entry,
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
409 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
410 struct rb_node
**next_ret
,
411 struct rb_node
**prev_ret
,
412 struct rb_node
***p_ret
,
413 struct rb_node
**parent_ret
)
415 struct rb_root
*root
= &tree
->state
;
416 struct rb_node
**n
= &root
->rb_node
;
417 struct rb_node
*prev
= NULL
;
418 struct rb_node
*orig_prev
= NULL
;
419 struct tree_entry
*entry
;
420 struct tree_entry
*prev_entry
= NULL
;
424 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
427 if (offset
< entry
->start
)
429 else if (offset
> entry
->end
)
442 while (prev
&& offset
> prev_entry
->end
) {
443 prev
= rb_next(prev
);
444 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
451 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
452 while (prev
&& offset
< prev_entry
->start
) {
453 prev
= rb_prev(prev
);
454 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
461 static inline struct rb_node
*
462 tree_search_for_insert(struct extent_io_tree
*tree
,
464 struct rb_node
***p_ret
,
465 struct rb_node
**parent_ret
)
467 struct rb_node
*next
= NULL
;
470 ret
= __etree_search(tree
, offset
, &next
, NULL
, p_ret
, parent_ret
);
476 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
479 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
489 * This should be called with the tree lock held.
491 static void merge_state(struct extent_io_tree
*tree
,
492 struct extent_state
*state
)
494 struct extent_state
*other
;
495 struct rb_node
*other_node
;
497 if (state
->state
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
500 other_node
= rb_prev(&state
->rb_node
);
502 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
503 if (other
->end
== state
->start
- 1 &&
504 other
->state
== state
->state
) {
505 if (tree
->private_data
&&
506 is_data_inode(tree
->private_data
))
507 btrfs_merge_delalloc_extent(tree
->private_data
,
509 state
->start
= other
->start
;
510 rb_erase(&other
->rb_node
, &tree
->state
);
511 RB_CLEAR_NODE(&other
->rb_node
);
512 free_extent_state(other
);
515 other_node
= rb_next(&state
->rb_node
);
517 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
518 if (other
->start
== state
->end
+ 1 &&
519 other
->state
== state
->state
) {
520 if (tree
->private_data
&&
521 is_data_inode(tree
->private_data
))
522 btrfs_merge_delalloc_extent(tree
->private_data
,
524 state
->end
= other
->end
;
525 rb_erase(&other
->rb_node
, &tree
->state
);
526 RB_CLEAR_NODE(&other
->rb_node
);
527 free_extent_state(other
);
532 static void set_state_bits(struct extent_io_tree
*tree
,
533 struct extent_state
*state
, u32
*bits
,
534 struct extent_changeset
*changeset
);
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
546 static int insert_state(struct extent_io_tree
*tree
,
547 struct extent_state
*state
, u64 start
, u64 end
,
549 struct rb_node
**parent
,
550 u32
*bits
, struct extent_changeset
*changeset
)
552 struct rb_node
*node
;
555 btrfs_err(tree
->fs_info
,
556 "insert state: end < start %llu %llu", end
, start
);
559 state
->start
= start
;
562 set_state_bits(tree
, state
, bits
, changeset
);
564 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
566 struct extent_state
*found
;
567 found
= rb_entry(node
, struct extent_state
, rb_node
);
568 btrfs_err(tree
->fs_info
,
569 "found node %llu %llu on insert of %llu %llu",
570 found
->start
, found
->end
, start
, end
);
573 merge_state(tree
, state
);
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
588 * The tree locks are not taken by this function. They need to be held
591 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
592 struct extent_state
*prealloc
, u64 split
)
594 struct rb_node
*node
;
596 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
597 btrfs_split_delalloc_extent(tree
->private_data
, orig
, split
);
599 prealloc
->start
= orig
->start
;
600 prealloc
->end
= split
- 1;
601 prealloc
->state
= orig
->state
;
604 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
605 &prealloc
->rb_node
, NULL
, NULL
);
607 free_extent_state(prealloc
);
613 static struct extent_state
*next_state(struct extent_state
*state
)
615 struct rb_node
*next
= rb_next(&state
->rb_node
);
617 return rb_entry(next
, struct extent_state
, rb_node
);
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
629 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
630 struct extent_state
*state
,
632 struct extent_changeset
*changeset
)
634 struct extent_state
*next
;
635 u32 bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
638 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
639 u64 range
= state
->end
- state
->start
+ 1;
640 WARN_ON(range
> tree
->dirty_bytes
);
641 tree
->dirty_bytes
-= range
;
644 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
645 btrfs_clear_delalloc_extent(tree
->private_data
, state
, bits
);
647 ret
= add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
649 state
->state
&= ~bits_to_clear
;
652 if (state
->state
== 0) {
653 next
= next_state(state
);
654 if (extent_state_in_tree(state
)) {
655 rb_erase(&state
->rb_node
, &tree
->state
);
656 RB_CLEAR_NODE(&state
->rb_node
);
657 free_extent_state(state
);
662 merge_state(tree
, state
);
663 next
= next_state(state
);
668 static struct extent_state
*
669 alloc_extent_state_atomic(struct extent_state
*prealloc
)
672 prealloc
= alloc_extent_state(GFP_ATOMIC
);
677 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
679 struct inode
*inode
= tree
->private_data
;
681 btrfs_panic(btrfs_sb(inode
->i_sb
), err
,
682 "locking error: extent tree was modified by another thread while locked");
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
693 * the range [start, end] is inclusive.
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
697 int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
698 u32 bits
, int wake
, int delete,
699 struct extent_state
**cached_state
,
700 gfp_t mask
, struct extent_changeset
*changeset
)
702 struct extent_state
*state
;
703 struct extent_state
*cached
;
704 struct extent_state
*prealloc
= NULL
;
705 struct rb_node
*node
;
710 btrfs_debug_check_extent_io_range(tree
, start
, end
);
711 trace_btrfs_clear_extent_bit(tree
, start
, end
- start
+ 1, bits
);
713 if (bits
& EXTENT_DELALLOC
)
714 bits
|= EXTENT_NORESERVE
;
717 bits
|= ~EXTENT_CTLBITS
;
719 if (bits
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
722 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
730 prealloc
= alloc_extent_state(mask
);
733 spin_lock(&tree
->lock
);
735 cached
= *cached_state
;
738 *cached_state
= NULL
;
742 if (cached
&& extent_state_in_tree(cached
) &&
743 cached
->start
<= start
&& cached
->end
> start
) {
745 refcount_dec(&cached
->refs
);
750 free_extent_state(cached
);
753 * this search will find the extents that end after
756 node
= tree_search(tree
, start
);
759 state
= rb_entry(node
, struct extent_state
, rb_node
);
761 if (state
->start
> end
)
763 WARN_ON(state
->end
< start
);
764 last_end
= state
->end
;
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state
->state
& bits
)) {
768 state
= next_state(state
);
773 * | ---- desired range ---- |
775 * | ------------- state -------------- |
777 * We need to split the extent we found, and may flip
778 * bits on second half.
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
788 if (state
->start
< start
) {
789 prealloc
= alloc_extent_state_atomic(prealloc
);
791 err
= split_state(tree
, state
, prealloc
, start
);
793 extent_io_tree_panic(tree
, err
);
798 if (state
->end
<= end
) {
799 state
= clear_state_bit(tree
, state
, &bits
, wake
,
806 * | ---- desired range ---- |
808 * We need to split the extent, and clear the bit
811 if (state
->start
<= end
&& state
->end
> end
) {
812 prealloc
= alloc_extent_state_atomic(prealloc
);
814 err
= split_state(tree
, state
, prealloc
, end
+ 1);
816 extent_io_tree_panic(tree
, err
);
821 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
827 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
829 if (last_end
== (u64
)-1)
831 start
= last_end
+ 1;
832 if (start
<= end
&& state
&& !need_resched())
838 spin_unlock(&tree
->lock
);
839 if (gfpflags_allow_blocking(mask
))
844 spin_unlock(&tree
->lock
);
846 free_extent_state(prealloc
);
852 static void wait_on_state(struct extent_io_tree
*tree
,
853 struct extent_state
*state
)
854 __releases(tree
->lock
)
855 __acquires(tree
->lock
)
858 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
859 spin_unlock(&tree
->lock
);
861 spin_lock(&tree
->lock
);
862 finish_wait(&state
->wq
, &wait
);
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
870 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
873 struct extent_state
*state
;
874 struct rb_node
*node
;
876 btrfs_debug_check_extent_io_range(tree
, start
, end
);
878 spin_lock(&tree
->lock
);
882 * this search will find all the extents that end after
885 node
= tree_search(tree
, start
);
890 state
= rb_entry(node
, struct extent_state
, rb_node
);
892 if (state
->start
> end
)
895 if (state
->state
& bits
) {
896 start
= state
->start
;
897 refcount_inc(&state
->refs
);
898 wait_on_state(tree
, state
);
899 free_extent_state(state
);
902 start
= state
->end
+ 1;
907 if (!cond_resched_lock(&tree
->lock
)) {
908 node
= rb_next(node
);
913 spin_unlock(&tree
->lock
);
916 static void set_state_bits(struct extent_io_tree
*tree
,
917 struct extent_state
*state
,
918 u32
*bits
, struct extent_changeset
*changeset
)
920 u32 bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
923 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
924 btrfs_set_delalloc_extent(tree
->private_data
, state
, bits
);
926 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
927 u64 range
= state
->end
- state
->start
+ 1;
928 tree
->dirty_bytes
+= range
;
930 ret
= add_extent_changeset(state
, bits_to_set
, changeset
, 1);
932 state
->state
|= bits_to_set
;
935 static void cache_state_if_flags(struct extent_state
*state
,
936 struct extent_state
**cached_ptr
,
939 if (cached_ptr
&& !(*cached_ptr
)) {
940 if (!flags
|| (state
->state
& flags
)) {
942 refcount_inc(&state
->refs
);
947 static void cache_state(struct extent_state
*state
,
948 struct extent_state
**cached_ptr
)
950 return cache_state_if_flags(state
, cached_ptr
,
951 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
962 * [start, end] is inclusive This takes the tree lock.
964 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, u32 bits
,
965 u32 exclusive_bits
, u64
*failed_start
,
966 struct extent_state
**cached_state
, gfp_t mask
,
967 struct extent_changeset
*changeset
)
969 struct extent_state
*state
;
970 struct extent_state
*prealloc
= NULL
;
971 struct rb_node
*node
;
973 struct rb_node
*parent
;
978 btrfs_debug_check_extent_io_range(tree
, start
, end
);
979 trace_btrfs_set_extent_bit(tree
, start
, end
- start
+ 1, bits
);
982 ASSERT(failed_start
);
984 ASSERT(failed_start
== NULL
);
986 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
988 * Don't care for allocation failure here because we might end
989 * up not needing the pre-allocated extent state at all, which
990 * is the case if we only have in the tree extent states that
991 * cover our input range and don't cover too any other range.
992 * If we end up needing a new extent state we allocate it later.
994 prealloc
= alloc_extent_state(mask
);
997 spin_lock(&tree
->lock
);
998 if (cached_state
&& *cached_state
) {
999 state
= *cached_state
;
1000 if (state
->start
<= start
&& state
->end
> start
&&
1001 extent_state_in_tree(state
)) {
1002 node
= &state
->rb_node
;
1007 * this search will find all the extents that end after
1010 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1012 prealloc
= alloc_extent_state_atomic(prealloc
);
1014 err
= insert_state(tree
, prealloc
, start
, end
,
1015 &p
, &parent
, &bits
, changeset
);
1017 extent_io_tree_panic(tree
, err
);
1019 cache_state(prealloc
, cached_state
);
1023 state
= rb_entry(node
, struct extent_state
, rb_node
);
1025 last_start
= state
->start
;
1026 last_end
= state
->end
;
1029 * | ---- desired range ---- |
1032 * Just lock what we found and keep going
1034 if (state
->start
== start
&& state
->end
<= end
) {
1035 if (state
->state
& exclusive_bits
) {
1036 *failed_start
= state
->start
;
1041 set_state_bits(tree
, state
, &bits
, changeset
);
1042 cache_state(state
, cached_state
);
1043 merge_state(tree
, state
);
1044 if (last_end
== (u64
)-1)
1046 start
= last_end
+ 1;
1047 state
= next_state(state
);
1048 if (start
< end
&& state
&& state
->start
== start
&&
1055 * | ---- desired range ---- |
1058 * | ------------- state -------------- |
1060 * We need to split the extent we found, and may flip bits on
1063 * If the extent we found extends past our
1064 * range, we just split and search again. It'll get split
1065 * again the next time though.
1067 * If the extent we found is inside our range, we set the
1068 * desired bit on it.
1070 if (state
->start
< start
) {
1071 if (state
->state
& exclusive_bits
) {
1072 *failed_start
= start
;
1078 * If this extent already has all the bits we want set, then
1079 * skip it, not necessary to split it or do anything with it.
1081 if ((state
->state
& bits
) == bits
) {
1082 start
= state
->end
+ 1;
1083 cache_state(state
, cached_state
);
1087 prealloc
= alloc_extent_state_atomic(prealloc
);
1089 err
= split_state(tree
, state
, prealloc
, start
);
1091 extent_io_tree_panic(tree
, err
);
1096 if (state
->end
<= end
) {
1097 set_state_bits(tree
, state
, &bits
, changeset
);
1098 cache_state(state
, cached_state
);
1099 merge_state(tree
, state
);
1100 if (last_end
== (u64
)-1)
1102 start
= last_end
+ 1;
1103 state
= next_state(state
);
1104 if (start
< end
&& state
&& state
->start
== start
&&
1111 * | ---- desired range ---- |
1112 * | state | or | state |
1114 * There's a hole, we need to insert something in it and
1115 * ignore the extent we found.
1117 if (state
->start
> start
) {
1119 if (end
< last_start
)
1122 this_end
= last_start
- 1;
1124 prealloc
= alloc_extent_state_atomic(prealloc
);
1128 * Avoid to free 'prealloc' if it can be merged with
1131 err
= insert_state(tree
, prealloc
, start
, this_end
,
1132 NULL
, NULL
, &bits
, changeset
);
1134 extent_io_tree_panic(tree
, err
);
1136 cache_state(prealloc
, cached_state
);
1138 start
= this_end
+ 1;
1142 * | ---- desired range ---- |
1144 * We need to split the extent, and set the bit
1147 if (state
->start
<= end
&& state
->end
> end
) {
1148 if (state
->state
& exclusive_bits
) {
1149 *failed_start
= start
;
1154 prealloc
= alloc_extent_state_atomic(prealloc
);
1156 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1158 extent_io_tree_panic(tree
, err
);
1160 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1161 cache_state(prealloc
, cached_state
);
1162 merge_state(tree
, prealloc
);
1170 spin_unlock(&tree
->lock
);
1171 if (gfpflags_allow_blocking(mask
))
1176 spin_unlock(&tree
->lock
);
1178 free_extent_state(prealloc
);
1185 * convert_extent_bit - convert all bits in a given range from one bit to
1187 * @tree: the io tree to search
1188 * @start: the start offset in bytes
1189 * @end: the end offset in bytes (inclusive)
1190 * @bits: the bits to set in this range
1191 * @clear_bits: the bits to clear in this range
1192 * @cached_state: state that we're going to cache
1194 * This will go through and set bits for the given range. If any states exist
1195 * already in this range they are set with the given bit and cleared of the
1196 * clear_bits. This is only meant to be used by things that are mergeable, ie
1197 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1198 * boundary bits like LOCK.
1200 * All allocations are done with GFP_NOFS.
1202 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1203 u32 bits
, u32 clear_bits
,
1204 struct extent_state
**cached_state
)
1206 struct extent_state
*state
;
1207 struct extent_state
*prealloc
= NULL
;
1208 struct rb_node
*node
;
1210 struct rb_node
*parent
;
1214 bool first_iteration
= true;
1216 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1217 trace_btrfs_convert_extent_bit(tree
, start
, end
- start
+ 1, bits
,
1223 * Best effort, don't worry if extent state allocation fails
1224 * here for the first iteration. We might have a cached state
1225 * that matches exactly the target range, in which case no
1226 * extent state allocations are needed. We'll only know this
1227 * after locking the tree.
1229 prealloc
= alloc_extent_state(GFP_NOFS
);
1230 if (!prealloc
&& !first_iteration
)
1234 spin_lock(&tree
->lock
);
1235 if (cached_state
&& *cached_state
) {
1236 state
= *cached_state
;
1237 if (state
->start
<= start
&& state
->end
> start
&&
1238 extent_state_in_tree(state
)) {
1239 node
= &state
->rb_node
;
1245 * this search will find all the extents that end after
1248 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1250 prealloc
= alloc_extent_state_atomic(prealloc
);
1255 err
= insert_state(tree
, prealloc
, start
, end
,
1256 &p
, &parent
, &bits
, NULL
);
1258 extent_io_tree_panic(tree
, err
);
1259 cache_state(prealloc
, cached_state
);
1263 state
= rb_entry(node
, struct extent_state
, rb_node
);
1265 last_start
= state
->start
;
1266 last_end
= state
->end
;
1269 * | ---- desired range ---- |
1272 * Just lock what we found and keep going
1274 if (state
->start
== start
&& state
->end
<= end
) {
1275 set_state_bits(tree
, state
, &bits
, NULL
);
1276 cache_state(state
, cached_state
);
1277 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1278 if (last_end
== (u64
)-1)
1280 start
= last_end
+ 1;
1281 if (start
< end
&& state
&& state
->start
== start
&&
1288 * | ---- desired range ---- |
1291 * | ------------- state -------------- |
1293 * We need to split the extent we found, and may flip bits on
1296 * If the extent we found extends past our
1297 * range, we just split and search again. It'll get split
1298 * again the next time though.
1300 * If the extent we found is inside our range, we set the
1301 * desired bit on it.
1303 if (state
->start
< start
) {
1304 prealloc
= alloc_extent_state_atomic(prealloc
);
1309 err
= split_state(tree
, state
, prealloc
, start
);
1311 extent_io_tree_panic(tree
, err
);
1315 if (state
->end
<= end
) {
1316 set_state_bits(tree
, state
, &bits
, NULL
);
1317 cache_state(state
, cached_state
);
1318 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1320 if (last_end
== (u64
)-1)
1322 start
= last_end
+ 1;
1323 if (start
< end
&& state
&& state
->start
== start
&&
1330 * | ---- desired range ---- |
1331 * | state | or | state |
1333 * There's a hole, we need to insert something in it and
1334 * ignore the extent we found.
1336 if (state
->start
> start
) {
1338 if (end
< last_start
)
1341 this_end
= last_start
- 1;
1343 prealloc
= alloc_extent_state_atomic(prealloc
);
1350 * Avoid to free 'prealloc' if it can be merged with
1353 err
= insert_state(tree
, prealloc
, start
, this_end
,
1354 NULL
, NULL
, &bits
, NULL
);
1356 extent_io_tree_panic(tree
, err
);
1357 cache_state(prealloc
, cached_state
);
1359 start
= this_end
+ 1;
1363 * | ---- desired range ---- |
1365 * We need to split the extent, and set the bit
1368 if (state
->start
<= end
&& state
->end
> end
) {
1369 prealloc
= alloc_extent_state_atomic(prealloc
);
1375 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1377 extent_io_tree_panic(tree
, err
);
1379 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1380 cache_state(prealloc
, cached_state
);
1381 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1389 spin_unlock(&tree
->lock
);
1391 first_iteration
= false;
1395 spin_unlock(&tree
->lock
);
1397 free_extent_state(prealloc
);
1402 /* wrappers around set/clear extent bit */
1403 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1404 u32 bits
, struct extent_changeset
*changeset
)
1407 * We don't support EXTENT_LOCKED yet, as current changeset will
1408 * record any bits changed, so for EXTENT_LOCKED case, it will
1409 * either fail with -EEXIST or changeset will record the whole
1412 BUG_ON(bits
& EXTENT_LOCKED
);
1414 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, GFP_NOFS
,
1418 int set_extent_bits_nowait(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1421 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
,
1425 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1426 u32 bits
, int wake
, int delete,
1427 struct extent_state
**cached
)
1429 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1430 cached
, GFP_NOFS
, NULL
);
1433 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1434 u32 bits
, struct extent_changeset
*changeset
)
1437 * Don't support EXTENT_LOCKED case, same reason as
1438 * set_record_extent_bits().
1440 BUG_ON(bits
& EXTENT_LOCKED
);
1442 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, GFP_NOFS
,
1447 * either insert or lock state struct between start and end use mask to tell
1448 * us if waiting is desired.
1450 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1451 struct extent_state
**cached_state
)
1457 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
,
1458 EXTENT_LOCKED
, &failed_start
,
1459 cached_state
, GFP_NOFS
, NULL
);
1460 if (err
== -EEXIST
) {
1461 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1462 start
= failed_start
;
1465 WARN_ON(start
> end
);
1470 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1475 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1476 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1477 if (err
== -EEXIST
) {
1478 if (failed_start
> start
)
1479 clear_extent_bit(tree
, start
, failed_start
- 1,
1480 EXTENT_LOCKED
, 1, 0, NULL
);
1486 void extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1488 unsigned long index
= start
>> PAGE_SHIFT
;
1489 unsigned long end_index
= end
>> PAGE_SHIFT
;
1492 while (index
<= end_index
) {
1493 page
= find_get_page(inode
->i_mapping
, index
);
1494 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1495 clear_page_dirty_for_io(page
);
1501 void extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1503 unsigned long index
= start
>> PAGE_SHIFT
;
1504 unsigned long end_index
= end
>> PAGE_SHIFT
;
1507 while (index
<= end_index
) {
1508 page
= find_get_page(inode
->i_mapping
, index
);
1509 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1510 __set_page_dirty_nobuffers(page
);
1511 account_page_redirty(page
);
1517 /* find the first state struct with 'bits' set after 'start', and
1518 * return it. tree->lock must be held. NULL will returned if
1519 * nothing was found after 'start'
1521 static struct extent_state
*
1522 find_first_extent_bit_state(struct extent_io_tree
*tree
, u64 start
, u32 bits
)
1524 struct rb_node
*node
;
1525 struct extent_state
*state
;
1528 * this search will find all the extents that end after
1531 node
= tree_search(tree
, start
);
1536 state
= rb_entry(node
, struct extent_state
, rb_node
);
1537 if (state
->end
>= start
&& (state
->state
& bits
))
1540 node
= rb_next(node
);
1549 * Find the first offset in the io tree with one or more @bits set.
1551 * Note: If there are multiple bits set in @bits, any of them will match.
1553 * Return 0 if we find something, and update @start_ret and @end_ret.
1554 * Return 1 if we found nothing.
1556 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1557 u64
*start_ret
, u64
*end_ret
, u32 bits
,
1558 struct extent_state
**cached_state
)
1560 struct extent_state
*state
;
1563 spin_lock(&tree
->lock
);
1564 if (cached_state
&& *cached_state
) {
1565 state
= *cached_state
;
1566 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1567 while ((state
= next_state(state
)) != NULL
) {
1568 if (state
->state
& bits
)
1571 free_extent_state(*cached_state
);
1572 *cached_state
= NULL
;
1575 free_extent_state(*cached_state
);
1576 *cached_state
= NULL
;
1579 state
= find_first_extent_bit_state(tree
, start
, bits
);
1582 cache_state_if_flags(state
, cached_state
, 0);
1583 *start_ret
= state
->start
;
1584 *end_ret
= state
->end
;
1588 spin_unlock(&tree
->lock
);
1593 * find_contiguous_extent_bit: find a contiguous area of bits
1594 * @tree - io tree to check
1595 * @start - offset to start the search from
1596 * @start_ret - the first offset we found with the bits set
1597 * @end_ret - the final contiguous range of the bits that were set
1598 * @bits - bits to look for
1600 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1601 * to set bits appropriately, and then merge them again. During this time it
1602 * will drop the tree->lock, so use this helper if you want to find the actual
1603 * contiguous area for given bits. We will search to the first bit we find, and
1604 * then walk down the tree until we find a non-contiguous area. The area
1605 * returned will be the full contiguous area with the bits set.
1607 int find_contiguous_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1608 u64
*start_ret
, u64
*end_ret
, u32 bits
)
1610 struct extent_state
*state
;
1613 spin_lock(&tree
->lock
);
1614 state
= find_first_extent_bit_state(tree
, start
, bits
);
1616 *start_ret
= state
->start
;
1617 *end_ret
= state
->end
;
1618 while ((state
= next_state(state
)) != NULL
) {
1619 if (state
->start
> (*end_ret
+ 1))
1621 *end_ret
= state
->end
;
1625 spin_unlock(&tree
->lock
);
1630 * find_first_clear_extent_bit - find the first range that has @bits not set.
1631 * This range could start before @start.
1633 * @tree - the tree to search
1634 * @start - the offset at/after which the found extent should start
1635 * @start_ret - records the beginning of the range
1636 * @end_ret - records the end of the range (inclusive)
1637 * @bits - the set of bits which must be unset
1639 * Since unallocated range is also considered one which doesn't have the bits
1640 * set it's possible that @end_ret contains -1, this happens in case the range
1641 * spans (last_range_end, end of device]. In this case it's up to the caller to
1642 * trim @end_ret to the appropriate size.
1644 void find_first_clear_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1645 u64
*start_ret
, u64
*end_ret
, u32 bits
)
1647 struct extent_state
*state
;
1648 struct rb_node
*node
, *prev
= NULL
, *next
;
1650 spin_lock(&tree
->lock
);
1652 /* Find first extent with bits cleared */
1654 node
= __etree_search(tree
, start
, &next
, &prev
, NULL
, NULL
);
1655 if (!node
&& !next
&& !prev
) {
1657 * Tree is completely empty, send full range and let
1658 * caller deal with it
1663 } else if (!node
&& !next
) {
1665 * We are past the last allocated chunk, set start at
1666 * the end of the last extent.
1668 state
= rb_entry(prev
, struct extent_state
, rb_node
);
1669 *start_ret
= state
->end
+ 1;
1676 * At this point 'node' either contains 'start' or start is
1679 state
= rb_entry(node
, struct extent_state
, rb_node
);
1681 if (in_range(start
, state
->start
, state
->end
- state
->start
+ 1)) {
1682 if (state
->state
& bits
) {
1684 * |--range with bits sets--|
1688 start
= state
->end
+ 1;
1691 * 'start' falls within a range that doesn't
1692 * have the bits set, so take its start as
1693 * the beginning of the desired range
1695 * |--range with bits cleared----|
1699 *start_ret
= state
->start
;
1704 * |---prev range---|---hole/unset---|---node range---|
1710 * |---hole/unset--||--first node--|
1715 state
= rb_entry(prev
, struct extent_state
,
1717 *start_ret
= state
->end
+ 1;
1726 * Find the longest stretch from start until an entry which has the
1730 state
= rb_entry(node
, struct extent_state
, rb_node
);
1731 if (state
->end
>= start
&& !(state
->state
& bits
)) {
1732 *end_ret
= state
->end
;
1734 *end_ret
= state
->start
- 1;
1738 node
= rb_next(node
);
1743 spin_unlock(&tree
->lock
);
1747 * find a contiguous range of bytes in the file marked as delalloc, not
1748 * more than 'max_bytes'. start and end are used to return the range,
1750 * true is returned if we find something, false if nothing was in the tree
1752 bool btrfs_find_delalloc_range(struct extent_io_tree
*tree
, u64
*start
,
1753 u64
*end
, u64 max_bytes
,
1754 struct extent_state
**cached_state
)
1756 struct rb_node
*node
;
1757 struct extent_state
*state
;
1758 u64 cur_start
= *start
;
1760 u64 total_bytes
= 0;
1762 spin_lock(&tree
->lock
);
1765 * this search will find all the extents that end after
1768 node
= tree_search(tree
, cur_start
);
1775 state
= rb_entry(node
, struct extent_state
, rb_node
);
1776 if (found
&& (state
->start
!= cur_start
||
1777 (state
->state
& EXTENT_BOUNDARY
))) {
1780 if (!(state
->state
& EXTENT_DELALLOC
)) {
1786 *start
= state
->start
;
1787 *cached_state
= state
;
1788 refcount_inc(&state
->refs
);
1792 cur_start
= state
->end
+ 1;
1793 node
= rb_next(node
);
1794 total_bytes
+= state
->end
- state
->start
+ 1;
1795 if (total_bytes
>= max_bytes
)
1801 spin_unlock(&tree
->lock
);
1805 static int __process_pages_contig(struct address_space
*mapping
,
1806 struct page
*locked_page
,
1807 pgoff_t start_index
, pgoff_t end_index
,
1808 unsigned long page_ops
, pgoff_t
*index_ret
);
1810 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1811 struct page
*locked_page
,
1814 unsigned long index
= start
>> PAGE_SHIFT
;
1815 unsigned long end_index
= end
>> PAGE_SHIFT
;
1817 ASSERT(locked_page
);
1818 if (index
== locked_page
->index
&& end_index
== index
)
1821 __process_pages_contig(inode
->i_mapping
, locked_page
, index
, end_index
,
1825 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1826 struct page
*locked_page
,
1830 unsigned long index
= delalloc_start
>> PAGE_SHIFT
;
1831 unsigned long index_ret
= index
;
1832 unsigned long end_index
= delalloc_end
>> PAGE_SHIFT
;
1835 ASSERT(locked_page
);
1836 if (index
== locked_page
->index
&& index
== end_index
)
1839 ret
= __process_pages_contig(inode
->i_mapping
, locked_page
, index
,
1840 end_index
, PAGE_LOCK
, &index_ret
);
1842 __unlock_for_delalloc(inode
, locked_page
, delalloc_start
,
1843 (u64
)index_ret
<< PAGE_SHIFT
);
1848 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1849 * more than @max_bytes. @Start and @end are used to return the range,
1851 * Return: true if we find something
1852 * false if nothing was in the tree
1855 noinline_for_stack
bool find_lock_delalloc_range(struct inode
*inode
,
1856 struct page
*locked_page
, u64
*start
,
1859 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1860 u64 max_bytes
= BTRFS_MAX_EXTENT_SIZE
;
1864 struct extent_state
*cached_state
= NULL
;
1869 /* step one, find a bunch of delalloc bytes starting at start */
1870 delalloc_start
= *start
;
1872 found
= btrfs_find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1873 max_bytes
, &cached_state
);
1874 if (!found
|| delalloc_end
<= *start
) {
1875 *start
= delalloc_start
;
1876 *end
= delalloc_end
;
1877 free_extent_state(cached_state
);
1882 * start comes from the offset of locked_page. We have to lock
1883 * pages in order, so we can't process delalloc bytes before
1886 if (delalloc_start
< *start
)
1887 delalloc_start
= *start
;
1890 * make sure to limit the number of pages we try to lock down
1892 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1893 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1895 /* step two, lock all the pages after the page that has start */
1896 ret
= lock_delalloc_pages(inode
, locked_page
,
1897 delalloc_start
, delalloc_end
);
1898 ASSERT(!ret
|| ret
== -EAGAIN
);
1899 if (ret
== -EAGAIN
) {
1900 /* some of the pages are gone, lets avoid looping by
1901 * shortening the size of the delalloc range we're searching
1903 free_extent_state(cached_state
);
1904 cached_state
= NULL
;
1906 max_bytes
= PAGE_SIZE
;
1915 /* step three, lock the state bits for the whole range */
1916 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, &cached_state
);
1918 /* then test to make sure it is all still delalloc */
1919 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1920 EXTENT_DELALLOC
, 1, cached_state
);
1922 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1924 __unlock_for_delalloc(inode
, locked_page
,
1925 delalloc_start
, delalloc_end
);
1929 free_extent_state(cached_state
);
1930 *start
= delalloc_start
;
1931 *end
= delalloc_end
;
1936 static int __process_pages_contig(struct address_space
*mapping
,
1937 struct page
*locked_page
,
1938 pgoff_t start_index
, pgoff_t end_index
,
1939 unsigned long page_ops
, pgoff_t
*index_ret
)
1941 unsigned long nr_pages
= end_index
- start_index
+ 1;
1942 unsigned long pages_processed
= 0;
1943 pgoff_t index
= start_index
;
1944 struct page
*pages
[16];
1949 if (page_ops
& PAGE_LOCK
) {
1950 ASSERT(page_ops
== PAGE_LOCK
);
1951 ASSERT(index_ret
&& *index_ret
== start_index
);
1954 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1955 mapping_set_error(mapping
, -EIO
);
1957 while (nr_pages
> 0) {
1958 ret
= find_get_pages_contig(mapping
, index
,
1959 min_t(unsigned long,
1960 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1963 * Only if we're going to lock these pages,
1964 * can we find nothing at @index.
1966 ASSERT(page_ops
& PAGE_LOCK
);
1971 for (i
= 0; i
< ret
; i
++) {
1972 if (page_ops
& PAGE_SET_PRIVATE2
)
1973 SetPagePrivate2(pages
[i
]);
1975 if (locked_page
&& pages
[i
] == locked_page
) {
1980 if (page_ops
& PAGE_CLEAR_DIRTY
)
1981 clear_page_dirty_for_io(pages
[i
]);
1982 if (page_ops
& PAGE_SET_WRITEBACK
)
1983 set_page_writeback(pages
[i
]);
1984 if (page_ops
& PAGE_SET_ERROR
)
1985 SetPageError(pages
[i
]);
1986 if (page_ops
& PAGE_END_WRITEBACK
)
1987 end_page_writeback(pages
[i
]);
1988 if (page_ops
& PAGE_UNLOCK
)
1989 unlock_page(pages
[i
]);
1990 if (page_ops
& PAGE_LOCK
) {
1991 lock_page(pages
[i
]);
1992 if (!PageDirty(pages
[i
]) ||
1993 pages
[i
]->mapping
!= mapping
) {
1994 unlock_page(pages
[i
]);
1995 for (; i
< ret
; i
++)
2009 if (err
&& index_ret
)
2010 *index_ret
= start_index
+ pages_processed
- 1;
2014 void extent_clear_unlock_delalloc(struct btrfs_inode
*inode
, u64 start
, u64 end
,
2015 struct page
*locked_page
,
2016 u32 clear_bits
, unsigned long page_ops
)
2018 clear_extent_bit(&inode
->io_tree
, start
, end
, clear_bits
, 1, 0, NULL
);
2020 __process_pages_contig(inode
->vfs_inode
.i_mapping
, locked_page
,
2021 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
,
2026 * count the number of bytes in the tree that have a given bit(s)
2027 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2028 * cached. The total number found is returned.
2030 u64
count_range_bits(struct extent_io_tree
*tree
,
2031 u64
*start
, u64 search_end
, u64 max_bytes
,
2032 u32 bits
, int contig
)
2034 struct rb_node
*node
;
2035 struct extent_state
*state
;
2036 u64 cur_start
= *start
;
2037 u64 total_bytes
= 0;
2041 if (WARN_ON(search_end
<= cur_start
))
2044 spin_lock(&tree
->lock
);
2045 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
2046 total_bytes
= tree
->dirty_bytes
;
2050 * this search will find all the extents that end after
2053 node
= tree_search(tree
, cur_start
);
2058 state
= rb_entry(node
, struct extent_state
, rb_node
);
2059 if (state
->start
> search_end
)
2061 if (contig
&& found
&& state
->start
> last
+ 1)
2063 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
2064 total_bytes
+= min(search_end
, state
->end
) + 1 -
2065 max(cur_start
, state
->start
);
2066 if (total_bytes
>= max_bytes
)
2069 *start
= max(cur_start
, state
->start
);
2073 } else if (contig
&& found
) {
2076 node
= rb_next(node
);
2081 spin_unlock(&tree
->lock
);
2086 * set the private field for a given byte offset in the tree. If there isn't
2087 * an extent_state there already, this does nothing.
2089 int set_state_failrec(struct extent_io_tree
*tree
, u64 start
,
2090 struct io_failure_record
*failrec
)
2092 struct rb_node
*node
;
2093 struct extent_state
*state
;
2096 spin_lock(&tree
->lock
);
2098 * this search will find all the extents that end after
2101 node
= tree_search(tree
, start
);
2106 state
= rb_entry(node
, struct extent_state
, rb_node
);
2107 if (state
->start
!= start
) {
2111 state
->failrec
= failrec
;
2113 spin_unlock(&tree
->lock
);
2117 struct io_failure_record
*get_state_failrec(struct extent_io_tree
*tree
, u64 start
)
2119 struct rb_node
*node
;
2120 struct extent_state
*state
;
2121 struct io_failure_record
*failrec
;
2123 spin_lock(&tree
->lock
);
2125 * this search will find all the extents that end after
2128 node
= tree_search(tree
, start
);
2130 failrec
= ERR_PTR(-ENOENT
);
2133 state
= rb_entry(node
, struct extent_state
, rb_node
);
2134 if (state
->start
!= start
) {
2135 failrec
= ERR_PTR(-ENOENT
);
2139 failrec
= state
->failrec
;
2141 spin_unlock(&tree
->lock
);
2146 * searches a range in the state tree for a given mask.
2147 * If 'filled' == 1, this returns 1 only if every extent in the tree
2148 * has the bits set. Otherwise, 1 is returned if any bit in the
2149 * range is found set.
2151 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
2152 u32 bits
, int filled
, struct extent_state
*cached
)
2154 struct extent_state
*state
= NULL
;
2155 struct rb_node
*node
;
2158 spin_lock(&tree
->lock
);
2159 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
2160 cached
->end
> start
)
2161 node
= &cached
->rb_node
;
2163 node
= tree_search(tree
, start
);
2164 while (node
&& start
<= end
) {
2165 state
= rb_entry(node
, struct extent_state
, rb_node
);
2167 if (filled
&& state
->start
> start
) {
2172 if (state
->start
> end
)
2175 if (state
->state
& bits
) {
2179 } else if (filled
) {
2184 if (state
->end
== (u64
)-1)
2187 start
= state
->end
+ 1;
2190 node
= rb_next(node
);
2197 spin_unlock(&tree
->lock
);
2202 * helper function to set a given page up to date if all the
2203 * extents in the tree for that page are up to date
2205 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
2207 u64 start
= page_offset(page
);
2208 u64 end
= start
+ PAGE_SIZE
- 1;
2209 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
2210 SetPageUptodate(page
);
2213 int free_io_failure(struct extent_io_tree
*failure_tree
,
2214 struct extent_io_tree
*io_tree
,
2215 struct io_failure_record
*rec
)
2220 set_state_failrec(failure_tree
, rec
->start
, NULL
);
2221 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2222 rec
->start
+ rec
->len
- 1,
2223 EXTENT_LOCKED
| EXTENT_DIRTY
);
2227 ret
= clear_extent_bits(io_tree
, rec
->start
,
2228 rec
->start
+ rec
->len
- 1,
2238 * this bypasses the standard btrfs submit functions deliberately, as
2239 * the standard behavior is to write all copies in a raid setup. here we only
2240 * want to write the one bad copy. so we do the mapping for ourselves and issue
2241 * submit_bio directly.
2242 * to avoid any synchronization issues, wait for the data after writing, which
2243 * actually prevents the read that triggered the error from finishing.
2244 * currently, there can be no more than two copies of every data bit. thus,
2245 * exactly one rewrite is required.
2247 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 ino
, u64 start
,
2248 u64 length
, u64 logical
, struct page
*page
,
2249 unsigned int pg_offset
, int mirror_num
)
2252 struct btrfs_device
*dev
;
2255 struct btrfs_bio
*bbio
= NULL
;
2258 ASSERT(!(fs_info
->sb
->s_flags
& SB_RDONLY
));
2259 BUG_ON(!mirror_num
);
2261 bio
= btrfs_io_bio_alloc(1);
2262 bio
->bi_iter
.bi_size
= 0;
2263 map_length
= length
;
2266 * Avoid races with device replace and make sure our bbio has devices
2267 * associated to its stripes that don't go away while we are doing the
2268 * read repair operation.
2270 btrfs_bio_counter_inc_blocked(fs_info
);
2271 if (btrfs_is_parity_mirror(fs_info
, logical
, length
)) {
2273 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2274 * to update all raid stripes, but here we just want to correct
2275 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2276 * stripe's dev and sector.
2278 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, logical
,
2279 &map_length
, &bbio
, 0);
2281 btrfs_bio_counter_dec(fs_info
);
2285 ASSERT(bbio
->mirror_num
== 1);
2287 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_WRITE
, logical
,
2288 &map_length
, &bbio
, mirror_num
);
2290 btrfs_bio_counter_dec(fs_info
);
2294 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2297 sector
= bbio
->stripes
[bbio
->mirror_num
- 1].physical
>> 9;
2298 bio
->bi_iter
.bi_sector
= sector
;
2299 dev
= bbio
->stripes
[bbio
->mirror_num
- 1].dev
;
2300 btrfs_put_bbio(bbio
);
2301 if (!dev
|| !dev
->bdev
||
2302 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
2303 btrfs_bio_counter_dec(fs_info
);
2307 bio_set_dev(bio
, dev
->bdev
);
2308 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
2309 bio_add_page(bio
, page
, length
, pg_offset
);
2311 if (btrfsic_submit_bio_wait(bio
)) {
2312 /* try to remap that extent elsewhere? */
2313 btrfs_bio_counter_dec(fs_info
);
2315 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2319 btrfs_info_rl_in_rcu(fs_info
,
2320 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2322 rcu_str_deref(dev
->name
), sector
);
2323 btrfs_bio_counter_dec(fs_info
);
2328 int btrfs_repair_eb_io_failure(const struct extent_buffer
*eb
, int mirror_num
)
2330 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2331 u64 start
= eb
->start
;
2332 int i
, num_pages
= num_extent_pages(eb
);
2335 if (sb_rdonly(fs_info
->sb
))
2338 for (i
= 0; i
< num_pages
; i
++) {
2339 struct page
*p
= eb
->pages
[i
];
2341 ret
= repair_io_failure(fs_info
, 0, start
, PAGE_SIZE
, start
, p
,
2342 start
- page_offset(p
), mirror_num
);
2352 * each time an IO finishes, we do a fast check in the IO failure tree
2353 * to see if we need to process or clean up an io_failure_record
2355 int clean_io_failure(struct btrfs_fs_info
*fs_info
,
2356 struct extent_io_tree
*failure_tree
,
2357 struct extent_io_tree
*io_tree
, u64 start
,
2358 struct page
*page
, u64 ino
, unsigned int pg_offset
)
2361 struct io_failure_record
*failrec
;
2362 struct extent_state
*state
;
2367 ret
= count_range_bits(failure_tree
, &private, (u64
)-1, 1,
2372 failrec
= get_state_failrec(failure_tree
, start
);
2373 if (IS_ERR(failrec
))
2376 BUG_ON(!failrec
->this_mirror
);
2378 if (failrec
->in_validation
) {
2379 /* there was no real error, just free the record */
2380 btrfs_debug(fs_info
,
2381 "clean_io_failure: freeing dummy error at %llu",
2385 if (sb_rdonly(fs_info
->sb
))
2388 spin_lock(&io_tree
->lock
);
2389 state
= find_first_extent_bit_state(io_tree
,
2392 spin_unlock(&io_tree
->lock
);
2394 if (state
&& state
->start
<= failrec
->start
&&
2395 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2396 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2398 if (num_copies
> 1) {
2399 repair_io_failure(fs_info
, ino
, start
, failrec
->len
,
2400 failrec
->logical
, page
, pg_offset
,
2401 failrec
->failed_mirror
);
2406 free_io_failure(failure_tree
, io_tree
, failrec
);
2412 * Can be called when
2413 * - hold extent lock
2414 * - under ordered extent
2415 * - the inode is freeing
2417 void btrfs_free_io_failure_record(struct btrfs_inode
*inode
, u64 start
, u64 end
)
2419 struct extent_io_tree
*failure_tree
= &inode
->io_failure_tree
;
2420 struct io_failure_record
*failrec
;
2421 struct extent_state
*state
, *next
;
2423 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2426 spin_lock(&failure_tree
->lock
);
2427 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2429 if (state
->start
> end
)
2432 ASSERT(state
->end
<= end
);
2434 next
= next_state(state
);
2436 failrec
= state
->failrec
;
2437 free_extent_state(state
);
2442 spin_unlock(&failure_tree
->lock
);
2445 static struct io_failure_record
*btrfs_get_io_failure_record(struct inode
*inode
,
2448 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2449 struct io_failure_record
*failrec
;
2450 struct extent_map
*em
;
2451 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2452 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2453 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2457 failrec
= get_state_failrec(failure_tree
, start
);
2458 if (!IS_ERR(failrec
)) {
2459 btrfs_debug(fs_info
,
2460 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2461 failrec
->logical
, failrec
->start
, failrec
->len
,
2462 failrec
->in_validation
);
2464 * when data can be on disk more than twice, add to failrec here
2465 * (e.g. with a list for failed_mirror) to make
2466 * clean_io_failure() clean all those errors at once.
2472 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2474 return ERR_PTR(-ENOMEM
);
2476 failrec
->start
= start
;
2477 failrec
->len
= end
- start
+ 1;
2478 failrec
->this_mirror
= 0;
2479 failrec
->bio_flags
= 0;
2480 failrec
->in_validation
= 0;
2482 read_lock(&em_tree
->lock
);
2483 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2485 read_unlock(&em_tree
->lock
);
2487 return ERR_PTR(-EIO
);
2490 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2491 free_extent_map(em
);
2494 read_unlock(&em_tree
->lock
);
2497 return ERR_PTR(-EIO
);
2500 logical
= start
- em
->start
;
2501 logical
= em
->block_start
+ logical
;
2502 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2503 logical
= em
->block_start
;
2504 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2505 extent_set_compress_type(&failrec
->bio_flags
, em
->compress_type
);
2508 btrfs_debug(fs_info
,
2509 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2510 logical
, start
, failrec
->len
);
2512 failrec
->logical
= logical
;
2513 free_extent_map(em
);
2515 /* Set the bits in the private failure tree */
2516 ret
= set_extent_bits(failure_tree
, start
, end
,
2517 EXTENT_LOCKED
| EXTENT_DIRTY
);
2519 ret
= set_state_failrec(failure_tree
, start
, failrec
);
2520 /* Set the bits in the inode's tree */
2521 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
);
2522 } else if (ret
< 0) {
2524 return ERR_PTR(ret
);
2530 static bool btrfs_check_repairable(struct inode
*inode
, bool needs_validation
,
2531 struct io_failure_record
*failrec
,
2534 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2537 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
2538 if (num_copies
== 1) {
2540 * we only have a single copy of the data, so don't bother with
2541 * all the retry and error correction code that follows. no
2542 * matter what the error is, it is very likely to persist.
2544 btrfs_debug(fs_info
,
2545 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2546 num_copies
, failrec
->this_mirror
, failed_mirror
);
2551 * there are two premises:
2552 * a) deliver good data to the caller
2553 * b) correct the bad sectors on disk
2555 if (needs_validation
) {
2557 * to fulfill b), we need to know the exact failing sectors, as
2558 * we don't want to rewrite any more than the failed ones. thus,
2559 * we need separate read requests for the failed bio
2561 * if the following BUG_ON triggers, our validation request got
2562 * merged. we need separate requests for our algorithm to work.
2564 BUG_ON(failrec
->in_validation
);
2565 failrec
->in_validation
= 1;
2566 failrec
->this_mirror
= failed_mirror
;
2569 * we're ready to fulfill a) and b) alongside. get a good copy
2570 * of the failed sector and if we succeed, we have setup
2571 * everything for repair_io_failure to do the rest for us.
2573 if (failrec
->in_validation
) {
2574 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2575 failrec
->in_validation
= 0;
2576 failrec
->this_mirror
= 0;
2578 failrec
->failed_mirror
= failed_mirror
;
2579 failrec
->this_mirror
++;
2580 if (failrec
->this_mirror
== failed_mirror
)
2581 failrec
->this_mirror
++;
2584 if (failrec
->this_mirror
> num_copies
) {
2585 btrfs_debug(fs_info
,
2586 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2587 num_copies
, failrec
->this_mirror
, failed_mirror
);
2594 static bool btrfs_io_needs_validation(struct inode
*inode
, struct bio
*bio
)
2597 const u32 blocksize
= inode
->i_sb
->s_blocksize
;
2600 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2601 * I/O error. In this case, we already know exactly which sector was
2602 * bad, so we don't need to validate.
2604 if (bio
->bi_status
== BLK_STS_OK
)
2608 * We need to validate each sector individually if the failed I/O was
2609 * for multiple sectors.
2611 * There are a few possible bios that can end up here:
2612 * 1. A buffered read bio, which is not cloned.
2613 * 2. A direct I/O read bio, which is cloned.
2614 * 3. A (buffered or direct) repair bio, which is not cloned.
2616 * For cloned bios (case 2), we can get the size from
2617 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2618 * it from the bvecs.
2620 if (bio_flagged(bio
, BIO_CLONED
)) {
2621 if (btrfs_io_bio(bio
)->iter
.bi_size
> blocksize
)
2624 struct bio_vec
*bvec
;
2627 bio_for_each_bvec_all(bvec
, bio
, i
) {
2628 len
+= bvec
->bv_len
;
2629 if (len
> blocksize
)
2636 blk_status_t
btrfs_submit_read_repair(struct inode
*inode
,
2637 struct bio
*failed_bio
, u32 bio_offset
,
2638 struct page
*page
, unsigned int pgoff
,
2639 u64 start
, u64 end
, int failed_mirror
,
2640 submit_bio_hook_t
*submit_bio_hook
)
2642 struct io_failure_record
*failrec
;
2643 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2644 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2645 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2646 struct btrfs_io_bio
*failed_io_bio
= btrfs_io_bio(failed_bio
);
2647 const int icsum
= bio_offset
>> fs_info
->sectorsize_bits
;
2648 bool need_validation
;
2649 struct bio
*repair_bio
;
2650 struct btrfs_io_bio
*repair_io_bio
;
2651 blk_status_t status
;
2653 btrfs_debug(fs_info
,
2654 "repair read error: read error at %llu", start
);
2656 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
2658 failrec
= btrfs_get_io_failure_record(inode
, start
, end
);
2659 if (IS_ERR(failrec
))
2660 return errno_to_blk_status(PTR_ERR(failrec
));
2662 need_validation
= btrfs_io_needs_validation(inode
, failed_bio
);
2664 if (!btrfs_check_repairable(inode
, need_validation
, failrec
,
2666 free_io_failure(failure_tree
, tree
, failrec
);
2667 return BLK_STS_IOERR
;
2670 repair_bio
= btrfs_io_bio_alloc(1);
2671 repair_io_bio
= btrfs_io_bio(repair_bio
);
2672 repair_bio
->bi_opf
= REQ_OP_READ
;
2673 if (need_validation
)
2674 repair_bio
->bi_opf
|= REQ_FAILFAST_DEV
;
2675 repair_bio
->bi_end_io
= failed_bio
->bi_end_io
;
2676 repair_bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2677 repair_bio
->bi_private
= failed_bio
->bi_private
;
2679 if (failed_io_bio
->csum
) {
2680 const u32 csum_size
= fs_info
->csum_size
;
2682 repair_io_bio
->csum
= repair_io_bio
->csum_inline
;
2683 memcpy(repair_io_bio
->csum
,
2684 failed_io_bio
->csum
+ csum_size
* icsum
, csum_size
);
2687 bio_add_page(repair_bio
, page
, failrec
->len
, pgoff
);
2688 repair_io_bio
->logical
= failrec
->start
;
2689 repair_io_bio
->iter
= repair_bio
->bi_iter
;
2691 btrfs_debug(btrfs_sb(inode
->i_sb
),
2692 "repair read error: submitting new read to mirror %d, in_validation=%d",
2693 failrec
->this_mirror
, failrec
->in_validation
);
2695 status
= submit_bio_hook(inode
, repair_bio
, failrec
->this_mirror
,
2696 failrec
->bio_flags
);
2698 free_io_failure(failure_tree
, tree
, failrec
);
2699 bio_put(repair_bio
);
2704 /* lots and lots of room for performance fixes in the end_bio funcs */
2706 void end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2708 int uptodate
= (err
== 0);
2711 btrfs_writepage_endio_finish_ordered(page
, start
, end
, uptodate
);
2714 ClearPageUptodate(page
);
2716 ret
= err
< 0 ? err
: -EIO
;
2717 mapping_set_error(page
->mapping
, ret
);
2722 * after a writepage IO is done, we need to:
2723 * clear the uptodate bits on error
2724 * clear the writeback bits in the extent tree for this IO
2725 * end_page_writeback if the page has no more pending IO
2727 * Scheduling is not allowed, so the extent state tree is expected
2728 * to have one and only one object corresponding to this IO.
2730 static void end_bio_extent_writepage(struct bio
*bio
)
2732 int error
= blk_status_to_errno(bio
->bi_status
);
2733 struct bio_vec
*bvec
;
2736 struct bvec_iter_all iter_all
;
2738 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2739 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2740 struct page
*page
= bvec
->bv_page
;
2741 struct inode
*inode
= page
->mapping
->host
;
2742 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2744 /* We always issue full-page reads, but if some block
2745 * in a page fails to read, blk_update_request() will
2746 * advance bv_offset and adjust bv_len to compensate.
2747 * Print a warning for nonzero offsets, and an error
2748 * if they don't add up to a full page. */
2749 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2750 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2752 "partial page write in btrfs with offset %u and length %u",
2753 bvec
->bv_offset
, bvec
->bv_len
);
2756 "incomplete page write in btrfs with offset %u and length %u",
2757 bvec
->bv_offset
, bvec
->bv_len
);
2760 start
= page_offset(page
);
2761 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2763 end_extent_writepage(page
, error
, start
, end
);
2764 end_page_writeback(page
);
2771 * Record previously processed extent range
2773 * For endio_readpage_release_extent() to handle a full extent range, reducing
2774 * the extent io operations.
2776 struct processed_extent
{
2777 struct btrfs_inode
*inode
;
2778 /* Start of the range in @inode */
2780 /* End of the range in in @inode */
2786 * Try to release processed extent range
2788 * May not release the extent range right now if the current range is
2789 * contiguous to processed extent.
2791 * Will release processed extent when any of @inode, @uptodate, the range is
2792 * no longer contiguous to the processed range.
2794 * Passing @inode == NULL will force processed extent to be released.
2796 static void endio_readpage_release_extent(struct processed_extent
*processed
,
2797 struct btrfs_inode
*inode
, u64 start
, u64 end
,
2800 struct extent_state
*cached
= NULL
;
2801 struct extent_io_tree
*tree
;
2803 /* The first extent, initialize @processed */
2804 if (!processed
->inode
)
2808 * Contiguous to processed extent, just uptodate the end.
2810 * Several things to notice:
2812 * - bio can be merged as long as on-disk bytenr is contiguous
2813 * This means we can have page belonging to other inodes, thus need to
2814 * check if the inode still matches.
2815 * - bvec can contain range beyond current page for multi-page bvec
2816 * Thus we need to do processed->end + 1 >= start check
2818 if (processed
->inode
== inode
&& processed
->uptodate
== uptodate
&&
2819 processed
->end
+ 1 >= start
&& end
>= processed
->end
) {
2820 processed
->end
= end
;
2824 tree
= &processed
->inode
->io_tree
;
2826 * Now we don't have range contiguous to the processed range, release
2827 * the processed range now.
2829 if (processed
->uptodate
&& tree
->track_uptodate
)
2830 set_extent_uptodate(tree
, processed
->start
, processed
->end
,
2831 &cached
, GFP_ATOMIC
);
2832 unlock_extent_cached_atomic(tree
, processed
->start
, processed
->end
,
2836 /* Update processed to current range */
2837 processed
->inode
= inode
;
2838 processed
->start
= start
;
2839 processed
->end
= end
;
2840 processed
->uptodate
= uptodate
;
2843 static void endio_readpage_update_page_status(struct page
*page
, bool uptodate
)
2846 SetPageUptodate(page
);
2848 ClearPageUptodate(page
);
2855 * after a readpage IO is done, we need to:
2856 * clear the uptodate bits on error
2857 * set the uptodate bits if things worked
2858 * set the page up to date if all extents in the tree are uptodate
2859 * clear the lock bit in the extent tree
2860 * unlock the page if there are no other extents locked for it
2862 * Scheduling is not allowed, so the extent state tree is expected
2863 * to have one and only one object corresponding to this IO.
2865 static void end_bio_extent_readpage(struct bio
*bio
)
2867 struct bio_vec
*bvec
;
2868 int uptodate
= !bio
->bi_status
;
2869 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2870 struct extent_io_tree
*tree
, *failure_tree
;
2871 struct processed_extent processed
= { 0 };
2873 * The offset to the beginning of a bio, since one bio can never be
2874 * larger than UINT_MAX, u32 here is enough.
2879 struct bvec_iter_all iter_all
;
2881 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2882 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2883 struct page
*page
= bvec
->bv_page
;
2884 struct inode
*inode
= page
->mapping
->host
;
2885 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2886 const u32 sectorsize
= fs_info
->sectorsize
;
2891 btrfs_debug(fs_info
,
2892 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2893 bio
->bi_iter
.bi_sector
, bio
->bi_status
,
2894 io_bio
->mirror_num
);
2895 tree
= &BTRFS_I(inode
)->io_tree
;
2896 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2899 * We always issue full-sector reads, but if some block in a
2900 * page fails to read, blk_update_request() will advance
2901 * bv_offset and adjust bv_len to compensate. Print a warning
2902 * for unaligned offsets, and an error if they don't add up to
2905 if (!IS_ALIGNED(bvec
->bv_offset
, sectorsize
))
2907 "partial page read in btrfs with offset %u and length %u",
2908 bvec
->bv_offset
, bvec
->bv_len
);
2909 else if (!IS_ALIGNED(bvec
->bv_offset
+ bvec
->bv_len
,
2912 "incomplete page read with offset %u and length %u",
2913 bvec
->bv_offset
, bvec
->bv_len
);
2915 start
= page_offset(page
) + bvec
->bv_offset
;
2916 end
= start
+ bvec
->bv_len
- 1;
2919 mirror
= io_bio
->mirror_num
;
2920 if (likely(uptodate
)) {
2921 if (is_data_inode(inode
))
2922 ret
= btrfs_verify_data_csum(io_bio
,
2923 bio_offset
, page
, start
, end
,
2926 ret
= btrfs_validate_metadata_buffer(io_bio
,
2927 page
, start
, end
, mirror
);
2931 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
2932 failure_tree
, tree
, start
,
2934 btrfs_ino(BTRFS_I(inode
)), 0);
2937 if (likely(uptodate
))
2940 if (is_data_inode(inode
)) {
2943 * The generic bio_readpage_error handles errors the
2944 * following way: If possible, new read requests are
2945 * created and submitted and will end up in
2946 * end_bio_extent_readpage as well (if we're lucky,
2947 * not in the !uptodate case). In that case it returns
2948 * 0 and we just go on with the next page in our bio.
2949 * If it can't handle the error it will return -EIO and
2950 * we remain responsible for that page.
2952 if (!btrfs_submit_read_repair(inode
, bio
, bio_offset
,
2954 start
- page_offset(page
),
2956 btrfs_submit_data_bio
)) {
2957 uptodate
= !bio
->bi_status
;
2958 ASSERT(bio_offset
+ len
> bio_offset
);
2963 struct extent_buffer
*eb
;
2965 eb
= (struct extent_buffer
*)page
->private;
2966 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
2967 eb
->read_mirror
= mirror
;
2968 atomic_dec(&eb
->io_pages
);
2969 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
,
2971 btree_readahead_hook(eb
, -EIO
);
2974 if (likely(uptodate
)) {
2975 loff_t i_size
= i_size_read(inode
);
2976 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2979 /* Zero out the end if this page straddles i_size */
2980 off
= offset_in_page(i_size
);
2981 if (page
->index
== end_index
&& off
)
2982 zero_user_segment(page
, off
, PAGE_SIZE
);
2984 ASSERT(bio_offset
+ len
> bio_offset
);
2987 /* Update page status and unlock */
2988 endio_readpage_update_page_status(page
, uptodate
);
2989 endio_readpage_release_extent(&processed
, BTRFS_I(inode
),
2990 start
, end
, uptodate
);
2992 /* Release the last extent */
2993 endio_readpage_release_extent(&processed
, NULL
, 0, 0, false);
2994 btrfs_io_bio_free_csum(io_bio
);
2999 * Initialize the members up to but not including 'bio'. Use after allocating a
3000 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3001 * 'bio' because use of __GFP_ZERO is not supported.
3003 static inline void btrfs_io_bio_init(struct btrfs_io_bio
*btrfs_bio
)
3005 memset(btrfs_bio
, 0, offsetof(struct btrfs_io_bio
, bio
));
3009 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3010 * never fail. We're returning a bio right now but you can call btrfs_io_bio
3011 * for the appropriate container_of magic
3013 struct bio
*btrfs_bio_alloc(u64 first_byte
)
3017 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, &btrfs_bioset
);
3018 bio
->bi_iter
.bi_sector
= first_byte
>> 9;
3019 btrfs_io_bio_init(btrfs_io_bio(bio
));
3023 struct bio
*btrfs_bio_clone(struct bio
*bio
)
3025 struct btrfs_io_bio
*btrfs_bio
;
3028 /* Bio allocation backed by a bioset does not fail */
3029 new = bio_clone_fast(bio
, GFP_NOFS
, &btrfs_bioset
);
3030 btrfs_bio
= btrfs_io_bio(new);
3031 btrfs_io_bio_init(btrfs_bio
);
3032 btrfs_bio
->iter
= bio
->bi_iter
;
3036 struct bio
*btrfs_io_bio_alloc(unsigned int nr_iovecs
)
3040 /* Bio allocation backed by a bioset does not fail */
3041 bio
= bio_alloc_bioset(GFP_NOFS
, nr_iovecs
, &btrfs_bioset
);
3042 btrfs_io_bio_init(btrfs_io_bio(bio
));
3046 struct bio
*btrfs_bio_clone_partial(struct bio
*orig
, int offset
, int size
)
3049 struct btrfs_io_bio
*btrfs_bio
;
3051 /* this will never fail when it's backed by a bioset */
3052 bio
= bio_clone_fast(orig
, GFP_NOFS
, &btrfs_bioset
);
3055 btrfs_bio
= btrfs_io_bio(bio
);
3056 btrfs_io_bio_init(btrfs_bio
);
3058 bio_trim(bio
, offset
>> 9, size
>> 9);
3059 btrfs_bio
->iter
= bio
->bi_iter
;
3064 * @opf: bio REQ_OP_* and REQ_* flags as one value
3065 * @wbc: optional writeback control for io accounting
3066 * @page: page to add to the bio
3067 * @pg_offset: offset of the new bio or to check whether we are adding
3068 * a contiguous page to the previous one
3069 * @size: portion of page that we want to write
3070 * @offset: starting offset in the page
3071 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3072 * @end_io_func: end_io callback for new bio
3073 * @mirror_num: desired mirror to read/write
3074 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3075 * @bio_flags: flags of the current bio to see if we can merge them
3077 static int submit_extent_page(unsigned int opf
,
3078 struct writeback_control
*wbc
,
3079 struct page
*page
, u64 offset
,
3080 size_t size
, unsigned long pg_offset
,
3081 struct bio
**bio_ret
,
3082 bio_end_io_t end_io_func
,
3084 unsigned long prev_bio_flags
,
3085 unsigned long bio_flags
,
3086 bool force_bio_submit
)
3090 size_t io_size
= min_t(size_t, size
, PAGE_SIZE
);
3091 sector_t sector
= offset
>> 9;
3092 struct extent_io_tree
*tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
3098 bool can_merge
= true;
3101 if (prev_bio_flags
& EXTENT_BIO_COMPRESSED
)
3102 contig
= bio
->bi_iter
.bi_sector
== sector
;
3104 contig
= bio_end_sector(bio
) == sector
;
3106 if (btrfs_bio_fits_in_stripe(page
, io_size
, bio
, bio_flags
))
3109 if (prev_bio_flags
!= bio_flags
|| !contig
|| !can_merge
||
3111 bio_add_page(bio
, page
, io_size
, pg_offset
) < io_size
) {
3112 ret
= submit_one_bio(bio
, mirror_num
, prev_bio_flags
);
3120 wbc_account_cgroup_owner(wbc
, page
, io_size
);
3125 bio
= btrfs_bio_alloc(offset
);
3126 bio_add_page(bio
, page
, io_size
, pg_offset
);
3127 bio
->bi_end_io
= end_io_func
;
3128 bio
->bi_private
= tree
;
3129 bio
->bi_write_hint
= page
->mapping
->host
->i_write_hint
;
3132 struct block_device
*bdev
;
3134 bdev
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
->fs_devices
->latest_bdev
;
3135 bio_set_dev(bio
, bdev
);
3136 wbc_init_bio(wbc
, bio
);
3137 wbc_account_cgroup_owner(wbc
, page
, io_size
);
3145 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
3149 * If the page is mapped to btree inode, we should hold the private
3150 * lock to prevent race.
3151 * For cloned or dummy extent buffers, their pages are not mapped and
3152 * will not race with any other ebs.
3155 lockdep_assert_held(&page
->mapping
->private_lock
);
3157 if (!PagePrivate(page
))
3158 attach_page_private(page
, eb
);
3160 WARN_ON(page
->private != (unsigned long)eb
);
3163 void set_page_extent_mapped(struct page
*page
)
3165 if (!PagePrivate(page
))
3166 attach_page_private(page
, (void *)EXTENT_PAGE_PRIVATE
);
3169 static struct extent_map
*
3170 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
3171 u64 start
, u64 len
, struct extent_map
**em_cached
)
3173 struct extent_map
*em
;
3175 if (em_cached
&& *em_cached
) {
3177 if (extent_map_in_tree(em
) && start
>= em
->start
&&
3178 start
< extent_map_end(em
)) {
3179 refcount_inc(&em
->refs
);
3183 free_extent_map(em
);
3187 em
= btrfs_get_extent(BTRFS_I(inode
), page
, pg_offset
, start
, len
);
3188 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
3190 refcount_inc(&em
->refs
);
3196 * basic readpage implementation. Locked extent state structs are inserted
3197 * into the tree that are removed when the IO is done (by the end_io
3199 * XXX JDM: This needs looking at to ensure proper page locking
3200 * return 0 on success, otherwise return error
3202 int btrfs_do_readpage(struct page
*page
, struct extent_map
**em_cached
,
3203 struct bio
**bio
, unsigned long *bio_flags
,
3204 unsigned int read_flags
, u64
*prev_em_start
)
3206 struct inode
*inode
= page
->mapping
->host
;
3207 u64 start
= page_offset(page
);
3208 const u64 end
= start
+ PAGE_SIZE
- 1;
3211 u64 last_byte
= i_size_read(inode
);
3214 struct extent_map
*em
;
3217 size_t pg_offset
= 0;
3219 size_t blocksize
= inode
->i_sb
->s_blocksize
;
3220 unsigned long this_bio_flag
= 0;
3221 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
3223 set_page_extent_mapped(page
);
3225 if (!PageUptodate(page
)) {
3226 if (cleancache_get_page(page
) == 0) {
3227 BUG_ON(blocksize
!= PAGE_SIZE
);
3228 unlock_extent(tree
, start
, end
);
3233 if (page
->index
== last_byte
>> PAGE_SHIFT
) {
3235 size_t zero_offset
= offset_in_page(last_byte
);
3238 iosize
= PAGE_SIZE
- zero_offset
;
3239 userpage
= kmap_atomic(page
);
3240 memset(userpage
+ zero_offset
, 0, iosize
);
3241 flush_dcache_page(page
);
3242 kunmap_atomic(userpage
);
3245 while (cur
<= end
) {
3246 bool force_bio_submit
= false;
3249 if (cur
>= last_byte
) {
3251 struct extent_state
*cached
= NULL
;
3253 iosize
= PAGE_SIZE
- pg_offset
;
3254 userpage
= kmap_atomic(page
);
3255 memset(userpage
+ pg_offset
, 0, iosize
);
3256 flush_dcache_page(page
);
3257 kunmap_atomic(userpage
);
3258 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3260 unlock_extent_cached(tree
, cur
,
3261 cur
+ iosize
- 1, &cached
);
3264 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
3265 end
- cur
+ 1, em_cached
);
3266 if (IS_ERR_OR_NULL(em
)) {
3268 unlock_extent(tree
, cur
, end
);
3271 extent_offset
= cur
- em
->start
;
3272 BUG_ON(extent_map_end(em
) <= cur
);
3275 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3276 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
3277 extent_set_compress_type(&this_bio_flag
,
3281 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3282 cur_end
= min(extent_map_end(em
) - 1, end
);
3283 iosize
= ALIGN(iosize
, blocksize
);
3284 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
)
3285 offset
= em
->block_start
;
3287 offset
= em
->block_start
+ extent_offset
;
3288 block_start
= em
->block_start
;
3289 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3290 block_start
= EXTENT_MAP_HOLE
;
3293 * If we have a file range that points to a compressed extent
3294 * and it's followed by a consecutive file range that points
3295 * to the same compressed extent (possibly with a different
3296 * offset and/or length, so it either points to the whole extent
3297 * or only part of it), we must make sure we do not submit a
3298 * single bio to populate the pages for the 2 ranges because
3299 * this makes the compressed extent read zero out the pages
3300 * belonging to the 2nd range. Imagine the following scenario:
3303 * [0 - 8K] [8K - 24K]
3306 * points to extent X, points to extent X,
3307 * offset 4K, length of 8K offset 0, length 16K
3309 * [extent X, compressed length = 4K uncompressed length = 16K]
3311 * If the bio to read the compressed extent covers both ranges,
3312 * it will decompress extent X into the pages belonging to the
3313 * first range and then it will stop, zeroing out the remaining
3314 * pages that belong to the other range that points to extent X.
3315 * So here we make sure we submit 2 bios, one for the first
3316 * range and another one for the third range. Both will target
3317 * the same physical extent from disk, but we can't currently
3318 * make the compressed bio endio callback populate the pages
3319 * for both ranges because each compressed bio is tightly
3320 * coupled with a single extent map, and each range can have
3321 * an extent map with a different offset value relative to the
3322 * uncompressed data of our extent and different lengths. This
3323 * is a corner case so we prioritize correctness over
3324 * non-optimal behavior (submitting 2 bios for the same extent).
3326 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3327 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3328 *prev_em_start
!= em
->start
)
3329 force_bio_submit
= true;
3332 *prev_em_start
= em
->start
;
3334 free_extent_map(em
);
3337 /* we've found a hole, just zero and go on */
3338 if (block_start
== EXTENT_MAP_HOLE
) {
3340 struct extent_state
*cached
= NULL
;
3342 userpage
= kmap_atomic(page
);
3343 memset(userpage
+ pg_offset
, 0, iosize
);
3344 flush_dcache_page(page
);
3345 kunmap_atomic(userpage
);
3347 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3349 unlock_extent_cached(tree
, cur
,
3350 cur
+ iosize
- 1, &cached
);
3352 pg_offset
+= iosize
;
3355 /* the get_extent function already copied into the page */
3356 if (test_range_bit(tree
, cur
, cur_end
,
3357 EXTENT_UPTODATE
, 1, NULL
)) {
3358 check_page_uptodate(tree
, page
);
3359 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3361 pg_offset
+= iosize
;
3364 /* we have an inline extent but it didn't get marked up
3365 * to date. Error out
3367 if (block_start
== EXTENT_MAP_INLINE
) {
3369 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3371 pg_offset
+= iosize
;
3375 ret
= submit_extent_page(REQ_OP_READ
| read_flags
, NULL
,
3376 page
, offset
, iosize
,
3378 end_bio_extent_readpage
, 0,
3384 *bio_flags
= this_bio_flag
;
3387 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3391 pg_offset
+= iosize
;
3395 if (!PageError(page
))
3396 SetPageUptodate(page
);
3402 static inline void contiguous_readpages(struct page
*pages
[], int nr_pages
,
3404 struct extent_map
**em_cached
,
3406 unsigned long *bio_flags
,
3409 struct btrfs_inode
*inode
= BTRFS_I(pages
[0]->mapping
->host
);
3412 btrfs_lock_and_flush_ordered_range(inode
, start
, end
, NULL
);
3414 for (index
= 0; index
< nr_pages
; index
++) {
3415 btrfs_do_readpage(pages
[index
], em_cached
, bio
, bio_flags
,
3416 REQ_RAHEAD
, prev_em_start
);
3417 put_page(pages
[index
]);
3421 static void update_nr_written(struct writeback_control
*wbc
,
3422 unsigned long nr_written
)
3424 wbc
->nr_to_write
-= nr_written
;
3428 * helper for __extent_writepage, doing all of the delayed allocation setup.
3430 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3431 * to write the page (copy into inline extent). In this case the IO has
3432 * been started and the page is already unlocked.
3434 * This returns 0 if all went well (page still locked)
3435 * This returns < 0 if there were errors (page still locked)
3437 static noinline_for_stack
int writepage_delalloc(struct btrfs_inode
*inode
,
3438 struct page
*page
, struct writeback_control
*wbc
,
3439 u64 delalloc_start
, unsigned long *nr_written
)
3441 u64 page_end
= delalloc_start
+ PAGE_SIZE
- 1;
3443 u64 delalloc_to_write
= 0;
3444 u64 delalloc_end
= 0;
3446 int page_started
= 0;
3449 while (delalloc_end
< page_end
) {
3450 found
= find_lock_delalloc_range(&inode
->vfs_inode
, page
,
3454 delalloc_start
= delalloc_end
+ 1;
3457 ret
= btrfs_run_delalloc_range(inode
, page
, delalloc_start
,
3458 delalloc_end
, &page_started
, nr_written
, wbc
);
3462 * btrfs_run_delalloc_range should return < 0 for error
3463 * but just in case, we use > 0 here meaning the IO is
3464 * started, so we don't want to return > 0 unless
3465 * things are going well.
3467 return ret
< 0 ? ret
: -EIO
;
3470 * delalloc_end is already one less than the total length, so
3471 * we don't subtract one from PAGE_SIZE
3473 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3474 PAGE_SIZE
) >> PAGE_SHIFT
;
3475 delalloc_start
= delalloc_end
+ 1;
3477 if (wbc
->nr_to_write
< delalloc_to_write
) {
3480 if (delalloc_to_write
< thresh
* 2)
3481 thresh
= delalloc_to_write
;
3482 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3486 /* did the fill delalloc function already unlock and start
3491 * we've unlocked the page, so we can't update
3492 * the mapping's writeback index, just update
3495 wbc
->nr_to_write
-= *nr_written
;
3503 * helper for __extent_writepage. This calls the writepage start hooks,
3504 * and does the loop to map the page into extents and bios.
3506 * We return 1 if the IO is started and the page is unlocked,
3507 * 0 if all went well (page still locked)
3508 * < 0 if there were errors (page still locked)
3510 static noinline_for_stack
int __extent_writepage_io(struct btrfs_inode
*inode
,
3512 struct writeback_control
*wbc
,
3513 struct extent_page_data
*epd
,
3515 unsigned long nr_written
,
3518 struct extent_io_tree
*tree
= &inode
->io_tree
;
3519 u64 start
= page_offset(page
);
3520 u64 page_end
= start
+ PAGE_SIZE
- 1;
3526 struct extent_map
*em
;
3527 size_t pg_offset
= 0;
3531 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
3534 ret
= btrfs_writepage_cow_fixup(page
, start
, page_end
);
3536 /* Fixup worker will requeue */
3537 redirty_page_for_writepage(wbc
, page
);
3538 update_nr_written(wbc
, nr_written
);
3544 * we don't want to touch the inode after unlocking the page,
3545 * so we update the mapping writeback index now
3547 update_nr_written(wbc
, nr_written
+ 1);
3550 blocksize
= inode
->vfs_inode
.i_sb
->s_blocksize
;
3552 while (cur
<= end
) {
3556 if (cur
>= i_size
) {
3557 btrfs_writepage_endio_finish_ordered(page
, cur
,
3561 em
= btrfs_get_extent(inode
, NULL
, 0, cur
, end
- cur
+ 1);
3562 if (IS_ERR_OR_NULL(em
)) {
3564 ret
= PTR_ERR_OR_ZERO(em
);
3568 extent_offset
= cur
- em
->start
;
3569 em_end
= extent_map_end(em
);
3570 BUG_ON(em_end
<= cur
);
3572 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3573 iosize
= ALIGN(iosize
, blocksize
);
3574 offset
= em
->block_start
+ extent_offset
;
3575 block_start
= em
->block_start
;
3576 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3577 free_extent_map(em
);
3581 * compressed and inline extents are written through other
3584 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3585 block_start
== EXTENT_MAP_INLINE
) {
3589 btrfs_writepage_endio_finish_ordered(page
, cur
,
3590 cur
+ iosize
- 1, 1);
3592 pg_offset
+= iosize
;
3596 btrfs_set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3597 if (!PageWriteback(page
)) {
3598 btrfs_err(inode
->root
->fs_info
,
3599 "page %lu not writeback, cur %llu end %llu",
3600 page
->index
, cur
, end
);
3603 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, wbc
,
3604 page
, offset
, iosize
, pg_offset
,
3606 end_bio_extent_writepage
,
3610 if (PageWriteback(page
))
3611 end_page_writeback(page
);
3615 pg_offset
+= iosize
;
3623 * the writepage semantics are similar to regular writepage. extent
3624 * records are inserted to lock ranges in the tree, and as dirty areas
3625 * are found, they are marked writeback. Then the lock bits are removed
3626 * and the end_io handler clears the writeback ranges
3628 * Return 0 if everything goes well.
3629 * Return <0 for error.
3631 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3632 struct extent_page_data
*epd
)
3634 struct inode
*inode
= page
->mapping
->host
;
3635 u64 start
= page_offset(page
);
3636 u64 page_end
= start
+ PAGE_SIZE
- 1;
3640 loff_t i_size
= i_size_read(inode
);
3641 unsigned long end_index
= i_size
>> PAGE_SHIFT
;
3642 unsigned long nr_written
= 0;
3644 trace___extent_writepage(page
, inode
, wbc
);
3646 WARN_ON(!PageLocked(page
));
3648 ClearPageError(page
);
3650 pg_offset
= offset_in_page(i_size
);
3651 if (page
->index
> end_index
||
3652 (page
->index
== end_index
&& !pg_offset
)) {
3653 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
3658 if (page
->index
== end_index
) {
3661 userpage
= kmap_atomic(page
);
3662 memset(userpage
+ pg_offset
, 0,
3663 PAGE_SIZE
- pg_offset
);
3664 kunmap_atomic(userpage
);
3665 flush_dcache_page(page
);
3668 set_page_extent_mapped(page
);
3670 if (!epd
->extent_locked
) {
3671 ret
= writepage_delalloc(BTRFS_I(inode
), page
, wbc
, start
,
3679 ret
= __extent_writepage_io(BTRFS_I(inode
), page
, wbc
, epd
, i_size
,
3686 /* make sure the mapping tag for page dirty gets cleared */
3687 set_page_writeback(page
);
3688 end_page_writeback(page
);
3690 if (PageError(page
)) {
3691 ret
= ret
< 0 ? ret
: -EIO
;
3692 end_extent_writepage(page
, ret
, start
, page_end
);
3699 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3701 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3702 TASK_UNINTERRUPTIBLE
);
3705 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3707 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3708 smp_mb__after_atomic();
3709 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3713 * Lock extent buffer status and pages for writeback.
3715 * May try to flush write bio if we can't get the lock.
3717 * Return 0 if the extent buffer doesn't need to be submitted.
3718 * (E.g. the extent buffer is not dirty)
3719 * Return >0 is the extent buffer is submitted to bio.
3720 * Return <0 if something went wrong, no page is locked.
3722 static noinline_for_stack
int lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3723 struct extent_page_data
*epd
)
3725 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
3726 int i
, num_pages
, failed_page_nr
;
3730 if (!btrfs_try_tree_write_lock(eb
)) {
3731 ret
= flush_write_bio(epd
);
3735 btrfs_tree_lock(eb
);
3738 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3739 btrfs_tree_unlock(eb
);
3743 ret
= flush_write_bio(epd
);
3749 wait_on_extent_buffer_writeback(eb
);
3750 btrfs_tree_lock(eb
);
3751 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3753 btrfs_tree_unlock(eb
);
3758 * We need to do this to prevent races in people who check if the eb is
3759 * under IO since we can end up having no IO bits set for a short period
3762 spin_lock(&eb
->refs_lock
);
3763 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3764 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3765 spin_unlock(&eb
->refs_lock
);
3766 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3767 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3769 fs_info
->dirty_metadata_batch
);
3772 spin_unlock(&eb
->refs_lock
);
3775 btrfs_tree_unlock(eb
);
3780 num_pages
= num_extent_pages(eb
);
3781 for (i
= 0; i
< num_pages
; i
++) {
3782 struct page
*p
= eb
->pages
[i
];
3784 if (!trylock_page(p
)) {
3788 err
= flush_write_bio(epd
);
3802 /* Unlock already locked pages */
3803 for (i
= 0; i
< failed_page_nr
; i
++)
3804 unlock_page(eb
->pages
[i
]);
3806 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3807 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3808 * be made and undo everything done before.
3810 btrfs_tree_lock(eb
);
3811 spin_lock(&eb
->refs_lock
);
3812 set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3813 end_extent_buffer_writeback(eb
);
3814 spin_unlock(&eb
->refs_lock
);
3815 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
, eb
->len
,
3816 fs_info
->dirty_metadata_batch
);
3817 btrfs_clear_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3818 btrfs_tree_unlock(eb
);
3822 static void set_btree_ioerr(struct page
*page
)
3824 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3825 struct btrfs_fs_info
*fs_info
;
3828 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3832 * If we error out, we should add back the dirty_metadata_bytes
3833 * to make it consistent.
3835 fs_info
= eb
->fs_info
;
3836 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3837 eb
->len
, fs_info
->dirty_metadata_batch
);
3840 * If writeback for a btree extent that doesn't belong to a log tree
3841 * failed, increment the counter transaction->eb_write_errors.
3842 * We do this because while the transaction is running and before it's
3843 * committing (when we call filemap_fdata[write|wait]_range against
3844 * the btree inode), we might have
3845 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3846 * returns an error or an error happens during writeback, when we're
3847 * committing the transaction we wouldn't know about it, since the pages
3848 * can be no longer dirty nor marked anymore for writeback (if a
3849 * subsequent modification to the extent buffer didn't happen before the
3850 * transaction commit), which makes filemap_fdata[write|wait]_range not
3851 * able to find the pages tagged with SetPageError at transaction
3852 * commit time. So if this happens we must abort the transaction,
3853 * otherwise we commit a super block with btree roots that point to
3854 * btree nodes/leafs whose content on disk is invalid - either garbage
3855 * or the content of some node/leaf from a past generation that got
3856 * cowed or deleted and is no longer valid.
3858 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3859 * not be enough - we need to distinguish between log tree extents vs
3860 * non-log tree extents, and the next filemap_fdatawait_range() call
3861 * will catch and clear such errors in the mapping - and that call might
3862 * be from a log sync and not from a transaction commit. Also, checking
3863 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3864 * not done and would not be reliable - the eb might have been released
3865 * from memory and reading it back again means that flag would not be
3866 * set (since it's a runtime flag, not persisted on disk).
3868 * Using the flags below in the btree inode also makes us achieve the
3869 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3870 * writeback for all dirty pages and before filemap_fdatawait_range()
3871 * is called, the writeback for all dirty pages had already finished
3872 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3873 * filemap_fdatawait_range() would return success, as it could not know
3874 * that writeback errors happened (the pages were no longer tagged for
3877 switch (eb
->log_index
) {
3879 set_bit(BTRFS_FS_BTREE_ERR
, &eb
->fs_info
->flags
);
3882 set_bit(BTRFS_FS_LOG1_ERR
, &eb
->fs_info
->flags
);
3885 set_bit(BTRFS_FS_LOG2_ERR
, &eb
->fs_info
->flags
);
3888 BUG(); /* unexpected, logic error */
3892 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3894 struct bio_vec
*bvec
;
3895 struct extent_buffer
*eb
;
3897 struct bvec_iter_all iter_all
;
3899 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
3900 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3901 struct page
*page
= bvec
->bv_page
;
3903 eb
= (struct extent_buffer
*)page
->private;
3905 done
= atomic_dec_and_test(&eb
->io_pages
);
3907 if (bio
->bi_status
||
3908 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3909 ClearPageUptodate(page
);
3910 set_btree_ioerr(page
);
3913 end_page_writeback(page
);
3918 end_extent_buffer_writeback(eb
);
3924 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3925 struct writeback_control
*wbc
,
3926 struct extent_page_data
*epd
)
3928 u64 offset
= eb
->start
;
3931 unsigned long start
, end
;
3932 unsigned int write_flags
= wbc_to_write_flags(wbc
) | REQ_META
;
3935 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3936 num_pages
= num_extent_pages(eb
);
3937 atomic_set(&eb
->io_pages
, num_pages
);
3939 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3940 nritems
= btrfs_header_nritems(eb
);
3941 if (btrfs_header_level(eb
) > 0) {
3942 end
= btrfs_node_key_ptr_offset(nritems
);
3944 memzero_extent_buffer(eb
, end
, eb
->len
- end
);
3948 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3950 start
= btrfs_item_nr_offset(nritems
);
3951 end
= BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(eb
);
3952 memzero_extent_buffer(eb
, start
, end
- start
);
3955 for (i
= 0; i
< num_pages
; i
++) {
3956 struct page
*p
= eb
->pages
[i
];
3958 clear_page_dirty_for_io(p
);
3959 set_page_writeback(p
);
3960 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, wbc
,
3961 p
, offset
, PAGE_SIZE
, 0,
3963 end_bio_extent_buffer_writepage
,
3967 if (PageWriteback(p
))
3968 end_page_writeback(p
);
3969 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3970 end_extent_buffer_writeback(eb
);
3974 offset
+= PAGE_SIZE
;
3975 update_nr_written(wbc
, 1);
3979 if (unlikely(ret
)) {
3980 for (; i
< num_pages
; i
++) {
3981 struct page
*p
= eb
->pages
[i
];
3982 clear_page_dirty_for_io(p
);
3991 * Submit all page(s) of one extent buffer.
3993 * @page: the page of one extent buffer
3994 * @eb_context: to determine if we need to submit this page, if current page
3995 * belongs to this eb, we don't need to submit
3997 * The caller should pass each page in their bytenr order, and here we use
3998 * @eb_context to determine if we have submitted pages of one extent buffer.
4000 * If we have, we just skip until we hit a new page that doesn't belong to
4001 * current @eb_context.
4003 * If not, we submit all the page(s) of the extent buffer.
4005 * Return >0 if we have submitted the extent buffer successfully.
4006 * Return 0 if we don't need to submit the page, as it's already submitted by
4008 * Return <0 for fatal error.
4010 static int submit_eb_page(struct page
*page
, struct writeback_control
*wbc
,
4011 struct extent_page_data
*epd
,
4012 struct extent_buffer
**eb_context
)
4014 struct address_space
*mapping
= page
->mapping
;
4015 struct extent_buffer
*eb
;
4018 if (!PagePrivate(page
))
4021 spin_lock(&mapping
->private_lock
);
4022 if (!PagePrivate(page
)) {
4023 spin_unlock(&mapping
->private_lock
);
4027 eb
= (struct extent_buffer
*)page
->private;
4030 * Shouldn't happen and normally this would be a BUG_ON but no point
4031 * crashing the machine for something we can survive anyway.
4034 spin_unlock(&mapping
->private_lock
);
4038 if (eb
== *eb_context
) {
4039 spin_unlock(&mapping
->private_lock
);
4042 ret
= atomic_inc_not_zero(&eb
->refs
);
4043 spin_unlock(&mapping
->private_lock
);
4049 ret
= lock_extent_buffer_for_io(eb
, epd
);
4051 free_extent_buffer(eb
);
4054 ret
= write_one_eb(eb
, wbc
, epd
);
4055 free_extent_buffer(eb
);
4061 int btree_write_cache_pages(struct address_space
*mapping
,
4062 struct writeback_control
*wbc
)
4064 struct extent_buffer
*eb_context
= NULL
;
4065 struct extent_page_data epd
= {
4068 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4070 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
4073 int nr_to_write_done
= 0;
4074 struct pagevec pvec
;
4077 pgoff_t end
; /* Inclusive */
4081 pagevec_init(&pvec
);
4082 if (wbc
->range_cyclic
) {
4083 index
= mapping
->writeback_index
; /* Start from prev offset */
4086 * Start from the beginning does not need to cycle over the
4087 * range, mark it as scanned.
4089 scanned
= (index
== 0);
4091 index
= wbc
->range_start
>> PAGE_SHIFT
;
4092 end
= wbc
->range_end
>> PAGE_SHIFT
;
4095 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4096 tag
= PAGECACHE_TAG_TOWRITE
;
4098 tag
= PAGECACHE_TAG_DIRTY
;
4100 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4101 tag_pages_for_writeback(mapping
, index
, end
);
4102 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4103 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
4107 for (i
= 0; i
< nr_pages
; i
++) {
4108 struct page
*page
= pvec
.pages
[i
];
4110 ret
= submit_eb_page(page
, wbc
, &epd
, &eb_context
);
4119 * the filesystem may choose to bump up nr_to_write.
4120 * We have to make sure to honor the new nr_to_write
4123 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4125 pagevec_release(&pvec
);
4128 if (!scanned
&& !done
) {
4130 * We hit the last page and there is more work to be done: wrap
4131 * back to the start of the file
4138 end_write_bio(&epd
, ret
);
4142 * If something went wrong, don't allow any metadata write bio to be
4145 * This would prevent use-after-free if we had dirty pages not
4146 * cleaned up, which can still happen by fuzzed images.
4149 * Allowing existing tree block to be allocated for other trees.
4151 * - Log tree operations
4152 * Exiting tree blocks get allocated to log tree, bumps its
4153 * generation, then get cleaned in tree re-balance.
4154 * Such tree block will not be written back, since it's clean,
4155 * thus no WRITTEN flag set.
4156 * And after log writes back, this tree block is not traced by
4157 * any dirty extent_io_tree.
4159 * - Offending tree block gets re-dirtied from its original owner
4160 * Since it has bumped generation, no WRITTEN flag, it can be
4161 * reused without COWing. This tree block will not be traced
4162 * by btrfs_transaction::dirty_pages.
4164 * Now such dirty tree block will not be cleaned by any dirty
4165 * extent io tree. Thus we don't want to submit such wild eb
4166 * if the fs already has error.
4168 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
4169 ret
= flush_write_bio(&epd
);
4172 end_write_bio(&epd
, ret
);
4178 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4179 * @mapping: address space structure to write
4180 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4181 * @data: data passed to __extent_writepage function
4183 * If a page is already under I/O, write_cache_pages() skips it, even
4184 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4185 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4186 * and msync() need to guarantee that all the data which was dirty at the time
4187 * the call was made get new I/O started against them. If wbc->sync_mode is
4188 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4189 * existing IO to complete.
4191 static int extent_write_cache_pages(struct address_space
*mapping
,
4192 struct writeback_control
*wbc
,
4193 struct extent_page_data
*epd
)
4195 struct inode
*inode
= mapping
->host
;
4198 int nr_to_write_done
= 0;
4199 struct pagevec pvec
;
4202 pgoff_t end
; /* Inclusive */
4204 int range_whole
= 0;
4209 * We have to hold onto the inode so that ordered extents can do their
4210 * work when the IO finishes. The alternative to this is failing to add
4211 * an ordered extent if the igrab() fails there and that is a huge pain
4212 * to deal with, so instead just hold onto the inode throughout the
4213 * writepages operation. If it fails here we are freeing up the inode
4214 * anyway and we'd rather not waste our time writing out stuff that is
4215 * going to be truncated anyway.
4220 pagevec_init(&pvec
);
4221 if (wbc
->range_cyclic
) {
4222 index
= mapping
->writeback_index
; /* Start from prev offset */
4225 * Start from the beginning does not need to cycle over the
4226 * range, mark it as scanned.
4228 scanned
= (index
== 0);
4230 index
= wbc
->range_start
>> PAGE_SHIFT
;
4231 end
= wbc
->range_end
>> PAGE_SHIFT
;
4232 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
4238 * We do the tagged writepage as long as the snapshot flush bit is set
4239 * and we are the first one who do the filemap_flush() on this inode.
4241 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4242 * not race in and drop the bit.
4244 if (range_whole
&& wbc
->nr_to_write
== LONG_MAX
&&
4245 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
4246 &BTRFS_I(inode
)->runtime_flags
))
4247 wbc
->tagged_writepages
= 1;
4249 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4250 tag
= PAGECACHE_TAG_TOWRITE
;
4252 tag
= PAGECACHE_TAG_DIRTY
;
4254 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4255 tag_pages_for_writeback(mapping
, index
, end
);
4257 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4258 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
,
4259 &index
, end
, tag
))) {
4262 for (i
= 0; i
< nr_pages
; i
++) {
4263 struct page
*page
= pvec
.pages
[i
];
4265 done_index
= page
->index
+ 1;
4267 * At this point we hold neither the i_pages lock nor
4268 * the page lock: the page may be truncated or
4269 * invalidated (changing page->mapping to NULL),
4270 * or even swizzled back from swapper_space to
4271 * tmpfs file mapping
4273 if (!trylock_page(page
)) {
4274 ret
= flush_write_bio(epd
);
4279 if (unlikely(page
->mapping
!= mapping
)) {
4284 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4285 if (PageWriteback(page
)) {
4286 ret
= flush_write_bio(epd
);
4289 wait_on_page_writeback(page
);
4292 if (PageWriteback(page
) ||
4293 !clear_page_dirty_for_io(page
)) {
4298 ret
= __extent_writepage(page
, wbc
, epd
);
4305 * the filesystem may choose to bump up nr_to_write.
4306 * We have to make sure to honor the new nr_to_write
4309 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4311 pagevec_release(&pvec
);
4314 if (!scanned
&& !done
) {
4316 * We hit the last page and there is more work to be done: wrap
4317 * back to the start of the file
4323 * If we're looping we could run into a page that is locked by a
4324 * writer and that writer could be waiting on writeback for a
4325 * page in our current bio, and thus deadlock, so flush the
4328 ret
= flush_write_bio(epd
);
4333 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 && range_whole
))
4334 mapping
->writeback_index
= done_index
;
4336 btrfs_add_delayed_iput(inode
);
4340 int extent_write_full_page(struct page
*page
, struct writeback_control
*wbc
)
4343 struct extent_page_data epd
= {
4346 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4349 ret
= __extent_writepage(page
, wbc
, &epd
);
4352 end_write_bio(&epd
, ret
);
4356 ret
= flush_write_bio(&epd
);
4361 int extent_write_locked_range(struct inode
*inode
, u64 start
, u64 end
,
4365 struct address_space
*mapping
= inode
->i_mapping
;
4367 unsigned long nr_pages
= (end
- start
+ PAGE_SIZE
) >>
4370 struct extent_page_data epd
= {
4373 .sync_io
= mode
== WB_SYNC_ALL
,
4375 struct writeback_control wbc_writepages
= {
4377 .nr_to_write
= nr_pages
* 2,
4378 .range_start
= start
,
4379 .range_end
= end
+ 1,
4380 /* We're called from an async helper function */
4381 .punt_to_cgroup
= 1,
4382 .no_cgroup_owner
= 1,
4385 wbc_attach_fdatawrite_inode(&wbc_writepages
, inode
);
4386 while (start
<= end
) {
4387 page
= find_get_page(mapping
, start
>> PAGE_SHIFT
);
4388 if (clear_page_dirty_for_io(page
))
4389 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4391 btrfs_writepage_endio_finish_ordered(page
, start
,
4392 start
+ PAGE_SIZE
- 1, 1);
4401 ret
= flush_write_bio(&epd
);
4403 end_write_bio(&epd
, ret
);
4405 wbc_detach_inode(&wbc_writepages
);
4409 int extent_writepages(struct address_space
*mapping
,
4410 struct writeback_control
*wbc
)
4413 struct extent_page_data epd
= {
4416 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4419 ret
= extent_write_cache_pages(mapping
, wbc
, &epd
);
4422 end_write_bio(&epd
, ret
);
4425 ret
= flush_write_bio(&epd
);
4429 void extent_readahead(struct readahead_control
*rac
)
4431 struct bio
*bio
= NULL
;
4432 unsigned long bio_flags
= 0;
4433 struct page
*pagepool
[16];
4434 struct extent_map
*em_cached
= NULL
;
4435 u64 prev_em_start
= (u64
)-1;
4438 while ((nr
= readahead_page_batch(rac
, pagepool
))) {
4439 u64 contig_start
= page_offset(pagepool
[0]);
4440 u64 contig_end
= page_offset(pagepool
[nr
- 1]) + PAGE_SIZE
- 1;
4442 ASSERT(contig_start
+ nr
* PAGE_SIZE
- 1 == contig_end
);
4444 contiguous_readpages(pagepool
, nr
, contig_start
, contig_end
,
4445 &em_cached
, &bio
, &bio_flags
, &prev_em_start
);
4449 free_extent_map(em_cached
);
4452 if (submit_one_bio(bio
, 0, bio_flags
))
4458 * basic invalidatepage code, this waits on any locked or writeback
4459 * ranges corresponding to the page, and then deletes any extent state
4460 * records from the tree
4462 int extent_invalidatepage(struct extent_io_tree
*tree
,
4463 struct page
*page
, unsigned long offset
)
4465 struct extent_state
*cached_state
= NULL
;
4466 u64 start
= page_offset(page
);
4467 u64 end
= start
+ PAGE_SIZE
- 1;
4468 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4470 /* This function is only called for the btree inode */
4471 ASSERT(tree
->owner
== IO_TREE_BTREE_INODE_IO
);
4473 start
+= ALIGN(offset
, blocksize
);
4477 lock_extent_bits(tree
, start
, end
, &cached_state
);
4478 wait_on_page_writeback(page
);
4481 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
4482 * so here we only need to unlock the extent range to free any
4483 * existing extent state.
4485 unlock_extent_cached(tree
, start
, end
, &cached_state
);
4490 * a helper for releasepage, this tests for areas of the page that
4491 * are locked or under IO and drops the related state bits if it is safe
4494 static int try_release_extent_state(struct extent_io_tree
*tree
,
4495 struct page
*page
, gfp_t mask
)
4497 u64 start
= page_offset(page
);
4498 u64 end
= start
+ PAGE_SIZE
- 1;
4501 if (test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
)) {
4505 * At this point we can safely clear everything except the
4506 * locked bit, the nodatasum bit and the delalloc new bit.
4507 * The delalloc new bit will be cleared by ordered extent
4510 ret
= __clear_extent_bit(tree
, start
, end
,
4511 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
| EXTENT_DELALLOC_NEW
),
4512 0, 0, NULL
, mask
, NULL
);
4514 /* if clear_extent_bit failed for enomem reasons,
4515 * we can't allow the release to continue.
4526 * a helper for releasepage. As long as there are no locked extents
4527 * in the range corresponding to the page, both state records and extent
4528 * map records are removed
4530 int try_release_extent_mapping(struct page
*page
, gfp_t mask
)
4532 struct extent_map
*em
;
4533 u64 start
= page_offset(page
);
4534 u64 end
= start
+ PAGE_SIZE
- 1;
4535 struct btrfs_inode
*btrfs_inode
= BTRFS_I(page
->mapping
->host
);
4536 struct extent_io_tree
*tree
= &btrfs_inode
->io_tree
;
4537 struct extent_map_tree
*map
= &btrfs_inode
->extent_tree
;
4539 if (gfpflags_allow_blocking(mask
) &&
4540 page
->mapping
->host
->i_size
> SZ_16M
) {
4542 while (start
<= end
) {
4543 struct btrfs_fs_info
*fs_info
;
4546 len
= end
- start
+ 1;
4547 write_lock(&map
->lock
);
4548 em
= lookup_extent_mapping(map
, start
, len
);
4550 write_unlock(&map
->lock
);
4553 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4554 em
->start
!= start
) {
4555 write_unlock(&map
->lock
);
4556 free_extent_map(em
);
4559 if (test_range_bit(tree
, em
->start
,
4560 extent_map_end(em
) - 1,
4561 EXTENT_LOCKED
, 0, NULL
))
4564 * If it's not in the list of modified extents, used
4565 * by a fast fsync, we can remove it. If it's being
4566 * logged we can safely remove it since fsync took an
4567 * extra reference on the em.
4569 if (list_empty(&em
->list
) ||
4570 test_bit(EXTENT_FLAG_LOGGING
, &em
->flags
))
4573 * If it's in the list of modified extents, remove it
4574 * only if its generation is older then the current one,
4575 * in which case we don't need it for a fast fsync.
4576 * Otherwise don't remove it, we could be racing with an
4577 * ongoing fast fsync that could miss the new extent.
4579 fs_info
= btrfs_inode
->root
->fs_info
;
4580 spin_lock(&fs_info
->trans_lock
);
4581 cur_gen
= fs_info
->generation
;
4582 spin_unlock(&fs_info
->trans_lock
);
4583 if (em
->generation
>= cur_gen
)
4587 * We only remove extent maps that are not in the list of
4588 * modified extents or that are in the list but with a
4589 * generation lower then the current generation, so there
4590 * is no need to set the full fsync flag on the inode (it
4591 * hurts the fsync performance for workloads with a data
4592 * size that exceeds or is close to the system's memory).
4594 remove_extent_mapping(map
, em
);
4595 /* once for the rb tree */
4596 free_extent_map(em
);
4598 start
= extent_map_end(em
);
4599 write_unlock(&map
->lock
);
4602 free_extent_map(em
);
4604 cond_resched(); /* Allow large-extent preemption. */
4607 return try_release_extent_state(tree
, page
, mask
);
4611 * helper function for fiemap, which doesn't want to see any holes.
4612 * This maps until we find something past 'last'
4614 static struct extent_map
*get_extent_skip_holes(struct btrfs_inode
*inode
,
4615 u64 offset
, u64 last
)
4617 u64 sectorsize
= btrfs_inode_sectorsize(inode
);
4618 struct extent_map
*em
;
4625 len
= last
- offset
;
4628 len
= ALIGN(len
, sectorsize
);
4629 em
= btrfs_get_extent_fiemap(inode
, offset
, len
);
4630 if (IS_ERR_OR_NULL(em
))
4633 /* if this isn't a hole return it */
4634 if (em
->block_start
!= EXTENT_MAP_HOLE
)
4637 /* this is a hole, advance to the next extent */
4638 offset
= extent_map_end(em
);
4639 free_extent_map(em
);
4647 * To cache previous fiemap extent
4649 * Will be used for merging fiemap extent
4651 struct fiemap_cache
{
4660 * Helper to submit fiemap extent.
4662 * Will try to merge current fiemap extent specified by @offset, @phys,
4663 * @len and @flags with cached one.
4664 * And only when we fails to merge, cached one will be submitted as
4667 * Return value is the same as fiemap_fill_next_extent().
4669 static int emit_fiemap_extent(struct fiemap_extent_info
*fieinfo
,
4670 struct fiemap_cache
*cache
,
4671 u64 offset
, u64 phys
, u64 len
, u32 flags
)
4679 * Sanity check, extent_fiemap() should have ensured that new
4680 * fiemap extent won't overlap with cached one.
4683 * NOTE: Physical address can overlap, due to compression
4685 if (cache
->offset
+ cache
->len
> offset
) {
4691 * Only merges fiemap extents if
4692 * 1) Their logical addresses are continuous
4694 * 2) Their physical addresses are continuous
4695 * So truly compressed (physical size smaller than logical size)
4696 * extents won't get merged with each other
4698 * 3) Share same flags except FIEMAP_EXTENT_LAST
4699 * So regular extent won't get merged with prealloc extent
4701 if (cache
->offset
+ cache
->len
== offset
&&
4702 cache
->phys
+ cache
->len
== phys
&&
4703 (cache
->flags
& ~FIEMAP_EXTENT_LAST
) ==
4704 (flags
& ~FIEMAP_EXTENT_LAST
)) {
4706 cache
->flags
|= flags
;
4707 goto try_submit_last
;
4710 /* Not mergeable, need to submit cached one */
4711 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4712 cache
->len
, cache
->flags
);
4713 cache
->cached
= false;
4717 cache
->cached
= true;
4718 cache
->offset
= offset
;
4721 cache
->flags
= flags
;
4723 if (cache
->flags
& FIEMAP_EXTENT_LAST
) {
4724 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
,
4725 cache
->phys
, cache
->len
, cache
->flags
);
4726 cache
->cached
= false;
4732 * Emit last fiemap cache
4734 * The last fiemap cache may still be cached in the following case:
4736 * |<- Fiemap range ->|
4737 * |<------------ First extent ----------->|
4739 * In this case, the first extent range will be cached but not emitted.
4740 * So we must emit it before ending extent_fiemap().
4742 static int emit_last_fiemap_cache(struct fiemap_extent_info
*fieinfo
,
4743 struct fiemap_cache
*cache
)
4750 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4751 cache
->len
, cache
->flags
);
4752 cache
->cached
= false;
4758 int extent_fiemap(struct btrfs_inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4763 u64 max
= start
+ len
;
4767 u64 last_for_get_extent
= 0;
4769 u64 isize
= i_size_read(&inode
->vfs_inode
);
4770 struct btrfs_key found_key
;
4771 struct extent_map
*em
= NULL
;
4772 struct extent_state
*cached_state
= NULL
;
4773 struct btrfs_path
*path
;
4774 struct btrfs_root
*root
= inode
->root
;
4775 struct fiemap_cache cache
= { 0 };
4776 struct ulist
*roots
;
4777 struct ulist
*tmp_ulist
;
4786 path
= btrfs_alloc_path();
4790 roots
= ulist_alloc(GFP_KERNEL
);
4791 tmp_ulist
= ulist_alloc(GFP_KERNEL
);
4792 if (!roots
|| !tmp_ulist
) {
4794 goto out_free_ulist
;
4797 start
= round_down(start
, btrfs_inode_sectorsize(inode
));
4798 len
= round_up(max
, btrfs_inode_sectorsize(inode
)) - start
;
4801 * lookup the last file extent. We're not using i_size here
4802 * because there might be preallocation past i_size
4804 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
), -1,
4807 goto out_free_ulist
;
4815 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4816 found_type
= found_key
.type
;
4818 /* No extents, but there might be delalloc bits */
4819 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4820 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4821 /* have to trust i_size as the end */
4823 last_for_get_extent
= isize
;
4826 * remember the start of the last extent. There are a
4827 * bunch of different factors that go into the length of the
4828 * extent, so its much less complex to remember where it started
4830 last
= found_key
.offset
;
4831 last_for_get_extent
= last
+ 1;
4833 btrfs_release_path(path
);
4836 * we might have some extents allocated but more delalloc past those
4837 * extents. so, we trust isize unless the start of the last extent is
4842 last_for_get_extent
= isize
;
4845 lock_extent_bits(&inode
->io_tree
, start
, start
+ len
- 1,
4848 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
);
4857 u64 offset_in_extent
= 0;
4859 /* break if the extent we found is outside the range */
4860 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4864 * get_extent may return an extent that starts before our
4865 * requested range. We have to make sure the ranges
4866 * we return to fiemap always move forward and don't
4867 * overlap, so adjust the offsets here
4869 em_start
= max(em
->start
, off
);
4872 * record the offset from the start of the extent
4873 * for adjusting the disk offset below. Only do this if the
4874 * extent isn't compressed since our in ram offset may be past
4875 * what we have actually allocated on disk.
4877 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4878 offset_in_extent
= em_start
- em
->start
;
4879 em_end
= extent_map_end(em
);
4880 em_len
= em_end
- em_start
;
4882 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
)
4883 disko
= em
->block_start
+ offset_in_extent
;
4888 * bump off for our next call to get_extent
4890 off
= extent_map_end(em
);
4894 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4896 flags
|= FIEMAP_EXTENT_LAST
;
4897 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4898 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4899 FIEMAP_EXTENT_NOT_ALIGNED
);
4900 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4901 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4902 FIEMAP_EXTENT_UNKNOWN
);
4903 } else if (fieinfo
->fi_extents_max
) {
4904 u64 bytenr
= em
->block_start
-
4905 (em
->start
- em
->orig_start
);
4908 * As btrfs supports shared space, this information
4909 * can be exported to userspace tools via
4910 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4911 * then we're just getting a count and we can skip the
4914 ret
= btrfs_check_shared(root
, btrfs_ino(inode
),
4915 bytenr
, roots
, tmp_ulist
);
4919 flags
|= FIEMAP_EXTENT_SHARED
;
4922 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4923 flags
|= FIEMAP_EXTENT_ENCODED
;
4924 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4925 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4927 free_extent_map(em
);
4929 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4930 (last
== (u64
)-1 && isize
<= em_end
)) {
4931 flags
|= FIEMAP_EXTENT_LAST
;
4935 /* now scan forward to see if this is really the last extent. */
4936 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
);
4942 flags
|= FIEMAP_EXTENT_LAST
;
4945 ret
= emit_fiemap_extent(fieinfo
, &cache
, em_start
, disko
,
4955 ret
= emit_last_fiemap_cache(fieinfo
, &cache
);
4956 free_extent_map(em
);
4958 unlock_extent_cached(&inode
->io_tree
, start
, start
+ len
- 1,
4962 btrfs_free_path(path
);
4964 ulist_free(tmp_ulist
);
4968 static void __free_extent_buffer(struct extent_buffer
*eb
)
4970 kmem_cache_free(extent_buffer_cache
, eb
);
4973 int extent_buffer_under_io(const struct extent_buffer
*eb
)
4975 return (atomic_read(&eb
->io_pages
) ||
4976 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4977 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4981 * Release all pages attached to the extent buffer.
4983 static void btrfs_release_extent_buffer_pages(struct extent_buffer
*eb
)
4987 int mapped
= !test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
4989 BUG_ON(extent_buffer_under_io(eb
));
4991 num_pages
= num_extent_pages(eb
);
4992 for (i
= 0; i
< num_pages
; i
++) {
4993 struct page
*page
= eb
->pages
[i
];
4998 spin_lock(&page
->mapping
->private_lock
);
5000 * We do this since we'll remove the pages after we've
5001 * removed the eb from the radix tree, so we could race
5002 * and have this page now attached to the new eb. So
5003 * only clear page_private if it's still connected to
5006 if (PagePrivate(page
) &&
5007 page
->private == (unsigned long)eb
) {
5008 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
5009 BUG_ON(PageDirty(page
));
5010 BUG_ON(PageWriteback(page
));
5012 * We need to make sure we haven't be attached
5015 detach_page_private(page
);
5019 spin_unlock(&page
->mapping
->private_lock
);
5021 /* One for when we allocated the page */
5027 * Helper for releasing the extent buffer.
5029 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
5031 btrfs_release_extent_buffer_pages(eb
);
5032 btrfs_leak_debug_del(&eb
->fs_info
->eb_leak_lock
, &eb
->leak_list
);
5033 __free_extent_buffer(eb
);
5036 static struct extent_buffer
*
5037 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
5040 struct extent_buffer
*eb
= NULL
;
5042 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
5045 eb
->fs_info
= fs_info
;
5047 init_rwsem(&eb
->lock
);
5049 btrfs_leak_debug_add(&fs_info
->eb_leak_lock
, &eb
->leak_list
,
5050 &fs_info
->allocated_ebs
);
5052 spin_lock_init(&eb
->refs_lock
);
5053 atomic_set(&eb
->refs
, 1);
5054 atomic_set(&eb
->io_pages
, 0);
5056 ASSERT(len
<= BTRFS_MAX_METADATA_BLOCKSIZE
);
5061 struct extent_buffer
*btrfs_clone_extent_buffer(const struct extent_buffer
*src
)
5065 struct extent_buffer
*new;
5066 int num_pages
= num_extent_pages(src
);
5068 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
5072 for (i
= 0; i
< num_pages
; i
++) {
5073 p
= alloc_page(GFP_NOFS
);
5075 btrfs_release_extent_buffer(new);
5078 attach_extent_buffer_page(new, p
);
5079 WARN_ON(PageDirty(p
));
5082 copy_page(page_address(p
), page_address(src
->pages
[i
]));
5085 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
5086 set_bit(EXTENT_BUFFER_UNMAPPED
, &new->bflags
);
5091 struct extent_buffer
*__alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
5092 u64 start
, unsigned long len
)
5094 struct extent_buffer
*eb
;
5098 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5102 num_pages
= num_extent_pages(eb
);
5103 for (i
= 0; i
< num_pages
; i
++) {
5104 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
5108 set_extent_buffer_uptodate(eb
);
5109 btrfs_set_header_nritems(eb
, 0);
5110 set_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
5115 __free_page(eb
->pages
[i
- 1]);
5116 __free_extent_buffer(eb
);
5120 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
5123 return __alloc_dummy_extent_buffer(fs_info
, start
, fs_info
->nodesize
);
5126 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
5130 * The TREE_REF bit is first set when the extent_buffer is added
5131 * to the radix tree. It is also reset, if unset, when a new reference
5132 * is created by find_extent_buffer.
5134 * It is only cleared in two cases: freeing the last non-tree
5135 * reference to the extent_buffer when its STALE bit is set or
5136 * calling releasepage when the tree reference is the only reference.
5138 * In both cases, care is taken to ensure that the extent_buffer's
5139 * pages are not under io. However, releasepage can be concurrently
5140 * called with creating new references, which is prone to race
5141 * conditions between the calls to check_buffer_tree_ref in those
5142 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5144 * The actual lifetime of the extent_buffer in the radix tree is
5145 * adequately protected by the refcount, but the TREE_REF bit and
5146 * its corresponding reference are not. To protect against this
5147 * class of races, we call check_buffer_tree_ref from the codepaths
5148 * which trigger io after they set eb->io_pages. Note that once io is
5149 * initiated, TREE_REF can no longer be cleared, so that is the
5150 * moment at which any such race is best fixed.
5152 refs
= atomic_read(&eb
->refs
);
5153 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5156 spin_lock(&eb
->refs_lock
);
5157 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5158 atomic_inc(&eb
->refs
);
5159 spin_unlock(&eb
->refs_lock
);
5162 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
5163 struct page
*accessed
)
5167 check_buffer_tree_ref(eb
);
5169 num_pages
= num_extent_pages(eb
);
5170 for (i
= 0; i
< num_pages
; i
++) {
5171 struct page
*p
= eb
->pages
[i
];
5174 mark_page_accessed(p
);
5178 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
5181 struct extent_buffer
*eb
;
5184 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
5185 start
>> fs_info
->sectorsize_bits
);
5186 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
5189 * Lock our eb's refs_lock to avoid races with
5190 * free_extent_buffer. When we get our eb it might be flagged
5191 * with EXTENT_BUFFER_STALE and another task running
5192 * free_extent_buffer might have seen that flag set,
5193 * eb->refs == 2, that the buffer isn't under IO (dirty and
5194 * writeback flags not set) and it's still in the tree (flag
5195 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5196 * of decrementing the extent buffer's reference count twice.
5197 * So here we could race and increment the eb's reference count,
5198 * clear its stale flag, mark it as dirty and drop our reference
5199 * before the other task finishes executing free_extent_buffer,
5200 * which would later result in an attempt to free an extent
5201 * buffer that is dirty.
5203 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
5204 spin_lock(&eb
->refs_lock
);
5205 spin_unlock(&eb
->refs_lock
);
5207 mark_extent_buffer_accessed(eb
, NULL
);
5215 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5216 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
5219 struct extent_buffer
*eb
, *exists
= NULL
;
5222 eb
= find_extent_buffer(fs_info
, start
);
5225 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
5227 return ERR_PTR(-ENOMEM
);
5228 eb
->fs_info
= fs_info
;
5230 ret
= radix_tree_preload(GFP_NOFS
);
5232 exists
= ERR_PTR(ret
);
5235 spin_lock(&fs_info
->buffer_lock
);
5236 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5237 start
>> fs_info
->sectorsize_bits
, eb
);
5238 spin_unlock(&fs_info
->buffer_lock
);
5239 radix_tree_preload_end();
5240 if (ret
== -EEXIST
) {
5241 exists
= find_extent_buffer(fs_info
, start
);
5247 check_buffer_tree_ref(eb
);
5248 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5252 btrfs_release_extent_buffer(eb
);
5257 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
5258 u64 start
, u64 owner_root
, int level
)
5260 unsigned long len
= fs_info
->nodesize
;
5263 unsigned long index
= start
>> PAGE_SHIFT
;
5264 struct extent_buffer
*eb
;
5265 struct extent_buffer
*exists
= NULL
;
5267 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
5271 if (!IS_ALIGNED(start
, fs_info
->sectorsize
)) {
5272 btrfs_err(fs_info
, "bad tree block start %llu", start
);
5273 return ERR_PTR(-EINVAL
);
5276 if (fs_info
->sectorsize
< PAGE_SIZE
&&
5277 offset_in_page(start
) + len
> PAGE_SIZE
) {
5279 "tree block crosses page boundary, start %llu nodesize %lu",
5281 return ERR_PTR(-EINVAL
);
5284 eb
= find_extent_buffer(fs_info
, start
);
5288 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5290 return ERR_PTR(-ENOMEM
);
5291 btrfs_set_buffer_lockdep_class(owner_root
, eb
, level
);
5293 num_pages
= num_extent_pages(eb
);
5294 for (i
= 0; i
< num_pages
; i
++, index
++) {
5295 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
5297 exists
= ERR_PTR(-ENOMEM
);
5301 spin_lock(&mapping
->private_lock
);
5302 if (PagePrivate(p
)) {
5304 * We could have already allocated an eb for this page
5305 * and attached one so lets see if we can get a ref on
5306 * the existing eb, and if we can we know it's good and
5307 * we can just return that one, else we know we can just
5308 * overwrite page->private.
5310 exists
= (struct extent_buffer
*)p
->private;
5311 if (atomic_inc_not_zero(&exists
->refs
)) {
5312 spin_unlock(&mapping
->private_lock
);
5315 mark_extent_buffer_accessed(exists
, p
);
5320 WARN_ON(PageDirty(p
));
5321 detach_page_private(p
);
5323 attach_extent_buffer_page(eb
, p
);
5324 spin_unlock(&mapping
->private_lock
);
5325 WARN_ON(PageDirty(p
));
5327 if (!PageUptodate(p
))
5331 * We can't unlock the pages just yet since the extent buffer
5332 * hasn't been properly inserted in the radix tree, this
5333 * opens a race with btree_releasepage which can free a page
5334 * while we are still filling in all pages for the buffer and
5339 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5341 ret
= radix_tree_preload(GFP_NOFS
);
5343 exists
= ERR_PTR(ret
);
5347 spin_lock(&fs_info
->buffer_lock
);
5348 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5349 start
>> fs_info
->sectorsize_bits
, eb
);
5350 spin_unlock(&fs_info
->buffer_lock
);
5351 radix_tree_preload_end();
5352 if (ret
== -EEXIST
) {
5353 exists
= find_extent_buffer(fs_info
, start
);
5359 /* add one reference for the tree */
5360 check_buffer_tree_ref(eb
);
5361 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5364 * Now it's safe to unlock the pages because any calls to
5365 * btree_releasepage will correctly detect that a page belongs to a
5366 * live buffer and won't free them prematurely.
5368 for (i
= 0; i
< num_pages
; i
++)
5369 unlock_page(eb
->pages
[i
]);
5373 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5374 for (i
= 0; i
< num_pages
; i
++) {
5376 unlock_page(eb
->pages
[i
]);
5379 btrfs_release_extent_buffer(eb
);
5383 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5385 struct extent_buffer
*eb
=
5386 container_of(head
, struct extent_buffer
, rcu_head
);
5388 __free_extent_buffer(eb
);
5391 static int release_extent_buffer(struct extent_buffer
*eb
)
5392 __releases(&eb
->refs_lock
)
5394 lockdep_assert_held(&eb
->refs_lock
);
5396 WARN_ON(atomic_read(&eb
->refs
) == 0);
5397 if (atomic_dec_and_test(&eb
->refs
)) {
5398 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5399 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5401 spin_unlock(&eb
->refs_lock
);
5403 spin_lock(&fs_info
->buffer_lock
);
5404 radix_tree_delete(&fs_info
->buffer_radix
,
5405 eb
->start
>> fs_info
->sectorsize_bits
);
5406 spin_unlock(&fs_info
->buffer_lock
);
5408 spin_unlock(&eb
->refs_lock
);
5411 btrfs_leak_debug_del(&eb
->fs_info
->eb_leak_lock
, &eb
->leak_list
);
5412 /* Should be safe to release our pages at this point */
5413 btrfs_release_extent_buffer_pages(eb
);
5414 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5415 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
))) {
5416 __free_extent_buffer(eb
);
5420 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5423 spin_unlock(&eb
->refs_lock
);
5428 void free_extent_buffer(struct extent_buffer
*eb
)
5436 refs
= atomic_read(&eb
->refs
);
5437 if ((!test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) && refs
<= 3)
5438 || (test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) &&
5441 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5446 spin_lock(&eb
->refs_lock
);
5447 if (atomic_read(&eb
->refs
) == 2 &&
5448 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5449 !extent_buffer_under_io(eb
) &&
5450 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5451 atomic_dec(&eb
->refs
);
5454 * I know this is terrible, but it's temporary until we stop tracking
5455 * the uptodate bits and such for the extent buffers.
5457 release_extent_buffer(eb
);
5460 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5465 spin_lock(&eb
->refs_lock
);
5466 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5468 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5469 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5470 atomic_dec(&eb
->refs
);
5471 release_extent_buffer(eb
);
5474 void clear_extent_buffer_dirty(const struct extent_buffer
*eb
)
5480 num_pages
= num_extent_pages(eb
);
5482 for (i
= 0; i
< num_pages
; i
++) {
5483 page
= eb
->pages
[i
];
5484 if (!PageDirty(page
))
5488 WARN_ON(!PagePrivate(page
));
5490 clear_page_dirty_for_io(page
);
5491 xa_lock_irq(&page
->mapping
->i_pages
);
5492 if (!PageDirty(page
))
5493 __xa_clear_mark(&page
->mapping
->i_pages
,
5494 page_index(page
), PAGECACHE_TAG_DIRTY
);
5495 xa_unlock_irq(&page
->mapping
->i_pages
);
5496 ClearPageError(page
);
5499 WARN_ON(atomic_read(&eb
->refs
) == 0);
5502 bool set_extent_buffer_dirty(struct extent_buffer
*eb
)
5508 check_buffer_tree_ref(eb
);
5510 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5512 num_pages
= num_extent_pages(eb
);
5513 WARN_ON(atomic_read(&eb
->refs
) == 0);
5514 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5517 for (i
= 0; i
< num_pages
; i
++)
5518 set_page_dirty(eb
->pages
[i
]);
5520 #ifdef CONFIG_BTRFS_DEBUG
5521 for (i
= 0; i
< num_pages
; i
++)
5522 ASSERT(PageDirty(eb
->pages
[i
]));
5528 void clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5534 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5535 num_pages
= num_extent_pages(eb
);
5536 for (i
= 0; i
< num_pages
; i
++) {
5537 page
= eb
->pages
[i
];
5539 ClearPageUptodate(page
);
5543 void set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5549 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5550 num_pages
= num_extent_pages(eb
);
5551 for (i
= 0; i
< num_pages
; i
++) {
5552 page
= eb
->pages
[i
];
5553 SetPageUptodate(page
);
5557 int read_extent_buffer_pages(struct extent_buffer
*eb
, int wait
, int mirror_num
)
5563 int locked_pages
= 0;
5564 int all_uptodate
= 1;
5566 unsigned long num_reads
= 0;
5567 struct bio
*bio
= NULL
;
5568 unsigned long bio_flags
= 0;
5570 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5573 num_pages
= num_extent_pages(eb
);
5574 for (i
= 0; i
< num_pages
; i
++) {
5575 page
= eb
->pages
[i
];
5576 if (wait
== WAIT_NONE
) {
5577 if (!trylock_page(page
))
5585 * We need to firstly lock all pages to make sure that
5586 * the uptodate bit of our pages won't be affected by
5587 * clear_extent_buffer_uptodate().
5589 for (i
= 0; i
< num_pages
; i
++) {
5590 page
= eb
->pages
[i
];
5591 if (!PageUptodate(page
)) {
5598 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5602 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5603 eb
->read_mirror
= 0;
5604 atomic_set(&eb
->io_pages
, num_reads
);
5606 * It is possible for releasepage to clear the TREE_REF bit before we
5607 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5609 check_buffer_tree_ref(eb
);
5610 for (i
= 0; i
< num_pages
; i
++) {
5611 page
= eb
->pages
[i
];
5613 if (!PageUptodate(page
)) {
5615 atomic_dec(&eb
->io_pages
);
5620 ClearPageError(page
);
5621 err
= submit_extent_page(REQ_OP_READ
| REQ_META
, NULL
,
5622 page
, page_offset(page
), PAGE_SIZE
, 0,
5623 &bio
, end_bio_extent_readpage
,
5624 mirror_num
, 0, 0, false);
5627 * We failed to submit the bio so it's the
5628 * caller's responsibility to perform cleanup
5629 * i.e unlock page/set error bit.
5634 atomic_dec(&eb
->io_pages
);
5642 err
= submit_one_bio(bio
, mirror_num
, bio_flags
);
5647 if (ret
|| wait
!= WAIT_COMPLETE
)
5650 for (i
= 0; i
< num_pages
; i
++) {
5651 page
= eb
->pages
[i
];
5652 wait_on_page_locked(page
);
5653 if (!PageUptodate(page
))
5660 while (locked_pages
> 0) {
5662 page
= eb
->pages
[locked_pages
];
5668 static bool report_eb_range(const struct extent_buffer
*eb
, unsigned long start
,
5671 btrfs_warn(eb
->fs_info
,
5672 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5673 eb
->start
, eb
->len
, start
, len
);
5674 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
5680 * Check if the [start, start + len) range is valid before reading/writing
5682 * NOTE: @start and @len are offset inside the eb, not logical address.
5684 * Caller should not touch the dst/src memory if this function returns error.
5686 static inline int check_eb_range(const struct extent_buffer
*eb
,
5687 unsigned long start
, unsigned long len
)
5689 unsigned long offset
;
5691 /* start, start + len should not go beyond eb->len nor overflow */
5692 if (unlikely(check_add_overflow(start
, len
, &offset
) || offset
> eb
->len
))
5693 return report_eb_range(eb
, start
, len
);
5698 void read_extent_buffer(const struct extent_buffer
*eb
, void *dstv
,
5699 unsigned long start
, unsigned long len
)
5705 char *dst
= (char *)dstv
;
5706 unsigned long i
= get_eb_page_index(start
);
5708 if (check_eb_range(eb
, start
, len
))
5711 offset
= get_eb_offset_in_page(eb
, start
);
5714 page
= eb
->pages
[i
];
5716 cur
= min(len
, (PAGE_SIZE
- offset
));
5717 kaddr
= page_address(page
);
5718 memcpy(dst
, kaddr
+ offset
, cur
);
5727 int read_extent_buffer_to_user_nofault(const struct extent_buffer
*eb
,
5729 unsigned long start
, unsigned long len
)
5735 char __user
*dst
= (char __user
*)dstv
;
5736 unsigned long i
= get_eb_page_index(start
);
5739 WARN_ON(start
> eb
->len
);
5740 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5742 offset
= get_eb_offset_in_page(eb
, start
);
5745 page
= eb
->pages
[i
];
5747 cur
= min(len
, (PAGE_SIZE
- offset
));
5748 kaddr
= page_address(page
);
5749 if (copy_to_user_nofault(dst
, kaddr
+ offset
, cur
)) {
5763 int memcmp_extent_buffer(const struct extent_buffer
*eb
, const void *ptrv
,
5764 unsigned long start
, unsigned long len
)
5770 char *ptr
= (char *)ptrv
;
5771 unsigned long i
= get_eb_page_index(start
);
5774 if (check_eb_range(eb
, start
, len
))
5777 offset
= get_eb_offset_in_page(eb
, start
);
5780 page
= eb
->pages
[i
];
5782 cur
= min(len
, (PAGE_SIZE
- offset
));
5784 kaddr
= page_address(page
);
5785 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5797 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer
*eb
,
5802 WARN_ON(!PageUptodate(eb
->pages
[0]));
5803 kaddr
= page_address(eb
->pages
[0]) + get_eb_offset_in_page(eb
, 0);
5804 memcpy(kaddr
+ offsetof(struct btrfs_header
, chunk_tree_uuid
), srcv
,
5808 void write_extent_buffer_fsid(const struct extent_buffer
*eb
, const void *srcv
)
5812 WARN_ON(!PageUptodate(eb
->pages
[0]));
5813 kaddr
= page_address(eb
->pages
[0]) + get_eb_offset_in_page(eb
, 0);
5814 memcpy(kaddr
+ offsetof(struct btrfs_header
, fsid
), srcv
,
5818 void write_extent_buffer(const struct extent_buffer
*eb
, const void *srcv
,
5819 unsigned long start
, unsigned long len
)
5825 char *src
= (char *)srcv
;
5826 unsigned long i
= get_eb_page_index(start
);
5828 if (check_eb_range(eb
, start
, len
))
5831 offset
= get_eb_offset_in_page(eb
, start
);
5834 page
= eb
->pages
[i
];
5835 WARN_ON(!PageUptodate(page
));
5837 cur
= min(len
, PAGE_SIZE
- offset
);
5838 kaddr
= page_address(page
);
5839 memcpy(kaddr
+ offset
, src
, cur
);
5848 void memzero_extent_buffer(const struct extent_buffer
*eb
, unsigned long start
,
5855 unsigned long i
= get_eb_page_index(start
);
5857 if (check_eb_range(eb
, start
, len
))
5860 offset
= get_eb_offset_in_page(eb
, start
);
5863 page
= eb
->pages
[i
];
5864 WARN_ON(!PageUptodate(page
));
5866 cur
= min(len
, PAGE_SIZE
- offset
);
5867 kaddr
= page_address(page
);
5868 memset(kaddr
+ offset
, 0, cur
);
5876 void copy_extent_buffer_full(const struct extent_buffer
*dst
,
5877 const struct extent_buffer
*src
)
5882 ASSERT(dst
->len
== src
->len
);
5884 if (dst
->fs_info
->sectorsize
== PAGE_SIZE
) {
5885 num_pages
= num_extent_pages(dst
);
5886 for (i
= 0; i
< num_pages
; i
++)
5887 copy_page(page_address(dst
->pages
[i
]),
5888 page_address(src
->pages
[i
]));
5890 size_t src_offset
= get_eb_offset_in_page(src
, 0);
5891 size_t dst_offset
= get_eb_offset_in_page(dst
, 0);
5893 ASSERT(src
->fs_info
->sectorsize
< PAGE_SIZE
);
5894 memcpy(page_address(dst
->pages
[0]) + dst_offset
,
5895 page_address(src
->pages
[0]) + src_offset
,
5900 void copy_extent_buffer(const struct extent_buffer
*dst
,
5901 const struct extent_buffer
*src
,
5902 unsigned long dst_offset
, unsigned long src_offset
,
5905 u64 dst_len
= dst
->len
;
5910 unsigned long i
= get_eb_page_index(dst_offset
);
5912 if (check_eb_range(dst
, dst_offset
, len
) ||
5913 check_eb_range(src
, src_offset
, len
))
5916 WARN_ON(src
->len
!= dst_len
);
5918 offset
= get_eb_offset_in_page(dst
, dst_offset
);
5921 page
= dst
->pages
[i
];
5922 WARN_ON(!PageUptodate(page
));
5924 cur
= min(len
, (unsigned long)(PAGE_SIZE
- offset
));
5926 kaddr
= page_address(page
);
5927 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5937 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5939 * @eb: the extent buffer
5940 * @start: offset of the bitmap item in the extent buffer
5942 * @page_index: return index of the page in the extent buffer that contains the
5944 * @page_offset: return offset into the page given by page_index
5946 * This helper hides the ugliness of finding the byte in an extent buffer which
5947 * contains a given bit.
5949 static inline void eb_bitmap_offset(const struct extent_buffer
*eb
,
5950 unsigned long start
, unsigned long nr
,
5951 unsigned long *page_index
,
5952 size_t *page_offset
)
5954 size_t byte_offset
= BIT_BYTE(nr
);
5958 * The byte we want is the offset of the extent buffer + the offset of
5959 * the bitmap item in the extent buffer + the offset of the byte in the
5962 offset
= start
+ offset_in_page(eb
->start
) + byte_offset
;
5964 *page_index
= offset
>> PAGE_SHIFT
;
5965 *page_offset
= offset_in_page(offset
);
5969 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5970 * @eb: the extent buffer
5971 * @start: offset of the bitmap item in the extent buffer
5972 * @nr: bit number to test
5974 int extent_buffer_test_bit(const struct extent_buffer
*eb
, unsigned long start
,
5982 eb_bitmap_offset(eb
, start
, nr
, &i
, &offset
);
5983 page
= eb
->pages
[i
];
5984 WARN_ON(!PageUptodate(page
));
5985 kaddr
= page_address(page
);
5986 return 1U & (kaddr
[offset
] >> (nr
& (BITS_PER_BYTE
- 1)));
5990 * extent_buffer_bitmap_set - set an area of a bitmap
5991 * @eb: the extent buffer
5992 * @start: offset of the bitmap item in the extent buffer
5993 * @pos: bit number of the first bit
5994 * @len: number of bits to set
5996 void extent_buffer_bitmap_set(const struct extent_buffer
*eb
, unsigned long start
,
5997 unsigned long pos
, unsigned long len
)
6003 const unsigned int size
= pos
+ len
;
6004 int bits_to_set
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
6005 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(pos
);
6007 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
6008 page
= eb
->pages
[i
];
6009 WARN_ON(!PageUptodate(page
));
6010 kaddr
= page_address(page
);
6012 while (len
>= bits_to_set
) {
6013 kaddr
[offset
] |= mask_to_set
;
6015 bits_to_set
= BITS_PER_BYTE
;
6017 if (++offset
>= PAGE_SIZE
&& len
> 0) {
6019 page
= eb
->pages
[++i
];
6020 WARN_ON(!PageUptodate(page
));
6021 kaddr
= page_address(page
);
6025 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
6026 kaddr
[offset
] |= mask_to_set
;
6032 * extent_buffer_bitmap_clear - clear an area of a bitmap
6033 * @eb: the extent buffer
6034 * @start: offset of the bitmap item in the extent buffer
6035 * @pos: bit number of the first bit
6036 * @len: number of bits to clear
6038 void extent_buffer_bitmap_clear(const struct extent_buffer
*eb
,
6039 unsigned long start
, unsigned long pos
,
6046 const unsigned int size
= pos
+ len
;
6047 int bits_to_clear
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
6048 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(pos
);
6050 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
6051 page
= eb
->pages
[i
];
6052 WARN_ON(!PageUptodate(page
));
6053 kaddr
= page_address(page
);
6055 while (len
>= bits_to_clear
) {
6056 kaddr
[offset
] &= ~mask_to_clear
;
6057 len
-= bits_to_clear
;
6058 bits_to_clear
= BITS_PER_BYTE
;
6060 if (++offset
>= PAGE_SIZE
&& len
> 0) {
6062 page
= eb
->pages
[++i
];
6063 WARN_ON(!PageUptodate(page
));
6064 kaddr
= page_address(page
);
6068 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
6069 kaddr
[offset
] &= ~mask_to_clear
;
6073 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
6075 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
6076 return distance
< len
;
6079 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
6080 unsigned long dst_off
, unsigned long src_off
,
6083 char *dst_kaddr
= page_address(dst_page
);
6085 int must_memmove
= 0;
6087 if (dst_page
!= src_page
) {
6088 src_kaddr
= page_address(src_page
);
6090 src_kaddr
= dst_kaddr
;
6091 if (areas_overlap(src_off
, dst_off
, len
))
6096 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
6098 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
6101 void memcpy_extent_buffer(const struct extent_buffer
*dst
,
6102 unsigned long dst_offset
, unsigned long src_offset
,
6106 size_t dst_off_in_page
;
6107 size_t src_off_in_page
;
6108 unsigned long dst_i
;
6109 unsigned long src_i
;
6111 if (check_eb_range(dst
, dst_offset
, len
) ||
6112 check_eb_range(dst
, src_offset
, len
))
6116 dst_off_in_page
= get_eb_offset_in_page(dst
, dst_offset
);
6117 src_off_in_page
= get_eb_offset_in_page(dst
, src_offset
);
6119 dst_i
= get_eb_page_index(dst_offset
);
6120 src_i
= get_eb_page_index(src_offset
);
6122 cur
= min(len
, (unsigned long)(PAGE_SIZE
-
6124 cur
= min_t(unsigned long, cur
,
6125 (unsigned long)(PAGE_SIZE
- dst_off_in_page
));
6127 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
6128 dst_off_in_page
, src_off_in_page
, cur
);
6136 void memmove_extent_buffer(const struct extent_buffer
*dst
,
6137 unsigned long dst_offset
, unsigned long src_offset
,
6141 size_t dst_off_in_page
;
6142 size_t src_off_in_page
;
6143 unsigned long dst_end
= dst_offset
+ len
- 1;
6144 unsigned long src_end
= src_offset
+ len
- 1;
6145 unsigned long dst_i
;
6146 unsigned long src_i
;
6148 if (check_eb_range(dst
, dst_offset
, len
) ||
6149 check_eb_range(dst
, src_offset
, len
))
6151 if (dst_offset
< src_offset
) {
6152 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
6156 dst_i
= get_eb_page_index(dst_end
);
6157 src_i
= get_eb_page_index(src_end
);
6159 dst_off_in_page
= get_eb_offset_in_page(dst
, dst_end
);
6160 src_off_in_page
= get_eb_offset_in_page(dst
, src_end
);
6162 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
6163 cur
= min(cur
, dst_off_in_page
+ 1);
6164 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
6165 dst_off_in_page
- cur
+ 1,
6166 src_off_in_page
- cur
+ 1, cur
);
6174 int try_release_extent_buffer(struct page
*page
)
6176 struct extent_buffer
*eb
;
6179 * We need to make sure nobody is attaching this page to an eb right
6182 spin_lock(&page
->mapping
->private_lock
);
6183 if (!PagePrivate(page
)) {
6184 spin_unlock(&page
->mapping
->private_lock
);
6188 eb
= (struct extent_buffer
*)page
->private;
6192 * This is a little awful but should be ok, we need to make sure that
6193 * the eb doesn't disappear out from under us while we're looking at
6196 spin_lock(&eb
->refs_lock
);
6197 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
6198 spin_unlock(&eb
->refs_lock
);
6199 spin_unlock(&page
->mapping
->private_lock
);
6202 spin_unlock(&page
->mapping
->private_lock
);
6205 * If tree ref isn't set then we know the ref on this eb is a real ref,
6206 * so just return, this page will likely be freed soon anyway.
6208 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
6209 spin_unlock(&eb
->refs_lock
);
6213 return release_extent_buffer(eb
);
6217 * btrfs_readahead_tree_block - attempt to readahead a child block
6218 * @fs_info: the fs_info
6219 * @bytenr: bytenr to read
6220 * @owner_root: objectid of the root that owns this eb
6221 * @gen: generation for the uptodate check, can be 0
6222 * @level: level for the eb
6224 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
6225 * normal uptodate check of the eb, without checking the generation. If we have
6226 * to read the block we will not block on anything.
6228 void btrfs_readahead_tree_block(struct btrfs_fs_info
*fs_info
,
6229 u64 bytenr
, u64 owner_root
, u64 gen
, int level
)
6231 struct extent_buffer
*eb
;
6234 eb
= btrfs_find_create_tree_block(fs_info
, bytenr
, owner_root
, level
);
6238 if (btrfs_buffer_uptodate(eb
, gen
, 1)) {
6239 free_extent_buffer(eb
);
6243 ret
= read_extent_buffer_pages(eb
, WAIT_NONE
, 0);
6245 free_extent_buffer_stale(eb
);
6247 free_extent_buffer(eb
);
6251 * btrfs_readahead_node_child - readahead a node's child block
6252 * @node: parent node we're reading from
6253 * @slot: slot in the parent node for the child we want to read
6255 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
6256 * the slot in the node provided.
6258 void btrfs_readahead_node_child(struct extent_buffer
*node
, int slot
)
6260 btrfs_readahead_tree_block(node
->fs_info
,
6261 btrfs_node_blockptr(node
, slot
),
6262 btrfs_header_owner(node
),
6263 btrfs_node_ptr_generation(node
, slot
),
6264 btrfs_header_level(node
) - 1);