Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / file-item.c
blob6ccfc019ad909eb06636d7007b31d1276902b665
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "print-tree.h"
17 #include "compression.h"
19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20 sizeof(struct btrfs_item) * 2) / \
21 size) - 1))
23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
24 PAGE_SIZE))
26 /**
27 * @inode - the inode we want to update the disk_i_size for
28 * @new_i_size - the i_size we want to set to, 0 if we use i_size
30 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
31 * returns as it is perfectly fine with a file that has holes without hole file
32 * extent items.
34 * However without NO_HOLES we need to only return the area that is contiguous
35 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
36 * to an extent that has a gap in between.
38 * Finally new_i_size should only be set in the case of truncate where we're not
39 * ready to use i_size_read() as the limiter yet.
41 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
43 struct btrfs_fs_info *fs_info = inode->root->fs_info;
44 u64 start, end, i_size;
45 int ret;
47 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
48 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
49 inode->disk_i_size = i_size;
50 return;
53 spin_lock(&inode->lock);
54 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
55 &end, EXTENT_DIRTY);
56 if (!ret && start == 0)
57 i_size = min(i_size, end + 1);
58 else
59 i_size = 0;
60 inode->disk_i_size = i_size;
61 spin_unlock(&inode->lock);
64 /**
65 * @inode - the inode we're modifying
66 * @start - the start file offset of the file extent we've inserted
67 * @len - the logical length of the file extent item
69 * Call when we are inserting a new file extent where there was none before.
70 * Does not need to call this in the case where we're replacing an existing file
71 * extent, however if not sure it's fine to call this multiple times.
73 * The start and len must match the file extent item, so thus must be sectorsize
74 * aligned.
76 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
77 u64 len)
79 if (len == 0)
80 return 0;
82 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
84 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
85 return 0;
86 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
87 EXTENT_DIRTY);
90 /**
91 * @inode - the inode we're modifying
92 * @start - the start file offset of the file extent we've inserted
93 * @len - the logical length of the file extent item
95 * Called when we drop a file extent, for example when we truncate. Doesn't
96 * need to be called for cases where we're replacing a file extent, like when
97 * we've COWed a file extent.
99 * The start and len must match the file extent item, so thus must be sectorsize
100 * aligned.
102 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
103 u64 len)
105 if (len == 0)
106 return 0;
108 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
109 len == (u64)-1);
111 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
112 return 0;
113 return clear_extent_bit(&inode->file_extent_tree, start,
114 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
117 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
118 u16 csum_size)
120 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
122 return ncsums * fs_info->sectorsize;
125 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
126 struct btrfs_root *root,
127 u64 objectid, u64 pos,
128 u64 disk_offset, u64 disk_num_bytes,
129 u64 num_bytes, u64 offset, u64 ram_bytes,
130 u8 compression, u8 encryption, u16 other_encoding)
132 int ret = 0;
133 struct btrfs_file_extent_item *item;
134 struct btrfs_key file_key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
138 path = btrfs_alloc_path();
139 if (!path)
140 return -ENOMEM;
141 file_key.objectid = objectid;
142 file_key.offset = pos;
143 file_key.type = BTRFS_EXTENT_DATA_KEY;
145 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
146 sizeof(*item));
147 if (ret < 0)
148 goto out;
149 BUG_ON(ret); /* Can't happen */
150 leaf = path->nodes[0];
151 item = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
154 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
155 btrfs_set_file_extent_offset(leaf, item, offset);
156 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
157 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
158 btrfs_set_file_extent_generation(leaf, item, trans->transid);
159 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
160 btrfs_set_file_extent_compression(leaf, item, compression);
161 btrfs_set_file_extent_encryption(leaf, item, encryption);
162 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
164 btrfs_mark_buffer_dirty(leaf);
165 out:
166 btrfs_free_path(path);
167 return ret;
170 static struct btrfs_csum_item *
171 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
172 struct btrfs_root *root,
173 struct btrfs_path *path,
174 u64 bytenr, int cow)
176 struct btrfs_fs_info *fs_info = root->fs_info;
177 int ret;
178 struct btrfs_key file_key;
179 struct btrfs_key found_key;
180 struct btrfs_csum_item *item;
181 struct extent_buffer *leaf;
182 u64 csum_offset = 0;
183 const u32 csum_size = fs_info->csum_size;
184 int csums_in_item;
186 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
187 file_key.offset = bytenr;
188 file_key.type = BTRFS_EXTENT_CSUM_KEY;
189 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
190 if (ret < 0)
191 goto fail;
192 leaf = path->nodes[0];
193 if (ret > 0) {
194 ret = 1;
195 if (path->slots[0] == 0)
196 goto fail;
197 path->slots[0]--;
198 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
199 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
200 goto fail;
202 csum_offset = (bytenr - found_key.offset) >>
203 fs_info->sectorsize_bits;
204 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
205 csums_in_item /= csum_size;
207 if (csum_offset == csums_in_item) {
208 ret = -EFBIG;
209 goto fail;
210 } else if (csum_offset > csums_in_item) {
211 goto fail;
214 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
215 item = (struct btrfs_csum_item *)((unsigned char *)item +
216 csum_offset * csum_size);
217 return item;
218 fail:
219 if (ret > 0)
220 ret = -ENOENT;
221 return ERR_PTR(ret);
224 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
225 struct btrfs_root *root,
226 struct btrfs_path *path, u64 objectid,
227 u64 offset, int mod)
229 int ret;
230 struct btrfs_key file_key;
231 int ins_len = mod < 0 ? -1 : 0;
232 int cow = mod != 0;
234 file_key.objectid = objectid;
235 file_key.offset = offset;
236 file_key.type = BTRFS_EXTENT_DATA_KEY;
237 ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
238 return ret;
242 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
243 * estore the result to @dst.
245 * Return >0 for the number of sectors we found.
246 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
247 * for it. Caller may want to try next sector until one range is hit.
248 * Return <0 for fatal error.
250 static int search_csum_tree(struct btrfs_fs_info *fs_info,
251 struct btrfs_path *path, u64 disk_bytenr,
252 u64 len, u8 *dst)
254 struct btrfs_csum_item *item = NULL;
255 struct btrfs_key key;
256 const u32 sectorsize = fs_info->sectorsize;
257 const u32 csum_size = fs_info->csum_size;
258 u32 itemsize;
259 int ret;
260 u64 csum_start;
261 u64 csum_len;
263 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
264 IS_ALIGNED(len, sectorsize));
266 /* Check if the current csum item covers disk_bytenr */
267 if (path->nodes[0]) {
268 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
269 struct btrfs_csum_item);
270 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
271 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
273 csum_start = key.offset;
274 csum_len = (itemsize / csum_size) * sectorsize;
276 if (in_range(disk_bytenr, csum_start, csum_len))
277 goto found;
280 /* Current item doesn't contain the desired range, search again */
281 btrfs_release_path(path);
282 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
283 if (IS_ERR(item)) {
284 ret = PTR_ERR(item);
285 goto out;
287 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
288 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
290 csum_start = key.offset;
291 csum_len = (itemsize / csum_size) * sectorsize;
292 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
294 found:
295 ret = (min(csum_start + csum_len, disk_bytenr + len) -
296 disk_bytenr) >> fs_info->sectorsize_bits;
297 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
298 ret * csum_size);
299 out:
300 if (ret == -ENOENT)
301 ret = 0;
302 return ret;
306 * Locate the file_offset of @cur_disk_bytenr of a @bio.
308 * Bio of btrfs represents read range of
309 * [bi_sector << 9, bi_sector << 9 + bi_size).
310 * Knowing this, we can iterate through each bvec to locate the page belong to
311 * @cur_disk_bytenr and get the file offset.
313 * @inode is used to determine if the bvec page really belongs to @inode.
315 * Return 0 if we can't find the file offset
316 * Return >0 if we find the file offset and restore it to @file_offset_ret
318 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
319 u64 disk_bytenr, u64 *file_offset_ret)
321 struct bvec_iter iter;
322 struct bio_vec bvec;
323 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
324 int ret = 0;
326 bio_for_each_segment(bvec, bio, iter) {
327 struct page *page = bvec.bv_page;
329 if (cur > disk_bytenr)
330 break;
331 if (cur + bvec.bv_len <= disk_bytenr) {
332 cur += bvec.bv_len;
333 continue;
335 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
336 if (page->mapping && page->mapping->host &&
337 page->mapping->host == inode) {
338 ret = 1;
339 *file_offset_ret = page_offset(page) + bvec.bv_offset +
340 disk_bytenr - cur;
341 break;
344 return ret;
348 * Lookup the checksum for the read bio in csum tree.
350 * @inode: inode that the bio is for.
351 * @bio: bio to look up.
352 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
353 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
354 * NULL, the checksum buffer is allocated and returned in
355 * btrfs_io_bio(bio)->csum instead.
357 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
359 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
361 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
362 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
363 struct btrfs_path *path;
364 const u32 sectorsize = fs_info->sectorsize;
365 const u32 csum_size = fs_info->csum_size;
366 u32 orig_len = bio->bi_iter.bi_size;
367 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
368 u64 cur_disk_bytenr;
369 u8 *csum;
370 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
371 int count = 0;
373 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
374 return BLK_STS_OK;
377 * This function is only called for read bio.
379 * This means two things:
380 * - All our csums should only be in csum tree
381 * No ordered extents csums, as ordered extents are only for write
382 * path.
383 * - No need to bother any other info from bvec
384 * Since we're looking up csums, the only important info is the
385 * disk_bytenr and the length, which can be extracted from bi_iter
386 * directly.
388 ASSERT(bio_op(bio) == REQ_OP_READ);
389 path = btrfs_alloc_path();
390 if (!path)
391 return BLK_STS_RESOURCE;
393 if (!dst) {
394 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
396 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
397 btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
398 GFP_NOFS);
399 if (!btrfs_bio->csum) {
400 btrfs_free_path(path);
401 return BLK_STS_RESOURCE;
403 } else {
404 btrfs_bio->csum = btrfs_bio->csum_inline;
406 csum = btrfs_bio->csum;
407 } else {
408 csum = dst;
412 * If requested number of sectors is larger than one leaf can contain,
413 * kick the readahead for csum tree.
415 if (nblocks > fs_info->csums_per_leaf)
416 path->reada = READA_FORWARD;
419 * the free space stuff is only read when it hasn't been
420 * updated in the current transaction. So, we can safely
421 * read from the commit root and sidestep a nasty deadlock
422 * between reading the free space cache and updating the csum tree.
424 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
425 path->search_commit_root = 1;
426 path->skip_locking = 1;
429 for (cur_disk_bytenr = orig_disk_bytenr;
430 cur_disk_bytenr < orig_disk_bytenr + orig_len;
431 cur_disk_bytenr += (count * sectorsize)) {
432 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
433 unsigned int sector_offset;
434 u8 *csum_dst;
437 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
438 * we're calculating the offset to the bio start.
440 * Bio size is limited to UINT_MAX, thus unsigned int is large
441 * enough to contain the raw result, not to mention the right
442 * shifted result.
444 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
445 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
446 fs_info->sectorsize_bits;
447 csum_dst = csum + sector_offset * csum_size;
449 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
450 search_len, csum_dst);
451 if (count <= 0) {
453 * Either we hit a critical error or we didn't find
454 * the csum.
455 * Either way, we put zero into the csums dst, and skip
456 * to the next sector.
458 memset(csum_dst, 0, csum_size);
459 count = 1;
462 * For data reloc inode, we need to mark the range
463 * NODATASUM so that balance won't report false csum
464 * error.
466 if (BTRFS_I(inode)->root->root_key.objectid ==
467 BTRFS_DATA_RELOC_TREE_OBJECTID) {
468 u64 file_offset;
469 int ret;
471 ret = search_file_offset_in_bio(bio, inode,
472 cur_disk_bytenr, &file_offset);
473 if (ret)
474 set_extent_bits(io_tree, file_offset,
475 file_offset + sectorsize - 1,
476 EXTENT_NODATASUM);
477 } else {
478 btrfs_warn_rl(fs_info,
479 "csum hole found for disk bytenr range [%llu, %llu)",
480 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
485 btrfs_free_path(path);
486 return BLK_STS_OK;
489 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
490 struct list_head *list, int search_commit)
492 struct btrfs_fs_info *fs_info = root->fs_info;
493 struct btrfs_key key;
494 struct btrfs_path *path;
495 struct extent_buffer *leaf;
496 struct btrfs_ordered_sum *sums;
497 struct btrfs_csum_item *item;
498 LIST_HEAD(tmplist);
499 unsigned long offset;
500 int ret;
501 size_t size;
502 u64 csum_end;
503 const u32 csum_size = fs_info->csum_size;
505 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
506 IS_ALIGNED(end + 1, fs_info->sectorsize));
508 path = btrfs_alloc_path();
509 if (!path)
510 return -ENOMEM;
512 if (search_commit) {
513 path->skip_locking = 1;
514 path->reada = READA_FORWARD;
515 path->search_commit_root = 1;
518 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
519 key.offset = start;
520 key.type = BTRFS_EXTENT_CSUM_KEY;
522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
523 if (ret < 0)
524 goto fail;
525 if (ret > 0 && path->slots[0] > 0) {
526 leaf = path->nodes[0];
527 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
528 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
529 key.type == BTRFS_EXTENT_CSUM_KEY) {
530 offset = (start - key.offset) >> fs_info->sectorsize_bits;
531 if (offset * csum_size <
532 btrfs_item_size_nr(leaf, path->slots[0] - 1))
533 path->slots[0]--;
537 while (start <= end) {
538 leaf = path->nodes[0];
539 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
540 ret = btrfs_next_leaf(root, path);
541 if (ret < 0)
542 goto fail;
543 if (ret > 0)
544 break;
545 leaf = path->nodes[0];
548 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
549 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
550 key.type != BTRFS_EXTENT_CSUM_KEY ||
551 key.offset > end)
552 break;
554 if (key.offset > start)
555 start = key.offset;
557 size = btrfs_item_size_nr(leaf, path->slots[0]);
558 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
559 if (csum_end <= start) {
560 path->slots[0]++;
561 continue;
564 csum_end = min(csum_end, end + 1);
565 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
566 struct btrfs_csum_item);
567 while (start < csum_end) {
568 size = min_t(size_t, csum_end - start,
569 max_ordered_sum_bytes(fs_info, csum_size));
570 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
571 GFP_NOFS);
572 if (!sums) {
573 ret = -ENOMEM;
574 goto fail;
577 sums->bytenr = start;
578 sums->len = (int)size;
580 offset = (start - key.offset) >> fs_info->sectorsize_bits;
581 offset *= csum_size;
582 size >>= fs_info->sectorsize_bits;
584 read_extent_buffer(path->nodes[0],
585 sums->sums,
586 ((unsigned long)item) + offset,
587 csum_size * size);
589 start += fs_info->sectorsize * size;
590 list_add_tail(&sums->list, &tmplist);
592 path->slots[0]++;
594 ret = 0;
595 fail:
596 while (ret < 0 && !list_empty(&tmplist)) {
597 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
598 list_del(&sums->list);
599 kfree(sums);
601 list_splice_tail(&tmplist, list);
603 btrfs_free_path(path);
604 return ret;
608 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
609 * @inode: Owner of the data inside the bio
610 * @bio: Contains the data to be checksummed
611 * @file_start: offset in file this bio begins to describe
612 * @contig: Boolean. If true/1 means all bio vecs in this bio are
613 * contiguous and they begin at @file_start in the file. False/0
614 * means this bio can contains potentially discontigous bio vecs
615 * so the logical offset of each should be calculated separately.
617 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
618 u64 file_start, int contig)
620 struct btrfs_fs_info *fs_info = inode->root->fs_info;
621 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
622 struct btrfs_ordered_sum *sums;
623 struct btrfs_ordered_extent *ordered = NULL;
624 char *data;
625 struct bvec_iter iter;
626 struct bio_vec bvec;
627 int index;
628 int nr_sectors;
629 unsigned long total_bytes = 0;
630 unsigned long this_sum_bytes = 0;
631 int i;
632 u64 offset;
633 unsigned nofs_flag;
635 nofs_flag = memalloc_nofs_save();
636 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
637 GFP_KERNEL);
638 memalloc_nofs_restore(nofs_flag);
640 if (!sums)
641 return BLK_STS_RESOURCE;
643 sums->len = bio->bi_iter.bi_size;
644 INIT_LIST_HEAD(&sums->list);
646 if (contig)
647 offset = file_start;
648 else
649 offset = 0; /* shut up gcc */
651 sums->bytenr = bio->bi_iter.bi_sector << 9;
652 index = 0;
654 shash->tfm = fs_info->csum_shash;
656 bio_for_each_segment(bvec, bio, iter) {
657 if (!contig)
658 offset = page_offset(bvec.bv_page) + bvec.bv_offset;
660 if (!ordered) {
661 ordered = btrfs_lookup_ordered_extent(inode, offset);
662 BUG_ON(!ordered); /* Logic error */
665 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
666 bvec.bv_len + fs_info->sectorsize
667 - 1);
669 for (i = 0; i < nr_sectors; i++) {
670 if (offset >= ordered->file_offset + ordered->num_bytes ||
671 offset < ordered->file_offset) {
672 unsigned long bytes_left;
674 sums->len = this_sum_bytes;
675 this_sum_bytes = 0;
676 btrfs_add_ordered_sum(ordered, sums);
677 btrfs_put_ordered_extent(ordered);
679 bytes_left = bio->bi_iter.bi_size - total_bytes;
681 nofs_flag = memalloc_nofs_save();
682 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
683 bytes_left), GFP_KERNEL);
684 memalloc_nofs_restore(nofs_flag);
685 BUG_ON(!sums); /* -ENOMEM */
686 sums->len = bytes_left;
687 ordered = btrfs_lookup_ordered_extent(inode,
688 offset);
689 ASSERT(ordered); /* Logic error */
690 sums->bytenr = (bio->bi_iter.bi_sector << 9)
691 + total_bytes;
692 index = 0;
695 data = kmap_atomic(bvec.bv_page);
696 crypto_shash_digest(shash, data + bvec.bv_offset
697 + (i * fs_info->sectorsize),
698 fs_info->sectorsize,
699 sums->sums + index);
700 kunmap_atomic(data);
701 index += fs_info->csum_size;
702 offset += fs_info->sectorsize;
703 this_sum_bytes += fs_info->sectorsize;
704 total_bytes += fs_info->sectorsize;
708 this_sum_bytes = 0;
709 btrfs_add_ordered_sum(ordered, sums);
710 btrfs_put_ordered_extent(ordered);
711 return 0;
715 * helper function for csum removal, this expects the
716 * key to describe the csum pointed to by the path, and it expects
717 * the csum to overlap the range [bytenr, len]
719 * The csum should not be entirely contained in the range and the
720 * range should not be entirely contained in the csum.
722 * This calls btrfs_truncate_item with the correct args based on the
723 * overlap, and fixes up the key as required.
725 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
726 struct btrfs_path *path,
727 struct btrfs_key *key,
728 u64 bytenr, u64 len)
730 struct extent_buffer *leaf;
731 const u32 csum_size = fs_info->csum_size;
732 u64 csum_end;
733 u64 end_byte = bytenr + len;
734 u32 blocksize_bits = fs_info->sectorsize_bits;
736 leaf = path->nodes[0];
737 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
738 csum_end <<= blocksize_bits;
739 csum_end += key->offset;
741 if (key->offset < bytenr && csum_end <= end_byte) {
743 * [ bytenr - len ]
744 * [ ]
745 * [csum ]
746 * A simple truncate off the end of the item
748 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
749 new_size *= csum_size;
750 btrfs_truncate_item(path, new_size, 1);
751 } else if (key->offset >= bytenr && csum_end > end_byte &&
752 end_byte > key->offset) {
754 * [ bytenr - len ]
755 * [ ]
756 * [csum ]
757 * we need to truncate from the beginning of the csum
759 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
760 new_size *= csum_size;
762 btrfs_truncate_item(path, new_size, 0);
764 key->offset = end_byte;
765 btrfs_set_item_key_safe(fs_info, path, key);
766 } else {
767 BUG();
772 * deletes the csum items from the csum tree for a given
773 * range of bytes.
775 int btrfs_del_csums(struct btrfs_trans_handle *trans,
776 struct btrfs_root *root, u64 bytenr, u64 len)
778 struct btrfs_fs_info *fs_info = trans->fs_info;
779 struct btrfs_path *path;
780 struct btrfs_key key;
781 u64 end_byte = bytenr + len;
782 u64 csum_end;
783 struct extent_buffer *leaf;
784 int ret;
785 const u32 csum_size = fs_info->csum_size;
786 u32 blocksize_bits = fs_info->sectorsize_bits;
788 ASSERT(root == fs_info->csum_root ||
789 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
791 path = btrfs_alloc_path();
792 if (!path)
793 return -ENOMEM;
795 while (1) {
796 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
797 key.offset = end_byte - 1;
798 key.type = BTRFS_EXTENT_CSUM_KEY;
800 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
801 if (ret > 0) {
802 if (path->slots[0] == 0)
803 break;
804 path->slots[0]--;
805 } else if (ret < 0) {
806 break;
809 leaf = path->nodes[0];
810 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
812 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
813 key.type != BTRFS_EXTENT_CSUM_KEY) {
814 break;
817 if (key.offset >= end_byte)
818 break;
820 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
821 csum_end <<= blocksize_bits;
822 csum_end += key.offset;
824 /* this csum ends before we start, we're done */
825 if (csum_end <= bytenr)
826 break;
828 /* delete the entire item, it is inside our range */
829 if (key.offset >= bytenr && csum_end <= end_byte) {
830 int del_nr = 1;
833 * Check how many csum items preceding this one in this
834 * leaf correspond to our range and then delete them all
835 * at once.
837 if (key.offset > bytenr && path->slots[0] > 0) {
838 int slot = path->slots[0] - 1;
840 while (slot >= 0) {
841 struct btrfs_key pk;
843 btrfs_item_key_to_cpu(leaf, &pk, slot);
844 if (pk.offset < bytenr ||
845 pk.type != BTRFS_EXTENT_CSUM_KEY ||
846 pk.objectid !=
847 BTRFS_EXTENT_CSUM_OBJECTID)
848 break;
849 path->slots[0] = slot;
850 del_nr++;
851 key.offset = pk.offset;
852 slot--;
855 ret = btrfs_del_items(trans, root, path,
856 path->slots[0], del_nr);
857 if (ret)
858 goto out;
859 if (key.offset == bytenr)
860 break;
861 } else if (key.offset < bytenr && csum_end > end_byte) {
862 unsigned long offset;
863 unsigned long shift_len;
864 unsigned long item_offset;
866 * [ bytenr - len ]
867 * [csum ]
869 * Our bytes are in the middle of the csum,
870 * we need to split this item and insert a new one.
872 * But we can't drop the path because the
873 * csum could change, get removed, extended etc.
875 * The trick here is the max size of a csum item leaves
876 * enough room in the tree block for a single
877 * item header. So, we split the item in place,
878 * adding a new header pointing to the existing
879 * bytes. Then we loop around again and we have
880 * a nicely formed csum item that we can neatly
881 * truncate.
883 offset = (bytenr - key.offset) >> blocksize_bits;
884 offset *= csum_size;
886 shift_len = (len >> blocksize_bits) * csum_size;
888 item_offset = btrfs_item_ptr_offset(leaf,
889 path->slots[0]);
891 memzero_extent_buffer(leaf, item_offset + offset,
892 shift_len);
893 key.offset = bytenr;
896 * btrfs_split_item returns -EAGAIN when the
897 * item changed size or key
899 ret = btrfs_split_item(trans, root, path, &key, offset);
900 if (ret && ret != -EAGAIN) {
901 btrfs_abort_transaction(trans, ret);
902 goto out;
905 key.offset = end_byte - 1;
906 } else {
907 truncate_one_csum(fs_info, path, &key, bytenr, len);
908 if (key.offset < bytenr)
909 break;
911 btrfs_release_path(path);
913 ret = 0;
914 out:
915 btrfs_free_path(path);
916 return ret;
919 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root,
921 struct btrfs_ordered_sum *sums)
923 struct btrfs_fs_info *fs_info = root->fs_info;
924 struct btrfs_key file_key;
925 struct btrfs_key found_key;
926 struct btrfs_path *path;
927 struct btrfs_csum_item *item;
928 struct btrfs_csum_item *item_end;
929 struct extent_buffer *leaf = NULL;
930 u64 next_offset;
931 u64 total_bytes = 0;
932 u64 csum_offset;
933 u64 bytenr;
934 u32 nritems;
935 u32 ins_size;
936 int index = 0;
937 int found_next;
938 int ret;
939 const u32 csum_size = fs_info->csum_size;
941 path = btrfs_alloc_path();
942 if (!path)
943 return -ENOMEM;
944 again:
945 next_offset = (u64)-1;
946 found_next = 0;
947 bytenr = sums->bytenr + total_bytes;
948 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
949 file_key.offset = bytenr;
950 file_key.type = BTRFS_EXTENT_CSUM_KEY;
952 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
953 if (!IS_ERR(item)) {
954 ret = 0;
955 leaf = path->nodes[0];
956 item_end = btrfs_item_ptr(leaf, path->slots[0],
957 struct btrfs_csum_item);
958 item_end = (struct btrfs_csum_item *)((char *)item_end +
959 btrfs_item_size_nr(leaf, path->slots[0]));
960 goto found;
962 ret = PTR_ERR(item);
963 if (ret != -EFBIG && ret != -ENOENT)
964 goto out;
966 if (ret == -EFBIG) {
967 u32 item_size;
968 /* we found one, but it isn't big enough yet */
969 leaf = path->nodes[0];
970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
971 if ((item_size / csum_size) >=
972 MAX_CSUM_ITEMS(fs_info, csum_size)) {
973 /* already at max size, make a new one */
974 goto insert;
976 } else {
977 int slot = path->slots[0] + 1;
978 /* we didn't find a csum item, insert one */
979 nritems = btrfs_header_nritems(path->nodes[0]);
980 if (!nritems || (path->slots[0] >= nritems - 1)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0) {
983 goto out;
984 } else if (ret > 0) {
985 found_next = 1;
986 goto insert;
988 slot = path->slots[0];
990 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
991 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
992 found_key.type != BTRFS_EXTENT_CSUM_KEY) {
993 found_next = 1;
994 goto insert;
996 next_offset = found_key.offset;
997 found_next = 1;
998 goto insert;
1002 * At this point, we know the tree has a checksum item that ends at an
1003 * offset matching the start of the checksum range we want to insert.
1004 * We try to extend that item as much as possible and then add as many
1005 * checksums to it as they fit.
1007 * First check if the leaf has enough free space for at least one
1008 * checksum. If it has go directly to the item extension code, otherwise
1009 * release the path and do a search for insertion before the extension.
1011 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1013 csum_offset = (bytenr - found_key.offset) >>
1014 fs_info->sectorsize_bits;
1015 goto extend_csum;
1018 btrfs_release_path(path);
1019 path->search_for_extension = 1;
1020 ret = btrfs_search_slot(trans, root, &file_key, path,
1021 csum_size, 1);
1022 path->search_for_extension = 0;
1023 if (ret < 0)
1024 goto out;
1026 if (ret > 0) {
1027 if (path->slots[0] == 0)
1028 goto insert;
1029 path->slots[0]--;
1032 leaf = path->nodes[0];
1033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1034 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1036 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1037 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1038 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1039 goto insert;
1042 extend_csum:
1043 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1044 csum_size) {
1045 int extend_nr;
1046 u64 tmp;
1047 u32 diff;
1049 tmp = sums->len - total_bytes;
1050 tmp >>= fs_info->sectorsize_bits;
1051 WARN_ON(tmp < 1);
1053 extend_nr = max_t(int, 1, (int)tmp);
1054 diff = (csum_offset + extend_nr) * csum_size;
1055 diff = min(diff,
1056 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1058 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1059 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1060 diff /= csum_size;
1061 diff *= csum_size;
1063 btrfs_extend_item(path, diff);
1064 ret = 0;
1065 goto csum;
1068 insert:
1069 btrfs_release_path(path);
1070 csum_offset = 0;
1071 if (found_next) {
1072 u64 tmp;
1074 tmp = sums->len - total_bytes;
1075 tmp >>= fs_info->sectorsize_bits;
1076 tmp = min(tmp, (next_offset - file_key.offset) >>
1077 fs_info->sectorsize_bits);
1079 tmp = max_t(u64, 1, tmp);
1080 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1081 ins_size = csum_size * tmp;
1082 } else {
1083 ins_size = csum_size;
1085 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1086 ins_size);
1087 if (ret < 0)
1088 goto out;
1089 if (WARN_ON(ret != 0))
1090 goto out;
1091 leaf = path->nodes[0];
1092 csum:
1093 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1094 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1095 btrfs_item_size_nr(leaf, path->slots[0]));
1096 item = (struct btrfs_csum_item *)((unsigned char *)item +
1097 csum_offset * csum_size);
1098 found:
1099 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1100 ins_size *= csum_size;
1101 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1102 ins_size);
1103 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1104 ins_size);
1106 index += ins_size;
1107 ins_size /= csum_size;
1108 total_bytes += ins_size * fs_info->sectorsize;
1110 btrfs_mark_buffer_dirty(path->nodes[0]);
1111 if (total_bytes < sums->len) {
1112 btrfs_release_path(path);
1113 cond_resched();
1114 goto again;
1116 out:
1117 btrfs_free_path(path);
1118 return ret;
1121 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1122 const struct btrfs_path *path,
1123 struct btrfs_file_extent_item *fi,
1124 const bool new_inline,
1125 struct extent_map *em)
1127 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1128 struct btrfs_root *root = inode->root;
1129 struct extent_buffer *leaf = path->nodes[0];
1130 const int slot = path->slots[0];
1131 struct btrfs_key key;
1132 u64 extent_start, extent_end;
1133 u64 bytenr;
1134 u8 type = btrfs_file_extent_type(leaf, fi);
1135 int compress_type = btrfs_file_extent_compression(leaf, fi);
1137 btrfs_item_key_to_cpu(leaf, &key, slot);
1138 extent_start = key.offset;
1139 extent_end = btrfs_file_extent_end(path);
1140 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1141 if (type == BTRFS_FILE_EXTENT_REG ||
1142 type == BTRFS_FILE_EXTENT_PREALLOC) {
1143 em->start = extent_start;
1144 em->len = extent_end - extent_start;
1145 em->orig_start = extent_start -
1146 btrfs_file_extent_offset(leaf, fi);
1147 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1148 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1149 if (bytenr == 0) {
1150 em->block_start = EXTENT_MAP_HOLE;
1151 return;
1153 if (compress_type != BTRFS_COMPRESS_NONE) {
1154 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1155 em->compress_type = compress_type;
1156 em->block_start = bytenr;
1157 em->block_len = em->orig_block_len;
1158 } else {
1159 bytenr += btrfs_file_extent_offset(leaf, fi);
1160 em->block_start = bytenr;
1161 em->block_len = em->len;
1162 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1163 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1165 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1166 em->block_start = EXTENT_MAP_INLINE;
1167 em->start = extent_start;
1168 em->len = extent_end - extent_start;
1170 * Initialize orig_start and block_len with the same values
1171 * as in inode.c:btrfs_get_extent().
1173 em->orig_start = EXTENT_MAP_HOLE;
1174 em->block_len = (u64)-1;
1175 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1176 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1177 em->compress_type = compress_type;
1179 } else {
1180 btrfs_err(fs_info,
1181 "unknown file extent item type %d, inode %llu, offset %llu, "
1182 "root %llu", type, btrfs_ino(inode), extent_start,
1183 root->root_key.objectid);
1188 * Returns the end offset (non inclusive) of the file extent item the given path
1189 * points to. If it points to an inline extent, the returned offset is rounded
1190 * up to the sector size.
1192 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1194 const struct extent_buffer *leaf = path->nodes[0];
1195 const int slot = path->slots[0];
1196 struct btrfs_file_extent_item *fi;
1197 struct btrfs_key key;
1198 u64 end;
1200 btrfs_item_key_to_cpu(leaf, &key, slot);
1201 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1202 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1204 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1205 end = btrfs_file_extent_ram_bytes(leaf, fi);
1206 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1207 } else {
1208 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1211 return end;