i40e: don't enable PTP support on more than one PF per port
[linux/fpc-iii.git] / lib / bitmap.c
blobb499ab6ada29a0d4db2e4692083c2d21441a42ee
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
18 * bitmaps provide an array of bits, implemented using an an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures. See the big-endian headers
39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40 * for the best explanations of this ordering.
43 int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
45 unsigned int k, lim = bits/BITS_PER_LONG;
46 for (k = 0; k < lim; ++k)
47 if (bitmap[k])
48 return 0;
50 if (bits % BITS_PER_LONG)
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 return 0;
54 return 1;
56 EXPORT_SYMBOL(__bitmap_empty);
58 int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
60 unsigned int k, lim = bits/BITS_PER_LONG;
61 for (k = 0; k < lim; ++k)
62 if (~bitmap[k])
63 return 0;
65 if (bits % BITS_PER_LONG)
66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 return 0;
69 return 1;
71 EXPORT_SYMBOL(__bitmap_full);
73 int __bitmap_equal(const unsigned long *bitmap1,
74 const unsigned long *bitmap2, unsigned int bits)
76 unsigned int k, lim = bits/BITS_PER_LONG;
77 for (k = 0; k < lim; ++k)
78 if (bitmap1[k] != bitmap2[k])
79 return 0;
81 if (bits % BITS_PER_LONG)
82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 return 0;
85 return 1;
87 EXPORT_SYMBOL(__bitmap_equal);
89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
91 unsigned int k, lim = bits/BITS_PER_LONG;
92 for (k = 0; k < lim; ++k)
93 dst[k] = ~src[k];
95 if (bits % BITS_PER_LONG)
96 dst[k] = ~src[k];
98 EXPORT_SYMBOL(__bitmap_complement);
101 * __bitmap_shift_right - logical right shift of the bits in a bitmap
102 * @dst : destination bitmap
103 * @src : source bitmap
104 * @shift : shift by this many bits
105 * @bits : bitmap size, in bits
107 * Shifting right (dividing) means moving bits in the MS -> LS bit
108 * direction. Zeros are fed into the vacated MS positions and the
109 * LS bits shifted off the bottom are lost.
111 void __bitmap_shift_right(unsigned long *dst,
112 const unsigned long *src, int shift, int bits)
114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 unsigned long mask = (1UL << left) - 1;
117 for (k = 0; off + k < lim; ++k) {
118 unsigned long upper, lower;
121 * If shift is not word aligned, take lower rem bits of
122 * word above and make them the top rem bits of result.
124 if (!rem || off + k + 1 >= lim)
125 upper = 0;
126 else {
127 upper = src[off + k + 1];
128 if (off + k + 1 == lim - 1 && left)
129 upper &= mask;
131 lower = src[off + k];
132 if (left && off + k == lim - 1)
133 lower &= mask;
134 dst[k] = lower >> rem;
135 if (rem)
136 dst[k] |= upper << (BITS_PER_LONG - rem);
137 if (left && k == lim - 1)
138 dst[k] &= mask;
140 if (off)
141 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
143 EXPORT_SYMBOL(__bitmap_shift_right);
147 * __bitmap_shift_left - logical left shift of the bits in a bitmap
148 * @dst : destination bitmap
149 * @src : source bitmap
150 * @shift : shift by this many bits
151 * @bits : bitmap size, in bits
153 * Shifting left (multiplying) means moving bits in the LS -> MS
154 * direction. Zeros are fed into the vacated LS bit positions
155 * and those MS bits shifted off the top are lost.
158 void __bitmap_shift_left(unsigned long *dst,
159 const unsigned long *src, int shift, int bits)
161 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 for (k = lim - off - 1; k >= 0; --k) {
164 unsigned long upper, lower;
167 * If shift is not word aligned, take upper rem bits of
168 * word below and make them the bottom rem bits of result.
170 if (rem && k > 0)
171 lower = src[k - 1];
172 else
173 lower = 0;
174 upper = src[k];
175 if (left && k == lim - 1)
176 upper &= (1UL << left) - 1;
177 dst[k + off] = upper << rem;
178 if (rem)
179 dst[k + off] |= lower >> (BITS_PER_LONG - rem);
180 if (left && k + off == lim - 1)
181 dst[k + off] &= (1UL << left) - 1;
183 if (off)
184 memset(dst, 0, off*sizeof(unsigned long));
186 EXPORT_SYMBOL(__bitmap_shift_left);
188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
189 const unsigned long *bitmap2, unsigned int bits)
191 unsigned int k;
192 unsigned int lim = bits/BITS_PER_LONG;
193 unsigned long result = 0;
195 for (k = 0; k < lim; k++)
196 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 if (bits % BITS_PER_LONG)
198 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
199 BITMAP_LAST_WORD_MASK(bits));
200 return result != 0;
202 EXPORT_SYMBOL(__bitmap_and);
204 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
205 const unsigned long *bitmap2, unsigned int bits)
207 unsigned int k;
208 unsigned int nr = BITS_TO_LONGS(bits);
210 for (k = 0; k < nr; k++)
211 dst[k] = bitmap1[k] | bitmap2[k];
213 EXPORT_SYMBOL(__bitmap_or);
215 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
216 const unsigned long *bitmap2, unsigned int bits)
218 unsigned int k;
219 unsigned int nr = BITS_TO_LONGS(bits);
221 for (k = 0; k < nr; k++)
222 dst[k] = bitmap1[k] ^ bitmap2[k];
224 EXPORT_SYMBOL(__bitmap_xor);
226 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
227 const unsigned long *bitmap2, unsigned int bits)
229 unsigned int k;
230 unsigned int lim = bits/BITS_PER_LONG;
231 unsigned long result = 0;
233 for (k = 0; k < lim; k++)
234 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
235 if (bits % BITS_PER_LONG)
236 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
237 BITMAP_LAST_WORD_MASK(bits));
238 return result != 0;
240 EXPORT_SYMBOL(__bitmap_andnot);
242 int __bitmap_intersects(const unsigned long *bitmap1,
243 const unsigned long *bitmap2, unsigned int bits)
245 unsigned int k, lim = bits/BITS_PER_LONG;
246 for (k = 0; k < lim; ++k)
247 if (bitmap1[k] & bitmap2[k])
248 return 1;
250 if (bits % BITS_PER_LONG)
251 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
252 return 1;
253 return 0;
255 EXPORT_SYMBOL(__bitmap_intersects);
257 int __bitmap_subset(const unsigned long *bitmap1,
258 const unsigned long *bitmap2, unsigned int bits)
260 unsigned int k, lim = bits/BITS_PER_LONG;
261 for (k = 0; k < lim; ++k)
262 if (bitmap1[k] & ~bitmap2[k])
263 return 0;
265 if (bits % BITS_PER_LONG)
266 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
267 return 0;
268 return 1;
270 EXPORT_SYMBOL(__bitmap_subset);
272 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
274 unsigned int k, lim = bits/BITS_PER_LONG;
275 int w = 0;
277 for (k = 0; k < lim; k++)
278 w += hweight_long(bitmap[k]);
280 if (bits % BITS_PER_LONG)
281 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
283 return w;
285 EXPORT_SYMBOL(__bitmap_weight);
287 void bitmap_set(unsigned long *map, unsigned int start, int len)
289 unsigned long *p = map + BIT_WORD(start);
290 const unsigned int size = start + len;
291 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
292 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
294 while (len - bits_to_set >= 0) {
295 *p |= mask_to_set;
296 len -= bits_to_set;
297 bits_to_set = BITS_PER_LONG;
298 mask_to_set = ~0UL;
299 p++;
301 if (len) {
302 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
303 *p |= mask_to_set;
306 EXPORT_SYMBOL(bitmap_set);
308 void bitmap_clear(unsigned long *map, unsigned int start, int len)
310 unsigned long *p = map + BIT_WORD(start);
311 const unsigned int size = start + len;
312 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
313 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
315 while (len - bits_to_clear >= 0) {
316 *p &= ~mask_to_clear;
317 len -= bits_to_clear;
318 bits_to_clear = BITS_PER_LONG;
319 mask_to_clear = ~0UL;
320 p++;
322 if (len) {
323 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 *p &= ~mask_to_clear;
327 EXPORT_SYMBOL(bitmap_clear);
330 * bitmap_find_next_zero_area - find a contiguous aligned zero area
331 * @map: The address to base the search on
332 * @size: The bitmap size in bits
333 * @start: The bitnumber to start searching at
334 * @nr: The number of zeroed bits we're looking for
335 * @align_mask: Alignment mask for zero area
337 * The @align_mask should be one less than a power of 2; the effect is that
338 * the bit offset of all zero areas this function finds is multiples of that
339 * power of 2. A @align_mask of 0 means no alignment is required.
341 unsigned long bitmap_find_next_zero_area(unsigned long *map,
342 unsigned long size,
343 unsigned long start,
344 unsigned int nr,
345 unsigned long align_mask)
347 unsigned long index, end, i;
348 again:
349 index = find_next_zero_bit(map, size, start);
351 /* Align allocation */
352 index = __ALIGN_MASK(index, align_mask);
354 end = index + nr;
355 if (end > size)
356 return end;
357 i = find_next_bit(map, end, index);
358 if (i < end) {
359 start = i + 1;
360 goto again;
362 return index;
364 EXPORT_SYMBOL(bitmap_find_next_zero_area);
367 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
368 * second version by Paul Jackson, third by Joe Korty.
371 #define CHUNKSZ 32
372 #define nbits_to_hold_value(val) fls(val)
373 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
376 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
377 * @buf: byte buffer into which string is placed
378 * @buflen: reserved size of @buf, in bytes
379 * @maskp: pointer to bitmap to convert
380 * @nmaskbits: size of bitmap, in bits
382 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
383 * comma-separated sets of eight digits per set. Returns the number of
384 * characters which were written to *buf, excluding the trailing \0.
386 int bitmap_scnprintf(char *buf, unsigned int buflen,
387 const unsigned long *maskp, int nmaskbits)
389 int i, word, bit, len = 0;
390 unsigned long val;
391 const char *sep = "";
392 int chunksz;
393 u32 chunkmask;
395 chunksz = nmaskbits & (CHUNKSZ - 1);
396 if (chunksz == 0)
397 chunksz = CHUNKSZ;
399 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
400 for (; i >= 0; i -= CHUNKSZ) {
401 chunkmask = ((1ULL << chunksz) - 1);
402 word = i / BITS_PER_LONG;
403 bit = i % BITS_PER_LONG;
404 val = (maskp[word] >> bit) & chunkmask;
405 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
406 (chunksz+3)/4, val);
407 chunksz = CHUNKSZ;
408 sep = ",";
410 return len;
412 EXPORT_SYMBOL(bitmap_scnprintf);
415 * __bitmap_parse - convert an ASCII hex string into a bitmap.
416 * @buf: pointer to buffer containing string.
417 * @buflen: buffer size in bytes. If string is smaller than this
418 * then it must be terminated with a \0.
419 * @is_user: location of buffer, 0 indicates kernel space
420 * @maskp: pointer to bitmap array that will contain result.
421 * @nmaskbits: size of bitmap, in bits.
423 * Commas group hex digits into chunks. Each chunk defines exactly 32
424 * bits of the resultant bitmask. No chunk may specify a value larger
425 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
426 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
427 * characters and for grouping errors such as "1,,5", ",44", "," and "".
428 * Leading and trailing whitespace accepted, but not embedded whitespace.
430 int __bitmap_parse(const char *buf, unsigned int buflen,
431 int is_user, unsigned long *maskp,
432 int nmaskbits)
434 int c, old_c, totaldigits, ndigits, nchunks, nbits;
435 u32 chunk;
436 const char __user __force *ubuf = (const char __user __force *)buf;
438 bitmap_zero(maskp, nmaskbits);
440 nchunks = nbits = totaldigits = c = 0;
441 do {
442 chunk = ndigits = 0;
444 /* Get the next chunk of the bitmap */
445 while (buflen) {
446 old_c = c;
447 if (is_user) {
448 if (__get_user(c, ubuf++))
449 return -EFAULT;
451 else
452 c = *buf++;
453 buflen--;
454 if (isspace(c))
455 continue;
458 * If the last character was a space and the current
459 * character isn't '\0', we've got embedded whitespace.
460 * This is a no-no, so throw an error.
462 if (totaldigits && c && isspace(old_c))
463 return -EINVAL;
465 /* A '\0' or a ',' signal the end of the chunk */
466 if (c == '\0' || c == ',')
467 break;
469 if (!isxdigit(c))
470 return -EINVAL;
473 * Make sure there are at least 4 free bits in 'chunk'.
474 * If not, this hexdigit will overflow 'chunk', so
475 * throw an error.
477 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
478 return -EOVERFLOW;
480 chunk = (chunk << 4) | hex_to_bin(c);
481 ndigits++; totaldigits++;
483 if (ndigits == 0)
484 return -EINVAL;
485 if (nchunks == 0 && chunk == 0)
486 continue;
488 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
489 *maskp |= chunk;
490 nchunks++;
491 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
492 if (nbits > nmaskbits)
493 return -EOVERFLOW;
494 } while (buflen && c == ',');
496 return 0;
498 EXPORT_SYMBOL(__bitmap_parse);
501 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
503 * @ubuf: pointer to user buffer containing string.
504 * @ulen: buffer size in bytes. If string is smaller than this
505 * then it must be terminated with a \0.
506 * @maskp: pointer to bitmap array that will contain result.
507 * @nmaskbits: size of bitmap, in bits.
509 * Wrapper for __bitmap_parse(), providing it with user buffer.
511 * We cannot have this as an inline function in bitmap.h because it needs
512 * linux/uaccess.h to get the access_ok() declaration and this causes
513 * cyclic dependencies.
515 int bitmap_parse_user(const char __user *ubuf,
516 unsigned int ulen, unsigned long *maskp,
517 int nmaskbits)
519 if (!access_ok(VERIFY_READ, ubuf, ulen))
520 return -EFAULT;
521 return __bitmap_parse((const char __force *)ubuf,
522 ulen, 1, maskp, nmaskbits);
525 EXPORT_SYMBOL(bitmap_parse_user);
528 * bscnl_emit(buf, buflen, rbot, rtop, bp)
530 * Helper routine for bitmap_scnlistprintf(). Write decimal number
531 * or range to buf, suppressing output past buf+buflen, with optional
532 * comma-prefix. Return len of what was written to *buf, excluding the
533 * trailing \0.
535 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
537 if (len > 0)
538 len += scnprintf(buf + len, buflen - len, ",");
539 if (rbot == rtop)
540 len += scnprintf(buf + len, buflen - len, "%d", rbot);
541 else
542 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
543 return len;
547 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
548 * @buf: byte buffer into which string is placed
549 * @buflen: reserved size of @buf, in bytes
550 * @maskp: pointer to bitmap to convert
551 * @nmaskbits: size of bitmap, in bits
553 * Output format is a comma-separated list of decimal numbers and
554 * ranges. Consecutively set bits are shown as two hyphen-separated
555 * decimal numbers, the smallest and largest bit numbers set in
556 * the range. Output format is compatible with the format
557 * accepted as input by bitmap_parselist().
559 * The return value is the number of characters which were written to *buf
560 * excluding the trailing '\0', as per ISO C99's scnprintf.
562 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
563 const unsigned long *maskp, int nmaskbits)
565 int len = 0;
566 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
567 int cur, rbot, rtop;
569 if (buflen == 0)
570 return 0;
571 buf[0] = 0;
573 rbot = cur = find_first_bit(maskp, nmaskbits);
574 while (cur < nmaskbits) {
575 rtop = cur;
576 cur = find_next_bit(maskp, nmaskbits, cur+1);
577 if (cur >= nmaskbits || cur > rtop + 1) {
578 len = bscnl_emit(buf, buflen, rbot, rtop, len);
579 rbot = cur;
582 return len;
584 EXPORT_SYMBOL(bitmap_scnlistprintf);
587 * __bitmap_parselist - convert list format ASCII string to bitmap
588 * @buf: read nul-terminated user string from this buffer
589 * @buflen: buffer size in bytes. If string is smaller than this
590 * then it must be terminated with a \0.
591 * @is_user: location of buffer, 0 indicates kernel space
592 * @maskp: write resulting mask here
593 * @nmaskbits: number of bits in mask to be written
595 * Input format is a comma-separated list of decimal numbers and
596 * ranges. Consecutively set bits are shown as two hyphen-separated
597 * decimal numbers, the smallest and largest bit numbers set in
598 * the range.
600 * Returns 0 on success, -errno on invalid input strings.
601 * Error values:
602 * %-EINVAL: second number in range smaller than first
603 * %-EINVAL: invalid character in string
604 * %-ERANGE: bit number specified too large for mask
606 static int __bitmap_parselist(const char *buf, unsigned int buflen,
607 int is_user, unsigned long *maskp,
608 int nmaskbits)
610 unsigned a, b;
611 int c, old_c, totaldigits;
612 const char __user __force *ubuf = (const char __user __force *)buf;
613 int exp_digit, in_range;
615 totaldigits = c = 0;
616 bitmap_zero(maskp, nmaskbits);
617 do {
618 exp_digit = 1;
619 in_range = 0;
620 a = b = 0;
622 /* Get the next cpu# or a range of cpu#'s */
623 while (buflen) {
624 old_c = c;
625 if (is_user) {
626 if (__get_user(c, ubuf++))
627 return -EFAULT;
628 } else
629 c = *buf++;
630 buflen--;
631 if (isspace(c))
632 continue;
635 * If the last character was a space and the current
636 * character isn't '\0', we've got embedded whitespace.
637 * This is a no-no, so throw an error.
639 if (totaldigits && c && isspace(old_c))
640 return -EINVAL;
642 /* A '\0' or a ',' signal the end of a cpu# or range */
643 if (c == '\0' || c == ',')
644 break;
646 if (c == '-') {
647 if (exp_digit || in_range)
648 return -EINVAL;
649 b = 0;
650 in_range = 1;
651 exp_digit = 1;
652 continue;
655 if (!isdigit(c))
656 return -EINVAL;
658 b = b * 10 + (c - '0');
659 if (!in_range)
660 a = b;
661 exp_digit = 0;
662 totaldigits++;
664 if (!(a <= b))
665 return -EINVAL;
666 if (b >= nmaskbits)
667 return -ERANGE;
668 while (a <= b) {
669 set_bit(a, maskp);
670 a++;
672 } while (buflen && c == ',');
673 return 0;
676 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
678 char *nl = strchrnul(bp, '\n');
679 int len = nl - bp;
681 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
683 EXPORT_SYMBOL(bitmap_parselist);
687 * bitmap_parselist_user()
689 * @ubuf: pointer to user buffer containing string.
690 * @ulen: buffer size in bytes. If string is smaller than this
691 * then it must be terminated with a \0.
692 * @maskp: pointer to bitmap array that will contain result.
693 * @nmaskbits: size of bitmap, in bits.
695 * Wrapper for bitmap_parselist(), providing it with user buffer.
697 * We cannot have this as an inline function in bitmap.h because it needs
698 * linux/uaccess.h to get the access_ok() declaration and this causes
699 * cyclic dependencies.
701 int bitmap_parselist_user(const char __user *ubuf,
702 unsigned int ulen, unsigned long *maskp,
703 int nmaskbits)
705 if (!access_ok(VERIFY_READ, ubuf, ulen))
706 return -EFAULT;
707 return __bitmap_parselist((const char __force *)ubuf,
708 ulen, 1, maskp, nmaskbits);
710 EXPORT_SYMBOL(bitmap_parselist_user);
714 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
715 * @buf: pointer to a bitmap
716 * @pos: a bit position in @buf (0 <= @pos < @bits)
717 * @bits: number of valid bit positions in @buf
719 * Map the bit at position @pos in @buf (of length @bits) to the
720 * ordinal of which set bit it is. If it is not set or if @pos
721 * is not a valid bit position, map to -1.
723 * If for example, just bits 4 through 7 are set in @buf, then @pos
724 * values 4 through 7 will get mapped to 0 through 3, respectively,
725 * and other @pos values will get mapped to -1. When @pos value 7
726 * gets mapped to (returns) @ord value 3 in this example, that means
727 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
729 * The bit positions 0 through @bits are valid positions in @buf.
731 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
733 int i, ord;
735 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
736 return -1;
738 i = find_first_bit(buf, bits);
739 ord = 0;
740 while (i < pos) {
741 i = find_next_bit(buf, bits, i + 1);
742 ord++;
744 BUG_ON(i != pos);
746 return ord;
750 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
751 * @buf: pointer to bitmap
752 * @ord: ordinal bit position (n-th set bit, n >= 0)
753 * @bits: number of valid bit positions in @buf
755 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
756 * Value of @ord should be in range 0 <= @ord < weight(buf), else
757 * results are undefined.
759 * If for example, just bits 4 through 7 are set in @buf, then @ord
760 * values 0 through 3 will get mapped to 4 through 7, respectively,
761 * and all other @ord values return undefined values. When @ord value 3
762 * gets mapped to (returns) @pos value 7 in this example, that means
763 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
765 * The bit positions 0 through @bits are valid positions in @buf.
767 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
769 int pos = 0;
771 if (ord >= 0 && ord < bits) {
772 int i;
774 for (i = find_first_bit(buf, bits);
775 i < bits && ord > 0;
776 i = find_next_bit(buf, bits, i + 1))
777 ord--;
778 if (i < bits && ord == 0)
779 pos = i;
782 return pos;
786 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
787 * @dst: remapped result
788 * @src: subset to be remapped
789 * @old: defines domain of map
790 * @new: defines range of map
791 * @bits: number of bits in each of these bitmaps
793 * Let @old and @new define a mapping of bit positions, such that
794 * whatever position is held by the n-th set bit in @old is mapped
795 * to the n-th set bit in @new. In the more general case, allowing
796 * for the possibility that the weight 'w' of @new is less than the
797 * weight of @old, map the position of the n-th set bit in @old to
798 * the position of the m-th set bit in @new, where m == n % w.
800 * If either of the @old and @new bitmaps are empty, or if @src and
801 * @dst point to the same location, then this routine copies @src
802 * to @dst.
804 * The positions of unset bits in @old are mapped to themselves
805 * (the identify map).
807 * Apply the above specified mapping to @src, placing the result in
808 * @dst, clearing any bits previously set in @dst.
810 * For example, lets say that @old has bits 4 through 7 set, and
811 * @new has bits 12 through 15 set. This defines the mapping of bit
812 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
813 * bit positions unchanged. So if say @src comes into this routine
814 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
815 * 13 and 15 set.
817 void bitmap_remap(unsigned long *dst, const unsigned long *src,
818 const unsigned long *old, const unsigned long *new,
819 int bits)
821 int oldbit, w;
823 if (dst == src) /* following doesn't handle inplace remaps */
824 return;
825 bitmap_zero(dst, bits);
827 w = bitmap_weight(new, bits);
828 for_each_set_bit(oldbit, src, bits) {
829 int n = bitmap_pos_to_ord(old, oldbit, bits);
831 if (n < 0 || w == 0)
832 set_bit(oldbit, dst); /* identity map */
833 else
834 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
837 EXPORT_SYMBOL(bitmap_remap);
840 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
841 * @oldbit: bit position to be mapped
842 * @old: defines domain of map
843 * @new: defines range of map
844 * @bits: number of bits in each of these bitmaps
846 * Let @old and @new define a mapping of bit positions, such that
847 * whatever position is held by the n-th set bit in @old is mapped
848 * to the n-th set bit in @new. In the more general case, allowing
849 * for the possibility that the weight 'w' of @new is less than the
850 * weight of @old, map the position of the n-th set bit in @old to
851 * the position of the m-th set bit in @new, where m == n % w.
853 * The positions of unset bits in @old are mapped to themselves
854 * (the identify map).
856 * Apply the above specified mapping to bit position @oldbit, returning
857 * the new bit position.
859 * For example, lets say that @old has bits 4 through 7 set, and
860 * @new has bits 12 through 15 set. This defines the mapping of bit
861 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
862 * bit positions unchanged. So if say @oldbit is 5, then this routine
863 * returns 13.
865 int bitmap_bitremap(int oldbit, const unsigned long *old,
866 const unsigned long *new, int bits)
868 int w = bitmap_weight(new, bits);
869 int n = bitmap_pos_to_ord(old, oldbit, bits);
870 if (n < 0 || w == 0)
871 return oldbit;
872 else
873 return bitmap_ord_to_pos(new, n % w, bits);
875 EXPORT_SYMBOL(bitmap_bitremap);
878 * bitmap_onto - translate one bitmap relative to another
879 * @dst: resulting translated bitmap
880 * @orig: original untranslated bitmap
881 * @relmap: bitmap relative to which translated
882 * @bits: number of bits in each of these bitmaps
884 * Set the n-th bit of @dst iff there exists some m such that the
885 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
886 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
887 * (If you understood the previous sentence the first time your
888 * read it, you're overqualified for your current job.)
890 * In other words, @orig is mapped onto (surjectively) @dst,
891 * using the map { <n, m> | the n-th bit of @relmap is the
892 * m-th set bit of @relmap }.
894 * Any set bits in @orig above bit number W, where W is the
895 * weight of (number of set bits in) @relmap are mapped nowhere.
896 * In particular, if for all bits m set in @orig, m >= W, then
897 * @dst will end up empty. In situations where the possibility
898 * of such an empty result is not desired, one way to avoid it is
899 * to use the bitmap_fold() operator, below, to first fold the
900 * @orig bitmap over itself so that all its set bits x are in the
901 * range 0 <= x < W. The bitmap_fold() operator does this by
902 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
904 * Example [1] for bitmap_onto():
905 * Let's say @relmap has bits 30-39 set, and @orig has bits
906 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
907 * @dst will have bits 31, 33, 35, 37 and 39 set.
909 * When bit 0 is set in @orig, it means turn on the bit in
910 * @dst corresponding to whatever is the first bit (if any)
911 * that is turned on in @relmap. Since bit 0 was off in the
912 * above example, we leave off that bit (bit 30) in @dst.
914 * When bit 1 is set in @orig (as in the above example), it
915 * means turn on the bit in @dst corresponding to whatever
916 * is the second bit that is turned on in @relmap. The second
917 * bit in @relmap that was turned on in the above example was
918 * bit 31, so we turned on bit 31 in @dst.
920 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
921 * because they were the 4th, 6th, 8th and 10th set bits
922 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
923 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
925 * When bit 11 is set in @orig, it means turn on the bit in
926 * @dst corresponding to whatever is the twelfth bit that is
927 * turned on in @relmap. In the above example, there were
928 * only ten bits turned on in @relmap (30..39), so that bit
929 * 11 was set in @orig had no affect on @dst.
931 * Example [2] for bitmap_fold() + bitmap_onto():
932 * Let's say @relmap has these ten bits set:
933 * 40 41 42 43 45 48 53 61 74 95
934 * (for the curious, that's 40 plus the first ten terms of the
935 * Fibonacci sequence.)
937 * Further lets say we use the following code, invoking
938 * bitmap_fold() then bitmap_onto, as suggested above to
939 * avoid the possibility of an empty @dst result:
941 * unsigned long *tmp; // a temporary bitmap's bits
943 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
944 * bitmap_onto(dst, tmp, relmap, bits);
946 * Then this table shows what various values of @dst would be, for
947 * various @orig's. I list the zero-based positions of each set bit.
948 * The tmp column shows the intermediate result, as computed by
949 * using bitmap_fold() to fold the @orig bitmap modulo ten
950 * (the weight of @relmap).
952 * @orig tmp @dst
953 * 0 0 40
954 * 1 1 41
955 * 9 9 95
956 * 10 0 40 (*)
957 * 1 3 5 7 1 3 5 7 41 43 48 61
958 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
959 * 0 9 18 27 0 9 8 7 40 61 74 95
960 * 0 10 20 30 0 40
961 * 0 11 22 33 0 1 2 3 40 41 42 43
962 * 0 12 24 36 0 2 4 6 40 42 45 53
963 * 78 102 211 1 2 8 41 42 74 (*)
965 * (*) For these marked lines, if we hadn't first done bitmap_fold()
966 * into tmp, then the @dst result would have been empty.
968 * If either of @orig or @relmap is empty (no set bits), then @dst
969 * will be returned empty.
971 * If (as explained above) the only set bits in @orig are in positions
972 * m where m >= W, (where W is the weight of @relmap) then @dst will
973 * once again be returned empty.
975 * All bits in @dst not set by the above rule are cleared.
977 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
978 const unsigned long *relmap, int bits)
980 int n, m; /* same meaning as in above comment */
982 if (dst == orig) /* following doesn't handle inplace mappings */
983 return;
984 bitmap_zero(dst, bits);
987 * The following code is a more efficient, but less
988 * obvious, equivalent to the loop:
989 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
990 * n = bitmap_ord_to_pos(orig, m, bits);
991 * if (test_bit(m, orig))
992 * set_bit(n, dst);
996 m = 0;
997 for_each_set_bit(n, relmap, bits) {
998 /* m == bitmap_pos_to_ord(relmap, n, bits) */
999 if (test_bit(m, orig))
1000 set_bit(n, dst);
1001 m++;
1004 EXPORT_SYMBOL(bitmap_onto);
1007 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1008 * @dst: resulting smaller bitmap
1009 * @orig: original larger bitmap
1010 * @sz: specified size
1011 * @bits: number of bits in each of these bitmaps
1013 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1014 * Clear all other bits in @dst. See further the comment and
1015 * Example [2] for bitmap_onto() for why and how to use this.
1017 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1018 int sz, int bits)
1020 int oldbit;
1022 if (dst == orig) /* following doesn't handle inplace mappings */
1023 return;
1024 bitmap_zero(dst, bits);
1026 for_each_set_bit(oldbit, orig, bits)
1027 set_bit(oldbit % sz, dst);
1029 EXPORT_SYMBOL(bitmap_fold);
1032 * Common code for bitmap_*_region() routines.
1033 * bitmap: array of unsigned longs corresponding to the bitmap
1034 * pos: the beginning of the region
1035 * order: region size (log base 2 of number of bits)
1036 * reg_op: operation(s) to perform on that region of bitmap
1038 * Can set, verify and/or release a region of bits in a bitmap,
1039 * depending on which combination of REG_OP_* flag bits is set.
1041 * A region of a bitmap is a sequence of bits in the bitmap, of
1042 * some size '1 << order' (a power of two), aligned to that same
1043 * '1 << order' power of two.
1045 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1046 * Returns 0 in all other cases and reg_ops.
1049 enum {
1050 REG_OP_ISFREE, /* true if region is all zero bits */
1051 REG_OP_ALLOC, /* set all bits in region */
1052 REG_OP_RELEASE, /* clear all bits in region */
1055 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1057 int nbits_reg; /* number of bits in region */
1058 int index; /* index first long of region in bitmap */
1059 int offset; /* bit offset region in bitmap[index] */
1060 int nlongs_reg; /* num longs spanned by region in bitmap */
1061 int nbitsinlong; /* num bits of region in each spanned long */
1062 unsigned long mask; /* bitmask for one long of region */
1063 int i; /* scans bitmap by longs */
1064 int ret = 0; /* return value */
1067 * Either nlongs_reg == 1 (for small orders that fit in one long)
1068 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1070 nbits_reg = 1 << order;
1071 index = pos / BITS_PER_LONG;
1072 offset = pos - (index * BITS_PER_LONG);
1073 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1074 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1077 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1078 * overflows if nbitsinlong == BITS_PER_LONG.
1080 mask = (1UL << (nbitsinlong - 1));
1081 mask += mask - 1;
1082 mask <<= offset;
1084 switch (reg_op) {
1085 case REG_OP_ISFREE:
1086 for (i = 0; i < nlongs_reg; i++) {
1087 if (bitmap[index + i] & mask)
1088 goto done;
1090 ret = 1; /* all bits in region free (zero) */
1091 break;
1093 case REG_OP_ALLOC:
1094 for (i = 0; i < nlongs_reg; i++)
1095 bitmap[index + i] |= mask;
1096 break;
1098 case REG_OP_RELEASE:
1099 for (i = 0; i < nlongs_reg; i++)
1100 bitmap[index + i] &= ~mask;
1101 break;
1103 done:
1104 return ret;
1108 * bitmap_find_free_region - find a contiguous aligned mem region
1109 * @bitmap: array of unsigned longs corresponding to the bitmap
1110 * @bits: number of bits in the bitmap
1111 * @order: region size (log base 2 of number of bits) to find
1113 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1114 * allocate them (set them to one). Only consider regions of length
1115 * a power (@order) of two, aligned to that power of two, which
1116 * makes the search algorithm much faster.
1118 * Return the bit offset in bitmap of the allocated region,
1119 * or -errno on failure.
1121 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1123 unsigned int pos, end; /* scans bitmap by regions of size order */
1125 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1126 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1127 continue;
1128 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1129 return pos;
1131 return -ENOMEM;
1133 EXPORT_SYMBOL(bitmap_find_free_region);
1136 * bitmap_release_region - release allocated bitmap region
1137 * @bitmap: array of unsigned longs corresponding to the bitmap
1138 * @pos: beginning of bit region to release
1139 * @order: region size (log base 2 of number of bits) to release
1141 * This is the complement to __bitmap_find_free_region() and releases
1142 * the found region (by clearing it in the bitmap).
1144 * No return value.
1146 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1148 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1150 EXPORT_SYMBOL(bitmap_release_region);
1153 * bitmap_allocate_region - allocate bitmap region
1154 * @bitmap: array of unsigned longs corresponding to the bitmap
1155 * @pos: beginning of bit region to allocate
1156 * @order: region size (log base 2 of number of bits) to allocate
1158 * Allocate (set bits in) a specified region of a bitmap.
1160 * Return 0 on success, or %-EBUSY if specified region wasn't
1161 * free (not all bits were zero).
1163 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1165 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1166 return -EBUSY;
1167 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1169 EXPORT_SYMBOL(bitmap_allocate_region);
1172 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1173 * @dst: destination buffer
1174 * @src: bitmap to copy
1175 * @nbits: number of bits in the bitmap
1177 * Require nbits % BITS_PER_LONG == 0.
1179 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1181 unsigned long *d = dst;
1182 int i;
1184 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1185 if (BITS_PER_LONG == 64)
1186 d[i] = cpu_to_le64(src[i]);
1187 else
1188 d[i] = cpu_to_le32(src[i]);
1191 EXPORT_SYMBOL(bitmap_copy_le);