Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blob6e3b72e63e4226d50014f5058da3b3cabd2c31a8
1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
32 static inline bool extent_state_in_tree(const struct extent_state *state)
34 return !RB_EMPTY_NODE(&state->rb_node);
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
45 unsigned long flags;
47 spin_lock_irqsave(lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(lock, flags);
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
55 unsigned long flags;
57 spin_lock_irqsave(lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(lock, flags);
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64 struct extent_buffer *eb;
65 unsigned long flags;
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
71 if (!fs_info->allocated_ebs.next)
72 return;
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 static inline void btrfs_extent_state_leak_debug_check(void)
90 struct extent_state *state;
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
97 refcount_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
103 #define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 struct extent_io_tree *tree, u64 start, u64 end)
108 struct inode *inode = tree->private_data;
109 u64 isize;
111 if (!inode || !is_data_inode(inode))
112 return;
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
121 #else
122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
124 #define btrfs_extent_state_leak_debug_check() do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
126 #endif
128 struct tree_entry {
129 u64 start;
130 u64 end;
131 struct rb_node rb_node;
134 struct extent_page_data {
135 struct bio *bio;
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
139 unsigned int extent_locked:1;
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io:1;
145 static int add_extent_changeset(struct extent_state *state, u32 bits,
146 struct extent_changeset *changeset,
147 int set)
149 int ret;
151 if (!changeset)
152 return 0;
153 if (set && (state->state & bits) == bits)
154 return 0;
155 if (!set && (state->state & bits) == 0)
156 return 0;
157 changeset->bytes_changed += state->end - state->start + 1;
158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 GFP_ATOMIC);
160 return ret;
163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
166 blk_status_t ret = 0;
167 struct extent_io_tree *tree = bio->bi_private;
169 bio->bi_private = NULL;
171 if (is_data_inode(tree->private_data))
172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173 bio_flags);
174 else
175 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176 mirror_num, bio_flags);
178 return blk_status_to_errno(ret);
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data *epd, int ret)
184 if (epd->bio) {
185 epd->bio->bi_status = errno_to_blk_status(ret);
186 bio_endio(epd->bio);
187 epd->bio = NULL;
192 * Submit bio from extent page data via submit_one_bio
194 * Return 0 if everything is OK.
195 * Return <0 for error.
197 static int __must_check flush_write_bio(struct extent_page_data *epd)
199 int ret = 0;
201 if (epd->bio) {
202 ret = submit_one_bio(epd->bio, 0, 0);
204 * Clean up of epd->bio is handled by its endio function.
205 * And endio is either triggered by successful bio execution
206 * or the error handler of submit bio hook.
207 * So at this point, no matter what happened, we don't need
208 * to clean up epd->bio.
210 epd->bio = NULL;
212 return ret;
215 int __init extent_state_cache_init(void)
217 extent_state_cache = kmem_cache_create("btrfs_extent_state",
218 sizeof(struct extent_state), 0,
219 SLAB_MEM_SPREAD, NULL);
220 if (!extent_state_cache)
221 return -ENOMEM;
222 return 0;
225 int __init extent_io_init(void)
227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228 sizeof(struct extent_buffer), 0,
229 SLAB_MEM_SPREAD, NULL);
230 if (!extent_buffer_cache)
231 return -ENOMEM;
233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234 offsetof(struct btrfs_io_bio, bio),
235 BIOSET_NEED_BVECS))
236 goto free_buffer_cache;
238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239 goto free_bioset;
241 return 0;
243 free_bioset:
244 bioset_exit(&btrfs_bioset);
246 free_buffer_cache:
247 kmem_cache_destroy(extent_buffer_cache);
248 extent_buffer_cache = NULL;
249 return -ENOMEM;
252 void __cold extent_state_cache_exit(void)
254 btrfs_extent_state_leak_debug_check();
255 kmem_cache_destroy(extent_state_cache);
258 void __cold extent_io_exit(void)
261 * Make sure all delayed rcu free are flushed before we
262 * destroy caches.
264 rcu_barrier();
265 kmem_cache_destroy(extent_buffer_cache);
266 bioset_exit(&btrfs_bioset);
270 * For the file_extent_tree, we want to hold the inode lock when we lookup and
271 * update the disk_i_size, but lockdep will complain because our io_tree we hold
272 * the tree lock and get the inode lock when setting delalloc. These two things
273 * are unrelated, so make a class for the file_extent_tree so we don't get the
274 * two locking patterns mixed up.
276 static struct lock_class_key file_extent_tree_class;
278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279 struct extent_io_tree *tree, unsigned int owner,
280 void *private_data)
282 tree->fs_info = fs_info;
283 tree->state = RB_ROOT;
284 tree->dirty_bytes = 0;
285 spin_lock_init(&tree->lock);
286 tree->private_data = private_data;
287 tree->owner = owner;
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
292 void extent_io_tree_release(struct extent_io_tree *tree)
294 spin_lock(&tree->lock);
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
316 cond_resched_lock(&tree->lock);
318 spin_unlock(&tree->lock);
321 static struct extent_state *alloc_extent_state(gfp_t mask)
323 struct extent_state *state;
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 state = kmem_cache_alloc(extent_state_cache, mask);
331 if (!state)
332 return state;
333 state->state = 0;
334 state->failrec = NULL;
335 RB_CLEAR_NODE(&state->rb_node);
336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 refcount_set(&state->refs, 1);
338 init_waitqueue_head(&state->wq);
339 trace_alloc_extent_state(state, mask, _RET_IP_);
340 return state;
343 void free_extent_state(struct extent_state *state)
345 if (!state)
346 return;
347 if (refcount_dec_and_test(&state->refs)) {
348 WARN_ON(extent_state_in_tree(state));
349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 trace_free_extent_state(state, _RET_IP_);
351 kmem_cache_free(extent_state_cache, state);
355 static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
362 struct rb_node **p;
363 struct rb_node *parent = NULL;
364 struct tree_entry *entry;
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
372 p = search_start ? &search_start : &root->rb_node;
373 while (*p) {
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
385 do_insert:
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 struct rb_node **next_ret,
411 struct rb_node **prev_ret,
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
415 struct rb_root *root = &tree->state;
416 struct rb_node **n = &root->rb_node;
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
425 prev_entry = entry;
427 if (offset < entry->start)
428 n = &(*n)->rb_left;
429 else if (offset > entry->end)
430 n = &(*n)->rb_right;
431 else
432 return *n;
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
440 if (next_ret) {
441 orig_prev = prev;
442 while (prev && offset > prev_entry->end) {
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
446 *next_ret = prev;
447 prev = orig_prev;
450 if (prev_ret) {
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 while (prev && offset < prev_entry->start) {
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
456 *prev_ret = prev;
458 return NULL;
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
467 struct rb_node *next= NULL;
468 struct rb_node *ret;
470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 if (!ret)
472 return next;
473 return ret;
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
479 return tree_search_for_insert(tree, offset, NULL, NULL);
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
489 * This should be called with the tree lock held.
491 static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
494 struct extent_state *other;
495 struct rb_node *other_node;
497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 return;
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
509 state->start = other->start;
510 rb_erase(&other->rb_node, &tree->state);
511 RB_CLEAR_NODE(&other->rb_node);
512 free_extent_state(other);
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
524 state->end = other->end;
525 rb_erase(&other->rb_node, &tree->state);
526 RB_CLEAR_NODE(&other->rb_node);
527 free_extent_state(other);
532 static void set_state_bits(struct extent_io_tree *tree,
533 struct extent_state *state, u32 *bits,
534 struct extent_changeset *changeset);
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
546 static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
548 struct rb_node ***p,
549 struct rb_node **parent,
550 u32 *bits, struct extent_changeset *changeset)
552 struct rb_node *node;
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
559 state->start = start;
560 state->end = end;
562 set_state_bits(tree, state, bits, changeset);
564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
570 found->start, found->end, start, end);
571 return -EEXIST;
573 merge_state(tree, state);
574 return 0;
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
594 struct rb_node *node;
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
606 if (node) {
607 free_extent_state(prealloc);
608 return -EEXIST;
610 return 0;
613 static struct extent_state *next_state(struct extent_state *state)
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
631 u32 *bits, int wake,
632 struct extent_changeset *changeset)
634 struct extent_state *next;
635 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 int ret;
638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
649 state->state &= ~bits_to_clear;
650 if (wake)
651 wake_up(&state->wq);
652 if (state->state == 0) {
653 next = next_state(state);
654 if (extent_state_in_tree(state)) {
655 rb_erase(&state->rb_node, &tree->state);
656 RB_CLEAR_NODE(&state->rb_node);
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
661 } else {
662 merge_state(tree, state);
663 next = next_state(state);
665 return next;
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
674 return prealloc;
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
679 struct inode *inode = tree->private_data;
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
693 * the range [start, end] is inclusive.
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 u32 bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
702 struct extent_state *state;
703 struct extent_state *cached;
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
706 u64 last_end;
707 int err;
708 int clear = 0;
710 btrfs_debug_check_extent_io_range(tree, start, end);
711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 clear = 1;
721 again:
722 if (!prealloc && gfpflags_allow_blocking(mask)) {
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
730 prealloc = alloc_extent_state(mask);
733 spin_lock(&tree->lock);
734 if (cached_state) {
735 cached = *cached_state;
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
744 if (clear)
745 refcount_dec(&cached->refs);
746 state = cached;
747 goto hit_next;
749 if (clear)
750 free_extent_state(cached);
753 * this search will find the extents that end after
754 * our range starts
756 node = tree_search(tree, start);
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
764 last_end = state->end;
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state->state & bits)) {
768 state = next_state(state);
769 goto next;
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
777 * We need to split the extent we found, and may flip
778 * bits on second half.
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
788 if (state->start < start) {
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
791 err = split_state(tree, state, prealloc, start);
792 if (err)
793 extent_io_tree_panic(tree, err);
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
801 goto next;
803 goto search_again;
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
811 if (state->start <= end && state->end > end) {
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
814 err = split_state(tree, state, prealloc, end + 1);
815 if (err)
816 extent_io_tree_panic(tree, err);
818 if (wake)
819 wake_up(&state->wq);
821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
823 prealloc = NULL;
824 goto out;
827 state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
832 if (start <= end && state && !need_resched())
833 goto hit_next;
835 search_again:
836 if (start > end)
837 goto out;
838 spin_unlock(&tree->lock);
839 if (gfpflags_allow_blocking(mask))
840 cond_resched();
841 goto again;
843 out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
848 return 0;
852 static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
854 __releases(tree->lock)
855 __acquires(tree->lock)
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 spin_unlock(&tree->lock);
860 schedule();
861 spin_lock(&tree->lock);
862 finish_wait(&state->wq, &wait);
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 u32 bits)
873 struct extent_state *state;
874 struct rb_node *node;
876 btrfs_debug_check_extent_io_range(tree, start, end);
878 spin_lock(&tree->lock);
879 again:
880 while (1) {
882 * this search will find all the extents that end after
883 * our range starts
885 node = tree_search(tree, start);
886 process_node:
887 if (!node)
888 break;
890 state = rb_entry(node, struct extent_state, rb_node);
892 if (state->start > end)
893 goto out;
895 if (state->state & bits) {
896 start = state->start;
897 refcount_inc(&state->refs);
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
902 start = state->end + 1;
904 if (start > end)
905 break;
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
912 out:
913 spin_unlock(&tree->lock);
916 static void set_state_bits(struct extent_io_tree *tree,
917 struct extent_state *state,
918 u32 *bits, struct extent_changeset *changeset)
920 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
921 int ret;
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
932 state->state |= bits_to_set;
935 static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
937 unsigned flags)
939 if (cached_ptr && !(*cached_ptr)) {
940 if (!flags || (state->state & flags)) {
941 *cached_ptr = state;
942 refcount_inc(&state->refs);
947 static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
950 return cache_state_if_flags(state, cached_ptr,
951 EXTENT_LOCKED | EXTENT_BOUNDARY);
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
962 * [start, end] is inclusive This takes the tree lock.
964 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
965 u32 exclusive_bits, u64 *failed_start,
966 struct extent_state **cached_state, gfp_t mask,
967 struct extent_changeset *changeset)
969 struct extent_state *state;
970 struct extent_state *prealloc = NULL;
971 struct rb_node *node;
972 struct rb_node **p;
973 struct rb_node *parent;
974 int err = 0;
975 u64 last_start;
976 u64 last_end;
978 btrfs_debug_check_extent_io_range(tree, start, end);
979 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
981 if (exclusive_bits)
982 ASSERT(failed_start);
983 else
984 ASSERT(failed_start == NULL);
985 again:
986 if (!prealloc && gfpflags_allow_blocking(mask)) {
988 * Don't care for allocation failure here because we might end
989 * up not needing the pre-allocated extent state at all, which
990 * is the case if we only have in the tree extent states that
991 * cover our input range and don't cover too any other range.
992 * If we end up needing a new extent state we allocate it later.
994 prealloc = alloc_extent_state(mask);
997 spin_lock(&tree->lock);
998 if (cached_state && *cached_state) {
999 state = *cached_state;
1000 if (state->start <= start && state->end > start &&
1001 extent_state_in_tree(state)) {
1002 node = &state->rb_node;
1003 goto hit_next;
1007 * this search will find all the extents that end after
1008 * our range starts.
1010 node = tree_search_for_insert(tree, start, &p, &parent);
1011 if (!node) {
1012 prealloc = alloc_extent_state_atomic(prealloc);
1013 BUG_ON(!prealloc);
1014 err = insert_state(tree, prealloc, start, end,
1015 &p, &parent, &bits, changeset);
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
1021 goto out;
1023 state = rb_entry(node, struct extent_state, rb_node);
1024 hit_next:
1025 last_start = state->start;
1026 last_end = state->end;
1029 * | ---- desired range ---- |
1030 * | state |
1032 * Just lock what we found and keep going
1034 if (state->start == start && state->end <= end) {
1035 if (state->state & exclusive_bits) {
1036 *failed_start = state->start;
1037 err = -EEXIST;
1038 goto out;
1041 set_state_bits(tree, state, &bits, changeset);
1042 cache_state(state, cached_state);
1043 merge_state(tree, state);
1044 if (last_end == (u64)-1)
1045 goto out;
1046 start = last_end + 1;
1047 state = next_state(state);
1048 if (start < end && state && state->start == start &&
1049 !need_resched())
1050 goto hit_next;
1051 goto search_again;
1055 * | ---- desired range ---- |
1056 * | state |
1057 * or
1058 * | ------------- state -------------- |
1060 * We need to split the extent we found, and may flip bits on
1061 * second half.
1063 * If the extent we found extends past our
1064 * range, we just split and search again. It'll get split
1065 * again the next time though.
1067 * If the extent we found is inside our range, we set the
1068 * desired bit on it.
1070 if (state->start < start) {
1071 if (state->state & exclusive_bits) {
1072 *failed_start = start;
1073 err = -EEXIST;
1074 goto out;
1078 * If this extent already has all the bits we want set, then
1079 * skip it, not necessary to split it or do anything with it.
1081 if ((state->state & bits) == bits) {
1082 start = state->end + 1;
1083 cache_state(state, cached_state);
1084 goto search_again;
1087 prealloc = alloc_extent_state_atomic(prealloc);
1088 BUG_ON(!prealloc);
1089 err = split_state(tree, state, prealloc, start);
1090 if (err)
1091 extent_io_tree_panic(tree, err);
1093 prealloc = NULL;
1094 if (err)
1095 goto out;
1096 if (state->end <= end) {
1097 set_state_bits(tree, state, &bits, changeset);
1098 cache_state(state, cached_state);
1099 merge_state(tree, state);
1100 if (last_end == (u64)-1)
1101 goto out;
1102 start = last_end + 1;
1103 state = next_state(state);
1104 if (start < end && state && state->start == start &&
1105 !need_resched())
1106 goto hit_next;
1108 goto search_again;
1111 * | ---- desired range ---- |
1112 * | state | or | state |
1114 * There's a hole, we need to insert something in it and
1115 * ignore the extent we found.
1117 if (state->start > start) {
1118 u64 this_end;
1119 if (end < last_start)
1120 this_end = end;
1121 else
1122 this_end = last_start - 1;
1124 prealloc = alloc_extent_state_atomic(prealloc);
1125 BUG_ON(!prealloc);
1128 * Avoid to free 'prealloc' if it can be merged with
1129 * the later extent.
1131 err = insert_state(tree, prealloc, start, this_end,
1132 NULL, NULL, &bits, changeset);
1133 if (err)
1134 extent_io_tree_panic(tree, err);
1136 cache_state(prealloc, cached_state);
1137 prealloc = NULL;
1138 start = this_end + 1;
1139 goto search_again;
1142 * | ---- desired range ---- |
1143 * | state |
1144 * We need to split the extent, and set the bit
1145 * on the first half
1147 if (state->start <= end && state->end > end) {
1148 if (state->state & exclusive_bits) {
1149 *failed_start = start;
1150 err = -EEXIST;
1151 goto out;
1154 prealloc = alloc_extent_state_atomic(prealloc);
1155 BUG_ON(!prealloc);
1156 err = split_state(tree, state, prealloc, end + 1);
1157 if (err)
1158 extent_io_tree_panic(tree, err);
1160 set_state_bits(tree, prealloc, &bits, changeset);
1161 cache_state(prealloc, cached_state);
1162 merge_state(tree, prealloc);
1163 prealloc = NULL;
1164 goto out;
1167 search_again:
1168 if (start > end)
1169 goto out;
1170 spin_unlock(&tree->lock);
1171 if (gfpflags_allow_blocking(mask))
1172 cond_resched();
1173 goto again;
1175 out:
1176 spin_unlock(&tree->lock);
1177 if (prealloc)
1178 free_extent_state(prealloc);
1180 return err;
1185 * convert_extent_bit - convert all bits in a given range from one bit to
1186 * another
1187 * @tree: the io tree to search
1188 * @start: the start offset in bytes
1189 * @end: the end offset in bytes (inclusive)
1190 * @bits: the bits to set in this range
1191 * @clear_bits: the bits to clear in this range
1192 * @cached_state: state that we're going to cache
1194 * This will go through and set bits for the given range. If any states exist
1195 * already in this range they are set with the given bit and cleared of the
1196 * clear_bits. This is only meant to be used by things that are mergeable, ie
1197 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1198 * boundary bits like LOCK.
1200 * All allocations are done with GFP_NOFS.
1202 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1203 u32 bits, u32 clear_bits,
1204 struct extent_state **cached_state)
1206 struct extent_state *state;
1207 struct extent_state *prealloc = NULL;
1208 struct rb_node *node;
1209 struct rb_node **p;
1210 struct rb_node *parent;
1211 int err = 0;
1212 u64 last_start;
1213 u64 last_end;
1214 bool first_iteration = true;
1216 btrfs_debug_check_extent_io_range(tree, start, end);
1217 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1218 clear_bits);
1220 again:
1221 if (!prealloc) {
1223 * Best effort, don't worry if extent state allocation fails
1224 * here for the first iteration. We might have a cached state
1225 * that matches exactly the target range, in which case no
1226 * extent state allocations are needed. We'll only know this
1227 * after locking the tree.
1229 prealloc = alloc_extent_state(GFP_NOFS);
1230 if (!prealloc && !first_iteration)
1231 return -ENOMEM;
1234 spin_lock(&tree->lock);
1235 if (cached_state && *cached_state) {
1236 state = *cached_state;
1237 if (state->start <= start && state->end > start &&
1238 extent_state_in_tree(state)) {
1239 node = &state->rb_node;
1240 goto hit_next;
1245 * this search will find all the extents that end after
1246 * our range starts.
1248 node = tree_search_for_insert(tree, start, &p, &parent);
1249 if (!node) {
1250 prealloc = alloc_extent_state_atomic(prealloc);
1251 if (!prealloc) {
1252 err = -ENOMEM;
1253 goto out;
1255 err = insert_state(tree, prealloc, start, end,
1256 &p, &parent, &bits, NULL);
1257 if (err)
1258 extent_io_tree_panic(tree, err);
1259 cache_state(prealloc, cached_state);
1260 prealloc = NULL;
1261 goto out;
1263 state = rb_entry(node, struct extent_state, rb_node);
1264 hit_next:
1265 last_start = state->start;
1266 last_end = state->end;
1269 * | ---- desired range ---- |
1270 * | state |
1272 * Just lock what we found and keep going
1274 if (state->start == start && state->end <= end) {
1275 set_state_bits(tree, state, &bits, NULL);
1276 cache_state(state, cached_state);
1277 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1278 if (last_end == (u64)-1)
1279 goto out;
1280 start = last_end + 1;
1281 if (start < end && state && state->start == start &&
1282 !need_resched())
1283 goto hit_next;
1284 goto search_again;
1288 * | ---- desired range ---- |
1289 * | state |
1290 * or
1291 * | ------------- state -------------- |
1293 * We need to split the extent we found, and may flip bits on
1294 * second half.
1296 * If the extent we found extends past our
1297 * range, we just split and search again. It'll get split
1298 * again the next time though.
1300 * If the extent we found is inside our range, we set the
1301 * desired bit on it.
1303 if (state->start < start) {
1304 prealloc = alloc_extent_state_atomic(prealloc);
1305 if (!prealloc) {
1306 err = -ENOMEM;
1307 goto out;
1309 err = split_state(tree, state, prealloc, start);
1310 if (err)
1311 extent_io_tree_panic(tree, err);
1312 prealloc = NULL;
1313 if (err)
1314 goto out;
1315 if (state->end <= end) {
1316 set_state_bits(tree, state, &bits, NULL);
1317 cache_state(state, cached_state);
1318 state = clear_state_bit(tree, state, &clear_bits, 0,
1319 NULL);
1320 if (last_end == (u64)-1)
1321 goto out;
1322 start = last_end + 1;
1323 if (start < end && state && state->start == start &&
1324 !need_resched())
1325 goto hit_next;
1327 goto search_again;
1330 * | ---- desired range ---- |
1331 * | state | or | state |
1333 * There's a hole, we need to insert something in it and
1334 * ignore the extent we found.
1336 if (state->start > start) {
1337 u64 this_end;
1338 if (end < last_start)
1339 this_end = end;
1340 else
1341 this_end = last_start - 1;
1343 prealloc = alloc_extent_state_atomic(prealloc);
1344 if (!prealloc) {
1345 err = -ENOMEM;
1346 goto out;
1350 * Avoid to free 'prealloc' if it can be merged with
1351 * the later extent.
1353 err = insert_state(tree, prealloc, start, this_end,
1354 NULL, NULL, &bits, NULL);
1355 if (err)
1356 extent_io_tree_panic(tree, err);
1357 cache_state(prealloc, cached_state);
1358 prealloc = NULL;
1359 start = this_end + 1;
1360 goto search_again;
1363 * | ---- desired range ---- |
1364 * | state |
1365 * We need to split the extent, and set the bit
1366 * on the first half
1368 if (state->start <= end && state->end > end) {
1369 prealloc = alloc_extent_state_atomic(prealloc);
1370 if (!prealloc) {
1371 err = -ENOMEM;
1372 goto out;
1375 err = split_state(tree, state, prealloc, end + 1);
1376 if (err)
1377 extent_io_tree_panic(tree, err);
1379 set_state_bits(tree, prealloc, &bits, NULL);
1380 cache_state(prealloc, cached_state);
1381 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1382 prealloc = NULL;
1383 goto out;
1386 search_again:
1387 if (start > end)
1388 goto out;
1389 spin_unlock(&tree->lock);
1390 cond_resched();
1391 first_iteration = false;
1392 goto again;
1394 out:
1395 spin_unlock(&tree->lock);
1396 if (prealloc)
1397 free_extent_state(prealloc);
1399 return err;
1402 /* wrappers around set/clear extent bit */
1403 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1404 u32 bits, struct extent_changeset *changeset)
1407 * We don't support EXTENT_LOCKED yet, as current changeset will
1408 * record any bits changed, so for EXTENT_LOCKED case, it will
1409 * either fail with -EEXIST or changeset will record the whole
1410 * range.
1412 BUG_ON(bits & EXTENT_LOCKED);
1414 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1415 changeset);
1418 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1419 u32 bits)
1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1422 GFP_NOWAIT, NULL);
1425 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1426 u32 bits, int wake, int delete,
1427 struct extent_state **cached)
1429 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1430 cached, GFP_NOFS, NULL);
1433 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1434 u32 bits, struct extent_changeset *changeset)
1437 * Don't support EXTENT_LOCKED case, same reason as
1438 * set_record_extent_bits().
1440 BUG_ON(bits & EXTENT_LOCKED);
1442 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1443 changeset);
1447 * either insert or lock state struct between start and end use mask to tell
1448 * us if waiting is desired.
1450 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1451 struct extent_state **cached_state)
1453 int err;
1454 u64 failed_start;
1456 while (1) {
1457 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1458 EXTENT_LOCKED, &failed_start,
1459 cached_state, GFP_NOFS, NULL);
1460 if (err == -EEXIST) {
1461 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1462 start = failed_start;
1463 } else
1464 break;
1465 WARN_ON(start > end);
1467 return err;
1470 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1472 int err;
1473 u64 failed_start;
1475 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1476 &failed_start, NULL, GFP_NOFS, NULL);
1477 if (err == -EEXIST) {
1478 if (failed_start > start)
1479 clear_extent_bit(tree, start, failed_start - 1,
1480 EXTENT_LOCKED, 1, 0, NULL);
1481 return 0;
1483 return 1;
1486 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1488 unsigned long index = start >> PAGE_SHIFT;
1489 unsigned long end_index = end >> PAGE_SHIFT;
1490 struct page *page;
1492 while (index <= end_index) {
1493 page = find_get_page(inode->i_mapping, index);
1494 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1495 clear_page_dirty_for_io(page);
1496 put_page(page);
1497 index++;
1501 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1503 unsigned long index = start >> PAGE_SHIFT;
1504 unsigned long end_index = end >> PAGE_SHIFT;
1505 struct page *page;
1507 while (index <= end_index) {
1508 page = find_get_page(inode->i_mapping, index);
1509 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1510 __set_page_dirty_nobuffers(page);
1511 account_page_redirty(page);
1512 put_page(page);
1513 index++;
1517 /* find the first state struct with 'bits' set after 'start', and
1518 * return it. tree->lock must be held. NULL will returned if
1519 * nothing was found after 'start'
1521 static struct extent_state *
1522 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1524 struct rb_node *node;
1525 struct extent_state *state;
1528 * this search will find all the extents that end after
1529 * our range starts.
1531 node = tree_search(tree, start);
1532 if (!node)
1533 goto out;
1535 while (1) {
1536 state = rb_entry(node, struct extent_state, rb_node);
1537 if (state->end >= start && (state->state & bits))
1538 return state;
1540 node = rb_next(node);
1541 if (!node)
1542 break;
1544 out:
1545 return NULL;
1549 * Find the first offset in the io tree with one or more @bits set.
1551 * Note: If there are multiple bits set in @bits, any of them will match.
1553 * Return 0 if we find something, and update @start_ret and @end_ret.
1554 * Return 1 if we found nothing.
1556 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1557 u64 *start_ret, u64 *end_ret, u32 bits,
1558 struct extent_state **cached_state)
1560 struct extent_state *state;
1561 int ret = 1;
1563 spin_lock(&tree->lock);
1564 if (cached_state && *cached_state) {
1565 state = *cached_state;
1566 if (state->end == start - 1 && extent_state_in_tree(state)) {
1567 while ((state = next_state(state)) != NULL) {
1568 if (state->state & bits)
1569 goto got_it;
1571 free_extent_state(*cached_state);
1572 *cached_state = NULL;
1573 goto out;
1575 free_extent_state(*cached_state);
1576 *cached_state = NULL;
1579 state = find_first_extent_bit_state(tree, start, bits);
1580 got_it:
1581 if (state) {
1582 cache_state_if_flags(state, cached_state, 0);
1583 *start_ret = state->start;
1584 *end_ret = state->end;
1585 ret = 0;
1587 out:
1588 spin_unlock(&tree->lock);
1589 return ret;
1593 * find_contiguous_extent_bit: find a contiguous area of bits
1594 * @tree - io tree to check
1595 * @start - offset to start the search from
1596 * @start_ret - the first offset we found with the bits set
1597 * @end_ret - the final contiguous range of the bits that were set
1598 * @bits - bits to look for
1600 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1601 * to set bits appropriately, and then merge them again. During this time it
1602 * will drop the tree->lock, so use this helper if you want to find the actual
1603 * contiguous area for given bits. We will search to the first bit we find, and
1604 * then walk down the tree until we find a non-contiguous area. The area
1605 * returned will be the full contiguous area with the bits set.
1607 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1608 u64 *start_ret, u64 *end_ret, u32 bits)
1610 struct extent_state *state;
1611 int ret = 1;
1613 spin_lock(&tree->lock);
1614 state = find_first_extent_bit_state(tree, start, bits);
1615 if (state) {
1616 *start_ret = state->start;
1617 *end_ret = state->end;
1618 while ((state = next_state(state)) != NULL) {
1619 if (state->start > (*end_ret + 1))
1620 break;
1621 *end_ret = state->end;
1623 ret = 0;
1625 spin_unlock(&tree->lock);
1626 return ret;
1630 * find_first_clear_extent_bit - find the first range that has @bits not set.
1631 * This range could start before @start.
1633 * @tree - the tree to search
1634 * @start - the offset at/after which the found extent should start
1635 * @start_ret - records the beginning of the range
1636 * @end_ret - records the end of the range (inclusive)
1637 * @bits - the set of bits which must be unset
1639 * Since unallocated range is also considered one which doesn't have the bits
1640 * set it's possible that @end_ret contains -1, this happens in case the range
1641 * spans (last_range_end, end of device]. In this case it's up to the caller to
1642 * trim @end_ret to the appropriate size.
1644 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1645 u64 *start_ret, u64 *end_ret, u32 bits)
1647 struct extent_state *state;
1648 struct rb_node *node, *prev = NULL, *next;
1650 spin_lock(&tree->lock);
1652 /* Find first extent with bits cleared */
1653 while (1) {
1654 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1655 if (!node && !next && !prev) {
1657 * Tree is completely empty, send full range and let
1658 * caller deal with it
1660 *start_ret = 0;
1661 *end_ret = -1;
1662 goto out;
1663 } else if (!node && !next) {
1665 * We are past the last allocated chunk, set start at
1666 * the end of the last extent.
1668 state = rb_entry(prev, struct extent_state, rb_node);
1669 *start_ret = state->end + 1;
1670 *end_ret = -1;
1671 goto out;
1672 } else if (!node) {
1673 node = next;
1676 * At this point 'node' either contains 'start' or start is
1677 * before 'node'
1679 state = rb_entry(node, struct extent_state, rb_node);
1681 if (in_range(start, state->start, state->end - state->start + 1)) {
1682 if (state->state & bits) {
1684 * |--range with bits sets--|
1686 * start
1688 start = state->end + 1;
1689 } else {
1691 * 'start' falls within a range that doesn't
1692 * have the bits set, so take its start as
1693 * the beginning of the desired range
1695 * |--range with bits cleared----|
1697 * start
1699 *start_ret = state->start;
1700 break;
1702 } else {
1704 * |---prev range---|---hole/unset---|---node range---|
1706 * start
1708 * or
1710 * |---hole/unset--||--first node--|
1711 * 0 |
1712 * start
1714 if (prev) {
1715 state = rb_entry(prev, struct extent_state,
1716 rb_node);
1717 *start_ret = state->end + 1;
1718 } else {
1719 *start_ret = 0;
1721 break;
1726 * Find the longest stretch from start until an entry which has the
1727 * bits set
1729 while (1) {
1730 state = rb_entry(node, struct extent_state, rb_node);
1731 if (state->end >= start && !(state->state & bits)) {
1732 *end_ret = state->end;
1733 } else {
1734 *end_ret = state->start - 1;
1735 break;
1738 node = rb_next(node);
1739 if (!node)
1740 break;
1742 out:
1743 spin_unlock(&tree->lock);
1747 * find a contiguous range of bytes in the file marked as delalloc, not
1748 * more than 'max_bytes'. start and end are used to return the range,
1750 * true is returned if we find something, false if nothing was in the tree
1752 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1753 u64 *end, u64 max_bytes,
1754 struct extent_state **cached_state)
1756 struct rb_node *node;
1757 struct extent_state *state;
1758 u64 cur_start = *start;
1759 bool found = false;
1760 u64 total_bytes = 0;
1762 spin_lock(&tree->lock);
1765 * this search will find all the extents that end after
1766 * our range starts.
1768 node = tree_search(tree, cur_start);
1769 if (!node) {
1770 *end = (u64)-1;
1771 goto out;
1774 while (1) {
1775 state = rb_entry(node, struct extent_state, rb_node);
1776 if (found && (state->start != cur_start ||
1777 (state->state & EXTENT_BOUNDARY))) {
1778 goto out;
1780 if (!(state->state & EXTENT_DELALLOC)) {
1781 if (!found)
1782 *end = state->end;
1783 goto out;
1785 if (!found) {
1786 *start = state->start;
1787 *cached_state = state;
1788 refcount_inc(&state->refs);
1790 found = true;
1791 *end = state->end;
1792 cur_start = state->end + 1;
1793 node = rb_next(node);
1794 total_bytes += state->end - state->start + 1;
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!node)
1798 break;
1800 out:
1801 spin_unlock(&tree->lock);
1802 return found;
1805 static int __process_pages_contig(struct address_space *mapping,
1806 struct page *locked_page,
1807 pgoff_t start_index, pgoff_t end_index,
1808 unsigned long page_ops, pgoff_t *index_ret);
1810 static noinline void __unlock_for_delalloc(struct inode *inode,
1811 struct page *locked_page,
1812 u64 start, u64 end)
1814 unsigned long index = start >> PAGE_SHIFT;
1815 unsigned long end_index = end >> PAGE_SHIFT;
1817 ASSERT(locked_page);
1818 if (index == locked_page->index && end_index == index)
1819 return;
1821 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1822 PAGE_UNLOCK, NULL);
1825 static noinline int lock_delalloc_pages(struct inode *inode,
1826 struct page *locked_page,
1827 u64 delalloc_start,
1828 u64 delalloc_end)
1830 unsigned long index = delalloc_start >> PAGE_SHIFT;
1831 unsigned long index_ret = index;
1832 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1833 int ret;
1835 ASSERT(locked_page);
1836 if (index == locked_page->index && index == end_index)
1837 return 0;
1839 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1840 end_index, PAGE_LOCK, &index_ret);
1841 if (ret == -EAGAIN)
1842 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1843 (u64)index_ret << PAGE_SHIFT);
1844 return ret;
1848 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1849 * more than @max_bytes. @Start and @end are used to return the range,
1851 * Return: true if we find something
1852 * false if nothing was in the tree
1854 EXPORT_FOR_TESTS
1855 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1856 struct page *locked_page, u64 *start,
1857 u64 *end)
1859 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1860 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1861 u64 delalloc_start;
1862 u64 delalloc_end;
1863 bool found;
1864 struct extent_state *cached_state = NULL;
1865 int ret;
1866 int loops = 0;
1868 again:
1869 /* step one, find a bunch of delalloc bytes starting at start */
1870 delalloc_start = *start;
1871 delalloc_end = 0;
1872 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1873 max_bytes, &cached_state);
1874 if (!found || delalloc_end <= *start) {
1875 *start = delalloc_start;
1876 *end = delalloc_end;
1877 free_extent_state(cached_state);
1878 return false;
1882 * start comes from the offset of locked_page. We have to lock
1883 * pages in order, so we can't process delalloc bytes before
1884 * locked_page
1886 if (delalloc_start < *start)
1887 delalloc_start = *start;
1890 * make sure to limit the number of pages we try to lock down
1892 if (delalloc_end + 1 - delalloc_start > max_bytes)
1893 delalloc_end = delalloc_start + max_bytes - 1;
1895 /* step two, lock all the pages after the page that has start */
1896 ret = lock_delalloc_pages(inode, locked_page,
1897 delalloc_start, delalloc_end);
1898 ASSERT(!ret || ret == -EAGAIN);
1899 if (ret == -EAGAIN) {
1900 /* some of the pages are gone, lets avoid looping by
1901 * shortening the size of the delalloc range we're searching
1903 free_extent_state(cached_state);
1904 cached_state = NULL;
1905 if (!loops) {
1906 max_bytes = PAGE_SIZE;
1907 loops = 1;
1908 goto again;
1909 } else {
1910 found = false;
1911 goto out_failed;
1915 /* step three, lock the state bits for the whole range */
1916 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1918 /* then test to make sure it is all still delalloc */
1919 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1920 EXTENT_DELALLOC, 1, cached_state);
1921 if (!ret) {
1922 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1923 &cached_state);
1924 __unlock_for_delalloc(inode, locked_page,
1925 delalloc_start, delalloc_end);
1926 cond_resched();
1927 goto again;
1929 free_extent_state(cached_state);
1930 *start = delalloc_start;
1931 *end = delalloc_end;
1932 out_failed:
1933 return found;
1936 static int __process_pages_contig(struct address_space *mapping,
1937 struct page *locked_page,
1938 pgoff_t start_index, pgoff_t end_index,
1939 unsigned long page_ops, pgoff_t *index_ret)
1941 unsigned long nr_pages = end_index - start_index + 1;
1942 unsigned long pages_processed = 0;
1943 pgoff_t index = start_index;
1944 struct page *pages[16];
1945 unsigned ret;
1946 int err = 0;
1947 int i;
1949 if (page_ops & PAGE_LOCK) {
1950 ASSERT(page_ops == PAGE_LOCK);
1951 ASSERT(index_ret && *index_ret == start_index);
1954 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1955 mapping_set_error(mapping, -EIO);
1957 while (nr_pages > 0) {
1958 ret = find_get_pages_contig(mapping, index,
1959 min_t(unsigned long,
1960 nr_pages, ARRAY_SIZE(pages)), pages);
1961 if (ret == 0) {
1963 * Only if we're going to lock these pages,
1964 * can we find nothing at @index.
1966 ASSERT(page_ops & PAGE_LOCK);
1967 err = -EAGAIN;
1968 goto out;
1971 for (i = 0; i < ret; i++) {
1972 if (page_ops & PAGE_SET_PRIVATE2)
1973 SetPagePrivate2(pages[i]);
1975 if (locked_page && pages[i] == locked_page) {
1976 put_page(pages[i]);
1977 pages_processed++;
1978 continue;
1980 if (page_ops & PAGE_CLEAR_DIRTY)
1981 clear_page_dirty_for_io(pages[i]);
1982 if (page_ops & PAGE_SET_WRITEBACK)
1983 set_page_writeback(pages[i]);
1984 if (page_ops & PAGE_SET_ERROR)
1985 SetPageError(pages[i]);
1986 if (page_ops & PAGE_END_WRITEBACK)
1987 end_page_writeback(pages[i]);
1988 if (page_ops & PAGE_UNLOCK)
1989 unlock_page(pages[i]);
1990 if (page_ops & PAGE_LOCK) {
1991 lock_page(pages[i]);
1992 if (!PageDirty(pages[i]) ||
1993 pages[i]->mapping != mapping) {
1994 unlock_page(pages[i]);
1995 for (; i < ret; i++)
1996 put_page(pages[i]);
1997 err = -EAGAIN;
1998 goto out;
2001 put_page(pages[i]);
2002 pages_processed++;
2004 nr_pages -= ret;
2005 index += ret;
2006 cond_resched();
2008 out:
2009 if (err && index_ret)
2010 *index_ret = start_index + pages_processed - 1;
2011 return err;
2014 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2015 struct page *locked_page,
2016 u32 clear_bits, unsigned long page_ops)
2018 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2020 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2021 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2022 page_ops, NULL);
2026 * count the number of bytes in the tree that have a given bit(s)
2027 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2028 * cached. The total number found is returned.
2030 u64 count_range_bits(struct extent_io_tree *tree,
2031 u64 *start, u64 search_end, u64 max_bytes,
2032 u32 bits, int contig)
2034 struct rb_node *node;
2035 struct extent_state *state;
2036 u64 cur_start = *start;
2037 u64 total_bytes = 0;
2038 u64 last = 0;
2039 int found = 0;
2041 if (WARN_ON(search_end <= cur_start))
2042 return 0;
2044 spin_lock(&tree->lock);
2045 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2046 total_bytes = tree->dirty_bytes;
2047 goto out;
2050 * this search will find all the extents that end after
2051 * our range starts.
2053 node = tree_search(tree, cur_start);
2054 if (!node)
2055 goto out;
2057 while (1) {
2058 state = rb_entry(node, struct extent_state, rb_node);
2059 if (state->start > search_end)
2060 break;
2061 if (contig && found && state->start > last + 1)
2062 break;
2063 if (state->end >= cur_start && (state->state & bits) == bits) {
2064 total_bytes += min(search_end, state->end) + 1 -
2065 max(cur_start, state->start);
2066 if (total_bytes >= max_bytes)
2067 break;
2068 if (!found) {
2069 *start = max(cur_start, state->start);
2070 found = 1;
2072 last = state->end;
2073 } else if (contig && found) {
2074 break;
2076 node = rb_next(node);
2077 if (!node)
2078 break;
2080 out:
2081 spin_unlock(&tree->lock);
2082 return total_bytes;
2086 * set the private field for a given byte offset in the tree. If there isn't
2087 * an extent_state there already, this does nothing.
2089 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2090 struct io_failure_record *failrec)
2092 struct rb_node *node;
2093 struct extent_state *state;
2094 int ret = 0;
2096 spin_lock(&tree->lock);
2098 * this search will find all the extents that end after
2099 * our range starts.
2101 node = tree_search(tree, start);
2102 if (!node) {
2103 ret = -ENOENT;
2104 goto out;
2106 state = rb_entry(node, struct extent_state, rb_node);
2107 if (state->start != start) {
2108 ret = -ENOENT;
2109 goto out;
2111 state->failrec = failrec;
2112 out:
2113 spin_unlock(&tree->lock);
2114 return ret;
2117 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2119 struct rb_node *node;
2120 struct extent_state *state;
2121 struct io_failure_record *failrec;
2123 spin_lock(&tree->lock);
2125 * this search will find all the extents that end after
2126 * our range starts.
2128 node = tree_search(tree, start);
2129 if (!node) {
2130 failrec = ERR_PTR(-ENOENT);
2131 goto out;
2133 state = rb_entry(node, struct extent_state, rb_node);
2134 if (state->start != start) {
2135 failrec = ERR_PTR(-ENOENT);
2136 goto out;
2139 failrec = state->failrec;
2140 out:
2141 spin_unlock(&tree->lock);
2142 return failrec;
2146 * searches a range in the state tree for a given mask.
2147 * If 'filled' == 1, this returns 1 only if every extent in the tree
2148 * has the bits set. Otherwise, 1 is returned if any bit in the
2149 * range is found set.
2151 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2152 u32 bits, int filled, struct extent_state *cached)
2154 struct extent_state *state = NULL;
2155 struct rb_node *node;
2156 int bitset = 0;
2158 spin_lock(&tree->lock);
2159 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2160 cached->end > start)
2161 node = &cached->rb_node;
2162 else
2163 node = tree_search(tree, start);
2164 while (node && start <= end) {
2165 state = rb_entry(node, struct extent_state, rb_node);
2167 if (filled && state->start > start) {
2168 bitset = 0;
2169 break;
2172 if (state->start > end)
2173 break;
2175 if (state->state & bits) {
2176 bitset = 1;
2177 if (!filled)
2178 break;
2179 } else if (filled) {
2180 bitset = 0;
2181 break;
2184 if (state->end == (u64)-1)
2185 break;
2187 start = state->end + 1;
2188 if (start > end)
2189 break;
2190 node = rb_next(node);
2191 if (!node) {
2192 if (filled)
2193 bitset = 0;
2194 break;
2197 spin_unlock(&tree->lock);
2198 return bitset;
2202 * helper function to set a given page up to date if all the
2203 * extents in the tree for that page are up to date
2205 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2207 u64 start = page_offset(page);
2208 u64 end = start + PAGE_SIZE - 1;
2209 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2210 SetPageUptodate(page);
2213 int free_io_failure(struct extent_io_tree *failure_tree,
2214 struct extent_io_tree *io_tree,
2215 struct io_failure_record *rec)
2217 int ret;
2218 int err = 0;
2220 set_state_failrec(failure_tree, rec->start, NULL);
2221 ret = clear_extent_bits(failure_tree, rec->start,
2222 rec->start + rec->len - 1,
2223 EXTENT_LOCKED | EXTENT_DIRTY);
2224 if (ret)
2225 err = ret;
2227 ret = clear_extent_bits(io_tree, rec->start,
2228 rec->start + rec->len - 1,
2229 EXTENT_DAMAGED);
2230 if (ret && !err)
2231 err = ret;
2233 kfree(rec);
2234 return err;
2238 * this bypasses the standard btrfs submit functions deliberately, as
2239 * the standard behavior is to write all copies in a raid setup. here we only
2240 * want to write the one bad copy. so we do the mapping for ourselves and issue
2241 * submit_bio directly.
2242 * to avoid any synchronization issues, wait for the data after writing, which
2243 * actually prevents the read that triggered the error from finishing.
2244 * currently, there can be no more than two copies of every data bit. thus,
2245 * exactly one rewrite is required.
2247 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2248 u64 length, u64 logical, struct page *page,
2249 unsigned int pg_offset, int mirror_num)
2251 struct bio *bio;
2252 struct btrfs_device *dev;
2253 u64 map_length = 0;
2254 u64 sector;
2255 struct btrfs_bio *bbio = NULL;
2256 int ret;
2258 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2259 BUG_ON(!mirror_num);
2261 bio = btrfs_io_bio_alloc(1);
2262 bio->bi_iter.bi_size = 0;
2263 map_length = length;
2266 * Avoid races with device replace and make sure our bbio has devices
2267 * associated to its stripes that don't go away while we are doing the
2268 * read repair operation.
2270 btrfs_bio_counter_inc_blocked(fs_info);
2271 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2273 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2274 * to update all raid stripes, but here we just want to correct
2275 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2276 * stripe's dev and sector.
2278 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2279 &map_length, &bbio, 0);
2280 if (ret) {
2281 btrfs_bio_counter_dec(fs_info);
2282 bio_put(bio);
2283 return -EIO;
2285 ASSERT(bbio->mirror_num == 1);
2286 } else {
2287 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2288 &map_length, &bbio, mirror_num);
2289 if (ret) {
2290 btrfs_bio_counter_dec(fs_info);
2291 bio_put(bio);
2292 return -EIO;
2294 BUG_ON(mirror_num != bbio->mirror_num);
2297 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2298 bio->bi_iter.bi_sector = sector;
2299 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2300 btrfs_put_bbio(bbio);
2301 if (!dev || !dev->bdev ||
2302 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2303 btrfs_bio_counter_dec(fs_info);
2304 bio_put(bio);
2305 return -EIO;
2307 bio_set_dev(bio, dev->bdev);
2308 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2309 bio_add_page(bio, page, length, pg_offset);
2311 if (btrfsic_submit_bio_wait(bio)) {
2312 /* try to remap that extent elsewhere? */
2313 btrfs_bio_counter_dec(fs_info);
2314 bio_put(bio);
2315 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2316 return -EIO;
2319 btrfs_info_rl_in_rcu(fs_info,
2320 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2321 ino, start,
2322 rcu_str_deref(dev->name), sector);
2323 btrfs_bio_counter_dec(fs_info);
2324 bio_put(bio);
2325 return 0;
2328 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2330 struct btrfs_fs_info *fs_info = eb->fs_info;
2331 u64 start = eb->start;
2332 int i, num_pages = num_extent_pages(eb);
2333 int ret = 0;
2335 if (sb_rdonly(fs_info->sb))
2336 return -EROFS;
2338 for (i = 0; i < num_pages; i++) {
2339 struct page *p = eb->pages[i];
2341 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2342 start - page_offset(p), mirror_num);
2343 if (ret)
2344 break;
2345 start += PAGE_SIZE;
2348 return ret;
2352 * each time an IO finishes, we do a fast check in the IO failure tree
2353 * to see if we need to process or clean up an io_failure_record
2355 int clean_io_failure(struct btrfs_fs_info *fs_info,
2356 struct extent_io_tree *failure_tree,
2357 struct extent_io_tree *io_tree, u64 start,
2358 struct page *page, u64 ino, unsigned int pg_offset)
2360 u64 private;
2361 struct io_failure_record *failrec;
2362 struct extent_state *state;
2363 int num_copies;
2364 int ret;
2366 private = 0;
2367 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2368 EXTENT_DIRTY, 0);
2369 if (!ret)
2370 return 0;
2372 failrec = get_state_failrec(failure_tree, start);
2373 if (IS_ERR(failrec))
2374 return 0;
2376 BUG_ON(!failrec->this_mirror);
2378 if (failrec->in_validation) {
2379 /* there was no real error, just free the record */
2380 btrfs_debug(fs_info,
2381 "clean_io_failure: freeing dummy error at %llu",
2382 failrec->start);
2383 goto out;
2385 if (sb_rdonly(fs_info->sb))
2386 goto out;
2388 spin_lock(&io_tree->lock);
2389 state = find_first_extent_bit_state(io_tree,
2390 failrec->start,
2391 EXTENT_LOCKED);
2392 spin_unlock(&io_tree->lock);
2394 if (state && state->start <= failrec->start &&
2395 state->end >= failrec->start + failrec->len - 1) {
2396 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2397 failrec->len);
2398 if (num_copies > 1) {
2399 repair_io_failure(fs_info, ino, start, failrec->len,
2400 failrec->logical, page, pg_offset,
2401 failrec->failed_mirror);
2405 out:
2406 free_io_failure(failure_tree, io_tree, failrec);
2408 return 0;
2412 * Can be called when
2413 * - hold extent lock
2414 * - under ordered extent
2415 * - the inode is freeing
2417 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2419 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2420 struct io_failure_record *failrec;
2421 struct extent_state *state, *next;
2423 if (RB_EMPTY_ROOT(&failure_tree->state))
2424 return;
2426 spin_lock(&failure_tree->lock);
2427 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2428 while (state) {
2429 if (state->start > end)
2430 break;
2432 ASSERT(state->end <= end);
2434 next = next_state(state);
2436 failrec = state->failrec;
2437 free_extent_state(state);
2438 kfree(failrec);
2440 state = next;
2442 spin_unlock(&failure_tree->lock);
2445 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2446 u64 start, u64 end)
2448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449 struct io_failure_record *failrec;
2450 struct extent_map *em;
2451 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2452 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2453 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2454 int ret;
2455 u64 logical;
2457 failrec = get_state_failrec(failure_tree, start);
2458 if (!IS_ERR(failrec)) {
2459 btrfs_debug(fs_info,
2460 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2461 failrec->logical, failrec->start, failrec->len,
2462 failrec->in_validation);
2464 * when data can be on disk more than twice, add to failrec here
2465 * (e.g. with a list for failed_mirror) to make
2466 * clean_io_failure() clean all those errors at once.
2469 return failrec;
2472 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2473 if (!failrec)
2474 return ERR_PTR(-ENOMEM);
2476 failrec->start = start;
2477 failrec->len = end - start + 1;
2478 failrec->this_mirror = 0;
2479 failrec->bio_flags = 0;
2480 failrec->in_validation = 0;
2482 read_lock(&em_tree->lock);
2483 em = lookup_extent_mapping(em_tree, start, failrec->len);
2484 if (!em) {
2485 read_unlock(&em_tree->lock);
2486 kfree(failrec);
2487 return ERR_PTR(-EIO);
2490 if (em->start > start || em->start + em->len <= start) {
2491 free_extent_map(em);
2492 em = NULL;
2494 read_unlock(&em_tree->lock);
2495 if (!em) {
2496 kfree(failrec);
2497 return ERR_PTR(-EIO);
2500 logical = start - em->start;
2501 logical = em->block_start + logical;
2502 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2503 logical = em->block_start;
2504 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2505 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2508 btrfs_debug(fs_info,
2509 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2510 logical, start, failrec->len);
2512 failrec->logical = logical;
2513 free_extent_map(em);
2515 /* Set the bits in the private failure tree */
2516 ret = set_extent_bits(failure_tree, start, end,
2517 EXTENT_LOCKED | EXTENT_DIRTY);
2518 if (ret >= 0) {
2519 ret = set_state_failrec(failure_tree, start, failrec);
2520 /* Set the bits in the inode's tree */
2521 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2522 } else if (ret < 0) {
2523 kfree(failrec);
2524 return ERR_PTR(ret);
2527 return failrec;
2530 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2531 struct io_failure_record *failrec,
2532 int failed_mirror)
2534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2535 int num_copies;
2537 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2538 if (num_copies == 1) {
2540 * we only have a single copy of the data, so don't bother with
2541 * all the retry and error correction code that follows. no
2542 * matter what the error is, it is very likely to persist.
2544 btrfs_debug(fs_info,
2545 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2546 num_copies, failrec->this_mirror, failed_mirror);
2547 return false;
2551 * there are two premises:
2552 * a) deliver good data to the caller
2553 * b) correct the bad sectors on disk
2555 if (needs_validation) {
2557 * to fulfill b), we need to know the exact failing sectors, as
2558 * we don't want to rewrite any more than the failed ones. thus,
2559 * we need separate read requests for the failed bio
2561 * if the following BUG_ON triggers, our validation request got
2562 * merged. we need separate requests for our algorithm to work.
2564 BUG_ON(failrec->in_validation);
2565 failrec->in_validation = 1;
2566 failrec->this_mirror = failed_mirror;
2567 } else {
2569 * we're ready to fulfill a) and b) alongside. get a good copy
2570 * of the failed sector and if we succeed, we have setup
2571 * everything for repair_io_failure to do the rest for us.
2573 if (failrec->in_validation) {
2574 BUG_ON(failrec->this_mirror != failed_mirror);
2575 failrec->in_validation = 0;
2576 failrec->this_mirror = 0;
2578 failrec->failed_mirror = failed_mirror;
2579 failrec->this_mirror++;
2580 if (failrec->this_mirror == failed_mirror)
2581 failrec->this_mirror++;
2584 if (failrec->this_mirror > num_copies) {
2585 btrfs_debug(fs_info,
2586 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2587 num_copies, failrec->this_mirror, failed_mirror);
2588 return false;
2591 return true;
2594 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2596 u64 len = 0;
2597 const u32 blocksize = inode->i_sb->s_blocksize;
2600 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2601 * I/O error. In this case, we already know exactly which sector was
2602 * bad, so we don't need to validate.
2604 if (bio->bi_status == BLK_STS_OK)
2605 return false;
2608 * We need to validate each sector individually if the failed I/O was
2609 * for multiple sectors.
2611 * There are a few possible bios that can end up here:
2612 * 1. A buffered read bio, which is not cloned.
2613 * 2. A direct I/O read bio, which is cloned.
2614 * 3. A (buffered or direct) repair bio, which is not cloned.
2616 * For cloned bios (case 2), we can get the size from
2617 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2618 * it from the bvecs.
2620 if (bio_flagged(bio, BIO_CLONED)) {
2621 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2622 return true;
2623 } else {
2624 struct bio_vec *bvec;
2625 int i;
2627 bio_for_each_bvec_all(bvec, bio, i) {
2628 len += bvec->bv_len;
2629 if (len > blocksize)
2630 return true;
2633 return false;
2636 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2637 struct bio *failed_bio, u32 bio_offset,
2638 struct page *page, unsigned int pgoff,
2639 u64 start, u64 end, int failed_mirror,
2640 submit_bio_hook_t *submit_bio_hook)
2642 struct io_failure_record *failrec;
2643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2644 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2645 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2646 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2647 const int icsum = bio_offset >> fs_info->sectorsize_bits;
2648 bool need_validation;
2649 struct bio *repair_bio;
2650 struct btrfs_io_bio *repair_io_bio;
2651 blk_status_t status;
2653 btrfs_debug(fs_info,
2654 "repair read error: read error at %llu", start);
2656 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2658 failrec = btrfs_get_io_failure_record(inode, start, end);
2659 if (IS_ERR(failrec))
2660 return errno_to_blk_status(PTR_ERR(failrec));
2662 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2664 if (!btrfs_check_repairable(inode, need_validation, failrec,
2665 failed_mirror)) {
2666 free_io_failure(failure_tree, tree, failrec);
2667 return BLK_STS_IOERR;
2670 repair_bio = btrfs_io_bio_alloc(1);
2671 repair_io_bio = btrfs_io_bio(repair_bio);
2672 repair_bio->bi_opf = REQ_OP_READ;
2673 if (need_validation)
2674 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2675 repair_bio->bi_end_io = failed_bio->bi_end_io;
2676 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2677 repair_bio->bi_private = failed_bio->bi_private;
2679 if (failed_io_bio->csum) {
2680 const u32 csum_size = fs_info->csum_size;
2682 repair_io_bio->csum = repair_io_bio->csum_inline;
2683 memcpy(repair_io_bio->csum,
2684 failed_io_bio->csum + csum_size * icsum, csum_size);
2687 bio_add_page(repair_bio, page, failrec->len, pgoff);
2688 repair_io_bio->logical = failrec->start;
2689 repair_io_bio->iter = repair_bio->bi_iter;
2691 btrfs_debug(btrfs_sb(inode->i_sb),
2692 "repair read error: submitting new read to mirror %d, in_validation=%d",
2693 failrec->this_mirror, failrec->in_validation);
2695 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2696 failrec->bio_flags);
2697 if (status) {
2698 free_io_failure(failure_tree, tree, failrec);
2699 bio_put(repair_bio);
2701 return status;
2704 /* lots and lots of room for performance fixes in the end_bio funcs */
2706 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2708 int uptodate = (err == 0);
2709 int ret = 0;
2711 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2713 if (!uptodate) {
2714 ClearPageUptodate(page);
2715 SetPageError(page);
2716 ret = err < 0 ? err : -EIO;
2717 mapping_set_error(page->mapping, ret);
2722 * after a writepage IO is done, we need to:
2723 * clear the uptodate bits on error
2724 * clear the writeback bits in the extent tree for this IO
2725 * end_page_writeback if the page has no more pending IO
2727 * Scheduling is not allowed, so the extent state tree is expected
2728 * to have one and only one object corresponding to this IO.
2730 static void end_bio_extent_writepage(struct bio *bio)
2732 int error = blk_status_to_errno(bio->bi_status);
2733 struct bio_vec *bvec;
2734 u64 start;
2735 u64 end;
2736 struct bvec_iter_all iter_all;
2738 ASSERT(!bio_flagged(bio, BIO_CLONED));
2739 bio_for_each_segment_all(bvec, bio, iter_all) {
2740 struct page *page = bvec->bv_page;
2741 struct inode *inode = page->mapping->host;
2742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2744 /* We always issue full-page reads, but if some block
2745 * in a page fails to read, blk_update_request() will
2746 * advance bv_offset and adjust bv_len to compensate.
2747 * Print a warning for nonzero offsets, and an error
2748 * if they don't add up to a full page. */
2749 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2750 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2751 btrfs_err(fs_info,
2752 "partial page write in btrfs with offset %u and length %u",
2753 bvec->bv_offset, bvec->bv_len);
2754 else
2755 btrfs_info(fs_info,
2756 "incomplete page write in btrfs with offset %u and length %u",
2757 bvec->bv_offset, bvec->bv_len);
2760 start = page_offset(page);
2761 end = start + bvec->bv_offset + bvec->bv_len - 1;
2763 end_extent_writepage(page, error, start, end);
2764 end_page_writeback(page);
2767 bio_put(bio);
2771 * Record previously processed extent range
2773 * For endio_readpage_release_extent() to handle a full extent range, reducing
2774 * the extent io operations.
2776 struct processed_extent {
2777 struct btrfs_inode *inode;
2778 /* Start of the range in @inode */
2779 u64 start;
2780 /* End of the range in in @inode */
2781 u64 end;
2782 bool uptodate;
2786 * Try to release processed extent range
2788 * May not release the extent range right now if the current range is
2789 * contiguous to processed extent.
2791 * Will release processed extent when any of @inode, @uptodate, the range is
2792 * no longer contiguous to the processed range.
2794 * Passing @inode == NULL will force processed extent to be released.
2796 static void endio_readpage_release_extent(struct processed_extent *processed,
2797 struct btrfs_inode *inode, u64 start, u64 end,
2798 bool uptodate)
2800 struct extent_state *cached = NULL;
2801 struct extent_io_tree *tree;
2803 /* The first extent, initialize @processed */
2804 if (!processed->inode)
2805 goto update;
2808 * Contiguous to processed extent, just uptodate the end.
2810 * Several things to notice:
2812 * - bio can be merged as long as on-disk bytenr is contiguous
2813 * This means we can have page belonging to other inodes, thus need to
2814 * check if the inode still matches.
2815 * - bvec can contain range beyond current page for multi-page bvec
2816 * Thus we need to do processed->end + 1 >= start check
2818 if (processed->inode == inode && processed->uptodate == uptodate &&
2819 processed->end + 1 >= start && end >= processed->end) {
2820 processed->end = end;
2821 return;
2824 tree = &processed->inode->io_tree;
2826 * Now we don't have range contiguous to the processed range, release
2827 * the processed range now.
2829 if (processed->uptodate && tree->track_uptodate)
2830 set_extent_uptodate(tree, processed->start, processed->end,
2831 &cached, GFP_ATOMIC);
2832 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2833 &cached);
2835 update:
2836 /* Update processed to current range */
2837 processed->inode = inode;
2838 processed->start = start;
2839 processed->end = end;
2840 processed->uptodate = uptodate;
2843 static void endio_readpage_update_page_status(struct page *page, bool uptodate)
2845 if (uptodate) {
2846 SetPageUptodate(page);
2847 } else {
2848 ClearPageUptodate(page);
2849 SetPageError(page);
2851 unlock_page(page);
2855 * after a readpage IO is done, we need to:
2856 * clear the uptodate bits on error
2857 * set the uptodate bits if things worked
2858 * set the page up to date if all extents in the tree are uptodate
2859 * clear the lock bit in the extent tree
2860 * unlock the page if there are no other extents locked for it
2862 * Scheduling is not allowed, so the extent state tree is expected
2863 * to have one and only one object corresponding to this IO.
2865 static void end_bio_extent_readpage(struct bio *bio)
2867 struct bio_vec *bvec;
2868 int uptodate = !bio->bi_status;
2869 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2870 struct extent_io_tree *tree, *failure_tree;
2871 struct processed_extent processed = { 0 };
2873 * The offset to the beginning of a bio, since one bio can never be
2874 * larger than UINT_MAX, u32 here is enough.
2876 u32 bio_offset = 0;
2877 int mirror;
2878 int ret;
2879 struct bvec_iter_all iter_all;
2881 ASSERT(!bio_flagged(bio, BIO_CLONED));
2882 bio_for_each_segment_all(bvec, bio, iter_all) {
2883 struct page *page = bvec->bv_page;
2884 struct inode *inode = page->mapping->host;
2885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2886 const u32 sectorsize = fs_info->sectorsize;
2887 u64 start;
2888 u64 end;
2889 u32 len;
2891 btrfs_debug(fs_info,
2892 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2893 bio->bi_iter.bi_sector, bio->bi_status,
2894 io_bio->mirror_num);
2895 tree = &BTRFS_I(inode)->io_tree;
2896 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2899 * We always issue full-sector reads, but if some block in a
2900 * page fails to read, blk_update_request() will advance
2901 * bv_offset and adjust bv_len to compensate. Print a warning
2902 * for unaligned offsets, and an error if they don't add up to
2903 * a full sector.
2905 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2906 btrfs_err(fs_info,
2907 "partial page read in btrfs with offset %u and length %u",
2908 bvec->bv_offset, bvec->bv_len);
2909 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
2910 sectorsize))
2911 btrfs_info(fs_info,
2912 "incomplete page read with offset %u and length %u",
2913 bvec->bv_offset, bvec->bv_len);
2915 start = page_offset(page) + bvec->bv_offset;
2916 end = start + bvec->bv_len - 1;
2917 len = bvec->bv_len;
2919 mirror = io_bio->mirror_num;
2920 if (likely(uptodate)) {
2921 if (is_data_inode(inode))
2922 ret = btrfs_verify_data_csum(io_bio,
2923 bio_offset, page, start, end,
2924 mirror);
2925 else
2926 ret = btrfs_validate_metadata_buffer(io_bio,
2927 page, start, end, mirror);
2928 if (ret)
2929 uptodate = 0;
2930 else
2931 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2932 failure_tree, tree, start,
2933 page,
2934 btrfs_ino(BTRFS_I(inode)), 0);
2937 if (likely(uptodate))
2938 goto readpage_ok;
2940 if (is_data_inode(inode)) {
2943 * The generic bio_readpage_error handles errors the
2944 * following way: If possible, new read requests are
2945 * created and submitted and will end up in
2946 * end_bio_extent_readpage as well (if we're lucky,
2947 * not in the !uptodate case). In that case it returns
2948 * 0 and we just go on with the next page in our bio.
2949 * If it can't handle the error it will return -EIO and
2950 * we remain responsible for that page.
2952 if (!btrfs_submit_read_repair(inode, bio, bio_offset,
2953 page,
2954 start - page_offset(page),
2955 start, end, mirror,
2956 btrfs_submit_data_bio)) {
2957 uptodate = !bio->bi_status;
2958 ASSERT(bio_offset + len > bio_offset);
2959 bio_offset += len;
2960 continue;
2962 } else {
2963 struct extent_buffer *eb;
2965 eb = (struct extent_buffer *)page->private;
2966 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2967 eb->read_mirror = mirror;
2968 atomic_dec(&eb->io_pages);
2969 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2970 &eb->bflags))
2971 btree_readahead_hook(eb, -EIO);
2973 readpage_ok:
2974 if (likely(uptodate)) {
2975 loff_t i_size = i_size_read(inode);
2976 pgoff_t end_index = i_size >> PAGE_SHIFT;
2977 unsigned off;
2979 /* Zero out the end if this page straddles i_size */
2980 off = offset_in_page(i_size);
2981 if (page->index == end_index && off)
2982 zero_user_segment(page, off, PAGE_SIZE);
2984 ASSERT(bio_offset + len > bio_offset);
2985 bio_offset += len;
2987 /* Update page status and unlock */
2988 endio_readpage_update_page_status(page, uptodate);
2989 endio_readpage_release_extent(&processed, BTRFS_I(inode),
2990 start, end, uptodate);
2992 /* Release the last extent */
2993 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
2994 btrfs_io_bio_free_csum(io_bio);
2995 bio_put(bio);
2999 * Initialize the members up to but not including 'bio'. Use after allocating a
3000 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3001 * 'bio' because use of __GFP_ZERO is not supported.
3003 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3005 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3009 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3010 * never fail. We're returning a bio right now but you can call btrfs_io_bio
3011 * for the appropriate container_of magic
3013 struct bio *btrfs_bio_alloc(u64 first_byte)
3015 struct bio *bio;
3017 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
3018 bio->bi_iter.bi_sector = first_byte >> 9;
3019 btrfs_io_bio_init(btrfs_io_bio(bio));
3020 return bio;
3023 struct bio *btrfs_bio_clone(struct bio *bio)
3025 struct btrfs_io_bio *btrfs_bio;
3026 struct bio *new;
3028 /* Bio allocation backed by a bioset does not fail */
3029 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3030 btrfs_bio = btrfs_io_bio(new);
3031 btrfs_io_bio_init(btrfs_bio);
3032 btrfs_bio->iter = bio->bi_iter;
3033 return new;
3036 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3038 struct bio *bio;
3040 /* Bio allocation backed by a bioset does not fail */
3041 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3042 btrfs_io_bio_init(btrfs_io_bio(bio));
3043 return bio;
3046 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3048 struct bio *bio;
3049 struct btrfs_io_bio *btrfs_bio;
3051 /* this will never fail when it's backed by a bioset */
3052 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3053 ASSERT(bio);
3055 btrfs_bio = btrfs_io_bio(bio);
3056 btrfs_io_bio_init(btrfs_bio);
3058 bio_trim(bio, offset >> 9, size >> 9);
3059 btrfs_bio->iter = bio->bi_iter;
3060 return bio;
3064 * @opf: bio REQ_OP_* and REQ_* flags as one value
3065 * @wbc: optional writeback control for io accounting
3066 * @page: page to add to the bio
3067 * @pg_offset: offset of the new bio or to check whether we are adding
3068 * a contiguous page to the previous one
3069 * @size: portion of page that we want to write
3070 * @offset: starting offset in the page
3071 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3072 * @end_io_func: end_io callback for new bio
3073 * @mirror_num: desired mirror to read/write
3074 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3075 * @bio_flags: flags of the current bio to see if we can merge them
3077 static int submit_extent_page(unsigned int opf,
3078 struct writeback_control *wbc,
3079 struct page *page, u64 offset,
3080 size_t size, unsigned long pg_offset,
3081 struct bio **bio_ret,
3082 bio_end_io_t end_io_func,
3083 int mirror_num,
3084 unsigned long prev_bio_flags,
3085 unsigned long bio_flags,
3086 bool force_bio_submit)
3088 int ret = 0;
3089 struct bio *bio;
3090 size_t io_size = min_t(size_t, size, PAGE_SIZE);
3091 sector_t sector = offset >> 9;
3092 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3094 ASSERT(bio_ret);
3096 if (*bio_ret) {
3097 bool contig;
3098 bool can_merge = true;
3100 bio = *bio_ret;
3101 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3102 contig = bio->bi_iter.bi_sector == sector;
3103 else
3104 contig = bio_end_sector(bio) == sector;
3106 if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags))
3107 can_merge = false;
3109 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3110 force_bio_submit ||
3111 bio_add_page(bio, page, io_size, pg_offset) < io_size) {
3112 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3113 if (ret < 0) {
3114 *bio_ret = NULL;
3115 return ret;
3117 bio = NULL;
3118 } else {
3119 if (wbc)
3120 wbc_account_cgroup_owner(wbc, page, io_size);
3121 return 0;
3125 bio = btrfs_bio_alloc(offset);
3126 bio_add_page(bio, page, io_size, pg_offset);
3127 bio->bi_end_io = end_io_func;
3128 bio->bi_private = tree;
3129 bio->bi_write_hint = page->mapping->host->i_write_hint;
3130 bio->bi_opf = opf;
3131 if (wbc) {
3132 struct block_device *bdev;
3134 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3135 bio_set_dev(bio, bdev);
3136 wbc_init_bio(wbc, bio);
3137 wbc_account_cgroup_owner(wbc, page, io_size);
3140 *bio_ret = bio;
3142 return ret;
3145 static void attach_extent_buffer_page(struct extent_buffer *eb,
3146 struct page *page)
3149 * If the page is mapped to btree inode, we should hold the private
3150 * lock to prevent race.
3151 * For cloned or dummy extent buffers, their pages are not mapped and
3152 * will not race with any other ebs.
3154 if (page->mapping)
3155 lockdep_assert_held(&page->mapping->private_lock);
3157 if (!PagePrivate(page))
3158 attach_page_private(page, eb);
3159 else
3160 WARN_ON(page->private != (unsigned long)eb);
3163 void set_page_extent_mapped(struct page *page)
3165 if (!PagePrivate(page))
3166 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3169 static struct extent_map *
3170 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3171 u64 start, u64 len, struct extent_map **em_cached)
3173 struct extent_map *em;
3175 if (em_cached && *em_cached) {
3176 em = *em_cached;
3177 if (extent_map_in_tree(em) && start >= em->start &&
3178 start < extent_map_end(em)) {
3179 refcount_inc(&em->refs);
3180 return em;
3183 free_extent_map(em);
3184 *em_cached = NULL;
3187 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3188 if (em_cached && !IS_ERR_OR_NULL(em)) {
3189 BUG_ON(*em_cached);
3190 refcount_inc(&em->refs);
3191 *em_cached = em;
3193 return em;
3196 * basic readpage implementation. Locked extent state structs are inserted
3197 * into the tree that are removed when the IO is done (by the end_io
3198 * handlers)
3199 * XXX JDM: This needs looking at to ensure proper page locking
3200 * return 0 on success, otherwise return error
3202 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3203 struct bio **bio, unsigned long *bio_flags,
3204 unsigned int read_flags, u64 *prev_em_start)
3206 struct inode *inode = page->mapping->host;
3207 u64 start = page_offset(page);
3208 const u64 end = start + PAGE_SIZE - 1;
3209 u64 cur = start;
3210 u64 extent_offset;
3211 u64 last_byte = i_size_read(inode);
3212 u64 block_start;
3213 u64 cur_end;
3214 struct extent_map *em;
3215 int ret = 0;
3216 int nr = 0;
3217 size_t pg_offset = 0;
3218 size_t iosize;
3219 size_t blocksize = inode->i_sb->s_blocksize;
3220 unsigned long this_bio_flag = 0;
3221 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3223 set_page_extent_mapped(page);
3225 if (!PageUptodate(page)) {
3226 if (cleancache_get_page(page) == 0) {
3227 BUG_ON(blocksize != PAGE_SIZE);
3228 unlock_extent(tree, start, end);
3229 goto out;
3233 if (page->index == last_byte >> PAGE_SHIFT) {
3234 char *userpage;
3235 size_t zero_offset = offset_in_page(last_byte);
3237 if (zero_offset) {
3238 iosize = PAGE_SIZE - zero_offset;
3239 userpage = kmap_atomic(page);
3240 memset(userpage + zero_offset, 0, iosize);
3241 flush_dcache_page(page);
3242 kunmap_atomic(userpage);
3245 while (cur <= end) {
3246 bool force_bio_submit = false;
3247 u64 offset;
3249 if (cur >= last_byte) {
3250 char *userpage;
3251 struct extent_state *cached = NULL;
3253 iosize = PAGE_SIZE - pg_offset;
3254 userpage = kmap_atomic(page);
3255 memset(userpage + pg_offset, 0, iosize);
3256 flush_dcache_page(page);
3257 kunmap_atomic(userpage);
3258 set_extent_uptodate(tree, cur, cur + iosize - 1,
3259 &cached, GFP_NOFS);
3260 unlock_extent_cached(tree, cur,
3261 cur + iosize - 1, &cached);
3262 break;
3264 em = __get_extent_map(inode, page, pg_offset, cur,
3265 end - cur + 1, em_cached);
3266 if (IS_ERR_OR_NULL(em)) {
3267 SetPageError(page);
3268 unlock_extent(tree, cur, end);
3269 break;
3271 extent_offset = cur - em->start;
3272 BUG_ON(extent_map_end(em) <= cur);
3273 BUG_ON(end < cur);
3275 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3276 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3277 extent_set_compress_type(&this_bio_flag,
3278 em->compress_type);
3281 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3282 cur_end = min(extent_map_end(em) - 1, end);
3283 iosize = ALIGN(iosize, blocksize);
3284 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3285 offset = em->block_start;
3286 else
3287 offset = em->block_start + extent_offset;
3288 block_start = em->block_start;
3289 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3290 block_start = EXTENT_MAP_HOLE;
3293 * If we have a file range that points to a compressed extent
3294 * and it's followed by a consecutive file range that points
3295 * to the same compressed extent (possibly with a different
3296 * offset and/or length, so it either points to the whole extent
3297 * or only part of it), we must make sure we do not submit a
3298 * single bio to populate the pages for the 2 ranges because
3299 * this makes the compressed extent read zero out the pages
3300 * belonging to the 2nd range. Imagine the following scenario:
3302 * File layout
3303 * [0 - 8K] [8K - 24K]
3304 * | |
3305 * | |
3306 * points to extent X, points to extent X,
3307 * offset 4K, length of 8K offset 0, length 16K
3309 * [extent X, compressed length = 4K uncompressed length = 16K]
3311 * If the bio to read the compressed extent covers both ranges,
3312 * it will decompress extent X into the pages belonging to the
3313 * first range and then it will stop, zeroing out the remaining
3314 * pages that belong to the other range that points to extent X.
3315 * So here we make sure we submit 2 bios, one for the first
3316 * range and another one for the third range. Both will target
3317 * the same physical extent from disk, but we can't currently
3318 * make the compressed bio endio callback populate the pages
3319 * for both ranges because each compressed bio is tightly
3320 * coupled with a single extent map, and each range can have
3321 * an extent map with a different offset value relative to the
3322 * uncompressed data of our extent and different lengths. This
3323 * is a corner case so we prioritize correctness over
3324 * non-optimal behavior (submitting 2 bios for the same extent).
3326 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3327 prev_em_start && *prev_em_start != (u64)-1 &&
3328 *prev_em_start != em->start)
3329 force_bio_submit = true;
3331 if (prev_em_start)
3332 *prev_em_start = em->start;
3334 free_extent_map(em);
3335 em = NULL;
3337 /* we've found a hole, just zero and go on */
3338 if (block_start == EXTENT_MAP_HOLE) {
3339 char *userpage;
3340 struct extent_state *cached = NULL;
3342 userpage = kmap_atomic(page);
3343 memset(userpage + pg_offset, 0, iosize);
3344 flush_dcache_page(page);
3345 kunmap_atomic(userpage);
3347 set_extent_uptodate(tree, cur, cur + iosize - 1,
3348 &cached, GFP_NOFS);
3349 unlock_extent_cached(tree, cur,
3350 cur + iosize - 1, &cached);
3351 cur = cur + iosize;
3352 pg_offset += iosize;
3353 continue;
3355 /* the get_extent function already copied into the page */
3356 if (test_range_bit(tree, cur, cur_end,
3357 EXTENT_UPTODATE, 1, NULL)) {
3358 check_page_uptodate(tree, page);
3359 unlock_extent(tree, cur, cur + iosize - 1);
3360 cur = cur + iosize;
3361 pg_offset += iosize;
3362 continue;
3364 /* we have an inline extent but it didn't get marked up
3365 * to date. Error out
3367 if (block_start == EXTENT_MAP_INLINE) {
3368 SetPageError(page);
3369 unlock_extent(tree, cur, cur + iosize - 1);
3370 cur = cur + iosize;
3371 pg_offset += iosize;
3372 continue;
3375 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3376 page, offset, iosize,
3377 pg_offset, bio,
3378 end_bio_extent_readpage, 0,
3379 *bio_flags,
3380 this_bio_flag,
3381 force_bio_submit);
3382 if (!ret) {
3383 nr++;
3384 *bio_flags = this_bio_flag;
3385 } else {
3386 SetPageError(page);
3387 unlock_extent(tree, cur, cur + iosize - 1);
3388 goto out;
3390 cur = cur + iosize;
3391 pg_offset += iosize;
3393 out:
3394 if (!nr) {
3395 if (!PageError(page))
3396 SetPageUptodate(page);
3397 unlock_page(page);
3399 return ret;
3402 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3403 u64 start, u64 end,
3404 struct extent_map **em_cached,
3405 struct bio **bio,
3406 unsigned long *bio_flags,
3407 u64 *prev_em_start)
3409 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3410 int index;
3412 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3414 for (index = 0; index < nr_pages; index++) {
3415 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3416 REQ_RAHEAD, prev_em_start);
3417 put_page(pages[index]);
3421 static void update_nr_written(struct writeback_control *wbc,
3422 unsigned long nr_written)
3424 wbc->nr_to_write -= nr_written;
3428 * helper for __extent_writepage, doing all of the delayed allocation setup.
3430 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3431 * to write the page (copy into inline extent). In this case the IO has
3432 * been started and the page is already unlocked.
3434 * This returns 0 if all went well (page still locked)
3435 * This returns < 0 if there were errors (page still locked)
3437 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3438 struct page *page, struct writeback_control *wbc,
3439 u64 delalloc_start, unsigned long *nr_written)
3441 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3442 bool found;
3443 u64 delalloc_to_write = 0;
3444 u64 delalloc_end = 0;
3445 int ret;
3446 int page_started = 0;
3449 while (delalloc_end < page_end) {
3450 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3451 &delalloc_start,
3452 &delalloc_end);
3453 if (!found) {
3454 delalloc_start = delalloc_end + 1;
3455 continue;
3457 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3458 delalloc_end, &page_started, nr_written, wbc);
3459 if (ret) {
3460 SetPageError(page);
3462 * btrfs_run_delalloc_range should return < 0 for error
3463 * but just in case, we use > 0 here meaning the IO is
3464 * started, so we don't want to return > 0 unless
3465 * things are going well.
3467 return ret < 0 ? ret : -EIO;
3470 * delalloc_end is already one less than the total length, so
3471 * we don't subtract one from PAGE_SIZE
3473 delalloc_to_write += (delalloc_end - delalloc_start +
3474 PAGE_SIZE) >> PAGE_SHIFT;
3475 delalloc_start = delalloc_end + 1;
3477 if (wbc->nr_to_write < delalloc_to_write) {
3478 int thresh = 8192;
3480 if (delalloc_to_write < thresh * 2)
3481 thresh = delalloc_to_write;
3482 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3483 thresh);
3486 /* did the fill delalloc function already unlock and start
3487 * the IO?
3489 if (page_started) {
3491 * we've unlocked the page, so we can't update
3492 * the mapping's writeback index, just update
3493 * nr_to_write.
3495 wbc->nr_to_write -= *nr_written;
3496 return 1;
3499 return 0;
3503 * helper for __extent_writepage. This calls the writepage start hooks,
3504 * and does the loop to map the page into extents and bios.
3506 * We return 1 if the IO is started and the page is unlocked,
3507 * 0 if all went well (page still locked)
3508 * < 0 if there were errors (page still locked)
3510 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3511 struct page *page,
3512 struct writeback_control *wbc,
3513 struct extent_page_data *epd,
3514 loff_t i_size,
3515 unsigned long nr_written,
3516 int *nr_ret)
3518 struct extent_io_tree *tree = &inode->io_tree;
3519 u64 start = page_offset(page);
3520 u64 page_end = start + PAGE_SIZE - 1;
3521 u64 end;
3522 u64 cur = start;
3523 u64 extent_offset;
3524 u64 block_start;
3525 u64 iosize;
3526 struct extent_map *em;
3527 size_t pg_offset = 0;
3528 size_t blocksize;
3529 int ret = 0;
3530 int nr = 0;
3531 const unsigned int write_flags = wbc_to_write_flags(wbc);
3532 bool compressed;
3534 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3535 if (ret) {
3536 /* Fixup worker will requeue */
3537 redirty_page_for_writepage(wbc, page);
3538 update_nr_written(wbc, nr_written);
3539 unlock_page(page);
3540 return 1;
3544 * we don't want to touch the inode after unlocking the page,
3545 * so we update the mapping writeback index now
3547 update_nr_written(wbc, nr_written + 1);
3549 end = page_end;
3550 blocksize = inode->vfs_inode.i_sb->s_blocksize;
3552 while (cur <= end) {
3553 u64 em_end;
3554 u64 offset;
3556 if (cur >= i_size) {
3557 btrfs_writepage_endio_finish_ordered(page, cur,
3558 page_end, 1);
3559 break;
3561 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3562 if (IS_ERR_OR_NULL(em)) {
3563 SetPageError(page);
3564 ret = PTR_ERR_OR_ZERO(em);
3565 break;
3568 extent_offset = cur - em->start;
3569 em_end = extent_map_end(em);
3570 BUG_ON(em_end <= cur);
3571 BUG_ON(end < cur);
3572 iosize = min(em_end - cur, end - cur + 1);
3573 iosize = ALIGN(iosize, blocksize);
3574 offset = em->block_start + extent_offset;
3575 block_start = em->block_start;
3576 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3577 free_extent_map(em);
3578 em = NULL;
3581 * compressed and inline extents are written through other
3582 * paths in the FS
3584 if (compressed || block_start == EXTENT_MAP_HOLE ||
3585 block_start == EXTENT_MAP_INLINE) {
3586 if (compressed)
3587 nr++;
3588 else
3589 btrfs_writepage_endio_finish_ordered(page, cur,
3590 cur + iosize - 1, 1);
3591 cur += iosize;
3592 pg_offset += iosize;
3593 continue;
3596 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3597 if (!PageWriteback(page)) {
3598 btrfs_err(inode->root->fs_info,
3599 "page %lu not writeback, cur %llu end %llu",
3600 page->index, cur, end);
3603 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3604 page, offset, iosize, pg_offset,
3605 &epd->bio,
3606 end_bio_extent_writepage,
3607 0, 0, 0, false);
3608 if (ret) {
3609 SetPageError(page);
3610 if (PageWriteback(page))
3611 end_page_writeback(page);
3614 cur = cur + iosize;
3615 pg_offset += iosize;
3616 nr++;
3618 *nr_ret = nr;
3619 return ret;
3623 * the writepage semantics are similar to regular writepage. extent
3624 * records are inserted to lock ranges in the tree, and as dirty areas
3625 * are found, they are marked writeback. Then the lock bits are removed
3626 * and the end_io handler clears the writeback ranges
3628 * Return 0 if everything goes well.
3629 * Return <0 for error.
3631 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3632 struct extent_page_data *epd)
3634 struct inode *inode = page->mapping->host;
3635 u64 start = page_offset(page);
3636 u64 page_end = start + PAGE_SIZE - 1;
3637 int ret;
3638 int nr = 0;
3639 size_t pg_offset;
3640 loff_t i_size = i_size_read(inode);
3641 unsigned long end_index = i_size >> PAGE_SHIFT;
3642 unsigned long nr_written = 0;
3644 trace___extent_writepage(page, inode, wbc);
3646 WARN_ON(!PageLocked(page));
3648 ClearPageError(page);
3650 pg_offset = offset_in_page(i_size);
3651 if (page->index > end_index ||
3652 (page->index == end_index && !pg_offset)) {
3653 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3654 unlock_page(page);
3655 return 0;
3658 if (page->index == end_index) {
3659 char *userpage;
3661 userpage = kmap_atomic(page);
3662 memset(userpage + pg_offset, 0,
3663 PAGE_SIZE - pg_offset);
3664 kunmap_atomic(userpage);
3665 flush_dcache_page(page);
3668 set_page_extent_mapped(page);
3670 if (!epd->extent_locked) {
3671 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3672 &nr_written);
3673 if (ret == 1)
3674 return 0;
3675 if (ret)
3676 goto done;
3679 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3680 nr_written, &nr);
3681 if (ret == 1)
3682 return 0;
3684 done:
3685 if (nr == 0) {
3686 /* make sure the mapping tag for page dirty gets cleared */
3687 set_page_writeback(page);
3688 end_page_writeback(page);
3690 if (PageError(page)) {
3691 ret = ret < 0 ? ret : -EIO;
3692 end_extent_writepage(page, ret, start, page_end);
3694 unlock_page(page);
3695 ASSERT(ret <= 0);
3696 return ret;
3699 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3701 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3702 TASK_UNINTERRUPTIBLE);
3705 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3707 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3708 smp_mb__after_atomic();
3709 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3713 * Lock extent buffer status and pages for writeback.
3715 * May try to flush write bio if we can't get the lock.
3717 * Return 0 if the extent buffer doesn't need to be submitted.
3718 * (E.g. the extent buffer is not dirty)
3719 * Return >0 is the extent buffer is submitted to bio.
3720 * Return <0 if something went wrong, no page is locked.
3722 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3723 struct extent_page_data *epd)
3725 struct btrfs_fs_info *fs_info = eb->fs_info;
3726 int i, num_pages, failed_page_nr;
3727 int flush = 0;
3728 int ret = 0;
3730 if (!btrfs_try_tree_write_lock(eb)) {
3731 ret = flush_write_bio(epd);
3732 if (ret < 0)
3733 return ret;
3734 flush = 1;
3735 btrfs_tree_lock(eb);
3738 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3739 btrfs_tree_unlock(eb);
3740 if (!epd->sync_io)
3741 return 0;
3742 if (!flush) {
3743 ret = flush_write_bio(epd);
3744 if (ret < 0)
3745 return ret;
3746 flush = 1;
3748 while (1) {
3749 wait_on_extent_buffer_writeback(eb);
3750 btrfs_tree_lock(eb);
3751 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3752 break;
3753 btrfs_tree_unlock(eb);
3758 * We need to do this to prevent races in people who check if the eb is
3759 * under IO since we can end up having no IO bits set for a short period
3760 * of time.
3762 spin_lock(&eb->refs_lock);
3763 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3764 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3765 spin_unlock(&eb->refs_lock);
3766 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3767 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3768 -eb->len,
3769 fs_info->dirty_metadata_batch);
3770 ret = 1;
3771 } else {
3772 spin_unlock(&eb->refs_lock);
3775 btrfs_tree_unlock(eb);
3777 if (!ret)
3778 return ret;
3780 num_pages = num_extent_pages(eb);
3781 for (i = 0; i < num_pages; i++) {
3782 struct page *p = eb->pages[i];
3784 if (!trylock_page(p)) {
3785 if (!flush) {
3786 int err;
3788 err = flush_write_bio(epd);
3789 if (err < 0) {
3790 ret = err;
3791 failed_page_nr = i;
3792 goto err_unlock;
3794 flush = 1;
3796 lock_page(p);
3800 return ret;
3801 err_unlock:
3802 /* Unlock already locked pages */
3803 for (i = 0; i < failed_page_nr; i++)
3804 unlock_page(eb->pages[i]);
3806 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3807 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3808 * be made and undo everything done before.
3810 btrfs_tree_lock(eb);
3811 spin_lock(&eb->refs_lock);
3812 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3813 end_extent_buffer_writeback(eb);
3814 spin_unlock(&eb->refs_lock);
3815 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3816 fs_info->dirty_metadata_batch);
3817 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3818 btrfs_tree_unlock(eb);
3819 return ret;
3822 static void set_btree_ioerr(struct page *page)
3824 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3825 struct btrfs_fs_info *fs_info;
3827 SetPageError(page);
3828 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3829 return;
3832 * If we error out, we should add back the dirty_metadata_bytes
3833 * to make it consistent.
3835 fs_info = eb->fs_info;
3836 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3837 eb->len, fs_info->dirty_metadata_batch);
3840 * If writeback for a btree extent that doesn't belong to a log tree
3841 * failed, increment the counter transaction->eb_write_errors.
3842 * We do this because while the transaction is running and before it's
3843 * committing (when we call filemap_fdata[write|wait]_range against
3844 * the btree inode), we might have
3845 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3846 * returns an error or an error happens during writeback, when we're
3847 * committing the transaction we wouldn't know about it, since the pages
3848 * can be no longer dirty nor marked anymore for writeback (if a
3849 * subsequent modification to the extent buffer didn't happen before the
3850 * transaction commit), which makes filemap_fdata[write|wait]_range not
3851 * able to find the pages tagged with SetPageError at transaction
3852 * commit time. So if this happens we must abort the transaction,
3853 * otherwise we commit a super block with btree roots that point to
3854 * btree nodes/leafs whose content on disk is invalid - either garbage
3855 * or the content of some node/leaf from a past generation that got
3856 * cowed or deleted and is no longer valid.
3858 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3859 * not be enough - we need to distinguish between log tree extents vs
3860 * non-log tree extents, and the next filemap_fdatawait_range() call
3861 * will catch and clear such errors in the mapping - and that call might
3862 * be from a log sync and not from a transaction commit. Also, checking
3863 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3864 * not done and would not be reliable - the eb might have been released
3865 * from memory and reading it back again means that flag would not be
3866 * set (since it's a runtime flag, not persisted on disk).
3868 * Using the flags below in the btree inode also makes us achieve the
3869 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3870 * writeback for all dirty pages and before filemap_fdatawait_range()
3871 * is called, the writeback for all dirty pages had already finished
3872 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3873 * filemap_fdatawait_range() would return success, as it could not know
3874 * that writeback errors happened (the pages were no longer tagged for
3875 * writeback).
3877 switch (eb->log_index) {
3878 case -1:
3879 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3880 break;
3881 case 0:
3882 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3883 break;
3884 case 1:
3885 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3886 break;
3887 default:
3888 BUG(); /* unexpected, logic error */
3892 static void end_bio_extent_buffer_writepage(struct bio *bio)
3894 struct bio_vec *bvec;
3895 struct extent_buffer *eb;
3896 int done;
3897 struct bvec_iter_all iter_all;
3899 ASSERT(!bio_flagged(bio, BIO_CLONED));
3900 bio_for_each_segment_all(bvec, bio, iter_all) {
3901 struct page *page = bvec->bv_page;
3903 eb = (struct extent_buffer *)page->private;
3904 BUG_ON(!eb);
3905 done = atomic_dec_and_test(&eb->io_pages);
3907 if (bio->bi_status ||
3908 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3909 ClearPageUptodate(page);
3910 set_btree_ioerr(page);
3913 end_page_writeback(page);
3915 if (!done)
3916 continue;
3918 end_extent_buffer_writeback(eb);
3921 bio_put(bio);
3924 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3925 struct writeback_control *wbc,
3926 struct extent_page_data *epd)
3928 u64 offset = eb->start;
3929 u32 nritems;
3930 int i, num_pages;
3931 unsigned long start, end;
3932 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3933 int ret = 0;
3935 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3936 num_pages = num_extent_pages(eb);
3937 atomic_set(&eb->io_pages, num_pages);
3939 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3940 nritems = btrfs_header_nritems(eb);
3941 if (btrfs_header_level(eb) > 0) {
3942 end = btrfs_node_key_ptr_offset(nritems);
3944 memzero_extent_buffer(eb, end, eb->len - end);
3945 } else {
3947 * leaf:
3948 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3950 start = btrfs_item_nr_offset(nritems);
3951 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3952 memzero_extent_buffer(eb, start, end - start);
3955 for (i = 0; i < num_pages; i++) {
3956 struct page *p = eb->pages[i];
3958 clear_page_dirty_for_io(p);
3959 set_page_writeback(p);
3960 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3961 p, offset, PAGE_SIZE, 0,
3962 &epd->bio,
3963 end_bio_extent_buffer_writepage,
3964 0, 0, 0, false);
3965 if (ret) {
3966 set_btree_ioerr(p);
3967 if (PageWriteback(p))
3968 end_page_writeback(p);
3969 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3970 end_extent_buffer_writeback(eb);
3971 ret = -EIO;
3972 break;
3974 offset += PAGE_SIZE;
3975 update_nr_written(wbc, 1);
3976 unlock_page(p);
3979 if (unlikely(ret)) {
3980 for (; i < num_pages; i++) {
3981 struct page *p = eb->pages[i];
3982 clear_page_dirty_for_io(p);
3983 unlock_page(p);
3987 return ret;
3991 * Submit all page(s) of one extent buffer.
3993 * @page: the page of one extent buffer
3994 * @eb_context: to determine if we need to submit this page, if current page
3995 * belongs to this eb, we don't need to submit
3997 * The caller should pass each page in their bytenr order, and here we use
3998 * @eb_context to determine if we have submitted pages of one extent buffer.
4000 * If we have, we just skip until we hit a new page that doesn't belong to
4001 * current @eb_context.
4003 * If not, we submit all the page(s) of the extent buffer.
4005 * Return >0 if we have submitted the extent buffer successfully.
4006 * Return 0 if we don't need to submit the page, as it's already submitted by
4007 * previous call.
4008 * Return <0 for fatal error.
4010 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4011 struct extent_page_data *epd,
4012 struct extent_buffer **eb_context)
4014 struct address_space *mapping = page->mapping;
4015 struct extent_buffer *eb;
4016 int ret;
4018 if (!PagePrivate(page))
4019 return 0;
4021 spin_lock(&mapping->private_lock);
4022 if (!PagePrivate(page)) {
4023 spin_unlock(&mapping->private_lock);
4024 return 0;
4027 eb = (struct extent_buffer *)page->private;
4030 * Shouldn't happen and normally this would be a BUG_ON but no point
4031 * crashing the machine for something we can survive anyway.
4033 if (WARN_ON(!eb)) {
4034 spin_unlock(&mapping->private_lock);
4035 return 0;
4038 if (eb == *eb_context) {
4039 spin_unlock(&mapping->private_lock);
4040 return 0;
4042 ret = atomic_inc_not_zero(&eb->refs);
4043 spin_unlock(&mapping->private_lock);
4044 if (!ret)
4045 return 0;
4047 *eb_context = eb;
4049 ret = lock_extent_buffer_for_io(eb, epd);
4050 if (ret <= 0) {
4051 free_extent_buffer(eb);
4052 return ret;
4054 ret = write_one_eb(eb, wbc, epd);
4055 free_extent_buffer(eb);
4056 if (ret < 0)
4057 return ret;
4058 return 1;
4061 int btree_write_cache_pages(struct address_space *mapping,
4062 struct writeback_control *wbc)
4064 struct extent_buffer *eb_context = NULL;
4065 struct extent_page_data epd = {
4066 .bio = NULL,
4067 .extent_locked = 0,
4068 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4070 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4071 int ret = 0;
4072 int done = 0;
4073 int nr_to_write_done = 0;
4074 struct pagevec pvec;
4075 int nr_pages;
4076 pgoff_t index;
4077 pgoff_t end; /* Inclusive */
4078 int scanned = 0;
4079 xa_mark_t tag;
4081 pagevec_init(&pvec);
4082 if (wbc->range_cyclic) {
4083 index = mapping->writeback_index; /* Start from prev offset */
4084 end = -1;
4086 * Start from the beginning does not need to cycle over the
4087 * range, mark it as scanned.
4089 scanned = (index == 0);
4090 } else {
4091 index = wbc->range_start >> PAGE_SHIFT;
4092 end = wbc->range_end >> PAGE_SHIFT;
4093 scanned = 1;
4095 if (wbc->sync_mode == WB_SYNC_ALL)
4096 tag = PAGECACHE_TAG_TOWRITE;
4097 else
4098 tag = PAGECACHE_TAG_DIRTY;
4099 retry:
4100 if (wbc->sync_mode == WB_SYNC_ALL)
4101 tag_pages_for_writeback(mapping, index, end);
4102 while (!done && !nr_to_write_done && (index <= end) &&
4103 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4104 tag))) {
4105 unsigned i;
4107 for (i = 0; i < nr_pages; i++) {
4108 struct page *page = pvec.pages[i];
4110 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4111 if (ret == 0)
4112 continue;
4113 if (ret < 0) {
4114 done = 1;
4115 break;
4119 * the filesystem may choose to bump up nr_to_write.
4120 * We have to make sure to honor the new nr_to_write
4121 * at any time
4123 nr_to_write_done = wbc->nr_to_write <= 0;
4125 pagevec_release(&pvec);
4126 cond_resched();
4128 if (!scanned && !done) {
4130 * We hit the last page and there is more work to be done: wrap
4131 * back to the start of the file
4133 scanned = 1;
4134 index = 0;
4135 goto retry;
4137 if (ret < 0) {
4138 end_write_bio(&epd, ret);
4139 return ret;
4142 * If something went wrong, don't allow any metadata write bio to be
4143 * submitted.
4145 * This would prevent use-after-free if we had dirty pages not
4146 * cleaned up, which can still happen by fuzzed images.
4148 * - Bad extent tree
4149 * Allowing existing tree block to be allocated for other trees.
4151 * - Log tree operations
4152 * Exiting tree blocks get allocated to log tree, bumps its
4153 * generation, then get cleaned in tree re-balance.
4154 * Such tree block will not be written back, since it's clean,
4155 * thus no WRITTEN flag set.
4156 * And after log writes back, this tree block is not traced by
4157 * any dirty extent_io_tree.
4159 * - Offending tree block gets re-dirtied from its original owner
4160 * Since it has bumped generation, no WRITTEN flag, it can be
4161 * reused without COWing. This tree block will not be traced
4162 * by btrfs_transaction::dirty_pages.
4164 * Now such dirty tree block will not be cleaned by any dirty
4165 * extent io tree. Thus we don't want to submit such wild eb
4166 * if the fs already has error.
4168 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4169 ret = flush_write_bio(&epd);
4170 } else {
4171 ret = -EROFS;
4172 end_write_bio(&epd, ret);
4174 return ret;
4178 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4179 * @mapping: address space structure to write
4180 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4181 * @data: data passed to __extent_writepage function
4183 * If a page is already under I/O, write_cache_pages() skips it, even
4184 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4185 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4186 * and msync() need to guarantee that all the data which was dirty at the time
4187 * the call was made get new I/O started against them. If wbc->sync_mode is
4188 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4189 * existing IO to complete.
4191 static int extent_write_cache_pages(struct address_space *mapping,
4192 struct writeback_control *wbc,
4193 struct extent_page_data *epd)
4195 struct inode *inode = mapping->host;
4196 int ret = 0;
4197 int done = 0;
4198 int nr_to_write_done = 0;
4199 struct pagevec pvec;
4200 int nr_pages;
4201 pgoff_t index;
4202 pgoff_t end; /* Inclusive */
4203 pgoff_t done_index;
4204 int range_whole = 0;
4205 int scanned = 0;
4206 xa_mark_t tag;
4209 * We have to hold onto the inode so that ordered extents can do their
4210 * work when the IO finishes. The alternative to this is failing to add
4211 * an ordered extent if the igrab() fails there and that is a huge pain
4212 * to deal with, so instead just hold onto the inode throughout the
4213 * writepages operation. If it fails here we are freeing up the inode
4214 * anyway and we'd rather not waste our time writing out stuff that is
4215 * going to be truncated anyway.
4217 if (!igrab(inode))
4218 return 0;
4220 pagevec_init(&pvec);
4221 if (wbc->range_cyclic) {
4222 index = mapping->writeback_index; /* Start from prev offset */
4223 end = -1;
4225 * Start from the beginning does not need to cycle over the
4226 * range, mark it as scanned.
4228 scanned = (index == 0);
4229 } else {
4230 index = wbc->range_start >> PAGE_SHIFT;
4231 end = wbc->range_end >> PAGE_SHIFT;
4232 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4233 range_whole = 1;
4234 scanned = 1;
4238 * We do the tagged writepage as long as the snapshot flush bit is set
4239 * and we are the first one who do the filemap_flush() on this inode.
4241 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4242 * not race in and drop the bit.
4244 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4245 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4246 &BTRFS_I(inode)->runtime_flags))
4247 wbc->tagged_writepages = 1;
4249 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4250 tag = PAGECACHE_TAG_TOWRITE;
4251 else
4252 tag = PAGECACHE_TAG_DIRTY;
4253 retry:
4254 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4255 tag_pages_for_writeback(mapping, index, end);
4256 done_index = index;
4257 while (!done && !nr_to_write_done && (index <= end) &&
4258 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4259 &index, end, tag))) {
4260 unsigned i;
4262 for (i = 0; i < nr_pages; i++) {
4263 struct page *page = pvec.pages[i];
4265 done_index = page->index + 1;
4267 * At this point we hold neither the i_pages lock nor
4268 * the page lock: the page may be truncated or
4269 * invalidated (changing page->mapping to NULL),
4270 * or even swizzled back from swapper_space to
4271 * tmpfs file mapping
4273 if (!trylock_page(page)) {
4274 ret = flush_write_bio(epd);
4275 BUG_ON(ret < 0);
4276 lock_page(page);
4279 if (unlikely(page->mapping != mapping)) {
4280 unlock_page(page);
4281 continue;
4284 if (wbc->sync_mode != WB_SYNC_NONE) {
4285 if (PageWriteback(page)) {
4286 ret = flush_write_bio(epd);
4287 BUG_ON(ret < 0);
4289 wait_on_page_writeback(page);
4292 if (PageWriteback(page) ||
4293 !clear_page_dirty_for_io(page)) {
4294 unlock_page(page);
4295 continue;
4298 ret = __extent_writepage(page, wbc, epd);
4299 if (ret < 0) {
4300 done = 1;
4301 break;
4305 * the filesystem may choose to bump up nr_to_write.
4306 * We have to make sure to honor the new nr_to_write
4307 * at any time
4309 nr_to_write_done = wbc->nr_to_write <= 0;
4311 pagevec_release(&pvec);
4312 cond_resched();
4314 if (!scanned && !done) {
4316 * We hit the last page and there is more work to be done: wrap
4317 * back to the start of the file
4319 scanned = 1;
4320 index = 0;
4323 * If we're looping we could run into a page that is locked by a
4324 * writer and that writer could be waiting on writeback for a
4325 * page in our current bio, and thus deadlock, so flush the
4326 * write bio here.
4328 ret = flush_write_bio(epd);
4329 if (!ret)
4330 goto retry;
4333 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4334 mapping->writeback_index = done_index;
4336 btrfs_add_delayed_iput(inode);
4337 return ret;
4340 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4342 int ret;
4343 struct extent_page_data epd = {
4344 .bio = NULL,
4345 .extent_locked = 0,
4346 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4349 ret = __extent_writepage(page, wbc, &epd);
4350 ASSERT(ret <= 0);
4351 if (ret < 0) {
4352 end_write_bio(&epd, ret);
4353 return ret;
4356 ret = flush_write_bio(&epd);
4357 ASSERT(ret <= 0);
4358 return ret;
4361 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4362 int mode)
4364 int ret = 0;
4365 struct address_space *mapping = inode->i_mapping;
4366 struct page *page;
4367 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4368 PAGE_SHIFT;
4370 struct extent_page_data epd = {
4371 .bio = NULL,
4372 .extent_locked = 1,
4373 .sync_io = mode == WB_SYNC_ALL,
4375 struct writeback_control wbc_writepages = {
4376 .sync_mode = mode,
4377 .nr_to_write = nr_pages * 2,
4378 .range_start = start,
4379 .range_end = end + 1,
4380 /* We're called from an async helper function */
4381 .punt_to_cgroup = 1,
4382 .no_cgroup_owner = 1,
4385 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4386 while (start <= end) {
4387 page = find_get_page(mapping, start >> PAGE_SHIFT);
4388 if (clear_page_dirty_for_io(page))
4389 ret = __extent_writepage(page, &wbc_writepages, &epd);
4390 else {
4391 btrfs_writepage_endio_finish_ordered(page, start,
4392 start + PAGE_SIZE - 1, 1);
4393 unlock_page(page);
4395 put_page(page);
4396 start += PAGE_SIZE;
4399 ASSERT(ret <= 0);
4400 if (ret == 0)
4401 ret = flush_write_bio(&epd);
4402 else
4403 end_write_bio(&epd, ret);
4405 wbc_detach_inode(&wbc_writepages);
4406 return ret;
4409 int extent_writepages(struct address_space *mapping,
4410 struct writeback_control *wbc)
4412 int ret = 0;
4413 struct extent_page_data epd = {
4414 .bio = NULL,
4415 .extent_locked = 0,
4416 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4419 ret = extent_write_cache_pages(mapping, wbc, &epd);
4420 ASSERT(ret <= 0);
4421 if (ret < 0) {
4422 end_write_bio(&epd, ret);
4423 return ret;
4425 ret = flush_write_bio(&epd);
4426 return ret;
4429 void extent_readahead(struct readahead_control *rac)
4431 struct bio *bio = NULL;
4432 unsigned long bio_flags = 0;
4433 struct page *pagepool[16];
4434 struct extent_map *em_cached = NULL;
4435 u64 prev_em_start = (u64)-1;
4436 int nr;
4438 while ((nr = readahead_page_batch(rac, pagepool))) {
4439 u64 contig_start = page_offset(pagepool[0]);
4440 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4442 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4444 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4445 &em_cached, &bio, &bio_flags, &prev_em_start);
4448 if (em_cached)
4449 free_extent_map(em_cached);
4451 if (bio) {
4452 if (submit_one_bio(bio, 0, bio_flags))
4453 return;
4458 * basic invalidatepage code, this waits on any locked or writeback
4459 * ranges corresponding to the page, and then deletes any extent state
4460 * records from the tree
4462 int extent_invalidatepage(struct extent_io_tree *tree,
4463 struct page *page, unsigned long offset)
4465 struct extent_state *cached_state = NULL;
4466 u64 start = page_offset(page);
4467 u64 end = start + PAGE_SIZE - 1;
4468 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4470 /* This function is only called for the btree inode */
4471 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
4473 start += ALIGN(offset, blocksize);
4474 if (start > end)
4475 return 0;
4477 lock_extent_bits(tree, start, end, &cached_state);
4478 wait_on_page_writeback(page);
4481 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
4482 * so here we only need to unlock the extent range to free any
4483 * existing extent state.
4485 unlock_extent_cached(tree, start, end, &cached_state);
4486 return 0;
4490 * a helper for releasepage, this tests for areas of the page that
4491 * are locked or under IO and drops the related state bits if it is safe
4492 * to drop the page.
4494 static int try_release_extent_state(struct extent_io_tree *tree,
4495 struct page *page, gfp_t mask)
4497 u64 start = page_offset(page);
4498 u64 end = start + PAGE_SIZE - 1;
4499 int ret = 1;
4501 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4502 ret = 0;
4503 } else {
4505 * At this point we can safely clear everything except the
4506 * locked bit, the nodatasum bit and the delalloc new bit.
4507 * The delalloc new bit will be cleared by ordered extent
4508 * completion.
4510 ret = __clear_extent_bit(tree, start, end,
4511 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
4512 0, 0, NULL, mask, NULL);
4514 /* if clear_extent_bit failed for enomem reasons,
4515 * we can't allow the release to continue.
4517 if (ret < 0)
4518 ret = 0;
4519 else
4520 ret = 1;
4522 return ret;
4526 * a helper for releasepage. As long as there are no locked extents
4527 * in the range corresponding to the page, both state records and extent
4528 * map records are removed
4530 int try_release_extent_mapping(struct page *page, gfp_t mask)
4532 struct extent_map *em;
4533 u64 start = page_offset(page);
4534 u64 end = start + PAGE_SIZE - 1;
4535 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4536 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4537 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4539 if (gfpflags_allow_blocking(mask) &&
4540 page->mapping->host->i_size > SZ_16M) {
4541 u64 len;
4542 while (start <= end) {
4543 struct btrfs_fs_info *fs_info;
4544 u64 cur_gen;
4546 len = end - start + 1;
4547 write_lock(&map->lock);
4548 em = lookup_extent_mapping(map, start, len);
4549 if (!em) {
4550 write_unlock(&map->lock);
4551 break;
4553 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4554 em->start != start) {
4555 write_unlock(&map->lock);
4556 free_extent_map(em);
4557 break;
4559 if (test_range_bit(tree, em->start,
4560 extent_map_end(em) - 1,
4561 EXTENT_LOCKED, 0, NULL))
4562 goto next;
4564 * If it's not in the list of modified extents, used
4565 * by a fast fsync, we can remove it. If it's being
4566 * logged we can safely remove it since fsync took an
4567 * extra reference on the em.
4569 if (list_empty(&em->list) ||
4570 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4571 goto remove_em;
4573 * If it's in the list of modified extents, remove it
4574 * only if its generation is older then the current one,
4575 * in which case we don't need it for a fast fsync.
4576 * Otherwise don't remove it, we could be racing with an
4577 * ongoing fast fsync that could miss the new extent.
4579 fs_info = btrfs_inode->root->fs_info;
4580 spin_lock(&fs_info->trans_lock);
4581 cur_gen = fs_info->generation;
4582 spin_unlock(&fs_info->trans_lock);
4583 if (em->generation >= cur_gen)
4584 goto next;
4585 remove_em:
4587 * We only remove extent maps that are not in the list of
4588 * modified extents or that are in the list but with a
4589 * generation lower then the current generation, so there
4590 * is no need to set the full fsync flag on the inode (it
4591 * hurts the fsync performance for workloads with a data
4592 * size that exceeds or is close to the system's memory).
4594 remove_extent_mapping(map, em);
4595 /* once for the rb tree */
4596 free_extent_map(em);
4597 next:
4598 start = extent_map_end(em);
4599 write_unlock(&map->lock);
4601 /* once for us */
4602 free_extent_map(em);
4604 cond_resched(); /* Allow large-extent preemption. */
4607 return try_release_extent_state(tree, page, mask);
4611 * helper function for fiemap, which doesn't want to see any holes.
4612 * This maps until we find something past 'last'
4614 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4615 u64 offset, u64 last)
4617 u64 sectorsize = btrfs_inode_sectorsize(inode);
4618 struct extent_map *em;
4619 u64 len;
4621 if (offset >= last)
4622 return NULL;
4624 while (1) {
4625 len = last - offset;
4626 if (len == 0)
4627 break;
4628 len = ALIGN(len, sectorsize);
4629 em = btrfs_get_extent_fiemap(inode, offset, len);
4630 if (IS_ERR_OR_NULL(em))
4631 return em;
4633 /* if this isn't a hole return it */
4634 if (em->block_start != EXTENT_MAP_HOLE)
4635 return em;
4637 /* this is a hole, advance to the next extent */
4638 offset = extent_map_end(em);
4639 free_extent_map(em);
4640 if (offset >= last)
4641 break;
4643 return NULL;
4647 * To cache previous fiemap extent
4649 * Will be used for merging fiemap extent
4651 struct fiemap_cache {
4652 u64 offset;
4653 u64 phys;
4654 u64 len;
4655 u32 flags;
4656 bool cached;
4660 * Helper to submit fiemap extent.
4662 * Will try to merge current fiemap extent specified by @offset, @phys,
4663 * @len and @flags with cached one.
4664 * And only when we fails to merge, cached one will be submitted as
4665 * fiemap extent.
4667 * Return value is the same as fiemap_fill_next_extent().
4669 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4670 struct fiemap_cache *cache,
4671 u64 offset, u64 phys, u64 len, u32 flags)
4673 int ret = 0;
4675 if (!cache->cached)
4676 goto assign;
4679 * Sanity check, extent_fiemap() should have ensured that new
4680 * fiemap extent won't overlap with cached one.
4681 * Not recoverable.
4683 * NOTE: Physical address can overlap, due to compression
4685 if (cache->offset + cache->len > offset) {
4686 WARN_ON(1);
4687 return -EINVAL;
4691 * Only merges fiemap extents if
4692 * 1) Their logical addresses are continuous
4694 * 2) Their physical addresses are continuous
4695 * So truly compressed (physical size smaller than logical size)
4696 * extents won't get merged with each other
4698 * 3) Share same flags except FIEMAP_EXTENT_LAST
4699 * So regular extent won't get merged with prealloc extent
4701 if (cache->offset + cache->len == offset &&
4702 cache->phys + cache->len == phys &&
4703 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4704 (flags & ~FIEMAP_EXTENT_LAST)) {
4705 cache->len += len;
4706 cache->flags |= flags;
4707 goto try_submit_last;
4710 /* Not mergeable, need to submit cached one */
4711 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4712 cache->len, cache->flags);
4713 cache->cached = false;
4714 if (ret)
4715 return ret;
4716 assign:
4717 cache->cached = true;
4718 cache->offset = offset;
4719 cache->phys = phys;
4720 cache->len = len;
4721 cache->flags = flags;
4722 try_submit_last:
4723 if (cache->flags & FIEMAP_EXTENT_LAST) {
4724 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4725 cache->phys, cache->len, cache->flags);
4726 cache->cached = false;
4728 return ret;
4732 * Emit last fiemap cache
4734 * The last fiemap cache may still be cached in the following case:
4735 * 0 4k 8k
4736 * |<- Fiemap range ->|
4737 * |<------------ First extent ----------->|
4739 * In this case, the first extent range will be cached but not emitted.
4740 * So we must emit it before ending extent_fiemap().
4742 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4743 struct fiemap_cache *cache)
4745 int ret;
4747 if (!cache->cached)
4748 return 0;
4750 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4751 cache->len, cache->flags);
4752 cache->cached = false;
4753 if (ret > 0)
4754 ret = 0;
4755 return ret;
4758 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4759 u64 start, u64 len)
4761 int ret = 0;
4762 u64 off = start;
4763 u64 max = start + len;
4764 u32 flags = 0;
4765 u32 found_type;
4766 u64 last;
4767 u64 last_for_get_extent = 0;
4768 u64 disko = 0;
4769 u64 isize = i_size_read(&inode->vfs_inode);
4770 struct btrfs_key found_key;
4771 struct extent_map *em = NULL;
4772 struct extent_state *cached_state = NULL;
4773 struct btrfs_path *path;
4774 struct btrfs_root *root = inode->root;
4775 struct fiemap_cache cache = { 0 };
4776 struct ulist *roots;
4777 struct ulist *tmp_ulist;
4778 int end = 0;
4779 u64 em_start = 0;
4780 u64 em_len = 0;
4781 u64 em_end = 0;
4783 if (len == 0)
4784 return -EINVAL;
4786 path = btrfs_alloc_path();
4787 if (!path)
4788 return -ENOMEM;
4790 roots = ulist_alloc(GFP_KERNEL);
4791 tmp_ulist = ulist_alloc(GFP_KERNEL);
4792 if (!roots || !tmp_ulist) {
4793 ret = -ENOMEM;
4794 goto out_free_ulist;
4797 start = round_down(start, btrfs_inode_sectorsize(inode));
4798 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4801 * lookup the last file extent. We're not using i_size here
4802 * because there might be preallocation past i_size
4804 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4806 if (ret < 0) {
4807 goto out_free_ulist;
4808 } else {
4809 WARN_ON(!ret);
4810 if (ret == 1)
4811 ret = 0;
4814 path->slots[0]--;
4815 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4816 found_type = found_key.type;
4818 /* No extents, but there might be delalloc bits */
4819 if (found_key.objectid != btrfs_ino(inode) ||
4820 found_type != BTRFS_EXTENT_DATA_KEY) {
4821 /* have to trust i_size as the end */
4822 last = (u64)-1;
4823 last_for_get_extent = isize;
4824 } else {
4826 * remember the start of the last extent. There are a
4827 * bunch of different factors that go into the length of the
4828 * extent, so its much less complex to remember where it started
4830 last = found_key.offset;
4831 last_for_get_extent = last + 1;
4833 btrfs_release_path(path);
4836 * we might have some extents allocated but more delalloc past those
4837 * extents. so, we trust isize unless the start of the last extent is
4838 * beyond isize
4840 if (last < isize) {
4841 last = (u64)-1;
4842 last_for_get_extent = isize;
4845 lock_extent_bits(&inode->io_tree, start, start + len - 1,
4846 &cached_state);
4848 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4849 if (!em)
4850 goto out;
4851 if (IS_ERR(em)) {
4852 ret = PTR_ERR(em);
4853 goto out;
4856 while (!end) {
4857 u64 offset_in_extent = 0;
4859 /* break if the extent we found is outside the range */
4860 if (em->start >= max || extent_map_end(em) < off)
4861 break;
4864 * get_extent may return an extent that starts before our
4865 * requested range. We have to make sure the ranges
4866 * we return to fiemap always move forward and don't
4867 * overlap, so adjust the offsets here
4869 em_start = max(em->start, off);
4872 * record the offset from the start of the extent
4873 * for adjusting the disk offset below. Only do this if the
4874 * extent isn't compressed since our in ram offset may be past
4875 * what we have actually allocated on disk.
4877 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4878 offset_in_extent = em_start - em->start;
4879 em_end = extent_map_end(em);
4880 em_len = em_end - em_start;
4881 flags = 0;
4882 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4883 disko = em->block_start + offset_in_extent;
4884 else
4885 disko = 0;
4888 * bump off for our next call to get_extent
4890 off = extent_map_end(em);
4891 if (off >= max)
4892 end = 1;
4894 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4895 end = 1;
4896 flags |= FIEMAP_EXTENT_LAST;
4897 } else if (em->block_start == EXTENT_MAP_INLINE) {
4898 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4899 FIEMAP_EXTENT_NOT_ALIGNED);
4900 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4901 flags |= (FIEMAP_EXTENT_DELALLOC |
4902 FIEMAP_EXTENT_UNKNOWN);
4903 } else if (fieinfo->fi_extents_max) {
4904 u64 bytenr = em->block_start -
4905 (em->start - em->orig_start);
4908 * As btrfs supports shared space, this information
4909 * can be exported to userspace tools via
4910 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4911 * then we're just getting a count and we can skip the
4912 * lookup stuff.
4914 ret = btrfs_check_shared(root, btrfs_ino(inode),
4915 bytenr, roots, tmp_ulist);
4916 if (ret < 0)
4917 goto out_free;
4918 if (ret)
4919 flags |= FIEMAP_EXTENT_SHARED;
4920 ret = 0;
4922 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4923 flags |= FIEMAP_EXTENT_ENCODED;
4924 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4925 flags |= FIEMAP_EXTENT_UNWRITTEN;
4927 free_extent_map(em);
4928 em = NULL;
4929 if ((em_start >= last) || em_len == (u64)-1 ||
4930 (last == (u64)-1 && isize <= em_end)) {
4931 flags |= FIEMAP_EXTENT_LAST;
4932 end = 1;
4935 /* now scan forward to see if this is really the last extent. */
4936 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4937 if (IS_ERR(em)) {
4938 ret = PTR_ERR(em);
4939 goto out;
4941 if (!em) {
4942 flags |= FIEMAP_EXTENT_LAST;
4943 end = 1;
4945 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4946 em_len, flags);
4947 if (ret) {
4948 if (ret == 1)
4949 ret = 0;
4950 goto out_free;
4953 out_free:
4954 if (!ret)
4955 ret = emit_last_fiemap_cache(fieinfo, &cache);
4956 free_extent_map(em);
4957 out:
4958 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4959 &cached_state);
4961 out_free_ulist:
4962 btrfs_free_path(path);
4963 ulist_free(roots);
4964 ulist_free(tmp_ulist);
4965 return ret;
4968 static void __free_extent_buffer(struct extent_buffer *eb)
4970 kmem_cache_free(extent_buffer_cache, eb);
4973 int extent_buffer_under_io(const struct extent_buffer *eb)
4975 return (atomic_read(&eb->io_pages) ||
4976 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4977 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4981 * Release all pages attached to the extent buffer.
4983 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4985 int i;
4986 int num_pages;
4987 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4989 BUG_ON(extent_buffer_under_io(eb));
4991 num_pages = num_extent_pages(eb);
4992 for (i = 0; i < num_pages; i++) {
4993 struct page *page = eb->pages[i];
4995 if (!page)
4996 continue;
4997 if (mapped)
4998 spin_lock(&page->mapping->private_lock);
5000 * We do this since we'll remove the pages after we've
5001 * removed the eb from the radix tree, so we could race
5002 * and have this page now attached to the new eb. So
5003 * only clear page_private if it's still connected to
5004 * this eb.
5006 if (PagePrivate(page) &&
5007 page->private == (unsigned long)eb) {
5008 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5009 BUG_ON(PageDirty(page));
5010 BUG_ON(PageWriteback(page));
5012 * We need to make sure we haven't be attached
5013 * to a new eb.
5015 detach_page_private(page);
5018 if (mapped)
5019 spin_unlock(&page->mapping->private_lock);
5021 /* One for when we allocated the page */
5022 put_page(page);
5027 * Helper for releasing the extent buffer.
5029 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5031 btrfs_release_extent_buffer_pages(eb);
5032 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5033 __free_extent_buffer(eb);
5036 static struct extent_buffer *
5037 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5038 unsigned long len)
5040 struct extent_buffer *eb = NULL;
5042 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5043 eb->start = start;
5044 eb->len = len;
5045 eb->fs_info = fs_info;
5046 eb->bflags = 0;
5047 init_rwsem(&eb->lock);
5049 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5050 &fs_info->allocated_ebs);
5052 spin_lock_init(&eb->refs_lock);
5053 atomic_set(&eb->refs, 1);
5054 atomic_set(&eb->io_pages, 0);
5056 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5058 return eb;
5061 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5063 int i;
5064 struct page *p;
5065 struct extent_buffer *new;
5066 int num_pages = num_extent_pages(src);
5068 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5069 if (new == NULL)
5070 return NULL;
5072 for (i = 0; i < num_pages; i++) {
5073 p = alloc_page(GFP_NOFS);
5074 if (!p) {
5075 btrfs_release_extent_buffer(new);
5076 return NULL;
5078 attach_extent_buffer_page(new, p);
5079 WARN_ON(PageDirty(p));
5080 SetPageUptodate(p);
5081 new->pages[i] = p;
5082 copy_page(page_address(p), page_address(src->pages[i]));
5085 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5086 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5088 return new;
5091 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5092 u64 start, unsigned long len)
5094 struct extent_buffer *eb;
5095 int num_pages;
5096 int i;
5098 eb = __alloc_extent_buffer(fs_info, start, len);
5099 if (!eb)
5100 return NULL;
5102 num_pages = num_extent_pages(eb);
5103 for (i = 0; i < num_pages; i++) {
5104 eb->pages[i] = alloc_page(GFP_NOFS);
5105 if (!eb->pages[i])
5106 goto err;
5108 set_extent_buffer_uptodate(eb);
5109 btrfs_set_header_nritems(eb, 0);
5110 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5112 return eb;
5113 err:
5114 for (; i > 0; i--)
5115 __free_page(eb->pages[i - 1]);
5116 __free_extent_buffer(eb);
5117 return NULL;
5120 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5121 u64 start)
5123 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5126 static void check_buffer_tree_ref(struct extent_buffer *eb)
5128 int refs;
5130 * The TREE_REF bit is first set when the extent_buffer is added
5131 * to the radix tree. It is also reset, if unset, when a new reference
5132 * is created by find_extent_buffer.
5134 * It is only cleared in two cases: freeing the last non-tree
5135 * reference to the extent_buffer when its STALE bit is set or
5136 * calling releasepage when the tree reference is the only reference.
5138 * In both cases, care is taken to ensure that the extent_buffer's
5139 * pages are not under io. However, releasepage can be concurrently
5140 * called with creating new references, which is prone to race
5141 * conditions between the calls to check_buffer_tree_ref in those
5142 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5144 * The actual lifetime of the extent_buffer in the radix tree is
5145 * adequately protected by the refcount, but the TREE_REF bit and
5146 * its corresponding reference are not. To protect against this
5147 * class of races, we call check_buffer_tree_ref from the codepaths
5148 * which trigger io after they set eb->io_pages. Note that once io is
5149 * initiated, TREE_REF can no longer be cleared, so that is the
5150 * moment at which any such race is best fixed.
5152 refs = atomic_read(&eb->refs);
5153 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5154 return;
5156 spin_lock(&eb->refs_lock);
5157 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5158 atomic_inc(&eb->refs);
5159 spin_unlock(&eb->refs_lock);
5162 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5163 struct page *accessed)
5165 int num_pages, i;
5167 check_buffer_tree_ref(eb);
5169 num_pages = num_extent_pages(eb);
5170 for (i = 0; i < num_pages; i++) {
5171 struct page *p = eb->pages[i];
5173 if (p != accessed)
5174 mark_page_accessed(p);
5178 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5179 u64 start)
5181 struct extent_buffer *eb;
5183 rcu_read_lock();
5184 eb = radix_tree_lookup(&fs_info->buffer_radix,
5185 start >> fs_info->sectorsize_bits);
5186 if (eb && atomic_inc_not_zero(&eb->refs)) {
5187 rcu_read_unlock();
5189 * Lock our eb's refs_lock to avoid races with
5190 * free_extent_buffer. When we get our eb it might be flagged
5191 * with EXTENT_BUFFER_STALE and another task running
5192 * free_extent_buffer might have seen that flag set,
5193 * eb->refs == 2, that the buffer isn't under IO (dirty and
5194 * writeback flags not set) and it's still in the tree (flag
5195 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5196 * of decrementing the extent buffer's reference count twice.
5197 * So here we could race and increment the eb's reference count,
5198 * clear its stale flag, mark it as dirty and drop our reference
5199 * before the other task finishes executing free_extent_buffer,
5200 * which would later result in an attempt to free an extent
5201 * buffer that is dirty.
5203 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5204 spin_lock(&eb->refs_lock);
5205 spin_unlock(&eb->refs_lock);
5207 mark_extent_buffer_accessed(eb, NULL);
5208 return eb;
5210 rcu_read_unlock();
5212 return NULL;
5215 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5216 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5217 u64 start)
5219 struct extent_buffer *eb, *exists = NULL;
5220 int ret;
5222 eb = find_extent_buffer(fs_info, start);
5223 if (eb)
5224 return eb;
5225 eb = alloc_dummy_extent_buffer(fs_info, start);
5226 if (!eb)
5227 return ERR_PTR(-ENOMEM);
5228 eb->fs_info = fs_info;
5229 again:
5230 ret = radix_tree_preload(GFP_NOFS);
5231 if (ret) {
5232 exists = ERR_PTR(ret);
5233 goto free_eb;
5235 spin_lock(&fs_info->buffer_lock);
5236 ret = radix_tree_insert(&fs_info->buffer_radix,
5237 start >> fs_info->sectorsize_bits, eb);
5238 spin_unlock(&fs_info->buffer_lock);
5239 radix_tree_preload_end();
5240 if (ret == -EEXIST) {
5241 exists = find_extent_buffer(fs_info, start);
5242 if (exists)
5243 goto free_eb;
5244 else
5245 goto again;
5247 check_buffer_tree_ref(eb);
5248 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5250 return eb;
5251 free_eb:
5252 btrfs_release_extent_buffer(eb);
5253 return exists;
5255 #endif
5257 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5258 u64 start, u64 owner_root, int level)
5260 unsigned long len = fs_info->nodesize;
5261 int num_pages;
5262 int i;
5263 unsigned long index = start >> PAGE_SHIFT;
5264 struct extent_buffer *eb;
5265 struct extent_buffer *exists = NULL;
5266 struct page *p;
5267 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5268 int uptodate = 1;
5269 int ret;
5271 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5272 btrfs_err(fs_info, "bad tree block start %llu", start);
5273 return ERR_PTR(-EINVAL);
5276 if (fs_info->sectorsize < PAGE_SIZE &&
5277 offset_in_page(start) + len > PAGE_SIZE) {
5278 btrfs_err(fs_info,
5279 "tree block crosses page boundary, start %llu nodesize %lu",
5280 start, len);
5281 return ERR_PTR(-EINVAL);
5284 eb = find_extent_buffer(fs_info, start);
5285 if (eb)
5286 return eb;
5288 eb = __alloc_extent_buffer(fs_info, start, len);
5289 if (!eb)
5290 return ERR_PTR(-ENOMEM);
5291 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5293 num_pages = num_extent_pages(eb);
5294 for (i = 0; i < num_pages; i++, index++) {
5295 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5296 if (!p) {
5297 exists = ERR_PTR(-ENOMEM);
5298 goto free_eb;
5301 spin_lock(&mapping->private_lock);
5302 if (PagePrivate(p)) {
5304 * We could have already allocated an eb for this page
5305 * and attached one so lets see if we can get a ref on
5306 * the existing eb, and if we can we know it's good and
5307 * we can just return that one, else we know we can just
5308 * overwrite page->private.
5310 exists = (struct extent_buffer *)p->private;
5311 if (atomic_inc_not_zero(&exists->refs)) {
5312 spin_unlock(&mapping->private_lock);
5313 unlock_page(p);
5314 put_page(p);
5315 mark_extent_buffer_accessed(exists, p);
5316 goto free_eb;
5318 exists = NULL;
5320 WARN_ON(PageDirty(p));
5321 detach_page_private(p);
5323 attach_extent_buffer_page(eb, p);
5324 spin_unlock(&mapping->private_lock);
5325 WARN_ON(PageDirty(p));
5326 eb->pages[i] = p;
5327 if (!PageUptodate(p))
5328 uptodate = 0;
5331 * We can't unlock the pages just yet since the extent buffer
5332 * hasn't been properly inserted in the radix tree, this
5333 * opens a race with btree_releasepage which can free a page
5334 * while we are still filling in all pages for the buffer and
5335 * we could crash.
5338 if (uptodate)
5339 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5340 again:
5341 ret = radix_tree_preload(GFP_NOFS);
5342 if (ret) {
5343 exists = ERR_PTR(ret);
5344 goto free_eb;
5347 spin_lock(&fs_info->buffer_lock);
5348 ret = radix_tree_insert(&fs_info->buffer_radix,
5349 start >> fs_info->sectorsize_bits, eb);
5350 spin_unlock(&fs_info->buffer_lock);
5351 radix_tree_preload_end();
5352 if (ret == -EEXIST) {
5353 exists = find_extent_buffer(fs_info, start);
5354 if (exists)
5355 goto free_eb;
5356 else
5357 goto again;
5359 /* add one reference for the tree */
5360 check_buffer_tree_ref(eb);
5361 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5364 * Now it's safe to unlock the pages because any calls to
5365 * btree_releasepage will correctly detect that a page belongs to a
5366 * live buffer and won't free them prematurely.
5368 for (i = 0; i < num_pages; i++)
5369 unlock_page(eb->pages[i]);
5370 return eb;
5372 free_eb:
5373 WARN_ON(!atomic_dec_and_test(&eb->refs));
5374 for (i = 0; i < num_pages; i++) {
5375 if (eb->pages[i])
5376 unlock_page(eb->pages[i]);
5379 btrfs_release_extent_buffer(eb);
5380 return exists;
5383 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5385 struct extent_buffer *eb =
5386 container_of(head, struct extent_buffer, rcu_head);
5388 __free_extent_buffer(eb);
5391 static int release_extent_buffer(struct extent_buffer *eb)
5392 __releases(&eb->refs_lock)
5394 lockdep_assert_held(&eb->refs_lock);
5396 WARN_ON(atomic_read(&eb->refs) == 0);
5397 if (atomic_dec_and_test(&eb->refs)) {
5398 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5399 struct btrfs_fs_info *fs_info = eb->fs_info;
5401 spin_unlock(&eb->refs_lock);
5403 spin_lock(&fs_info->buffer_lock);
5404 radix_tree_delete(&fs_info->buffer_radix,
5405 eb->start >> fs_info->sectorsize_bits);
5406 spin_unlock(&fs_info->buffer_lock);
5407 } else {
5408 spin_unlock(&eb->refs_lock);
5411 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5412 /* Should be safe to release our pages at this point */
5413 btrfs_release_extent_buffer_pages(eb);
5414 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5415 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5416 __free_extent_buffer(eb);
5417 return 1;
5419 #endif
5420 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5421 return 1;
5423 spin_unlock(&eb->refs_lock);
5425 return 0;
5428 void free_extent_buffer(struct extent_buffer *eb)
5430 int refs;
5431 int old;
5432 if (!eb)
5433 return;
5435 while (1) {
5436 refs = atomic_read(&eb->refs);
5437 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5438 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5439 refs == 1))
5440 break;
5441 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5442 if (old == refs)
5443 return;
5446 spin_lock(&eb->refs_lock);
5447 if (atomic_read(&eb->refs) == 2 &&
5448 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5449 !extent_buffer_under_io(eb) &&
5450 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5451 atomic_dec(&eb->refs);
5454 * I know this is terrible, but it's temporary until we stop tracking
5455 * the uptodate bits and such for the extent buffers.
5457 release_extent_buffer(eb);
5460 void free_extent_buffer_stale(struct extent_buffer *eb)
5462 if (!eb)
5463 return;
5465 spin_lock(&eb->refs_lock);
5466 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5468 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5469 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5470 atomic_dec(&eb->refs);
5471 release_extent_buffer(eb);
5474 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5476 int i;
5477 int num_pages;
5478 struct page *page;
5480 num_pages = num_extent_pages(eb);
5482 for (i = 0; i < num_pages; i++) {
5483 page = eb->pages[i];
5484 if (!PageDirty(page))
5485 continue;
5487 lock_page(page);
5488 WARN_ON(!PagePrivate(page));
5490 clear_page_dirty_for_io(page);
5491 xa_lock_irq(&page->mapping->i_pages);
5492 if (!PageDirty(page))
5493 __xa_clear_mark(&page->mapping->i_pages,
5494 page_index(page), PAGECACHE_TAG_DIRTY);
5495 xa_unlock_irq(&page->mapping->i_pages);
5496 ClearPageError(page);
5497 unlock_page(page);
5499 WARN_ON(atomic_read(&eb->refs) == 0);
5502 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5504 int i;
5505 int num_pages;
5506 bool was_dirty;
5508 check_buffer_tree_ref(eb);
5510 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5512 num_pages = num_extent_pages(eb);
5513 WARN_ON(atomic_read(&eb->refs) == 0);
5514 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5516 if (!was_dirty)
5517 for (i = 0; i < num_pages; i++)
5518 set_page_dirty(eb->pages[i]);
5520 #ifdef CONFIG_BTRFS_DEBUG
5521 for (i = 0; i < num_pages; i++)
5522 ASSERT(PageDirty(eb->pages[i]));
5523 #endif
5525 return was_dirty;
5528 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5530 int i;
5531 struct page *page;
5532 int num_pages;
5534 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5535 num_pages = num_extent_pages(eb);
5536 for (i = 0; i < num_pages; i++) {
5537 page = eb->pages[i];
5538 if (page)
5539 ClearPageUptodate(page);
5543 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5545 int i;
5546 struct page *page;
5547 int num_pages;
5549 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5550 num_pages = num_extent_pages(eb);
5551 for (i = 0; i < num_pages; i++) {
5552 page = eb->pages[i];
5553 SetPageUptodate(page);
5557 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5559 int i;
5560 struct page *page;
5561 int err;
5562 int ret = 0;
5563 int locked_pages = 0;
5564 int all_uptodate = 1;
5565 int num_pages;
5566 unsigned long num_reads = 0;
5567 struct bio *bio = NULL;
5568 unsigned long bio_flags = 0;
5570 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5571 return 0;
5573 num_pages = num_extent_pages(eb);
5574 for (i = 0; i < num_pages; i++) {
5575 page = eb->pages[i];
5576 if (wait == WAIT_NONE) {
5577 if (!trylock_page(page))
5578 goto unlock_exit;
5579 } else {
5580 lock_page(page);
5582 locked_pages++;
5585 * We need to firstly lock all pages to make sure that
5586 * the uptodate bit of our pages won't be affected by
5587 * clear_extent_buffer_uptodate().
5589 for (i = 0; i < num_pages; i++) {
5590 page = eb->pages[i];
5591 if (!PageUptodate(page)) {
5592 num_reads++;
5593 all_uptodate = 0;
5597 if (all_uptodate) {
5598 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5599 goto unlock_exit;
5602 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5603 eb->read_mirror = 0;
5604 atomic_set(&eb->io_pages, num_reads);
5606 * It is possible for releasepage to clear the TREE_REF bit before we
5607 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5609 check_buffer_tree_ref(eb);
5610 for (i = 0; i < num_pages; i++) {
5611 page = eb->pages[i];
5613 if (!PageUptodate(page)) {
5614 if (ret) {
5615 atomic_dec(&eb->io_pages);
5616 unlock_page(page);
5617 continue;
5620 ClearPageError(page);
5621 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5622 page, page_offset(page), PAGE_SIZE, 0,
5623 &bio, end_bio_extent_readpage,
5624 mirror_num, 0, 0, false);
5625 if (err) {
5627 * We failed to submit the bio so it's the
5628 * caller's responsibility to perform cleanup
5629 * i.e unlock page/set error bit.
5631 ret = err;
5632 SetPageError(page);
5633 unlock_page(page);
5634 atomic_dec(&eb->io_pages);
5636 } else {
5637 unlock_page(page);
5641 if (bio) {
5642 err = submit_one_bio(bio, mirror_num, bio_flags);
5643 if (err)
5644 return err;
5647 if (ret || wait != WAIT_COMPLETE)
5648 return ret;
5650 for (i = 0; i < num_pages; i++) {
5651 page = eb->pages[i];
5652 wait_on_page_locked(page);
5653 if (!PageUptodate(page))
5654 ret = -EIO;
5657 return ret;
5659 unlock_exit:
5660 while (locked_pages > 0) {
5661 locked_pages--;
5662 page = eb->pages[locked_pages];
5663 unlock_page(page);
5665 return ret;
5668 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5669 unsigned long len)
5671 btrfs_warn(eb->fs_info,
5672 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5673 eb->start, eb->len, start, len);
5674 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5676 return true;
5680 * Check if the [start, start + len) range is valid before reading/writing
5681 * the eb.
5682 * NOTE: @start and @len are offset inside the eb, not logical address.
5684 * Caller should not touch the dst/src memory if this function returns error.
5686 static inline int check_eb_range(const struct extent_buffer *eb,
5687 unsigned long start, unsigned long len)
5689 unsigned long offset;
5691 /* start, start + len should not go beyond eb->len nor overflow */
5692 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5693 return report_eb_range(eb, start, len);
5695 return false;
5698 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5699 unsigned long start, unsigned long len)
5701 size_t cur;
5702 size_t offset;
5703 struct page *page;
5704 char *kaddr;
5705 char *dst = (char *)dstv;
5706 unsigned long i = get_eb_page_index(start);
5708 if (check_eb_range(eb, start, len))
5709 return;
5711 offset = get_eb_offset_in_page(eb, start);
5713 while (len > 0) {
5714 page = eb->pages[i];
5716 cur = min(len, (PAGE_SIZE - offset));
5717 kaddr = page_address(page);
5718 memcpy(dst, kaddr + offset, cur);
5720 dst += cur;
5721 len -= cur;
5722 offset = 0;
5723 i++;
5727 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5728 void __user *dstv,
5729 unsigned long start, unsigned long len)
5731 size_t cur;
5732 size_t offset;
5733 struct page *page;
5734 char *kaddr;
5735 char __user *dst = (char __user *)dstv;
5736 unsigned long i = get_eb_page_index(start);
5737 int ret = 0;
5739 WARN_ON(start > eb->len);
5740 WARN_ON(start + len > eb->start + eb->len);
5742 offset = get_eb_offset_in_page(eb, start);
5744 while (len > 0) {
5745 page = eb->pages[i];
5747 cur = min(len, (PAGE_SIZE - offset));
5748 kaddr = page_address(page);
5749 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5750 ret = -EFAULT;
5751 break;
5754 dst += cur;
5755 len -= cur;
5756 offset = 0;
5757 i++;
5760 return ret;
5763 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5764 unsigned long start, unsigned long len)
5766 size_t cur;
5767 size_t offset;
5768 struct page *page;
5769 char *kaddr;
5770 char *ptr = (char *)ptrv;
5771 unsigned long i = get_eb_page_index(start);
5772 int ret = 0;
5774 if (check_eb_range(eb, start, len))
5775 return -EINVAL;
5777 offset = get_eb_offset_in_page(eb, start);
5779 while (len > 0) {
5780 page = eb->pages[i];
5782 cur = min(len, (PAGE_SIZE - offset));
5784 kaddr = page_address(page);
5785 ret = memcmp(ptr, kaddr + offset, cur);
5786 if (ret)
5787 break;
5789 ptr += cur;
5790 len -= cur;
5791 offset = 0;
5792 i++;
5794 return ret;
5797 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5798 const void *srcv)
5800 char *kaddr;
5802 WARN_ON(!PageUptodate(eb->pages[0]));
5803 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
5804 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5805 BTRFS_FSID_SIZE);
5808 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5810 char *kaddr;
5812 WARN_ON(!PageUptodate(eb->pages[0]));
5813 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
5814 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5815 BTRFS_FSID_SIZE);
5818 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5819 unsigned long start, unsigned long len)
5821 size_t cur;
5822 size_t offset;
5823 struct page *page;
5824 char *kaddr;
5825 char *src = (char *)srcv;
5826 unsigned long i = get_eb_page_index(start);
5828 if (check_eb_range(eb, start, len))
5829 return;
5831 offset = get_eb_offset_in_page(eb, start);
5833 while (len > 0) {
5834 page = eb->pages[i];
5835 WARN_ON(!PageUptodate(page));
5837 cur = min(len, PAGE_SIZE - offset);
5838 kaddr = page_address(page);
5839 memcpy(kaddr + offset, src, cur);
5841 src += cur;
5842 len -= cur;
5843 offset = 0;
5844 i++;
5848 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5849 unsigned long len)
5851 size_t cur;
5852 size_t offset;
5853 struct page *page;
5854 char *kaddr;
5855 unsigned long i = get_eb_page_index(start);
5857 if (check_eb_range(eb, start, len))
5858 return;
5860 offset = get_eb_offset_in_page(eb, start);
5862 while (len > 0) {
5863 page = eb->pages[i];
5864 WARN_ON(!PageUptodate(page));
5866 cur = min(len, PAGE_SIZE - offset);
5867 kaddr = page_address(page);
5868 memset(kaddr + offset, 0, cur);
5870 len -= cur;
5871 offset = 0;
5872 i++;
5876 void copy_extent_buffer_full(const struct extent_buffer *dst,
5877 const struct extent_buffer *src)
5879 int i;
5880 int num_pages;
5882 ASSERT(dst->len == src->len);
5884 if (dst->fs_info->sectorsize == PAGE_SIZE) {
5885 num_pages = num_extent_pages(dst);
5886 for (i = 0; i < num_pages; i++)
5887 copy_page(page_address(dst->pages[i]),
5888 page_address(src->pages[i]));
5889 } else {
5890 size_t src_offset = get_eb_offset_in_page(src, 0);
5891 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5893 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
5894 memcpy(page_address(dst->pages[0]) + dst_offset,
5895 page_address(src->pages[0]) + src_offset,
5896 src->len);
5900 void copy_extent_buffer(const struct extent_buffer *dst,
5901 const struct extent_buffer *src,
5902 unsigned long dst_offset, unsigned long src_offset,
5903 unsigned long len)
5905 u64 dst_len = dst->len;
5906 size_t cur;
5907 size_t offset;
5908 struct page *page;
5909 char *kaddr;
5910 unsigned long i = get_eb_page_index(dst_offset);
5912 if (check_eb_range(dst, dst_offset, len) ||
5913 check_eb_range(src, src_offset, len))
5914 return;
5916 WARN_ON(src->len != dst_len);
5918 offset = get_eb_offset_in_page(dst, dst_offset);
5920 while (len > 0) {
5921 page = dst->pages[i];
5922 WARN_ON(!PageUptodate(page));
5924 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5926 kaddr = page_address(page);
5927 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5929 src_offset += cur;
5930 len -= cur;
5931 offset = 0;
5932 i++;
5937 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5938 * given bit number
5939 * @eb: the extent buffer
5940 * @start: offset of the bitmap item in the extent buffer
5941 * @nr: bit number
5942 * @page_index: return index of the page in the extent buffer that contains the
5943 * given bit number
5944 * @page_offset: return offset into the page given by page_index
5946 * This helper hides the ugliness of finding the byte in an extent buffer which
5947 * contains a given bit.
5949 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5950 unsigned long start, unsigned long nr,
5951 unsigned long *page_index,
5952 size_t *page_offset)
5954 size_t byte_offset = BIT_BYTE(nr);
5955 size_t offset;
5958 * The byte we want is the offset of the extent buffer + the offset of
5959 * the bitmap item in the extent buffer + the offset of the byte in the
5960 * bitmap item.
5962 offset = start + offset_in_page(eb->start) + byte_offset;
5964 *page_index = offset >> PAGE_SHIFT;
5965 *page_offset = offset_in_page(offset);
5969 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5970 * @eb: the extent buffer
5971 * @start: offset of the bitmap item in the extent buffer
5972 * @nr: bit number to test
5974 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5975 unsigned long nr)
5977 u8 *kaddr;
5978 struct page *page;
5979 unsigned long i;
5980 size_t offset;
5982 eb_bitmap_offset(eb, start, nr, &i, &offset);
5983 page = eb->pages[i];
5984 WARN_ON(!PageUptodate(page));
5985 kaddr = page_address(page);
5986 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5990 * extent_buffer_bitmap_set - set an area of a bitmap
5991 * @eb: the extent buffer
5992 * @start: offset of the bitmap item in the extent buffer
5993 * @pos: bit number of the first bit
5994 * @len: number of bits to set
5996 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5997 unsigned long pos, unsigned long len)
5999 u8 *kaddr;
6000 struct page *page;
6001 unsigned long i;
6002 size_t offset;
6003 const unsigned int size = pos + len;
6004 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6005 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6007 eb_bitmap_offset(eb, start, pos, &i, &offset);
6008 page = eb->pages[i];
6009 WARN_ON(!PageUptodate(page));
6010 kaddr = page_address(page);
6012 while (len >= bits_to_set) {
6013 kaddr[offset] |= mask_to_set;
6014 len -= bits_to_set;
6015 bits_to_set = BITS_PER_BYTE;
6016 mask_to_set = ~0;
6017 if (++offset >= PAGE_SIZE && len > 0) {
6018 offset = 0;
6019 page = eb->pages[++i];
6020 WARN_ON(!PageUptodate(page));
6021 kaddr = page_address(page);
6024 if (len) {
6025 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6026 kaddr[offset] |= mask_to_set;
6032 * extent_buffer_bitmap_clear - clear an area of a bitmap
6033 * @eb: the extent buffer
6034 * @start: offset of the bitmap item in the extent buffer
6035 * @pos: bit number of the first bit
6036 * @len: number of bits to clear
6038 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6039 unsigned long start, unsigned long pos,
6040 unsigned long len)
6042 u8 *kaddr;
6043 struct page *page;
6044 unsigned long i;
6045 size_t offset;
6046 const unsigned int size = pos + len;
6047 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6048 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6050 eb_bitmap_offset(eb, start, pos, &i, &offset);
6051 page = eb->pages[i];
6052 WARN_ON(!PageUptodate(page));
6053 kaddr = page_address(page);
6055 while (len >= bits_to_clear) {
6056 kaddr[offset] &= ~mask_to_clear;
6057 len -= bits_to_clear;
6058 bits_to_clear = BITS_PER_BYTE;
6059 mask_to_clear = ~0;
6060 if (++offset >= PAGE_SIZE && len > 0) {
6061 offset = 0;
6062 page = eb->pages[++i];
6063 WARN_ON(!PageUptodate(page));
6064 kaddr = page_address(page);
6067 if (len) {
6068 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6069 kaddr[offset] &= ~mask_to_clear;
6073 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6075 unsigned long distance = (src > dst) ? src - dst : dst - src;
6076 return distance < len;
6079 static void copy_pages(struct page *dst_page, struct page *src_page,
6080 unsigned long dst_off, unsigned long src_off,
6081 unsigned long len)
6083 char *dst_kaddr = page_address(dst_page);
6084 char *src_kaddr;
6085 int must_memmove = 0;
6087 if (dst_page != src_page) {
6088 src_kaddr = page_address(src_page);
6089 } else {
6090 src_kaddr = dst_kaddr;
6091 if (areas_overlap(src_off, dst_off, len))
6092 must_memmove = 1;
6095 if (must_memmove)
6096 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6097 else
6098 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6101 void memcpy_extent_buffer(const struct extent_buffer *dst,
6102 unsigned long dst_offset, unsigned long src_offset,
6103 unsigned long len)
6105 size_t cur;
6106 size_t dst_off_in_page;
6107 size_t src_off_in_page;
6108 unsigned long dst_i;
6109 unsigned long src_i;
6111 if (check_eb_range(dst, dst_offset, len) ||
6112 check_eb_range(dst, src_offset, len))
6113 return;
6115 while (len > 0) {
6116 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6117 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6119 dst_i = get_eb_page_index(dst_offset);
6120 src_i = get_eb_page_index(src_offset);
6122 cur = min(len, (unsigned long)(PAGE_SIZE -
6123 src_off_in_page));
6124 cur = min_t(unsigned long, cur,
6125 (unsigned long)(PAGE_SIZE - dst_off_in_page));
6127 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6128 dst_off_in_page, src_off_in_page, cur);
6130 src_offset += cur;
6131 dst_offset += cur;
6132 len -= cur;
6136 void memmove_extent_buffer(const struct extent_buffer *dst,
6137 unsigned long dst_offset, unsigned long src_offset,
6138 unsigned long len)
6140 size_t cur;
6141 size_t dst_off_in_page;
6142 size_t src_off_in_page;
6143 unsigned long dst_end = dst_offset + len - 1;
6144 unsigned long src_end = src_offset + len - 1;
6145 unsigned long dst_i;
6146 unsigned long src_i;
6148 if (check_eb_range(dst, dst_offset, len) ||
6149 check_eb_range(dst, src_offset, len))
6150 return;
6151 if (dst_offset < src_offset) {
6152 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6153 return;
6155 while (len > 0) {
6156 dst_i = get_eb_page_index(dst_end);
6157 src_i = get_eb_page_index(src_end);
6159 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
6160 src_off_in_page = get_eb_offset_in_page(dst, src_end);
6162 cur = min_t(unsigned long, len, src_off_in_page + 1);
6163 cur = min(cur, dst_off_in_page + 1);
6164 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6165 dst_off_in_page - cur + 1,
6166 src_off_in_page - cur + 1, cur);
6168 dst_end -= cur;
6169 src_end -= cur;
6170 len -= cur;
6174 int try_release_extent_buffer(struct page *page)
6176 struct extent_buffer *eb;
6179 * We need to make sure nobody is attaching this page to an eb right
6180 * now.
6182 spin_lock(&page->mapping->private_lock);
6183 if (!PagePrivate(page)) {
6184 spin_unlock(&page->mapping->private_lock);
6185 return 1;
6188 eb = (struct extent_buffer *)page->private;
6189 BUG_ON(!eb);
6192 * This is a little awful but should be ok, we need to make sure that
6193 * the eb doesn't disappear out from under us while we're looking at
6194 * this page.
6196 spin_lock(&eb->refs_lock);
6197 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6198 spin_unlock(&eb->refs_lock);
6199 spin_unlock(&page->mapping->private_lock);
6200 return 0;
6202 spin_unlock(&page->mapping->private_lock);
6205 * If tree ref isn't set then we know the ref on this eb is a real ref,
6206 * so just return, this page will likely be freed soon anyway.
6208 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6209 spin_unlock(&eb->refs_lock);
6210 return 0;
6213 return release_extent_buffer(eb);
6217 * btrfs_readahead_tree_block - attempt to readahead a child block
6218 * @fs_info: the fs_info
6219 * @bytenr: bytenr to read
6220 * @owner_root: objectid of the root that owns this eb
6221 * @gen: generation for the uptodate check, can be 0
6222 * @level: level for the eb
6224 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
6225 * normal uptodate check of the eb, without checking the generation. If we have
6226 * to read the block we will not block on anything.
6228 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6229 u64 bytenr, u64 owner_root, u64 gen, int level)
6231 struct extent_buffer *eb;
6232 int ret;
6234 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6235 if (IS_ERR(eb))
6236 return;
6238 if (btrfs_buffer_uptodate(eb, gen, 1)) {
6239 free_extent_buffer(eb);
6240 return;
6243 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
6244 if (ret < 0)
6245 free_extent_buffer_stale(eb);
6246 else
6247 free_extent_buffer(eb);
6251 * btrfs_readahead_node_child - readahead a node's child block
6252 * @node: parent node we're reading from
6253 * @slot: slot in the parent node for the child we want to read
6255 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
6256 * the slot in the node provided.
6258 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
6260 btrfs_readahead_tree_block(node->fs_info,
6261 btrfs_node_blockptr(node, slot),
6262 btrfs_header_owner(node),
6263 btrfs_node_ptr_generation(node, slot),
6264 btrfs_header_level(node) - 1);