4 * Kernel internal timers
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 #include <linux/random.h>
47 #include <asm/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/div64.h>
50 #include <asm/timex.h>
53 #include "tick-internal.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/timer.h>
58 __visible u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
60 EXPORT_SYMBOL(jiffies_64
);
63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65 * level has a different granularity.
67 * The level granularity is: LVL_CLK_DIV ^ lvl
68 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 * The array level of a newly armed timer depends on the relative expiry
71 * time. The farther the expiry time is away the higher the array level and
72 * therefor the granularity becomes.
74 * Contrary to the original timer wheel implementation, which aims for 'exact'
75 * expiry of the timers, this implementation removes the need for recascading
76 * the timers into the lower array levels. The previous 'classic' timer wheel
77 * implementation of the kernel already violated the 'exact' expiry by adding
78 * slack to the expiry time to provide batched expiration. The granularity
79 * levels provide implicit batching.
81 * This is an optimization of the original timer wheel implementation for the
82 * majority of the timer wheel use cases: timeouts. The vast majority of
83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84 * the timeout expires it indicates that normal operation is disturbed, so it
85 * does not matter much whether the timeout comes with a slight delay.
87 * The only exception to this are networking timers with a small expiry
88 * time. They rely on the granularity. Those fit into the first wheel level,
89 * which has HZ granularity.
91 * We don't have cascading anymore. timers with a expiry time above the
92 * capacity of the last wheel level are force expired at the maximum timeout
93 * value of the last wheel level. From data sampling we know that the maximum
94 * value observed is 5 days (network connection tracking), so this should not
97 * The currently chosen array constants values are a good compromise between
98 * array size and granularity.
100 * This results in the following granularity and range levels:
103 * Level Offset Granularity Range
104 * 0 0 1 ms 0 ms - 63 ms
105 * 1 64 8 ms 64 ms - 511 ms
106 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
107 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
108 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
109 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
110 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
111 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
112 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
115 * Level Offset Granularity Range
116 * 0 0 3 ms 0 ms - 210 ms
117 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
118 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
119 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
120 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
121 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
122 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
123 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
124 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127 * Level Offset Granularity Range
128 * 0 0 4 ms 0 ms - 255 ms
129 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
130 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
131 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
132 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
133 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
134 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
135 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
136 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139 * Level Offset Granularity Range
140 * 0 0 10 ms 0 ms - 630 ms
141 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
142 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
143 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
144 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
145 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
146 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
147 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150 /* Clock divisor for the next level */
151 #define LVL_CLK_SHIFT 3
152 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
153 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
154 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
155 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
158 * The time start value for each level to select the bucket at enqueue
161 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163 /* Size of each clock level */
165 #define LVL_SIZE (1UL << LVL_BITS)
166 #define LVL_MASK (LVL_SIZE - 1)
167 #define LVL_OFFS(n) ((n) * LVL_SIZE)
176 /* The cutoff (max. capacity of the wheel) */
177 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
178 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
181 * The resulting wheel size. If NOHZ is configured we allocate two
182 * wheels so we have a separate storage for the deferrable timers.
184 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186 #ifdef CONFIG_NO_HZ_COMMON
198 struct timer_list
*running_timer
;
200 unsigned long next_expiry
;
202 bool migration_enabled
;
205 bool must_forward_clk
;
206 DECLARE_BITMAP(pending_map
, WHEEL_SIZE
);
207 struct hlist_head vectors
[WHEEL_SIZE
];
208 } ____cacheline_aligned
;
210 static DEFINE_PER_CPU(struct timer_base
, timer_bases
[NR_BASES
]);
212 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
213 unsigned int sysctl_timer_migration
= 1;
215 void timers_update_migration(bool update_nohz
)
217 bool on
= sysctl_timer_migration
&& tick_nohz_active
;
220 /* Avoid the loop, if nothing to update */
221 if (this_cpu_read(timer_bases
[BASE_STD
].migration_enabled
) == on
)
224 for_each_possible_cpu(cpu
) {
225 per_cpu(timer_bases
[BASE_STD
].migration_enabled
, cpu
) = on
;
226 per_cpu(timer_bases
[BASE_DEF
].migration_enabled
, cpu
) = on
;
227 per_cpu(hrtimer_bases
.migration_enabled
, cpu
) = on
;
230 per_cpu(timer_bases
[BASE_STD
].nohz_active
, cpu
) = true;
231 per_cpu(timer_bases
[BASE_DEF
].nohz_active
, cpu
) = true;
232 per_cpu(hrtimer_bases
.nohz_active
, cpu
) = true;
236 int timer_migration_handler(struct ctl_table
*table
, int write
,
237 void __user
*buffer
, size_t *lenp
,
240 static DEFINE_MUTEX(mutex
);
244 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
246 timers_update_migration(false);
247 mutex_unlock(&mutex
);
252 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
256 unsigned long original
= j
;
259 * We don't want all cpus firing their timers at once hitting the
260 * same lock or cachelines, so we skew each extra cpu with an extra
261 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 * The skew is done by adding 3*cpunr, then round, then subtract this
264 * extra offset again.
271 * If the target jiffie is just after a whole second (which can happen
272 * due to delays of the timer irq, long irq off times etc etc) then
273 * we should round down to the whole second, not up. Use 1/4th second
274 * as cutoff for this rounding as an extreme upper bound for this.
275 * But never round down if @force_up is set.
277 if (rem
< HZ
/4 && !force_up
) /* round down */
282 /* now that we have rounded, subtract the extra skew again */
286 * Make sure j is still in the future. Otherwise return the
289 return time_is_after_jiffies(j
) ? j
: original
;
293 * __round_jiffies - function to round jiffies to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 * @cpu: the processor number on which the timeout will happen
297 * __round_jiffies() rounds an absolute time in the future (in jiffies)
298 * up or down to (approximately) full seconds. This is useful for timers
299 * for which the exact time they fire does not matter too much, as long as
300 * they fire approximately every X seconds.
302 * By rounding these timers to whole seconds, all such timers will fire
303 * at the same time, rather than at various times spread out. The goal
304 * of this is to have the CPU wake up less, which saves power.
306 * The exact rounding is skewed for each processor to avoid all
307 * processors firing at the exact same time, which could lead
308 * to lock contention or spurious cache line bouncing.
310 * The return value is the rounded version of the @j parameter.
312 unsigned long __round_jiffies(unsigned long j
, int cpu
)
314 return round_jiffies_common(j
, cpu
, false);
316 EXPORT_SYMBOL_GPL(__round_jiffies
);
319 * __round_jiffies_relative - function to round jiffies to a full second
320 * @j: the time in (relative) jiffies that should be rounded
321 * @cpu: the processor number on which the timeout will happen
323 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
324 * up or down to (approximately) full seconds. This is useful for timers
325 * for which the exact time they fire does not matter too much, as long as
326 * they fire approximately every X seconds.
328 * By rounding these timers to whole seconds, all such timers will fire
329 * at the same time, rather than at various times spread out. The goal
330 * of this is to have the CPU wake up less, which saves power.
332 * The exact rounding is skewed for each processor to avoid all
333 * processors firing at the exact same time, which could lead
334 * to lock contention or spurious cache line bouncing.
336 * The return value is the rounded version of the @j parameter.
338 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
340 unsigned long j0
= jiffies
;
342 /* Use j0 because jiffies might change while we run */
343 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
345 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
348 * round_jiffies - function to round jiffies to a full second
349 * @j: the time in (absolute) jiffies that should be rounded
351 * round_jiffies() rounds an absolute time in the future (in jiffies)
352 * up or down to (approximately) full seconds. This is useful for timers
353 * for which the exact time they fire does not matter too much, as long as
354 * they fire approximately every X seconds.
356 * By rounding these timers to whole seconds, all such timers will fire
357 * at the same time, rather than at various times spread out. The goal
358 * of this is to have the CPU wake up less, which saves power.
360 * The return value is the rounded version of the @j parameter.
362 unsigned long round_jiffies(unsigned long j
)
364 return round_jiffies_common(j
, raw_smp_processor_id(), false);
366 EXPORT_SYMBOL_GPL(round_jiffies
);
369 * round_jiffies_relative - function to round jiffies to a full second
370 * @j: the time in (relative) jiffies that should be rounded
372 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
373 * up or down to (approximately) full seconds. This is useful for timers
374 * for which the exact time they fire does not matter too much, as long as
375 * they fire approximately every X seconds.
377 * By rounding these timers to whole seconds, all such timers will fire
378 * at the same time, rather than at various times spread out. The goal
379 * of this is to have the CPU wake up less, which saves power.
381 * The return value is the rounded version of the @j parameter.
383 unsigned long round_jiffies_relative(unsigned long j
)
385 return __round_jiffies_relative(j
, raw_smp_processor_id());
387 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
390 * __round_jiffies_up - function to round jiffies up to a full second
391 * @j: the time in (absolute) jiffies that should be rounded
392 * @cpu: the processor number on which the timeout will happen
394 * This is the same as __round_jiffies() except that it will never
395 * round down. This is useful for timeouts for which the exact time
396 * of firing does not matter too much, as long as they don't fire too
399 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
401 return round_jiffies_common(j
, cpu
, true);
403 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
406 * __round_jiffies_up_relative - function to round jiffies up to a full second
407 * @j: the time in (relative) jiffies that should be rounded
408 * @cpu: the processor number on which the timeout will happen
410 * This is the same as __round_jiffies_relative() except that it will never
411 * round down. This is useful for timeouts for which the exact time
412 * of firing does not matter too much, as long as they don't fire too
415 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
417 unsigned long j0
= jiffies
;
419 /* Use j0 because jiffies might change while we run */
420 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
422 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
425 * round_jiffies_up - function to round jiffies up to a full second
426 * @j: the time in (absolute) jiffies that should be rounded
428 * This is the same as round_jiffies() except that it will never
429 * round down. This is useful for timeouts for which the exact time
430 * of firing does not matter too much, as long as they don't fire too
433 unsigned long round_jiffies_up(unsigned long j
)
435 return round_jiffies_common(j
, raw_smp_processor_id(), true);
437 EXPORT_SYMBOL_GPL(round_jiffies_up
);
440 * round_jiffies_up_relative - function to round jiffies up to a full second
441 * @j: the time in (relative) jiffies that should be rounded
443 * This is the same as round_jiffies_relative() except that it will never
444 * round down. This is useful for timeouts for which the exact time
445 * of firing does not matter too much, as long as they don't fire too
448 unsigned long round_jiffies_up_relative(unsigned long j
)
450 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
452 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
455 static inline unsigned int timer_get_idx(struct timer_list
*timer
)
457 return (timer
->flags
& TIMER_ARRAYMASK
) >> TIMER_ARRAYSHIFT
;
460 static inline void timer_set_idx(struct timer_list
*timer
, unsigned int idx
)
462 timer
->flags
= (timer
->flags
& ~TIMER_ARRAYMASK
) |
463 idx
<< TIMER_ARRAYSHIFT
;
467 * Helper function to calculate the array index for a given expiry
470 static inline unsigned calc_index(unsigned expires
, unsigned lvl
)
472 expires
= (expires
+ LVL_GRAN(lvl
)) >> LVL_SHIFT(lvl
);
473 return LVL_OFFS(lvl
) + (expires
& LVL_MASK
);
476 static int calc_wheel_index(unsigned long expires
, unsigned long clk
)
478 unsigned long delta
= expires
- clk
;
481 if (delta
< LVL_START(1)) {
482 idx
= calc_index(expires
, 0);
483 } else if (delta
< LVL_START(2)) {
484 idx
= calc_index(expires
, 1);
485 } else if (delta
< LVL_START(3)) {
486 idx
= calc_index(expires
, 2);
487 } else if (delta
< LVL_START(4)) {
488 idx
= calc_index(expires
, 3);
489 } else if (delta
< LVL_START(5)) {
490 idx
= calc_index(expires
, 4);
491 } else if (delta
< LVL_START(6)) {
492 idx
= calc_index(expires
, 5);
493 } else if (delta
< LVL_START(7)) {
494 idx
= calc_index(expires
, 6);
495 } else if (LVL_DEPTH
> 8 && delta
< LVL_START(8)) {
496 idx
= calc_index(expires
, 7);
497 } else if ((long) delta
< 0) {
498 idx
= clk
& LVL_MASK
;
501 * Force expire obscene large timeouts to expire at the
502 * capacity limit of the wheel.
504 if (delta
>= WHEEL_TIMEOUT_CUTOFF
)
505 expires
= clk
+ WHEEL_TIMEOUT_MAX
;
507 idx
= calc_index(expires
, LVL_DEPTH
- 1);
513 * Enqueue the timer into the hash bucket, mark it pending in
514 * the bitmap and store the index in the timer flags.
516 static void enqueue_timer(struct timer_base
*base
, struct timer_list
*timer
,
519 hlist_add_head(&timer
->entry
, base
->vectors
+ idx
);
520 __set_bit(idx
, base
->pending_map
);
521 timer_set_idx(timer
, idx
);
525 __internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
529 idx
= calc_wheel_index(timer
->expires
, base
->clk
);
530 enqueue_timer(base
, timer
, idx
);
534 trigger_dyntick_cpu(struct timer_base
*base
, struct timer_list
*timer
)
536 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
) || !base
->nohz_active
)
540 * TODO: This wants some optimizing similar to the code below, but we
541 * will do that when we switch from push to pull for deferrable timers.
543 if (timer
->flags
& TIMER_DEFERRABLE
) {
544 if (tick_nohz_full_cpu(base
->cpu
))
545 wake_up_nohz_cpu(base
->cpu
);
550 * We might have to IPI the remote CPU if the base is idle and the
551 * timer is not deferrable. If the other CPU is on the way to idle
552 * then it can't set base->is_idle as we hold the base lock:
557 /* Check whether this is the new first expiring timer: */
558 if (time_after_eq(timer
->expires
, base
->next_expiry
))
562 * Set the next expiry time and kick the CPU so it can reevaluate the
565 base
->next_expiry
= timer
->expires
;
566 wake_up_nohz_cpu(base
->cpu
);
570 internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
572 __internal_add_timer(base
, timer
);
573 trigger_dyntick_cpu(base
, timer
);
576 #ifdef CONFIG_TIMER_STATS
577 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
579 if (timer
->start_site
)
582 timer
->start_site
= addr
;
583 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
584 timer
->start_pid
= current
->pid
;
587 static void timer_stats_account_timer(struct timer_list
*timer
)
592 * start_site can be concurrently reset by
593 * timer_stats_timer_clear_start_info()
595 site
= READ_ONCE(timer
->start_site
);
599 timer_stats_update_stats(timer
, timer
->start_pid
, site
,
600 timer
->function
, timer
->start_comm
,
605 static void timer_stats_account_timer(struct timer_list
*timer
) {}
608 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
610 static struct debug_obj_descr timer_debug_descr
;
612 static void *timer_debug_hint(void *addr
)
614 return ((struct timer_list
*) addr
)->function
;
617 static bool timer_is_static_object(void *addr
)
619 struct timer_list
*timer
= addr
;
621 return (timer
->entry
.pprev
== NULL
&&
622 timer
->entry
.next
== TIMER_ENTRY_STATIC
);
626 * fixup_init is called when:
627 * - an active object is initialized
629 static bool timer_fixup_init(void *addr
, enum debug_obj_state state
)
631 struct timer_list
*timer
= addr
;
634 case ODEBUG_STATE_ACTIVE
:
635 del_timer_sync(timer
);
636 debug_object_init(timer
, &timer_debug_descr
);
643 /* Stub timer callback for improperly used timers. */
644 static void stub_timer(unsigned long data
)
650 * fixup_activate is called when:
651 * - an active object is activated
652 * - an unknown non-static object is activated
654 static bool timer_fixup_activate(void *addr
, enum debug_obj_state state
)
656 struct timer_list
*timer
= addr
;
659 case ODEBUG_STATE_NOTAVAILABLE
:
660 setup_timer(timer
, stub_timer
, 0);
663 case ODEBUG_STATE_ACTIVE
:
672 * fixup_free is called when:
673 * - an active object is freed
675 static bool timer_fixup_free(void *addr
, enum debug_obj_state state
)
677 struct timer_list
*timer
= addr
;
680 case ODEBUG_STATE_ACTIVE
:
681 del_timer_sync(timer
);
682 debug_object_free(timer
, &timer_debug_descr
);
690 * fixup_assert_init is called when:
691 * - an untracked/uninit-ed object is found
693 static bool timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
695 struct timer_list
*timer
= addr
;
698 case ODEBUG_STATE_NOTAVAILABLE
:
699 setup_timer(timer
, stub_timer
, 0);
706 static struct debug_obj_descr timer_debug_descr
= {
707 .name
= "timer_list",
708 .debug_hint
= timer_debug_hint
,
709 .is_static_object
= timer_is_static_object
,
710 .fixup_init
= timer_fixup_init
,
711 .fixup_activate
= timer_fixup_activate
,
712 .fixup_free
= timer_fixup_free
,
713 .fixup_assert_init
= timer_fixup_assert_init
,
716 static inline void debug_timer_init(struct timer_list
*timer
)
718 debug_object_init(timer
, &timer_debug_descr
);
721 static inline void debug_timer_activate(struct timer_list
*timer
)
723 debug_object_activate(timer
, &timer_debug_descr
);
726 static inline void debug_timer_deactivate(struct timer_list
*timer
)
728 debug_object_deactivate(timer
, &timer_debug_descr
);
731 static inline void debug_timer_free(struct timer_list
*timer
)
733 debug_object_free(timer
, &timer_debug_descr
);
736 static inline void debug_timer_assert_init(struct timer_list
*timer
)
738 debug_object_assert_init(timer
, &timer_debug_descr
);
741 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
742 const char *name
, struct lock_class_key
*key
);
744 void init_timer_on_stack_key(struct timer_list
*timer
, unsigned int flags
,
745 const char *name
, struct lock_class_key
*key
)
747 debug_object_init_on_stack(timer
, &timer_debug_descr
);
748 do_init_timer(timer
, flags
, name
, key
);
750 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
752 void destroy_timer_on_stack(struct timer_list
*timer
)
754 debug_object_free(timer
, &timer_debug_descr
);
756 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
759 static inline void debug_timer_init(struct timer_list
*timer
) { }
760 static inline void debug_timer_activate(struct timer_list
*timer
) { }
761 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
762 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
765 static inline void debug_init(struct timer_list
*timer
)
767 debug_timer_init(timer
);
768 trace_timer_init(timer
);
772 debug_activate(struct timer_list
*timer
, unsigned long expires
)
774 debug_timer_activate(timer
);
775 trace_timer_start(timer
, expires
, timer
->flags
);
778 static inline void debug_deactivate(struct timer_list
*timer
)
780 debug_timer_deactivate(timer
);
781 trace_timer_cancel(timer
);
784 static inline void debug_assert_init(struct timer_list
*timer
)
786 debug_timer_assert_init(timer
);
789 static void do_init_timer(struct timer_list
*timer
, unsigned int flags
,
790 const char *name
, struct lock_class_key
*key
)
792 timer
->entry
.pprev
= NULL
;
793 timer
->flags
= flags
| raw_smp_processor_id();
794 #ifdef CONFIG_TIMER_STATS
795 timer
->start_site
= NULL
;
796 timer
->start_pid
= -1;
797 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
799 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
803 * init_timer_key - initialize a timer
804 * @timer: the timer to be initialized
805 * @flags: timer flags
806 * @name: name of the timer
807 * @key: lockdep class key of the fake lock used for tracking timer
808 * sync lock dependencies
810 * init_timer_key() must be done to a timer prior calling *any* of the
811 * other timer functions.
813 void init_timer_key(struct timer_list
*timer
, unsigned int flags
,
814 const char *name
, struct lock_class_key
*key
)
817 do_init_timer(timer
, flags
, name
, key
);
819 EXPORT_SYMBOL(init_timer_key
);
821 static inline void detach_timer(struct timer_list
*timer
, bool clear_pending
)
823 struct hlist_node
*entry
= &timer
->entry
;
825 debug_deactivate(timer
);
830 entry
->next
= LIST_POISON2
;
833 static int detach_if_pending(struct timer_list
*timer
, struct timer_base
*base
,
836 unsigned idx
= timer_get_idx(timer
);
838 if (!timer_pending(timer
))
841 if (hlist_is_singular_node(&timer
->entry
, base
->vectors
+ idx
))
842 __clear_bit(idx
, base
->pending_map
);
844 detach_timer(timer
, clear_pending
);
848 static inline struct timer_base
*get_timer_cpu_base(u32 tflags
, u32 cpu
)
850 struct timer_base
*base
= per_cpu_ptr(&timer_bases
[BASE_STD
], cpu
);
853 * If the timer is deferrable and NO_HZ_COMMON is set then we need
854 * to use the deferrable base.
856 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && (tflags
& TIMER_DEFERRABLE
))
857 base
= per_cpu_ptr(&timer_bases
[BASE_DEF
], cpu
);
861 static inline struct timer_base
*get_timer_this_cpu_base(u32 tflags
)
863 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
866 * If the timer is deferrable and NO_HZ_COMMON is set then we need
867 * to use the deferrable base.
869 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && (tflags
& TIMER_DEFERRABLE
))
870 base
= this_cpu_ptr(&timer_bases
[BASE_DEF
]);
874 static inline struct timer_base
*get_timer_base(u32 tflags
)
876 return get_timer_cpu_base(tflags
, tflags
& TIMER_CPUMASK
);
879 #ifdef CONFIG_NO_HZ_COMMON
880 static inline struct timer_base
*
881 get_target_base(struct timer_base
*base
, unsigned tflags
)
884 if ((tflags
& TIMER_PINNED
) || !base
->migration_enabled
)
885 return get_timer_this_cpu_base(tflags
);
886 return get_timer_cpu_base(tflags
, get_nohz_timer_target());
888 return get_timer_this_cpu_base(tflags
);
892 static inline void forward_timer_base(struct timer_base
*base
)
897 * We only forward the base when we are idle or have just come out of
898 * idle (must_forward_clk logic), and have a delta between base clock
899 * and jiffies. In the common case, run_timers will take care of it.
901 if (likely(!base
->must_forward_clk
))
904 jnow
= READ_ONCE(jiffies
);
905 base
->must_forward_clk
= base
->is_idle
;
906 if ((long)(jnow
- base
->clk
) < 2)
910 * If the next expiry value is > jiffies, then we fast forward to
911 * jiffies otherwise we forward to the next expiry value.
913 if (time_after(base
->next_expiry
, jnow
))
916 base
->clk
= base
->next_expiry
;
919 static inline struct timer_base
*
920 get_target_base(struct timer_base
*base
, unsigned tflags
)
922 return get_timer_this_cpu_base(tflags
);
925 static inline void forward_timer_base(struct timer_base
*base
) { }
930 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
931 * that all timers which are tied to this base are locked, and the base itself
934 * So __run_timers/migrate_timers can safely modify all timers which could
935 * be found in the base->vectors array.
937 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
938 * to wait until the migration is done.
940 static struct timer_base
*lock_timer_base(struct timer_list
*timer
,
941 unsigned long *flags
)
942 __acquires(timer
->base
->lock
)
945 struct timer_base
*base
;
949 * We need to use READ_ONCE() here, otherwise the compiler
950 * might re-read @tf between the check for TIMER_MIGRATING
953 tf
= READ_ONCE(timer
->flags
);
955 if (!(tf
& TIMER_MIGRATING
)) {
956 base
= get_timer_base(tf
);
957 spin_lock_irqsave(&base
->lock
, *flags
);
958 if (timer
->flags
== tf
)
960 spin_unlock_irqrestore(&base
->lock
, *flags
);
967 __mod_timer(struct timer_list
*timer
, unsigned long expires
, bool pending_only
)
969 struct timer_base
*base
, *new_base
;
970 unsigned int idx
= UINT_MAX
;
971 unsigned long clk
= 0, flags
;
974 BUG_ON(!timer
->function
);
977 * This is a common optimization triggered by the networking code - if
978 * the timer is re-modified to have the same timeout or ends up in the
979 * same array bucket then just return:
981 if (timer_pending(timer
)) {
983 * The downside of this optimization is that it can result in
984 * larger granularity than you would get from adding a new
985 * timer with this expiry.
987 if (timer
->expires
== expires
)
991 * We lock timer base and calculate the bucket index right
992 * here. If the timer ends up in the same bucket, then we
993 * just update the expiry time and avoid the whole
994 * dequeue/enqueue dance.
996 base
= lock_timer_base(timer
, &flags
);
997 forward_timer_base(base
);
1000 idx
= calc_wheel_index(expires
, clk
);
1003 * Retrieve and compare the array index of the pending
1004 * timer. If it matches set the expiry to the new value so a
1005 * subsequent call will exit in the expires check above.
1007 if (idx
== timer_get_idx(timer
)) {
1008 timer
->expires
= expires
;
1013 base
= lock_timer_base(timer
, &flags
);
1014 forward_timer_base(base
);
1017 timer_stats_timer_set_start_info(timer
);
1019 ret
= detach_if_pending(timer
, base
, false);
1020 if (!ret
&& pending_only
)
1023 new_base
= get_target_base(base
, timer
->flags
);
1025 if (base
!= new_base
) {
1027 * We are trying to schedule the timer on the new base.
1028 * However we can't change timer's base while it is running,
1029 * otherwise del_timer_sync() can't detect that the timer's
1030 * handler yet has not finished. This also guarantees that the
1031 * timer is serialized wrt itself.
1033 if (likely(base
->running_timer
!= timer
)) {
1034 /* See the comment in lock_timer_base() */
1035 timer
->flags
|= TIMER_MIGRATING
;
1037 spin_unlock(&base
->lock
);
1039 spin_lock(&base
->lock
);
1040 WRITE_ONCE(timer
->flags
,
1041 (timer
->flags
& ~TIMER_BASEMASK
) | base
->cpu
);
1042 forward_timer_base(base
);
1046 debug_activate(timer
, expires
);
1048 timer
->expires
= expires
;
1050 * If 'idx' was calculated above and the base time did not advance
1051 * between calculating 'idx' and possibly switching the base, only
1052 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1053 * we need to (re)calculate the wheel index via
1054 * internal_add_timer().
1056 if (idx
!= UINT_MAX
&& clk
== base
->clk
) {
1057 enqueue_timer(base
, timer
, idx
);
1058 trigger_dyntick_cpu(base
, timer
);
1060 internal_add_timer(base
, timer
);
1064 spin_unlock_irqrestore(&base
->lock
, flags
);
1070 * mod_timer_pending - modify a pending timer's timeout
1071 * @timer: the pending timer to be modified
1072 * @expires: new timeout in jiffies
1074 * mod_timer_pending() is the same for pending timers as mod_timer(),
1075 * but will not re-activate and modify already deleted timers.
1077 * It is useful for unserialized use of timers.
1079 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
1081 return __mod_timer(timer
, expires
, true);
1083 EXPORT_SYMBOL(mod_timer_pending
);
1086 * mod_timer - modify a timer's timeout
1087 * @timer: the timer to be modified
1088 * @expires: new timeout in jiffies
1090 * mod_timer() is a more efficient way to update the expire field of an
1091 * active timer (if the timer is inactive it will be activated)
1093 * mod_timer(timer, expires) is equivalent to:
1095 * del_timer(timer); timer->expires = expires; add_timer(timer);
1097 * Note that if there are multiple unserialized concurrent users of the
1098 * same timer, then mod_timer() is the only safe way to modify the timeout,
1099 * since add_timer() cannot modify an already running timer.
1101 * The function returns whether it has modified a pending timer or not.
1102 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1103 * active timer returns 1.)
1105 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
1107 return __mod_timer(timer
, expires
, false);
1109 EXPORT_SYMBOL(mod_timer
);
1112 * add_timer - start a timer
1113 * @timer: the timer to be added
1115 * The kernel will do a ->function(->data) callback from the
1116 * timer interrupt at the ->expires point in the future. The
1117 * current time is 'jiffies'.
1119 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1120 * fields must be set prior calling this function.
1122 * Timers with an ->expires field in the past will be executed in the next
1125 void add_timer(struct timer_list
*timer
)
1127 BUG_ON(timer_pending(timer
));
1128 mod_timer(timer
, timer
->expires
);
1130 EXPORT_SYMBOL(add_timer
);
1133 * add_timer_on - start a timer on a particular CPU
1134 * @timer: the timer to be added
1135 * @cpu: the CPU to start it on
1137 * This is not very scalable on SMP. Double adds are not possible.
1139 void add_timer_on(struct timer_list
*timer
, int cpu
)
1141 struct timer_base
*new_base
, *base
;
1142 unsigned long flags
;
1144 timer_stats_timer_set_start_info(timer
);
1145 BUG_ON(timer_pending(timer
) || !timer
->function
);
1147 new_base
= get_timer_cpu_base(timer
->flags
, cpu
);
1150 * If @timer was on a different CPU, it should be migrated with the
1151 * old base locked to prevent other operations proceeding with the
1152 * wrong base locked. See lock_timer_base().
1154 base
= lock_timer_base(timer
, &flags
);
1155 if (base
!= new_base
) {
1156 timer
->flags
|= TIMER_MIGRATING
;
1158 spin_unlock(&base
->lock
);
1160 spin_lock(&base
->lock
);
1161 WRITE_ONCE(timer
->flags
,
1162 (timer
->flags
& ~TIMER_BASEMASK
) | cpu
);
1164 forward_timer_base(base
);
1166 debug_activate(timer
, timer
->expires
);
1167 internal_add_timer(base
, timer
);
1168 spin_unlock_irqrestore(&base
->lock
, flags
);
1170 EXPORT_SYMBOL_GPL(add_timer_on
);
1173 * del_timer - deactive a timer.
1174 * @timer: the timer to be deactivated
1176 * del_timer() deactivates a timer - this works on both active and inactive
1179 * The function returns whether it has deactivated a pending timer or not.
1180 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1181 * active timer returns 1.)
1183 int del_timer(struct timer_list
*timer
)
1185 struct timer_base
*base
;
1186 unsigned long flags
;
1189 debug_assert_init(timer
);
1191 timer_stats_timer_clear_start_info(timer
);
1192 if (timer_pending(timer
)) {
1193 base
= lock_timer_base(timer
, &flags
);
1194 ret
= detach_if_pending(timer
, base
, true);
1195 spin_unlock_irqrestore(&base
->lock
, flags
);
1200 EXPORT_SYMBOL(del_timer
);
1203 * try_to_del_timer_sync - Try to deactivate a timer
1204 * @timer: timer do del
1206 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1207 * exit the timer is not queued and the handler is not running on any CPU.
1209 int try_to_del_timer_sync(struct timer_list
*timer
)
1211 struct timer_base
*base
;
1212 unsigned long flags
;
1215 debug_assert_init(timer
);
1217 base
= lock_timer_base(timer
, &flags
);
1219 if (base
->running_timer
!= timer
) {
1220 timer_stats_timer_clear_start_info(timer
);
1221 ret
= detach_if_pending(timer
, base
, true);
1223 spin_unlock_irqrestore(&base
->lock
, flags
);
1227 EXPORT_SYMBOL(try_to_del_timer_sync
);
1231 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1232 * @timer: the timer to be deactivated
1234 * This function only differs from del_timer() on SMP: besides deactivating
1235 * the timer it also makes sure the handler has finished executing on other
1238 * Synchronization rules: Callers must prevent restarting of the timer,
1239 * otherwise this function is meaningless. It must not be called from
1240 * interrupt contexts unless the timer is an irqsafe one. The caller must
1241 * not hold locks which would prevent completion of the timer's
1242 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1243 * timer is not queued and the handler is not running on any CPU.
1245 * Note: For !irqsafe timers, you must not hold locks that are held in
1246 * interrupt context while calling this function. Even if the lock has
1247 * nothing to do with the timer in question. Here's why:
1253 * base->running_timer = mytimer;
1254 * spin_lock_irq(somelock);
1256 * spin_lock(somelock);
1257 * del_timer_sync(mytimer);
1258 * while (base->running_timer == mytimer);
1260 * Now del_timer_sync() will never return and never release somelock.
1261 * The interrupt on the other CPU is waiting to grab somelock but
1262 * it has interrupted the softirq that CPU0 is waiting to finish.
1264 * The function returns whether it has deactivated a pending timer or not.
1266 int del_timer_sync(struct timer_list
*timer
)
1268 #ifdef CONFIG_LOCKDEP
1269 unsigned long flags
;
1272 * If lockdep gives a backtrace here, please reference
1273 * the synchronization rules above.
1275 local_irq_save(flags
);
1276 lock_map_acquire(&timer
->lockdep_map
);
1277 lock_map_release(&timer
->lockdep_map
);
1278 local_irq_restore(flags
);
1281 * don't use it in hardirq context, because it
1282 * could lead to deadlock.
1284 WARN_ON(in_irq() && !(timer
->flags
& TIMER_IRQSAFE
));
1286 int ret
= try_to_del_timer_sync(timer
);
1292 EXPORT_SYMBOL(del_timer_sync
);
1295 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1298 int count
= preempt_count();
1300 #ifdef CONFIG_LOCKDEP
1302 * It is permissible to free the timer from inside the
1303 * function that is called from it, this we need to take into
1304 * account for lockdep too. To avoid bogus "held lock freed"
1305 * warnings as well as problems when looking into
1306 * timer->lockdep_map, make a copy and use that here.
1308 struct lockdep_map lockdep_map
;
1310 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1313 * Couple the lock chain with the lock chain at
1314 * del_timer_sync() by acquiring the lock_map around the fn()
1315 * call here and in del_timer_sync().
1317 lock_map_acquire(&lockdep_map
);
1319 trace_timer_expire_entry(timer
);
1321 trace_timer_expire_exit(timer
);
1323 lock_map_release(&lockdep_map
);
1325 if (count
!= preempt_count()) {
1326 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1327 fn
, count
, preempt_count());
1329 * Restore the preempt count. That gives us a decent
1330 * chance to survive and extract information. If the
1331 * callback kept a lock held, bad luck, but not worse
1332 * than the BUG() we had.
1334 preempt_count_set(count
);
1338 static void expire_timers(struct timer_base
*base
, struct hlist_head
*head
)
1340 while (!hlist_empty(head
)) {
1341 struct timer_list
*timer
;
1342 void (*fn
)(unsigned long);
1345 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1346 timer_stats_account_timer(timer
);
1348 base
->running_timer
= timer
;
1349 detach_timer(timer
, true);
1351 fn
= timer
->function
;
1354 if (timer
->flags
& TIMER_IRQSAFE
) {
1355 spin_unlock(&base
->lock
);
1356 call_timer_fn(timer
, fn
, data
);
1357 spin_lock(&base
->lock
);
1359 spin_unlock_irq(&base
->lock
);
1360 call_timer_fn(timer
, fn
, data
);
1361 spin_lock_irq(&base
->lock
);
1366 static int __collect_expired_timers(struct timer_base
*base
,
1367 struct hlist_head
*heads
)
1369 unsigned long clk
= base
->clk
;
1370 struct hlist_head
*vec
;
1374 for (i
= 0; i
< LVL_DEPTH
; i
++) {
1375 idx
= (clk
& LVL_MASK
) + i
* LVL_SIZE
;
1377 if (__test_and_clear_bit(idx
, base
->pending_map
)) {
1378 vec
= base
->vectors
+ idx
;
1379 hlist_move_list(vec
, heads
++);
1382 /* Is it time to look at the next level? */
1383 if (clk
& LVL_CLK_MASK
)
1385 /* Shift clock for the next level granularity */
1386 clk
>>= LVL_CLK_SHIFT
;
1391 #ifdef CONFIG_NO_HZ_COMMON
1393 * Find the next pending bucket of a level. Search from level start (@offset)
1394 * + @clk upwards and if nothing there, search from start of the level
1395 * (@offset) up to @offset + clk.
1397 static int next_pending_bucket(struct timer_base
*base
, unsigned offset
,
1400 unsigned pos
, start
= offset
+ clk
;
1401 unsigned end
= offset
+ LVL_SIZE
;
1403 pos
= find_next_bit(base
->pending_map
, end
, start
);
1407 pos
= find_next_bit(base
->pending_map
, start
, offset
);
1408 return pos
< start
? pos
+ LVL_SIZE
- start
: -1;
1412 * Search the first expiring timer in the various clock levels. Caller must
1415 static unsigned long __next_timer_interrupt(struct timer_base
*base
)
1417 unsigned long clk
, next
, adj
;
1418 unsigned lvl
, offset
= 0;
1420 next
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
1422 for (lvl
= 0; lvl
< LVL_DEPTH
; lvl
++, offset
+= LVL_SIZE
) {
1423 int pos
= next_pending_bucket(base
, offset
, clk
& LVL_MASK
);
1426 unsigned long tmp
= clk
+ (unsigned long) pos
;
1428 tmp
<<= LVL_SHIFT(lvl
);
1429 if (time_before(tmp
, next
))
1433 * Clock for the next level. If the current level clock lower
1434 * bits are zero, we look at the next level as is. If not we
1435 * need to advance it by one because that's going to be the
1436 * next expiring bucket in that level. base->clk is the next
1437 * expiring jiffie. So in case of:
1439 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442 * we have to look at all levels @index 0. With
1444 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1447 * LVL0 has the next expiring bucket @index 2. The upper
1448 * levels have the next expiring bucket @index 1.
1450 * In case that the propagation wraps the next level the same
1453 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1456 * So after looking at LVL0 we get:
1458 * LVL5 LVL4 LVL3 LVL2 LVL1
1461 * So no propagation from LVL1 to LVL2 because that happened
1462 * with the add already, but then we need to propagate further
1463 * from LVL2 to LVL3.
1465 * So the simple check whether the lower bits of the current
1466 * level are 0 or not is sufficient for all cases.
1468 adj
= clk
& LVL_CLK_MASK
? 1 : 0;
1469 clk
>>= LVL_CLK_SHIFT
;
1476 * Check, if the next hrtimer event is before the next timer wheel
1479 static u64
cmp_next_hrtimer_event(u64 basem
, u64 expires
)
1481 u64 nextevt
= hrtimer_get_next_event();
1484 * If high resolution timers are enabled
1485 * hrtimer_get_next_event() returns KTIME_MAX.
1487 if (expires
<= nextevt
)
1491 * If the next timer is already expired, return the tick base
1492 * time so the tick is fired immediately.
1494 if (nextevt
<= basem
)
1498 * Round up to the next jiffie. High resolution timers are
1499 * off, so the hrtimers are expired in the tick and we need to
1500 * make sure that this tick really expires the timer to avoid
1501 * a ping pong of the nohz stop code.
1503 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1505 return DIV_ROUND_UP_ULL(nextevt
, TICK_NSEC
) * TICK_NSEC
;
1509 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1510 * @basej: base time jiffies
1511 * @basem: base time clock monotonic
1513 * Returns the tick aligned clock monotonic time of the next pending
1514 * timer or KTIME_MAX if no timer is pending.
1516 u64
get_next_timer_interrupt(unsigned long basej
, u64 basem
)
1518 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1519 u64 expires
= KTIME_MAX
;
1520 unsigned long nextevt
;
1524 * Pretend that there is no timer pending if the cpu is offline.
1525 * Possible pending timers will be migrated later to an active cpu.
1527 if (cpu_is_offline(smp_processor_id()))
1530 spin_lock(&base
->lock
);
1531 nextevt
= __next_timer_interrupt(base
);
1532 is_max_delta
= (nextevt
== base
->clk
+ NEXT_TIMER_MAX_DELTA
);
1533 base
->next_expiry
= nextevt
;
1535 * We have a fresh next event. Check whether we can forward the
1536 * base. We can only do that when @basej is past base->clk
1537 * otherwise we might rewind base->clk.
1539 if (time_after(basej
, base
->clk
)) {
1540 if (time_after(nextevt
, basej
))
1542 else if (time_after(nextevt
, base
->clk
))
1543 base
->clk
= nextevt
;
1546 if (time_before_eq(nextevt
, basej
)) {
1548 base
->is_idle
= false;
1551 expires
= basem
+ (u64
)(nextevt
- basej
) * TICK_NSEC
;
1553 * If we expect to sleep more than a tick, mark the base idle.
1554 * Also the tick is stopped so any added timer must forward
1555 * the base clk itself to keep granularity small. This idle
1556 * logic is only maintained for the BASE_STD base, deferrable
1557 * timers may still see large granularity skew (by design).
1559 if ((expires
- basem
) > TICK_NSEC
) {
1560 base
->must_forward_clk
= true;
1561 base
->is_idle
= true;
1564 spin_unlock(&base
->lock
);
1566 return cmp_next_hrtimer_event(basem
, expires
);
1570 * timer_clear_idle - Clear the idle state of the timer base
1572 * Called with interrupts disabled
1574 void timer_clear_idle(void)
1576 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1579 * We do this unlocked. The worst outcome is a remote enqueue sending
1580 * a pointless IPI, but taking the lock would just make the window for
1581 * sending the IPI a few instructions smaller for the cost of taking
1582 * the lock in the exit from idle path.
1584 base
->is_idle
= false;
1587 static int collect_expired_timers(struct timer_base
*base
,
1588 struct hlist_head
*heads
)
1590 unsigned long now
= READ_ONCE(jiffies
);
1593 * NOHZ optimization. After a long idle sleep we need to forward the
1594 * base to current jiffies. Avoid a loop by searching the bitfield for
1595 * the next expiring timer.
1597 if ((long)(now
- base
->clk
) > 2) {
1598 unsigned long next
= __next_timer_interrupt(base
);
1601 * If the next timer is ahead of time forward to current
1602 * jiffies, otherwise forward to the next expiry time:
1604 if (time_after(next
, now
)) {
1605 /* The call site will increment clock! */
1606 base
->clk
= now
- 1;
1611 return __collect_expired_timers(base
, heads
);
1614 static inline int collect_expired_timers(struct timer_base
*base
,
1615 struct hlist_head
*heads
)
1617 return __collect_expired_timers(base
, heads
);
1622 * Called from the timer interrupt handler to charge one tick to the current
1623 * process. user_tick is 1 if the tick is user time, 0 for system.
1625 void update_process_times(int user_tick
)
1627 struct task_struct
*p
= current
;
1629 /* Note: this timer irq context must be accounted for as well. */
1630 account_process_tick(p
, user_tick
);
1632 rcu_check_callbacks(user_tick
);
1633 #ifdef CONFIG_IRQ_WORK
1638 run_posix_cpu_timers(p
);
1642 * __run_timers - run all expired timers (if any) on this CPU.
1643 * @base: the timer vector to be processed.
1645 static inline void __run_timers(struct timer_base
*base
)
1647 struct hlist_head heads
[LVL_DEPTH
];
1650 if (!time_after_eq(jiffies
, base
->clk
))
1653 spin_lock_irq(&base
->lock
);
1656 * timer_base::must_forward_clk must be cleared before running
1657 * timers so that any timer functions that call mod_timer() will
1658 * not try to forward the base. Idle tracking / clock forwarding
1659 * logic is only used with BASE_STD timers.
1661 * The must_forward_clk flag is cleared unconditionally also for
1662 * the deferrable base. The deferrable base is not affected by idle
1663 * tracking and never forwarded, so clearing the flag is a NOOP.
1665 * The fact that the deferrable base is never forwarded can cause
1666 * large variations in granularity for deferrable timers, but they
1667 * can be deferred for long periods due to idle anyway.
1669 base
->must_forward_clk
= false;
1671 while (time_after_eq(jiffies
, base
->clk
)) {
1673 levels
= collect_expired_timers(base
, heads
);
1677 expire_timers(base
, heads
+ levels
);
1679 base
->running_timer
= NULL
;
1680 spin_unlock_irq(&base
->lock
);
1684 * This function runs timers and the timer-tq in bottom half context.
1686 static __latent_entropy
void run_timer_softirq(struct softirq_action
*h
)
1688 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1691 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
))
1692 __run_timers(this_cpu_ptr(&timer_bases
[BASE_DEF
]));
1696 * Called by the local, per-CPU timer interrupt on SMP.
1698 void run_local_timers(void)
1700 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1702 hrtimer_run_queues();
1703 /* Raise the softirq only if required. */
1704 if (time_before(jiffies
, base
->clk
)) {
1705 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
))
1707 /* CPU is awake, so check the deferrable base. */
1709 if (time_before(jiffies
, base
->clk
))
1712 raise_softirq(TIMER_SOFTIRQ
);
1715 #ifdef __ARCH_WANT_SYS_ALARM
1718 * For backwards compatibility? This can be done in libc so Alpha
1719 * and all newer ports shouldn't need it.
1721 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1723 return alarm_setitimer(seconds
);
1728 static void process_timeout(unsigned long __data
)
1730 wake_up_process((struct task_struct
*)__data
);
1734 * schedule_timeout - sleep until timeout
1735 * @timeout: timeout value in jiffies
1737 * Make the current task sleep until @timeout jiffies have
1738 * elapsed. The routine will return immediately unless
1739 * the current task state has been set (see set_current_state()).
1741 * You can set the task state as follows -
1743 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1744 * pass before the routine returns. The routine will return 0
1746 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1747 * delivered to the current task. In this case the remaining time
1748 * in jiffies will be returned, or 0 if the timer expired in time
1750 * The current task state is guaranteed to be TASK_RUNNING when this
1753 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1754 * the CPU away without a bound on the timeout. In this case the return
1755 * value will be %MAX_SCHEDULE_TIMEOUT.
1757 * In all cases the return value is guaranteed to be non-negative.
1759 signed long __sched
schedule_timeout(signed long timeout
)
1761 struct timer_list timer
;
1762 unsigned long expire
;
1766 case MAX_SCHEDULE_TIMEOUT
:
1768 * These two special cases are useful to be comfortable
1769 * in the caller. Nothing more. We could take
1770 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1771 * but I' d like to return a valid offset (>=0) to allow
1772 * the caller to do everything it want with the retval.
1778 * Another bit of PARANOID. Note that the retval will be
1779 * 0 since no piece of kernel is supposed to do a check
1780 * for a negative retval of schedule_timeout() (since it
1781 * should never happens anyway). You just have the printk()
1782 * that will tell you if something is gone wrong and where.
1785 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1786 "value %lx\n", timeout
);
1788 current
->state
= TASK_RUNNING
;
1793 expire
= timeout
+ jiffies
;
1795 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1796 __mod_timer(&timer
, expire
, false);
1798 del_singleshot_timer_sync(&timer
);
1800 /* Remove the timer from the object tracker */
1801 destroy_timer_on_stack(&timer
);
1803 timeout
= expire
- jiffies
;
1806 return timeout
< 0 ? 0 : timeout
;
1808 EXPORT_SYMBOL(schedule_timeout
);
1811 * We can use __set_current_state() here because schedule_timeout() calls
1812 * schedule() unconditionally.
1814 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1816 __set_current_state(TASK_INTERRUPTIBLE
);
1817 return schedule_timeout(timeout
);
1819 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1821 signed long __sched
schedule_timeout_killable(signed long timeout
)
1823 __set_current_state(TASK_KILLABLE
);
1824 return schedule_timeout(timeout
);
1826 EXPORT_SYMBOL(schedule_timeout_killable
);
1828 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1830 __set_current_state(TASK_UNINTERRUPTIBLE
);
1831 return schedule_timeout(timeout
);
1833 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1836 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1839 signed long __sched
schedule_timeout_idle(signed long timeout
)
1841 __set_current_state(TASK_IDLE
);
1842 return schedule_timeout(timeout
);
1844 EXPORT_SYMBOL(schedule_timeout_idle
);
1846 #ifdef CONFIG_HOTPLUG_CPU
1847 static void migrate_timer_list(struct timer_base
*new_base
, struct hlist_head
*head
)
1849 struct timer_list
*timer
;
1850 int cpu
= new_base
->cpu
;
1852 while (!hlist_empty(head
)) {
1853 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1854 detach_timer(timer
, false);
1855 timer
->flags
= (timer
->flags
& ~TIMER_BASEMASK
) | cpu
;
1856 internal_add_timer(new_base
, timer
);
1860 int timers_prepare_cpu(unsigned int cpu
)
1862 struct timer_base
*base
;
1865 for (b
= 0; b
< NR_BASES
; b
++) {
1866 base
= per_cpu_ptr(&timer_bases
[b
], cpu
);
1867 base
->clk
= jiffies
;
1868 base
->next_expiry
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
1869 base
->is_idle
= false;
1870 base
->must_forward_clk
= true;
1875 int timers_dead_cpu(unsigned int cpu
)
1877 struct timer_base
*old_base
;
1878 struct timer_base
*new_base
;
1881 BUG_ON(cpu_online(cpu
));
1883 for (b
= 0; b
< NR_BASES
; b
++) {
1884 old_base
= per_cpu_ptr(&timer_bases
[b
], cpu
);
1885 new_base
= get_cpu_ptr(&timer_bases
[b
]);
1887 * The caller is globally serialized and nobody else
1888 * takes two locks at once, deadlock is not possible.
1890 spin_lock_irq(&new_base
->lock
);
1891 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1894 * The current CPUs base clock might be stale. Update it
1895 * before moving the timers over.
1897 forward_timer_base(new_base
);
1899 BUG_ON(old_base
->running_timer
);
1901 for (i
= 0; i
< WHEEL_SIZE
; i
++)
1902 migrate_timer_list(new_base
, old_base
->vectors
+ i
);
1904 spin_unlock(&old_base
->lock
);
1905 spin_unlock_irq(&new_base
->lock
);
1906 put_cpu_ptr(&timer_bases
);
1911 #endif /* CONFIG_HOTPLUG_CPU */
1913 static void __init
init_timer_cpu(int cpu
)
1915 struct timer_base
*base
;
1918 for (i
= 0; i
< NR_BASES
; i
++) {
1919 base
= per_cpu_ptr(&timer_bases
[i
], cpu
);
1921 spin_lock_init(&base
->lock
);
1922 base
->clk
= jiffies
;
1926 static void __init
init_timer_cpus(void)
1930 for_each_possible_cpu(cpu
)
1931 init_timer_cpu(cpu
);
1934 void __init
init_timers(void)
1938 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1942 * msleep - sleep safely even with waitqueue interruptions
1943 * @msecs: Time in milliseconds to sleep for
1945 void msleep(unsigned int msecs
)
1947 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1950 timeout
= schedule_timeout_uninterruptible(timeout
);
1953 EXPORT_SYMBOL(msleep
);
1956 * msleep_interruptible - sleep waiting for signals
1957 * @msecs: Time in milliseconds to sleep for
1959 unsigned long msleep_interruptible(unsigned int msecs
)
1961 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1963 while (timeout
&& !signal_pending(current
))
1964 timeout
= schedule_timeout_interruptible(timeout
);
1965 return jiffies_to_msecs(timeout
);
1968 EXPORT_SYMBOL(msleep_interruptible
);
1970 static void __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1975 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1976 delta
= (u64
)(max
- min
) * NSEC_PER_USEC
;
1977 schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1981 * usleep_range - Sleep for an approximate time
1982 * @min: Minimum time in usecs to sleep
1983 * @max: Maximum time in usecs to sleep
1985 * In non-atomic context where the exact wakeup time is flexible, use
1986 * usleep_range() instead of udelay(). The sleep improves responsiveness
1987 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1988 * power usage by allowing hrtimers to take advantage of an already-
1989 * scheduled interrupt instead of scheduling a new one just for this sleep.
1991 void __sched
usleep_range(unsigned long min
, unsigned long max
)
1993 __set_current_state(TASK_UNINTERRUPTIBLE
);
1994 do_usleep_range(min
, max
);
1996 EXPORT_SYMBOL(usleep_range
);