1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * inode.c - NTFS kernel inode handling.
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
8 #include <linux/buffer_head.h>
11 #include <linux/mount.h>
12 #include <linux/mutex.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/slab.h>
16 #include <linux/log2.h>
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @na: ntfs attribute which is being tested with
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @na.
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
41 * Return 1 if the attributes match and 0 if not.
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
46 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
50 if (vi
->i_ino
!= na
->mft_no
)
53 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
54 if (likely(!NInoAttr(ni
))) {
55 /* If not looking for a normal inode this is a mismatch. */
56 if (unlikely(na
->type
!= AT_UNUSED
))
59 /* A fake inode describing an attribute. */
60 if (ni
->type
!= na
->type
)
62 if (ni
->name_len
!= na
->name_len
)
64 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
65 na
->name_len
* sizeof(ntfschar
)))
73 * ntfs_init_locked_inode - initialize an inode
74 * @vi: vfs inode to initialize
75 * @na: ntfs attribute which to initialize @vi to
77 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
78 * order to enable ntfs_test_inode() to do its work.
80 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
81 * In that case, @na->name and @na->name_len should be set to NULL and 0,
82 * respectively. Although that is not strictly necessary as
83 * ntfs_read_locked_inode() will fill them in later.
85 * Return 0 on success and -errno on error.
87 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
88 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
92 ntfs_inode
*ni
= NTFS_I(vi
);
94 vi
->i_ino
= na
->mft_no
;
97 if (na
->type
== AT_INDEX_ALLOCATION
)
98 NInoSetMstProtected(ni
);
101 ni
->name_len
= na
->name_len
;
103 /* If initializing a normal inode, we are done. */
104 if (likely(na
->type
== AT_UNUSED
)) {
106 BUG_ON(na
->name_len
);
110 /* It is a fake inode. */
114 * We have I30 global constant as an optimization as it is the name
115 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
116 * allocation but that is ok. And most attributes are unnamed anyway,
117 * thus the fraction of named attributes with name != I30 is actually
120 if (na
->name_len
&& na
->name
!= I30
) {
124 i
= na
->name_len
* sizeof(ntfschar
);
125 ni
->name
= kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
128 memcpy(ni
->name
, na
->name
, i
);
129 ni
->name
[na
->name_len
] = 0;
134 typedef int (*set_t
)(struct inode
*, void *);
135 static int ntfs_read_locked_inode(struct inode
*vi
);
136 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
137 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
141 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
142 * @sb: super block of mounted volume
143 * @mft_no: mft record number / inode number to obtain
145 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
146 * file or directory).
148 * If the inode is in the cache, it is just returned with an increased
149 * reference count. Otherwise, a new struct inode is allocated and initialized,
150 * and finally ntfs_read_locked_inode() is called to read in the inode and
151 * fill in the remainder of the inode structure.
153 * Return the struct inode on success. Check the return value with IS_ERR() and
154 * if true, the function failed and the error code is obtained from PTR_ERR().
156 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
167 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
168 (set_t
)ntfs_init_locked_inode
, &na
);
170 return ERR_PTR(-ENOMEM
);
174 /* If this is a freshly allocated inode, need to read it now. */
175 if (vi
->i_state
& I_NEW
) {
176 err
= ntfs_read_locked_inode(vi
);
177 unlock_new_inode(vi
);
180 * There is no point in keeping bad inodes around if the failure was
181 * due to ENOMEM. We want to be able to retry again later.
183 if (unlikely(err
== -ENOMEM
)) {
191 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
192 * @base_vi: vfs base inode containing the attribute
193 * @type: attribute type
194 * @name: Unicode name of the attribute (NULL if unnamed)
195 * @name_len: length of @name in Unicode characters (0 if unnamed)
197 * Obtain the (fake) struct inode corresponding to the attribute specified by
198 * @type, @name, and @name_len, which is present in the base mft record
199 * specified by the vfs inode @base_vi.
201 * If the attribute inode is in the cache, it is just returned with an
202 * increased reference count. Otherwise, a new struct inode is allocated and
203 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
204 * attribute and fill in the inode structure.
206 * Note, for index allocation attributes, you need to use ntfs_index_iget()
207 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209 * Return the struct inode of the attribute inode on success. Check the return
210 * value with IS_ERR() and if true, the function failed and the error code is
211 * obtained from PTR_ERR().
213 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
214 ntfschar
*name
, u32 name_len
)
220 /* Make sure no one calls ntfs_attr_iget() for indices. */
221 BUG_ON(type
== AT_INDEX_ALLOCATION
);
223 na
.mft_no
= base_vi
->i_ino
;
226 na
.name_len
= name_len
;
228 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
229 (set_t
)ntfs_init_locked_inode
, &na
);
231 return ERR_PTR(-ENOMEM
);
235 /* If this is a freshly allocated inode, need to read it now. */
236 if (vi
->i_state
& I_NEW
) {
237 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
238 unlock_new_inode(vi
);
241 * There is no point in keeping bad attribute inodes around. This also
242 * simplifies things in that we never need to check for bad attribute
253 * ntfs_index_iget - obtain a struct inode corresponding to an index
254 * @base_vi: vfs base inode containing the index related attributes
255 * @name: Unicode name of the index
256 * @name_len: length of @name in Unicode characters
258 * Obtain the (fake) struct inode corresponding to the index specified by @name
259 * and @name_len, which is present in the base mft record specified by the vfs
262 * If the index inode is in the cache, it is just returned with an increased
263 * reference count. Otherwise, a new struct inode is allocated and
264 * initialized, and finally ntfs_read_locked_index_inode() is called to read
265 * the index related attributes and fill in the inode structure.
267 * Return the struct inode of the index inode on success. Check the return
268 * value with IS_ERR() and if true, the function failed and the error code is
269 * obtained from PTR_ERR().
271 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
278 na
.mft_no
= base_vi
->i_ino
;
279 na
.type
= AT_INDEX_ALLOCATION
;
281 na
.name_len
= name_len
;
283 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
284 (set_t
)ntfs_init_locked_inode
, &na
);
286 return ERR_PTR(-ENOMEM
);
290 /* If this is a freshly allocated inode, need to read it now. */
291 if (vi
->i_state
& I_NEW
) {
292 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
293 unlock_new_inode(vi
);
296 * There is no point in keeping bad index inodes around. This also
297 * simplifies things in that we never need to check for bad index
307 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
311 ntfs_debug("Entering.");
312 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, GFP_NOFS
);
313 if (likely(ni
!= NULL
)) {
317 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
321 void ntfs_free_big_inode(struct inode
*inode
)
323 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
326 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
330 ntfs_debug("Entering.");
331 ni
= kmem_cache_alloc(ntfs_inode_cache
, GFP_NOFS
);
332 if (likely(ni
!= NULL
)) {
336 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
340 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
342 ntfs_debug("Entering.");
344 if (!atomic_dec_and_test(&ni
->count
))
346 kmem_cache_free(ntfs_inode_cache
, ni
);
350 * The attribute runlist lock has separate locking rules from the
351 * normal runlist lock, so split the two lock-classes:
353 static struct lock_class_key attr_list_rl_lock_class
;
356 * __ntfs_init_inode - initialize ntfs specific part of an inode
357 * @sb: super block of mounted volume
358 * @ni: freshly allocated ntfs inode which to initialize
360 * Initialize an ntfs inode to defaults.
362 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
363 * untouched. Make sure to initialize them elsewhere.
365 * Return zero on success and -ENOMEM on error.
367 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
369 ntfs_debug("Entering.");
370 rwlock_init(&ni
->size_lock
);
371 ni
->initialized_size
= ni
->allocated_size
= 0;
373 atomic_set(&ni
->count
, 1);
374 ni
->vol
= NTFS_SB(sb
);
375 ntfs_init_runlist(&ni
->runlist
);
376 mutex_init(&ni
->mrec_lock
);
379 ni
->attr_list_size
= 0;
380 ni
->attr_list
= NULL
;
381 ntfs_init_runlist(&ni
->attr_list_rl
);
382 lockdep_set_class(&ni
->attr_list_rl
.lock
,
383 &attr_list_rl_lock_class
);
384 ni
->itype
.index
.block_size
= 0;
385 ni
->itype
.index
.vcn_size
= 0;
386 ni
->itype
.index
.collation_rule
= 0;
387 ni
->itype
.index
.block_size_bits
= 0;
388 ni
->itype
.index
.vcn_size_bits
= 0;
389 mutex_init(&ni
->extent_lock
);
391 ni
->ext
.base_ntfs_ino
= NULL
;
395 * Extent inodes get MFT-mapped in a nested way, while the base inode
396 * is still mapped. Teach this nesting to the lock validator by creating
397 * a separate class for nested inode's mrec_lock's:
399 static struct lock_class_key extent_inode_mrec_lock_key
;
401 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
402 unsigned long mft_no
)
404 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
406 ntfs_debug("Entering.");
407 if (likely(ni
!= NULL
)) {
408 __ntfs_init_inode(sb
, ni
);
409 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
411 ni
->type
= AT_UNUSED
;
419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
420 * @ctx: initialized attribute search context
422 * Search all file name attributes in the inode described by the attribute
423 * search context @ctx and check if any of the names are in the $Extend system
427 * 1: file is in $Extend directory
428 * 0: file is not in $Extend directory
429 * -errno: failed to determine if the file is in the $Extend directory
431 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
435 /* Restart search. */
436 ntfs_attr_reinit_search_ctx(ctx
);
438 /* Get number of hard links. */
439 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
441 /* Loop through all hard links. */
442 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
444 FILE_NAME_ATTR
*file_name_attr
;
445 ATTR_RECORD
*attr
= ctx
->attr
;
450 * Maximum sanity checking as we are called on an inode that
451 * we suspect might be corrupt.
453 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
454 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
455 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
457 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
458 "attribute. You should run chkdsk.");
461 if (attr
->non_resident
) {
462 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
463 "name. You should run chkdsk.");
467 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
468 "invalid flags. You should run "
472 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
473 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
474 "name. You should run chkdsk.");
477 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
478 le16_to_cpu(attr
->data
.resident
.value_offset
));
479 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
480 if (p2
< (u8
*)attr
|| p2
> p
)
481 goto err_corrupt_attr
;
482 /* This attribute is ok, but is it in the $Extend directory? */
483 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
484 return 1; /* YES, it's an extended system file. */
486 if (unlikely(err
!= -ENOENT
))
488 if (unlikely(nr_links
)) {
489 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
490 "doesn't match number of name attributes. You "
491 "should run chkdsk.");
494 return 0; /* NO, it is not an extended system file. */
498 * ntfs_read_locked_inode - read an inode from its device
501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
502 * described by @vi into memory from the device.
504 * The only fields in @vi that we need to/can look at when the function is
505 * called are i_sb, pointing to the mounted device's super block, and i_ino,
506 * the number of the inode to load.
508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
509 * for reading and sets up the necessary @vi fields as well as initializing
512 * Q: What locks are held when the function is called?
513 * A: i_state has I_NEW set, hence the inode is locked, also
514 * i_count is set to 1, so it is not going to go away
515 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
516 * is allowed to write to them. We should of course be honouring them but
517 * we need to do that using the IS_* macros defined in include/linux/fs.h.
518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 * Return 0 on success and -errno on error. In the error case, the inode will
521 * have had make_bad_inode() executed on it.
523 static int ntfs_read_locked_inode(struct inode
*vi
)
525 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
530 STANDARD_INFORMATION
*si
;
531 ntfs_attr_search_ctx
*ctx
;
534 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
536 /* Setup the generic vfs inode parts now. */
537 vi
->i_uid
= vol
->uid
;
538 vi
->i_gid
= vol
->gid
;
542 * Initialize the ntfs specific part of @vi special casing
543 * FILE_MFT which we need to do at mount time.
545 if (vi
->i_ino
!= FILE_MFT
)
546 ntfs_init_big_inode(vi
);
549 m
= map_mft_record(ni
);
554 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
560 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
561 ntfs_error(vi
->i_sb
, "Inode is not in use!");
564 if (m
->base_mft_record
) {
565 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
569 /* Transfer information from mft record into vfs and ntfs inodes. */
570 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
573 * FIXME: Keep in mind that link_count is two for files which have both
574 * a long file name and a short file name as separate entries, so if
575 * we are hiding short file names this will be too high. Either we need
576 * to account for the short file names by subtracting them or we need
577 * to make sure we delete files even though i_nlink is not zero which
578 * might be tricky due to vfs interactions. Need to think about this
579 * some more when implementing the unlink command.
581 set_nlink(vi
, le16_to_cpu(m
->link_count
));
583 * FIXME: Reparse points can have the directory bit set even though
584 * they would be S_IFLNK. Need to deal with this further below when we
585 * implement reparse points / symbolic links but it will do for now.
586 * Also if not a directory, it could be something else, rather than
587 * a regular file. But again, will do for now.
589 /* Everyone gets all permissions. */
590 vi
->i_mode
|= S_IRWXUGO
;
591 /* If read-only, no one gets write permissions. */
593 vi
->i_mode
&= ~S_IWUGO
;
594 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
595 vi
->i_mode
|= S_IFDIR
;
597 * Apply the directory permissions mask set in the mount
600 vi
->i_mode
&= ~vol
->dmask
;
601 /* Things break without this kludge! */
605 vi
->i_mode
|= S_IFREG
;
606 /* Apply the file permissions mask set in the mount options. */
607 vi
->i_mode
&= ~vol
->fmask
;
610 * Find the standard information attribute in the mft record. At this
611 * stage we haven't setup the attribute list stuff yet, so this could
612 * in fact fail if the standard information is in an extent record, but
613 * I don't think this actually ever happens.
615 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
618 if (err
== -ENOENT
) {
620 * TODO: We should be performing a hot fix here (if the
621 * recover mount option is set) by creating a new
624 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
630 /* Get the standard information attribute value. */
631 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
632 le16_to_cpu(a
->data
.resident
.value_offset
));
634 /* Transfer information from the standard information into vi. */
636 * Note: The i_?times do not quite map perfectly onto the NTFS times,
637 * but they are close enough, and in the end it doesn't really matter
641 * mtime is the last change of the data within the file. Not changed
642 * when only metadata is changed, e.g. a rename doesn't affect mtime.
644 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
646 * ctime is the last change of the metadata of the file. This obviously
647 * always changes, when mtime is changed. ctime can be changed on its
648 * own, mtime is then not changed, e.g. when a file is renamed.
650 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
652 * Last access to the data within the file. Not changed during a rename
653 * for example but changed whenever the file is written to.
655 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
657 /* Find the attribute list attribute if present. */
658 ntfs_attr_reinit_search_ctx(ctx
);
659 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
661 if (unlikely(err
!= -ENOENT
)) {
662 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
666 } else /* if (!err) */ {
667 if (vi
->i_ino
== FILE_MFT
)
668 goto skip_attr_list_load
;
669 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
672 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
673 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
677 if (a
->flags
& ATTR_IS_ENCRYPTED
||
678 a
->flags
& ATTR_IS_SPARSE
) {
679 if (a
->non_resident
) {
680 ntfs_error(vi
->i_sb
, "Non-resident attribute "
681 "list attribute is encrypted/"
685 ntfs_warning(vi
->i_sb
, "Resident attribute list "
686 "attribute in inode 0x%lx is marked "
687 "encrypted/sparse which is not true. "
688 "However, Windows allows this and "
689 "chkdsk does not detect or correct it "
690 "so we will just ignore the invalid "
691 "flags and pretend they are not set.",
694 /* Now allocate memory for the attribute list. */
695 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
696 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
697 if (!ni
->attr_list
) {
698 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
699 "buffer for attribute list.");
703 if (a
->non_resident
) {
704 NInoSetAttrListNonResident(ni
);
705 if (a
->data
.non_resident
.lowest_vcn
) {
706 ntfs_error(vi
->i_sb
, "Attribute list has non "
711 * Setup the runlist. No need for locking as we have
712 * exclusive access to the inode at this time.
714 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
716 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
717 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
718 ni
->attr_list_rl
.rl
= NULL
;
719 ntfs_error(vi
->i_sb
, "Mapping pairs "
720 "decompression failed.");
723 /* Now load the attribute list. */
724 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
725 ni
->attr_list
, ni
->attr_list_size
,
726 sle64_to_cpu(a
->data
.non_resident
.
727 initialized_size
)))) {
728 ntfs_error(vi
->i_sb
, "Failed to load "
729 "attribute list attribute.");
732 } else /* if (!a->non_resident) */ {
733 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
735 a
->data
.resident
.value_length
) >
736 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
737 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
741 /* Now copy the attribute list. */
742 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
743 a
->data
.resident
.value_offset
),
745 a
->data
.resident
.value_length
));
750 * If an attribute list is present we now have the attribute list value
751 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
753 if (S_ISDIR(vi
->i_mode
)) {
757 u8
*ir_end
, *index_end
;
759 /* It is a directory, find index root attribute. */
760 ntfs_attr_reinit_search_ctx(ctx
);
761 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
764 if (err
== -ENOENT
) {
765 // FIXME: File is corrupt! Hot-fix with empty
766 // index root attribute if recovery option is
768 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
774 /* Set up the state. */
775 if (unlikely(a
->non_resident
)) {
776 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
780 /* Ensure the attribute name is placed before the value. */
781 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
782 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
783 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
784 "placed after the attribute value.");
788 * Compressed/encrypted index root just means that the newly
789 * created files in that directory should be created compressed/
790 * encrypted. However index root cannot be both compressed and
793 if (a
->flags
& ATTR_COMPRESSION_MASK
)
794 NInoSetCompressed(ni
);
795 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
796 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
797 ntfs_error(vi
->i_sb
, "Found encrypted and "
798 "compressed attribute.");
801 NInoSetEncrypted(ni
);
803 if (a
->flags
& ATTR_IS_SPARSE
)
805 ir
= (INDEX_ROOT
*)((u8
*)a
+
806 le16_to_cpu(a
->data
.resident
.value_offset
));
807 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
808 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
809 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
813 index_end
= (u8
*)&ir
->index
+
814 le32_to_cpu(ir
->index
.index_length
);
815 if (index_end
> ir_end
) {
816 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
819 if (ir
->type
!= AT_FILE_NAME
) {
820 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
824 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
825 ntfs_error(vi
->i_sb
, "Index collation rule is not "
826 "COLLATION_FILE_NAME.");
829 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
830 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
831 if (ni
->itype
.index
.block_size
&
832 (ni
->itype
.index
.block_size
- 1)) {
833 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
835 ni
->itype
.index
.block_size
);
838 if (ni
->itype
.index
.block_size
> PAGE_SIZE
) {
839 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
840 "PAGE_SIZE (%ld) is not "
842 ni
->itype
.index
.block_size
,
847 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
848 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
849 "NTFS_BLOCK_SIZE (%i) is not "
851 ni
->itype
.index
.block_size
,
856 ni
->itype
.index
.block_size_bits
=
857 ffs(ni
->itype
.index
.block_size
) - 1;
858 /* Determine the size of a vcn in the directory index. */
859 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
860 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
861 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
863 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
864 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
867 /* Setup the index allocation attribute, even if not present. */
868 NInoSetMstProtected(ni
);
869 ni
->type
= AT_INDEX_ALLOCATION
;
873 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
874 /* No index allocation. */
875 vi
->i_size
= ni
->initialized_size
=
876 ni
->allocated_size
= 0;
877 /* We are done with the mft record, so we release it. */
878 ntfs_attr_put_search_ctx(ctx
);
879 unmap_mft_record(ni
);
882 goto skip_large_dir_stuff
;
883 } /* LARGE_INDEX: Index allocation present. Setup state. */
884 NInoSetIndexAllocPresent(ni
);
885 /* Find index allocation attribute. */
886 ntfs_attr_reinit_search_ctx(ctx
);
887 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
888 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
891 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
892 "attribute is not present but "
893 "$INDEX_ROOT indicated it is.");
895 ntfs_error(vi
->i_sb
, "Failed to lookup "
901 if (!a
->non_resident
) {
902 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
907 * Ensure the attribute name is placed before the mapping pairs
910 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
912 a
->data
.non_resident
.mapping_pairs_offset
)))) {
913 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
914 "is placed after the mapping pairs "
918 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
919 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
923 if (a
->flags
& ATTR_IS_SPARSE
) {
924 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
928 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
929 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
933 if (a
->data
.non_resident
.lowest_vcn
) {
934 ntfs_error(vi
->i_sb
, "First extent of "
935 "$INDEX_ALLOCATION attribute has non "
939 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
940 ni
->initialized_size
= sle64_to_cpu(
941 a
->data
.non_resident
.initialized_size
);
942 ni
->allocated_size
= sle64_to_cpu(
943 a
->data
.non_resident
.allocated_size
);
945 * We are done with the mft record, so we release it. Otherwise
946 * we would deadlock in ntfs_attr_iget().
948 ntfs_attr_put_search_ctx(ctx
);
949 unmap_mft_record(ni
);
952 /* Get the index bitmap attribute inode. */
953 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
955 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
960 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
962 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
963 "and/or encrypted and/or sparse.");
964 goto iput_unm_err_out
;
966 /* Consistency check bitmap size vs. index allocation size. */
967 bvi_size
= i_size_read(bvi
);
968 if ((bvi_size
<< 3) < (vi
->i_size
>>
969 ni
->itype
.index
.block_size_bits
)) {
970 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
971 "for index allocation (0x%llx).",
972 bvi_size
<< 3, vi
->i_size
);
973 goto iput_unm_err_out
;
975 /* No longer need the bitmap attribute inode. */
977 skip_large_dir_stuff
:
978 /* Setup the operations for this inode. */
979 vi
->i_op
= &ntfs_dir_inode_ops
;
980 vi
->i_fop
= &ntfs_dir_ops
;
981 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
984 ntfs_attr_reinit_search_ctx(ctx
);
986 /* Setup the data attribute, even if not present. */
991 /* Find first extent of the unnamed data attribute. */
992 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
994 vi
->i_size
= ni
->initialized_size
=
995 ni
->allocated_size
= 0;
996 if (err
!= -ENOENT
) {
997 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1002 * FILE_Secure does not have an unnamed $DATA
1003 * attribute, so we special case it here.
1005 if (vi
->i_ino
== FILE_Secure
)
1006 goto no_data_attr_special_case
;
1008 * Most if not all the system files in the $Extend
1009 * system directory do not have unnamed data
1010 * attributes so we need to check if the parent
1011 * directory of the file is FILE_Extend and if it is
1012 * ignore this error. To do this we need to get the
1013 * name of this inode from the mft record as the name
1014 * contains the back reference to the parent directory.
1016 if (ntfs_is_extended_system_file(ctx
) > 0)
1017 goto no_data_attr_special_case
;
1018 // FIXME: File is corrupt! Hot-fix with empty data
1019 // attribute if recovery option is set.
1020 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1024 /* Setup the state. */
1025 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1026 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1027 NInoSetCompressed(ni
);
1028 if (vol
->cluster_size
> 4096) {
1029 ntfs_error(vi
->i_sb
, "Found "
1030 "compressed data but "
1033 "cluster size (%i) > "
1038 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1039 != ATTR_IS_COMPRESSED
) {
1040 ntfs_error(vi
->i_sb
, "Found unknown "
1041 "compression method "
1042 "or corrupt file.");
1046 if (a
->flags
& ATTR_IS_SPARSE
)
1049 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1050 if (NInoCompressed(ni
)) {
1051 ntfs_error(vi
->i_sb
, "Found encrypted and "
1052 "compressed data.");
1055 NInoSetEncrypted(ni
);
1057 if (a
->non_resident
) {
1058 NInoSetNonResident(ni
);
1059 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1060 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1061 compression_unit
!= 4) {
1062 ntfs_error(vi
->i_sb
, "Found "
1064 "compression unit (%u "
1066 "Cannot handle this.",
1067 a
->data
.non_resident
.
1072 if (a
->data
.non_resident
.compression_unit
) {
1073 ni
->itype
.compressed
.block_size
= 1U <<
1074 (a
->data
.non_resident
.
1076 vol
->cluster_size_bits
);
1077 ni
->itype
.compressed
.block_size_bits
=
1081 ni
->itype
.compressed
.block_clusters
=
1086 ni
->itype
.compressed
.block_size
= 0;
1087 ni
->itype
.compressed
.block_size_bits
=
1089 ni
->itype
.compressed
.block_clusters
=
1092 ni
->itype
.compressed
.size
= sle64_to_cpu(
1093 a
->data
.non_resident
.
1096 if (a
->data
.non_resident
.lowest_vcn
) {
1097 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1098 "attribute has non zero "
1102 vi
->i_size
= sle64_to_cpu(
1103 a
->data
.non_resident
.data_size
);
1104 ni
->initialized_size
= sle64_to_cpu(
1105 a
->data
.non_resident
.initialized_size
);
1106 ni
->allocated_size
= sle64_to_cpu(
1107 a
->data
.non_resident
.allocated_size
);
1108 } else { /* Resident attribute. */
1109 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1110 a
->data
.resident
.value_length
);
1111 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1113 a
->data
.resident
.value_offset
);
1114 if (vi
->i_size
> ni
->allocated_size
) {
1115 ntfs_error(vi
->i_sb
, "Resident data attribute "
1116 "is corrupt (size exceeds "
1121 no_data_attr_special_case
:
1122 /* We are done with the mft record, so we release it. */
1123 ntfs_attr_put_search_ctx(ctx
);
1124 unmap_mft_record(ni
);
1127 /* Setup the operations for this inode. */
1128 vi
->i_op
= &ntfs_file_inode_ops
;
1129 vi
->i_fop
= &ntfs_file_ops
;
1130 vi
->i_mapping
->a_ops
= &ntfs_normal_aops
;
1131 if (NInoMstProtected(ni
))
1132 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1133 else if (NInoCompressed(ni
))
1134 vi
->i_mapping
->a_ops
= &ntfs_compressed_aops
;
1137 * The number of 512-byte blocks used on disk (for stat). This is in so
1138 * far inaccurate as it doesn't account for any named streams or other
1139 * special non-resident attributes, but that is how Windows works, too,
1140 * so we are at least consistent with Windows, if not entirely
1141 * consistent with the Linux Way. Doing it the Linux Way would cause a
1142 * significant slowdown as it would involve iterating over all
1143 * attributes in the mft record and adding the allocated/compressed
1144 * sizes of all non-resident attributes present to give us the Linux
1145 * correct size that should go into i_blocks (after division by 512).
1147 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1148 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1150 vi
->i_blocks
= ni
->allocated_size
>> 9;
1151 ntfs_debug("Done.");
1159 ntfs_attr_put_search_ctx(ctx
);
1161 unmap_mft_record(ni
);
1163 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1164 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1166 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1172 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1173 * @base_vi: base inode
1174 * @vi: attribute inode to read
1176 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1177 * attribute inode described by @vi into memory from the base mft record
1178 * described by @base_ni.
1180 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1181 * reading and looks up the attribute described by @vi before setting up the
1182 * necessary fields in @vi as well as initializing the ntfs inode.
1184 * Q: What locks are held when the function is called?
1185 * A: i_state has I_NEW set, hence the inode is locked, also
1186 * i_count is set to 1, so it is not going to go away
1188 * Return 0 on success and -errno on error. In the error case, the inode will
1189 * have had make_bad_inode() executed on it.
1191 * Note this cannot be called for AT_INDEX_ALLOCATION.
1193 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1195 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1196 ntfs_inode
*ni
, *base_ni
;
1199 ntfs_attr_search_ctx
*ctx
;
1202 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1204 ntfs_init_big_inode(vi
);
1207 base_ni
= NTFS_I(base_vi
);
1209 /* Just mirror the values from the base inode. */
1210 vi
->i_uid
= base_vi
->i_uid
;
1211 vi
->i_gid
= base_vi
->i_gid
;
1212 set_nlink(vi
, base_vi
->i_nlink
);
1213 vi
->i_mtime
= base_vi
->i_mtime
;
1214 vi
->i_ctime
= base_vi
->i_ctime
;
1215 vi
->i_atime
= base_vi
->i_atime
;
1216 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1218 /* Set inode type to zero but preserve permissions. */
1219 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1221 m
= map_mft_record(base_ni
);
1226 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1231 /* Find the attribute. */
1232 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1233 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1237 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1238 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1239 NInoSetCompressed(ni
);
1240 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1242 ntfs_error(vi
->i_sb
, "Found compressed "
1243 "non-data or named data "
1244 "attribute. Please report "
1245 "you saw this message to "
1246 "linux-ntfs-dev@lists."
1250 if (vol
->cluster_size
> 4096) {
1251 ntfs_error(vi
->i_sb
, "Found compressed "
1252 "attribute but compression is "
1253 "disabled due to cluster size "
1258 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1259 ATTR_IS_COMPRESSED
) {
1260 ntfs_error(vi
->i_sb
, "Found unknown "
1261 "compression method.");
1266 * The compressed/sparse flag set in an index root just means
1267 * to compress all files.
1269 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1270 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1271 "but the attribute is %s. Please "
1272 "report you saw this message to "
1273 "linux-ntfs-dev@lists.sourceforge.net",
1274 NInoCompressed(ni
) ? "compressed" :
1278 if (a
->flags
& ATTR_IS_SPARSE
)
1281 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1282 if (NInoCompressed(ni
)) {
1283 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1288 * The encryption flag set in an index root just means to
1289 * encrypt all files.
1291 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1292 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1293 "but the attribute is encrypted. "
1294 "Please report you saw this message "
1295 "to linux-ntfs-dev@lists.sourceforge."
1299 if (ni
->type
!= AT_DATA
) {
1300 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1304 NInoSetEncrypted(ni
);
1306 if (!a
->non_resident
) {
1307 /* Ensure the attribute name is placed before the value. */
1308 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1309 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1310 ntfs_error(vol
->sb
, "Attribute name is placed after "
1311 "the attribute value.");
1314 if (NInoMstProtected(ni
)) {
1315 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1316 "but the attribute is resident. "
1317 "Please report you saw this message to "
1318 "linux-ntfs-dev@lists.sourceforge.net");
1321 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1322 a
->data
.resident
.value_length
);
1323 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1324 le16_to_cpu(a
->data
.resident
.value_offset
);
1325 if (vi
->i_size
> ni
->allocated_size
) {
1326 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1327 "(size exceeds allocation).");
1331 NInoSetNonResident(ni
);
1333 * Ensure the attribute name is placed before the mapping pairs
1336 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1338 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1339 ntfs_error(vol
->sb
, "Attribute name is placed after "
1340 "the mapping pairs array.");
1343 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1344 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1345 compression_unit
!= 4) {
1346 ntfs_error(vi
->i_sb
, "Found non-standard "
1347 "compression unit (%u instead "
1348 "of 4). Cannot handle this.",
1349 a
->data
.non_resident
.
1354 if (a
->data
.non_resident
.compression_unit
) {
1355 ni
->itype
.compressed
.block_size
= 1U <<
1356 (a
->data
.non_resident
.
1358 vol
->cluster_size_bits
);
1359 ni
->itype
.compressed
.block_size_bits
=
1360 ffs(ni
->itype
.compressed
.
1362 ni
->itype
.compressed
.block_clusters
= 1U <<
1363 a
->data
.non_resident
.
1366 ni
->itype
.compressed
.block_size
= 0;
1367 ni
->itype
.compressed
.block_size_bits
= 0;
1368 ni
->itype
.compressed
.block_clusters
= 0;
1370 ni
->itype
.compressed
.size
= sle64_to_cpu(
1371 a
->data
.non_resident
.compressed_size
);
1373 if (a
->data
.non_resident
.lowest_vcn
) {
1374 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1375 "non-zero lowest_vcn.");
1378 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1379 ni
->initialized_size
= sle64_to_cpu(
1380 a
->data
.non_resident
.initialized_size
);
1381 ni
->allocated_size
= sle64_to_cpu(
1382 a
->data
.non_resident
.allocated_size
);
1384 vi
->i_mapping
->a_ops
= &ntfs_normal_aops
;
1385 if (NInoMstProtected(ni
))
1386 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1387 else if (NInoCompressed(ni
))
1388 vi
->i_mapping
->a_ops
= &ntfs_compressed_aops
;
1389 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1390 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1392 vi
->i_blocks
= ni
->allocated_size
>> 9;
1394 * Make sure the base inode does not go away and attach it to the
1398 ni
->ext
.base_ntfs_ino
= base_ni
;
1399 ni
->nr_extents
= -1;
1401 ntfs_attr_put_search_ctx(ctx
);
1402 unmap_mft_record(base_ni
);
1404 ntfs_debug("Done.");
1411 ntfs_attr_put_search_ctx(ctx
);
1412 unmap_mft_record(base_ni
);
1414 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1415 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1416 "Marking corrupt inode and base inode 0x%lx as bad. "
1417 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1426 * ntfs_read_locked_index_inode - read an index inode from its base inode
1427 * @base_vi: base inode
1428 * @vi: index inode to read
1430 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1431 * index inode described by @vi into memory from the base mft record described
1434 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1435 * reading and looks up the attributes relating to the index described by @vi
1436 * before setting up the necessary fields in @vi as well as initializing the
1439 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1440 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1441 * are setup like directory inodes since directories are a special case of
1442 * indices ao they need to be treated in much the same way. Most importantly,
1443 * for small indices the index allocation attribute might not actually exist.
1444 * However, the index root attribute always exists but this does not need to
1445 * have an inode associated with it and this is why we define a new inode type
1446 * index. Also, like for directories, we need to have an attribute inode for
1447 * the bitmap attribute corresponding to the index allocation attribute and we
1448 * can store this in the appropriate field of the inode, just like we do for
1449 * normal directory inodes.
1451 * Q: What locks are held when the function is called?
1452 * A: i_state has I_NEW set, hence the inode is locked, also
1453 * i_count is set to 1, so it is not going to go away
1455 * Return 0 on success and -errno on error. In the error case, the inode will
1456 * have had make_bad_inode() executed on it.
1458 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1461 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1462 ntfs_inode
*ni
, *base_ni
, *bni
;
1466 ntfs_attr_search_ctx
*ctx
;
1468 u8
*ir_end
, *index_end
;
1471 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1472 ntfs_init_big_inode(vi
);
1474 base_ni
= NTFS_I(base_vi
);
1475 /* Just mirror the values from the base inode. */
1476 vi
->i_uid
= base_vi
->i_uid
;
1477 vi
->i_gid
= base_vi
->i_gid
;
1478 set_nlink(vi
, base_vi
->i_nlink
);
1479 vi
->i_mtime
= base_vi
->i_mtime
;
1480 vi
->i_ctime
= base_vi
->i_ctime
;
1481 vi
->i_atime
= base_vi
->i_atime
;
1482 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1483 /* Set inode type to zero but preserve permissions. */
1484 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1485 /* Map the mft record for the base inode. */
1486 m
= map_mft_record(base_ni
);
1491 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1496 /* Find the index root attribute. */
1497 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1498 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1499 if (unlikely(err
)) {
1501 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1506 /* Set up the state. */
1507 if (unlikely(a
->non_resident
)) {
1508 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1511 /* Ensure the attribute name is placed before the value. */
1512 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1513 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1514 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1515 "after the attribute value.");
1519 * Compressed/encrypted/sparse index root is not allowed, except for
1520 * directories of course but those are not dealt with here.
1522 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1524 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1528 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1529 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1530 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1531 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1534 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1535 if (index_end
> ir_end
) {
1536 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1540 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1541 le32_to_cpu(ir
->type
));
1544 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1545 ntfs_debug("Index collation rule is 0x%x.",
1546 le32_to_cpu(ir
->collation_rule
));
1547 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1548 if (!is_power_of_2(ni
->itype
.index
.block_size
)) {
1549 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1550 "two.", ni
->itype
.index
.block_size
);
1553 if (ni
->itype
.index
.block_size
> PAGE_SIZE
) {
1554 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_SIZE "
1555 "(%ld) is not supported. Sorry.",
1556 ni
->itype
.index
.block_size
, PAGE_SIZE
);
1560 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1561 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1562 "(%i) is not supported. Sorry.",
1563 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1567 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1568 /* Determine the size of a vcn in the index. */
1569 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1570 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1571 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1573 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1574 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1576 /* Check for presence of index allocation attribute. */
1577 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1578 /* No index allocation. */
1579 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1580 /* We are done with the mft record, so we release it. */
1581 ntfs_attr_put_search_ctx(ctx
);
1582 unmap_mft_record(base_ni
);
1585 goto skip_large_index_stuff
;
1586 } /* LARGE_INDEX: Index allocation present. Setup state. */
1587 NInoSetIndexAllocPresent(ni
);
1588 /* Find index allocation attribute. */
1589 ntfs_attr_reinit_search_ctx(ctx
);
1590 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1591 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1592 if (unlikely(err
)) {
1594 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1595 "not present but $INDEX_ROOT "
1596 "indicated it is.");
1598 ntfs_error(vi
->i_sb
, "Failed to lookup "
1599 "$INDEX_ALLOCATION attribute.");
1603 if (!a
->non_resident
) {
1604 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1609 * Ensure the attribute name is placed before the mapping pairs array.
1611 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1613 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1614 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1615 "placed after the mapping pairs array.");
1618 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1619 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1623 if (a
->flags
& ATTR_IS_SPARSE
) {
1624 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1627 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1628 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1632 if (a
->data
.non_resident
.lowest_vcn
) {
1633 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1634 "attribute has non zero lowest_vcn.");
1637 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1638 ni
->initialized_size
= sle64_to_cpu(
1639 a
->data
.non_resident
.initialized_size
);
1640 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1642 * We are done with the mft record, so we release it. Otherwise
1643 * we would deadlock in ntfs_attr_iget().
1645 ntfs_attr_put_search_ctx(ctx
);
1646 unmap_mft_record(base_ni
);
1649 /* Get the index bitmap attribute inode. */
1650 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1652 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1657 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1659 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1660 "encrypted and/or sparse.");
1661 goto iput_unm_err_out
;
1663 /* Consistency check bitmap size vs. index allocation size. */
1664 bvi_size
= i_size_read(bvi
);
1665 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1666 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1667 "index allocation (0x%llx).", bvi_size
<< 3,
1669 goto iput_unm_err_out
;
1672 skip_large_index_stuff
:
1673 /* Setup the operations for this index inode. */
1674 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1675 vi
->i_blocks
= ni
->allocated_size
>> 9;
1677 * Make sure the base inode doesn't go away and attach it to the
1681 ni
->ext
.base_ntfs_ino
= base_ni
;
1682 ni
->nr_extents
= -1;
1684 ntfs_debug("Done.");
1692 ntfs_attr_put_search_ctx(ctx
);
1694 unmap_mft_record(base_ni
);
1696 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1697 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1700 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1706 * The MFT inode has special locking, so teach the lock validator
1707 * about this by splitting off the locking rules of the MFT from
1708 * the locking rules of other inodes. The MFT inode can never be
1709 * accessed from the VFS side (or even internally), only by the
1710 * map_mft functions.
1712 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1715 * ntfs_read_inode_mount - special read_inode for mount time use only
1716 * @vi: inode to read
1718 * Read inode FILE_MFT at mount time, only called with super_block lock
1719 * held from within the read_super() code path.
1721 * This function exists because when it is called the page cache for $MFT/$DATA
1722 * is not initialized and hence we cannot get at the contents of mft records
1723 * by calling map_mft_record*().
1725 * Further it needs to cope with the circular references problem, i.e. cannot
1726 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1727 * we do not know where the other extent mft records are yet and again, because
1728 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1729 * attribute list is actually present in $MFT inode.
1731 * We solve these problems by starting with the $DATA attribute before anything
1732 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1733 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1734 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1735 * sufficient information for the next step to complete.
1737 * This should work but there are two possible pit falls (see inline comments
1738 * below), but only time will tell if they are real pits or just smoke...
1740 int ntfs_read_inode_mount(struct inode
*vi
)
1742 VCN next_vcn
, last_vcn
, highest_vcn
;
1744 struct super_block
*sb
= vi
->i_sb
;
1745 ntfs_volume
*vol
= NTFS_SB(sb
);
1746 struct buffer_head
*bh
;
1748 MFT_RECORD
*m
= NULL
;
1750 ntfs_attr_search_ctx
*ctx
;
1751 unsigned int i
, nr_blocks
;
1754 ntfs_debug("Entering.");
1756 /* Initialize the ntfs specific part of @vi. */
1757 ntfs_init_big_inode(vi
);
1761 /* Setup the data attribute. It is special as it is mst protected. */
1762 NInoSetNonResident(ni
);
1763 NInoSetMstProtected(ni
);
1764 NInoSetSparseDisabled(ni
);
1769 * This sets up our little cheat allowing us to reuse the async read io
1770 * completion handler for directories.
1772 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1773 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1775 /* Very important! Needed to be able to call map_mft_record*(). */
1778 /* Allocate enough memory to read the first mft record. */
1779 if (vol
->mft_record_size
> 64 * 1024) {
1780 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1781 vol
->mft_record_size
);
1784 i
= vol
->mft_record_size
;
1785 if (i
< sb
->s_blocksize
)
1786 i
= sb
->s_blocksize
;
1787 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1789 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1793 /* Determine the first block of the $MFT/$DATA attribute. */
1794 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1795 sb
->s_blocksize_bits
;
1796 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1800 /* Load $MFT/$DATA's first mft record. */
1801 for (i
= 0; i
< nr_blocks
; i
++) {
1802 bh
= sb_bread(sb
, block
++);
1804 ntfs_error(sb
, "Device read failed.");
1807 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1812 /* Apply the mst fixups. */
1813 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1814 /* FIXME: Try to use the $MFTMirr now. */
1815 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1819 /* Need this to sanity check attribute list references to $MFT. */
1820 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1822 /* Provides readpage() for map_mft_record(). */
1823 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1825 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1831 /* Find the attribute list attribute if present. */
1832 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1834 if (unlikely(err
!= -ENOENT
)) {
1835 ntfs_error(sb
, "Failed to lookup attribute list "
1836 "attribute. You should run chkdsk.");
1839 } else /* if (!err) */ {
1840 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1842 static const char *es
= " Not allowed. $MFT is corrupt. "
1843 "You should run chkdsk.";
1845 ntfs_debug("Attribute list attribute found in $MFT.");
1846 NInoSetAttrList(ni
);
1848 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1849 ntfs_error(sb
, "Attribute list attribute is "
1850 "compressed.%s", es
);
1853 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1854 a
->flags
& ATTR_IS_SPARSE
) {
1855 if (a
->non_resident
) {
1856 ntfs_error(sb
, "Non-resident attribute list "
1857 "attribute is encrypted/"
1861 ntfs_warning(sb
, "Resident attribute list attribute "
1862 "in $MFT system file is marked "
1863 "encrypted/sparse which is not true. "
1864 "However, Windows allows this and "
1865 "chkdsk does not detect or correct it "
1866 "so we will just ignore the invalid "
1867 "flags and pretend they are not set.");
1869 /* Now allocate memory for the attribute list. */
1870 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1871 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1872 if (!ni
->attr_list
) {
1873 ntfs_error(sb
, "Not enough memory to allocate buffer "
1874 "for attribute list.");
1877 if (a
->non_resident
) {
1878 NInoSetAttrListNonResident(ni
);
1879 if (a
->data
.non_resident
.lowest_vcn
) {
1880 ntfs_error(sb
, "Attribute list has non zero "
1881 "lowest_vcn. $MFT is corrupt. "
1882 "You should run chkdsk.");
1885 /* Setup the runlist. */
1886 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1888 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1889 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1890 ni
->attr_list_rl
.rl
= NULL
;
1891 ntfs_error(sb
, "Mapping pairs decompression "
1892 "failed with error code %i.",
1896 /* Now load the attribute list. */
1897 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1898 ni
->attr_list
, ni
->attr_list_size
,
1899 sle64_to_cpu(a
->data
.
1900 non_resident
.initialized_size
)))) {
1901 ntfs_error(sb
, "Failed to load attribute list "
1902 "attribute with error code %i.",
1906 } else /* if (!ctx.attr->non_resident) */ {
1907 if ((u8
*)a
+ le16_to_cpu(
1908 a
->data
.resident
.value_offset
) +
1910 a
->data
.resident
.value_length
) >
1911 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1912 ntfs_error(sb
, "Corrupt attribute list "
1916 /* Now copy the attribute list. */
1917 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1918 a
->data
.resident
.value_offset
),
1920 a
->data
.resident
.value_length
));
1922 /* The attribute list is now setup in memory. */
1924 * FIXME: I don't know if this case is actually possible.
1925 * According to logic it is not possible but I have seen too
1926 * many weird things in MS software to rely on logic... Thus we
1927 * perform a manual search and make sure the first $MFT/$DATA
1928 * extent is in the base inode. If it is not we abort with an
1929 * error and if we ever see a report of this error we will need
1930 * to do some magic in order to have the necessary mft record
1931 * loaded and in the right place in the page cache. But
1932 * hopefully logic will prevail and this never happens...
1934 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1935 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1936 for (;; al_entry
= next_al_entry
) {
1937 /* Out of bounds check. */
1938 if ((u8
*)al_entry
< ni
->attr_list
||
1939 (u8
*)al_entry
> al_end
)
1940 goto em_put_err_out
;
1941 /* Catch the end of the attribute list. */
1942 if ((u8
*)al_entry
== al_end
)
1943 goto em_put_err_out
;
1944 if (!al_entry
->length
)
1945 goto em_put_err_out
;
1946 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1947 le16_to_cpu(al_entry
->length
) > al_end
)
1948 goto em_put_err_out
;
1949 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1950 le16_to_cpu(al_entry
->length
));
1951 if (le32_to_cpu(al_entry
->type
) > le32_to_cpu(AT_DATA
))
1952 goto em_put_err_out
;
1953 if (AT_DATA
!= al_entry
->type
)
1955 /* We want an unnamed attribute. */
1956 if (al_entry
->name_length
)
1957 goto em_put_err_out
;
1958 /* Want the first entry, i.e. lowest_vcn == 0. */
1959 if (al_entry
->lowest_vcn
)
1960 goto em_put_err_out
;
1961 /* First entry has to be in the base mft record. */
1962 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
1963 /* MFT references do not match, logic fails. */
1964 ntfs_error(sb
, "BUG: The first $DATA extent "
1965 "of $MFT is not in the base "
1966 "mft record. Please report "
1967 "you saw this message to "
1968 "linux-ntfs-dev@lists."
1972 /* Sequence numbers must match. */
1973 if (MSEQNO_LE(al_entry
->mft_reference
) !=
1975 goto em_put_err_out
;
1976 /* Got it. All is ok. We can stop now. */
1982 ntfs_attr_reinit_search_ctx(ctx
);
1984 /* Now load all attribute extents. */
1986 next_vcn
= last_vcn
= highest_vcn
= 0;
1987 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
1989 runlist_element
*nrl
;
1991 /* Cache the current attribute. */
1993 /* $MFT must be non-resident. */
1994 if (!a
->non_resident
) {
1995 ntfs_error(sb
, "$MFT must be non-resident but a "
1996 "resident extent was found. $MFT is "
1997 "corrupt. Run chkdsk.");
2000 /* $MFT must be uncompressed and unencrypted. */
2001 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2002 a
->flags
& ATTR_IS_ENCRYPTED
||
2003 a
->flags
& ATTR_IS_SPARSE
) {
2004 ntfs_error(sb
, "$MFT must be uncompressed, "
2005 "non-sparse, and unencrypted but a "
2006 "compressed/sparse/encrypted extent "
2007 "was found. $MFT is corrupt. Run "
2012 * Decompress the mapping pairs array of this extent and merge
2013 * the result into the existing runlist. No need for locking
2014 * as we have exclusive access to the inode at this time and we
2015 * are a mount in progress task, too.
2017 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2019 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2020 "failed with error code %ld. $MFT is "
2021 "corrupt.", PTR_ERR(nrl
));
2024 ni
->runlist
.rl
= nrl
;
2026 /* Are we in the first extent? */
2028 if (a
->data
.non_resident
.lowest_vcn
) {
2029 ntfs_error(sb
, "First extent of $DATA "
2030 "attribute has non zero "
2031 "lowest_vcn. $MFT is corrupt. "
2032 "You should run chkdsk.");
2035 /* Get the last vcn in the $DATA attribute. */
2036 last_vcn
= sle64_to_cpu(
2037 a
->data
.non_resident
.allocated_size
)
2038 >> vol
->cluster_size_bits
;
2039 /* Fill in the inode size. */
2040 vi
->i_size
= sle64_to_cpu(
2041 a
->data
.non_resident
.data_size
);
2042 ni
->initialized_size
= sle64_to_cpu(
2043 a
->data
.non_resident
.initialized_size
);
2044 ni
->allocated_size
= sle64_to_cpu(
2045 a
->data
.non_resident
.allocated_size
);
2047 * Verify the number of mft records does not exceed
2050 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2052 ntfs_error(sb
, "$MFT is too big! Aborting.");
2056 * We have got the first extent of the runlist for
2057 * $MFT which means it is now relatively safe to call
2058 * the normal ntfs_read_inode() function.
2059 * Complete reading the inode, this will actually
2060 * re-read the mft record for $MFT, this time entering
2061 * it into the page cache with which we complete the
2062 * kick start of the volume. It should be safe to do
2063 * this now as the first extent of $MFT/$DATA is
2064 * already known and we would hope that we don't need
2065 * further extents in order to find the other
2066 * attributes belonging to $MFT. Only time will tell if
2067 * this is really the case. If not we will have to play
2068 * magic at this point, possibly duplicating a lot of
2069 * ntfs_read_inode() at this point. We will need to
2070 * ensure we do enough of its work to be able to call
2071 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2072 * hope this never happens...
2074 ntfs_read_locked_inode(vi
);
2075 if (is_bad_inode(vi
)) {
2076 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2077 "failed. BUG or corrupt $MFT. "
2078 "Run chkdsk and if no errors "
2079 "are found, please report you "
2080 "saw this message to "
2081 "linux-ntfs-dev@lists."
2083 ntfs_attr_put_search_ctx(ctx
);
2084 /* Revert to the safe super operations. */
2089 * Re-initialize some specifics about $MFT's inode as
2090 * ntfs_read_inode() will have set up the default ones.
2092 /* Set uid and gid to root. */
2093 vi
->i_uid
= GLOBAL_ROOT_UID
;
2094 vi
->i_gid
= GLOBAL_ROOT_GID
;
2095 /* Regular file. No access for anyone. */
2096 vi
->i_mode
= S_IFREG
;
2097 /* No VFS initiated operations allowed for $MFT. */
2098 vi
->i_op
= &ntfs_empty_inode_ops
;
2099 vi
->i_fop
= &ntfs_empty_file_ops
;
2102 /* Get the lowest vcn for the next extent. */
2103 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2104 next_vcn
= highest_vcn
+ 1;
2106 /* Only one extent or error, which we catch below. */
2110 /* Avoid endless loops due to corruption. */
2111 if (next_vcn
< sle64_to_cpu(
2112 a
->data
.non_resident
.lowest_vcn
)) {
2113 ntfs_error(sb
, "$MFT has corrupt attribute list "
2114 "attribute. Run chkdsk.");
2118 if (err
!= -ENOENT
) {
2119 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2120 "$MFT is corrupt. Run chkdsk.");
2124 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2125 "corrupt. Run chkdsk.");
2128 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2129 ntfs_error(sb
, "Failed to load the complete runlist for "
2130 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2132 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2133 (unsigned long long)highest_vcn
,
2134 (unsigned long long)last_vcn
- 1);
2137 ntfs_attr_put_search_ctx(ctx
);
2138 ntfs_debug("Done.");
2142 * Split the locking rules of the MFT inode from the
2143 * locking rules of other inodes:
2145 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2146 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2151 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2152 "attribute list. $MFT is corrupt. Run chkdsk.");
2154 ntfs_attr_put_search_ctx(ctx
);
2156 ntfs_error(sb
, "Failed. Marking inode as bad.");
2162 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2164 /* Free all alocated memory. */
2165 down_write(&ni
->runlist
.lock
);
2166 if (ni
->runlist
.rl
) {
2167 ntfs_free(ni
->runlist
.rl
);
2168 ni
->runlist
.rl
= NULL
;
2170 up_write(&ni
->runlist
.lock
);
2172 if (ni
->attr_list
) {
2173 ntfs_free(ni
->attr_list
);
2174 ni
->attr_list
= NULL
;
2177 down_write(&ni
->attr_list_rl
.lock
);
2178 if (ni
->attr_list_rl
.rl
) {
2179 ntfs_free(ni
->attr_list_rl
.rl
);
2180 ni
->attr_list_rl
.rl
= NULL
;
2182 up_write(&ni
->attr_list_rl
.lock
);
2184 if (ni
->name_len
&& ni
->name
!= I30
) {
2191 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2193 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2195 BUG_ON(NInoAttr(ni
));
2196 BUG_ON(ni
->nr_extents
!= -1);
2199 if (NInoDirty(ni
)) {
2200 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2201 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2202 "Losing data! This is a BUG!!!");
2203 // FIXME: Do something!!!
2205 #endif /* NTFS_RW */
2207 __ntfs_clear_inode(ni
);
2210 ntfs_destroy_extent_inode(ni
);
2214 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2215 * @vi: vfs inode pending annihilation
2217 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2218 * is called, which deallocates all memory belonging to the NTFS specific part
2219 * of the inode and returns.
2221 * If the MFT record is dirty, we commit it before doing anything else.
2223 void ntfs_evict_big_inode(struct inode
*vi
)
2225 ntfs_inode
*ni
= NTFS_I(vi
);
2227 truncate_inode_pages_final(&vi
->i_data
);
2231 if (NInoDirty(ni
)) {
2232 bool was_bad
= (is_bad_inode(vi
));
2234 /* Committing the inode also commits all extent inodes. */
2235 ntfs_commit_inode(vi
);
2237 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2238 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2239 "0x%lx. Losing data!", vi
->i_ino
);
2240 // FIXME: Do something!!!
2243 #endif /* NTFS_RW */
2245 /* No need to lock at this stage as no one else has a reference. */
2246 if (ni
->nr_extents
> 0) {
2249 for (i
= 0; i
< ni
->nr_extents
; i
++)
2250 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2251 kfree(ni
->ext
.extent_ntfs_inos
);
2254 __ntfs_clear_inode(ni
);
2257 /* Release the base inode if we are holding it. */
2258 if (ni
->nr_extents
== -1) {
2259 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2261 ni
->ext
.base_ntfs_ino
= NULL
;
2265 if (!atomic_dec_and_test(&ni
->count
))
2271 * ntfs_show_options - show mount options in /proc/mounts
2272 * @sf: seq_file in which to write our mount options
2273 * @root: root of the mounted tree whose mount options to display
2275 * Called by the VFS once for each mounted ntfs volume when someone reads
2276 * /proc/mounts in order to display the NTFS specific mount options of each
2277 * mount. The mount options of fs specified by @root are written to the seq file
2278 * @sf and success is returned.
2280 int ntfs_show_options(struct seq_file
*sf
, struct dentry
*root
)
2282 ntfs_volume
*vol
= NTFS_SB(root
->d_sb
);
2285 seq_printf(sf
, ",uid=%i", from_kuid_munged(&init_user_ns
, vol
->uid
));
2286 seq_printf(sf
, ",gid=%i", from_kgid_munged(&init_user_ns
, vol
->gid
));
2287 if (vol
->fmask
== vol
->dmask
)
2288 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2290 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2291 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2293 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2294 if (NVolCaseSensitive(vol
))
2295 seq_printf(sf
, ",case_sensitive");
2296 if (NVolShowSystemFiles(vol
))
2297 seq_printf(sf
, ",show_sys_files");
2298 if (!NVolSparseEnabled(vol
))
2299 seq_printf(sf
, ",disable_sparse");
2300 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2301 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2302 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2304 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2310 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2314 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2315 * @vi: inode for which the i_size was changed
2317 * We only support i_size changes for normal files at present, i.e. not
2318 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2321 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2322 * that the change is allowed.
2324 * This implies for us that @vi is a file inode rather than a directory, index,
2325 * or attribute inode as well as that @vi is a base inode.
2327 * Returns 0 on success or -errno on error.
2329 * Called with ->i_mutex held.
2331 int ntfs_truncate(struct inode
*vi
)
2333 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2335 unsigned long flags
;
2336 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2337 ntfs_volume
*vol
= ni
->vol
;
2338 ntfs_attr_search_ctx
*ctx
;
2341 const char *te
= " Leaving file length out of sync with i_size.";
2342 int err
, mp_size
, size_change
, alloc_change
;
2345 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2346 BUG_ON(NInoAttr(ni
));
2347 BUG_ON(S_ISDIR(vi
->i_mode
));
2348 BUG_ON(NInoMstProtected(ni
));
2349 BUG_ON(ni
->nr_extents
< 0);
2352 * Lock the runlist for writing and map the mft record to ensure it is
2353 * safe to mess with the attribute runlist and sizes.
2355 down_write(&ni
->runlist
.lock
);
2359 base_ni
= ni
->ext
.base_ntfs_ino
;
2360 m
= map_mft_record(base_ni
);
2363 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2364 "(error code %d).%s", vi
->i_ino
, err
, te
);
2369 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2370 if (unlikely(!ctx
)) {
2371 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2372 "inode 0x%lx (not enough memory).%s",
2377 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2378 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2379 if (unlikely(err
)) {
2380 if (err
== -ENOENT
) {
2381 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2382 "mft record. Inode 0x%lx is corrupt. "
2383 "Run chkdsk.%s", vi
->i_ino
, te
);
2386 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2387 "inode 0x%lx (error code %d).%s",
2388 vi
->i_ino
, err
, te
);
2394 * The i_size of the vfs inode is the new size for the attribute value.
2396 new_size
= i_size_read(vi
);
2397 /* The current size of the attribute value is the old size. */
2398 old_size
= ntfs_attr_size(a
);
2399 /* Calculate the new allocated size. */
2400 if (NInoNonResident(ni
))
2401 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2402 ~(s64
)vol
->cluster_size_mask
;
2404 new_alloc_size
= (new_size
+ 7) & ~7;
2405 /* The current allocated size is the old allocated size. */
2406 read_lock_irqsave(&ni
->size_lock
, flags
);
2407 old_alloc_size
= ni
->allocated_size
;
2408 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2410 * The change in the file size. This will be 0 if no change, >0 if the
2411 * size is growing, and <0 if the size is shrinking.
2414 if (new_size
- old_size
>= 0) {
2416 if (new_size
== old_size
)
2419 /* As above for the allocated size. */
2421 if (new_alloc_size
- old_alloc_size
>= 0) {
2423 if (new_alloc_size
== old_alloc_size
)
2427 * If neither the size nor the allocation are being changed there is
2430 if (!size_change
&& !alloc_change
)
2432 /* If the size is changing, check if new size is allowed in $AttrDef. */
2434 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2435 if (unlikely(err
)) {
2436 if (err
== -ERANGE
) {
2437 ntfs_error(vol
->sb
, "Truncate would cause the "
2438 "inode 0x%lx to %simum size "
2439 "for its attribute type "
2440 "(0x%x). Aborting truncate.",
2442 new_size
> old_size
? "exceed "
2443 "the max" : "go under the min",
2444 le32_to_cpu(ni
->type
));
2447 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2448 "attribute type 0x%x. "
2449 "Aborting truncate.",
2451 le32_to_cpu(ni
->type
));
2454 /* Reset the vfs inode size to the old size. */
2455 i_size_write(vi
, old_size
);
2459 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2460 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2461 "supported yet for %s files, ignoring.",
2462 NInoCompressed(ni
) ? "compressed" :
2467 if (a
->non_resident
)
2468 goto do_non_resident_truncate
;
2469 BUG_ON(NInoNonResident(ni
));
2470 /* Resize the attribute record to best fit the new attribute size. */
2471 if (new_size
< vol
->mft_record_size
&&
2472 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2473 /* The resize succeeded! */
2474 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2475 mark_mft_record_dirty(ctx
->ntfs_ino
);
2476 write_lock_irqsave(&ni
->size_lock
, flags
);
2477 /* Update the sizes in the ntfs inode and all is done. */
2478 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2479 le16_to_cpu(a
->data
.resident
.value_offset
);
2481 * Note ntfs_resident_attr_value_resize() has already done any
2482 * necessary data clearing in the attribute record. When the
2483 * file is being shrunk vmtruncate() will already have cleared
2484 * the top part of the last partial page, i.e. since this is
2485 * the resident case this is the page with index 0. However,
2486 * when the file is being expanded, the page cache page data
2487 * between the old data_size, i.e. old_size, and the new_size
2488 * has not been zeroed. Fortunately, we do not need to zero it
2489 * either since on one hand it will either already be zero due
2490 * to both readpage and writepage clearing partial page data
2491 * beyond i_size in which case there is nothing to do or in the
2492 * case of the file being mmap()ped at the same time, POSIX
2493 * specifies that the behaviour is unspecified thus we do not
2494 * have to do anything. This means that in our implementation
2495 * in the rare case that the file is mmap()ped and a write
2496 * occurred into the mmap()ped region just beyond the file size
2497 * and writepage has not yet been called to write out the page
2498 * (which would clear the area beyond the file size) and we now
2499 * extend the file size to incorporate this dirty region
2500 * outside the file size, a write of the page would result in
2501 * this data being written to disk instead of being cleared.
2502 * Given both POSIX and the Linux mmap(2) man page specify that
2503 * this corner case is undefined, we choose to leave it like
2504 * that as this is much simpler for us as we cannot lock the
2505 * relevant page now since we are holding too many ntfs locks
2506 * which would result in a lock reversal deadlock.
2508 ni
->initialized_size
= new_size
;
2509 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2512 /* If the above resize failed, this must be an attribute extension. */
2513 BUG_ON(size_change
< 0);
2515 * We have to drop all the locks so we can call
2516 * ntfs_attr_make_non_resident(). This could be optimised by try-
2517 * locking the first page cache page and only if that fails dropping
2518 * the locks, locking the page, and redoing all the locking and
2519 * lookups. While this would be a huge optimisation, it is not worth
2520 * it as this is definitely a slow code path as it only ever can happen
2521 * once for any given file.
2523 ntfs_attr_put_search_ctx(ctx
);
2524 unmap_mft_record(base_ni
);
2525 up_write(&ni
->runlist
.lock
);
2527 * Not enough space in the mft record, try to make the attribute
2528 * non-resident and if successful restart the truncation process.
2530 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2532 goto retry_truncate
;
2534 * Could not make non-resident. If this is due to this not being
2535 * permitted for this attribute type or there not being enough space,
2536 * try to make other attributes non-resident. Otherwise fail.
2538 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2539 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2540 "type 0x%x, because the conversion from "
2541 "resident to non-resident attribute failed "
2542 "with error code %i.", vi
->i_ino
,
2543 (unsigned)le32_to_cpu(ni
->type
), err
);
2548 /* TODO: Not implemented from here, abort. */
2550 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2551 "disk for the non-resident attribute value. "
2552 "This case is not implemented yet.");
2553 else /* if (err == -EPERM) */
2554 ntfs_error(vol
->sb
, "This attribute type may not be "
2555 "non-resident. This case is not implemented "
2560 // TODO: Attempt to make other attributes non-resident.
2562 goto do_resident_extend
;
2564 * Both the attribute list attribute and the standard information
2565 * attribute must remain in the base inode. Thus, if this is one of
2566 * these attributes, we have to try to move other attributes out into
2567 * extent mft records instead.
2569 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2570 ni
->type
== AT_STANDARD_INFORMATION
) {
2571 // TODO: Attempt to move other attributes into extent mft
2575 goto do_resident_extend
;
2578 // TODO: Attempt to move this attribute to an extent mft record, but
2579 // only if it is not already the only attribute in an mft record in
2580 // which case there would be nothing to gain.
2583 goto do_resident_extend
;
2584 /* There is nothing we can do to make enough space. )-: */
2587 do_non_resident_truncate
:
2588 BUG_ON(!NInoNonResident(ni
));
2589 if (alloc_change
< 0) {
2590 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2591 if (highest_vcn
> 0 &&
2592 old_alloc_size
>> vol
->cluster_size_bits
>
2595 * This attribute has multiple extents. Not yet
2598 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2599 "attribute type 0x%x, because the "
2600 "attribute is highly fragmented (it "
2601 "consists of multiple extents) and "
2602 "this case is not implemented yet.",
2604 (unsigned)le32_to_cpu(ni
->type
));
2610 * If the size is shrinking, need to reduce the initialized_size and
2611 * the data_size before reducing the allocation.
2613 if (size_change
< 0) {
2615 * Make the valid size smaller (i_size is already up-to-date).
2617 write_lock_irqsave(&ni
->size_lock
, flags
);
2618 if (new_size
< ni
->initialized_size
) {
2619 ni
->initialized_size
= new_size
;
2620 a
->data
.non_resident
.initialized_size
=
2621 cpu_to_sle64(new_size
);
2623 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2624 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2625 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2626 mark_mft_record_dirty(ctx
->ntfs_ino
);
2627 /* If the allocated size is not changing, we are done. */
2631 * If the size is shrinking it makes no sense for the
2632 * allocation to be growing.
2634 BUG_ON(alloc_change
> 0);
2635 } else /* if (size_change >= 0) */ {
2637 * The file size is growing or staying the same but the
2638 * allocation can be shrinking, growing or staying the same.
2640 if (alloc_change
> 0) {
2642 * We need to extend the allocation and possibly update
2643 * the data size. If we are updating the data size,
2644 * since we are not touching the initialized_size we do
2645 * not need to worry about the actual data on disk.
2646 * And as far as the page cache is concerned, there
2647 * will be no pages beyond the old data size and any
2648 * partial region in the last page between the old and
2649 * new data size (or the end of the page if the new
2650 * data size is outside the page) does not need to be
2651 * modified as explained above for the resident
2652 * attribute truncate case. To do this, we simply drop
2653 * the locks we hold and leave all the work to our
2654 * friendly helper ntfs_attr_extend_allocation().
2656 ntfs_attr_put_search_ctx(ctx
);
2657 unmap_mft_record(base_ni
);
2658 up_write(&ni
->runlist
.lock
);
2659 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2660 size_change
> 0 ? new_size
: -1, -1);
2662 * ntfs_attr_extend_allocation() will have done error
2670 /* alloc_change < 0 */
2671 /* Free the clusters. */
2672 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2673 vol
->cluster_size_bits
, -1, ctx
);
2676 if (unlikely(nr_freed
< 0)) {
2677 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2678 "%lli). Unmount and run chkdsk to recover "
2679 "the lost cluster(s).", (long long)nr_freed
);
2683 /* Truncate the runlist. */
2684 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2685 new_alloc_size
>> vol
->cluster_size_bits
);
2687 * If the runlist truncation failed and/or the search context is no
2688 * longer valid, we cannot resize the attribute record or build the
2689 * mapping pairs array thus we mark the inode bad so that no access to
2690 * the freed clusters can happen.
2692 if (unlikely(err
|| IS_ERR(m
))) {
2693 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2695 "restore attribute search context" :
2696 "truncate attribute runlist",
2697 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2701 /* Get the size for the shrunk mapping pairs array for the runlist. */
2702 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2703 if (unlikely(mp_size
<= 0)) {
2704 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2705 "attribute type 0x%x, because determining the "
2706 "size for the mapping pairs failed with error "
2707 "code %i.%s", vi
->i_ino
,
2708 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2713 * Shrink the attribute record for the new mapping pairs array. Note,
2714 * this cannot fail since we are making the attribute smaller thus by
2715 * definition there is enough space to do so.
2717 attr_len
= le32_to_cpu(a
->length
);
2718 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2719 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2722 * Generate the mapping pairs array directly into the attribute record.
2724 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2725 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2726 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2727 if (unlikely(err
)) {
2728 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2729 "attribute type 0x%x, because building the "
2730 "mapping pairs failed with error code %i.%s",
2731 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2736 /* Update the allocated/compressed size as well as the highest vcn. */
2737 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2738 vol
->cluster_size_bits
) - 1);
2739 write_lock_irqsave(&ni
->size_lock
, flags
);
2740 ni
->allocated_size
= new_alloc_size
;
2741 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2742 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2744 ni
->itype
.compressed
.size
-= nr_freed
<<
2745 vol
->cluster_size_bits
;
2746 BUG_ON(ni
->itype
.compressed
.size
< 0);
2747 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2748 ni
->itype
.compressed
.size
);
2749 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2752 vi
->i_blocks
= new_alloc_size
>> 9;
2753 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2755 * We have shrunk the allocation. If this is a shrinking truncate we
2756 * have already dealt with the initialized_size and the data_size above
2757 * and we are done. If the truncate is only changing the allocation
2758 * and not the data_size, we are also done. If this is an extending
2759 * truncate, need to extend the data_size now which is ensured by the
2760 * fact that @size_change is positive.
2764 * If the size is growing, need to update it now. If it is shrinking,
2765 * we have already updated it above (before the allocation change).
2767 if (size_change
> 0)
2768 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2769 /* Ensure the modified mft record is written out. */
2770 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2771 mark_mft_record_dirty(ctx
->ntfs_ino
);
2773 ntfs_attr_put_search_ctx(ctx
);
2774 unmap_mft_record(base_ni
);
2775 up_write(&ni
->runlist
.lock
);
2777 /* Update the mtime and ctime on the base inode. */
2778 /* normally ->truncate shouldn't update ctime or mtime,
2779 * but ntfs did before so it got a copy & paste version
2780 * of file_update_time. one day someone should fix this
2783 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2784 struct timespec64 now
= current_time(VFS_I(base_ni
));
2787 if (!timespec64_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2788 !timespec64_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2790 VFS_I(base_ni
)->i_mtime
= now
;
2791 VFS_I(base_ni
)->i_ctime
= now
;
2794 mark_inode_dirty_sync(VFS_I(base_ni
));
2798 NInoClearTruncateFailed(ni
);
2799 ntfs_debug("Done.");
2805 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2807 if (err
!= -EOPNOTSUPP
)
2808 NInoSetTruncateFailed(ni
);
2809 else if (old_size
>= 0)
2810 i_size_write(vi
, old_size
);
2813 ntfs_attr_put_search_ctx(ctx
);
2815 unmap_mft_record(base_ni
);
2816 up_write(&ni
->runlist
.lock
);
2818 ntfs_debug("Failed. Returning error code %i.", err
);
2821 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2823 if (err
!= -EOPNOTSUPP
)
2824 NInoSetTruncateFailed(ni
);
2826 i_size_write(vi
, old_size
);
2831 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2832 * @vi: inode for which the i_size was changed
2834 * Wrapper for ntfs_truncate() that has no return value.
2836 * See ntfs_truncate() description above for details.
2839 void ntfs_truncate_vfs(struct inode
*vi
) {
2845 * ntfs_setattr - called from notify_change() when an attribute is being changed
2846 * @dentry: dentry whose attributes to change
2847 * @attr: structure describing the attributes and the changes
2849 * We have to trap VFS attempts to truncate the file described by @dentry as
2850 * soon as possible, because we do not implement changes in i_size yet. So we
2851 * abort all i_size changes here.
2853 * We also abort all changes of user, group, and mode as we do not implement
2854 * the NTFS ACLs yet.
2856 * Called with ->i_mutex held.
2858 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2860 struct inode
*vi
= d_inode(dentry
);
2862 unsigned int ia_valid
= attr
->ia_valid
;
2864 err
= setattr_prepare(dentry
, attr
);
2867 /* We do not support NTFS ACLs yet. */
2868 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2869 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2870 "supported yet, ignoring.");
2874 if (ia_valid
& ATTR_SIZE
) {
2875 if (attr
->ia_size
!= i_size_read(vi
)) {
2876 ntfs_inode
*ni
= NTFS_I(vi
);
2878 * FIXME: For now we do not support resizing of
2879 * compressed or encrypted files yet.
2881 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2882 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2883 "are not supported yet for "
2884 "%s files, ignoring.",
2885 NInoCompressed(ni
) ?
2886 "compressed" : "encrypted");
2889 truncate_setsize(vi
, attr
->ia_size
);
2890 ntfs_truncate_vfs(vi
);
2892 if (err
|| ia_valid
== ATTR_SIZE
)
2896 * We skipped the truncate but must still update
2899 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2902 if (ia_valid
& ATTR_ATIME
)
2903 vi
->i_atime
= timespec64_trunc(attr
->ia_atime
,
2904 vi
->i_sb
->s_time_gran
);
2905 if (ia_valid
& ATTR_MTIME
)
2906 vi
->i_mtime
= timespec64_trunc(attr
->ia_mtime
,
2907 vi
->i_sb
->s_time_gran
);
2908 if (ia_valid
& ATTR_CTIME
)
2909 vi
->i_ctime
= timespec64_trunc(attr
->ia_ctime
,
2910 vi
->i_sb
->s_time_gran
);
2911 mark_inode_dirty(vi
);
2917 * ntfs_write_inode - write out a dirty inode
2918 * @vi: inode to write out
2919 * @sync: if true, write out synchronously
2921 * Write out a dirty inode to disk including any extent inodes if present.
2923 * If @sync is true, commit the inode to disk and wait for io completion. This
2924 * is done using write_mft_record().
2926 * If @sync is false, just schedule the write to happen but do not wait for i/o
2927 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2928 * marking the page (and in this case mft record) dirty but we do not implement
2929 * this yet as write_mft_record() largely ignores the @sync parameter and
2930 * always performs synchronous writes.
2932 * Return 0 on success and -errno on error.
2934 int __ntfs_write_inode(struct inode
*vi
, int sync
)
2937 ntfs_inode
*ni
= NTFS_I(vi
);
2938 ntfs_attr_search_ctx
*ctx
;
2940 STANDARD_INFORMATION
*si
;
2942 bool modified
= false;
2944 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
2947 * Dirty attribute inodes are written via their real inodes so just
2948 * clean them here. Access time updates are taken care off when the
2949 * real inode is written.
2953 ntfs_debug("Done.");
2956 /* Map, pin, and lock the mft record belonging to the inode. */
2957 m
= map_mft_record(ni
);
2962 /* Update the access times in the standard information attribute. */
2963 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
2964 if (unlikely(!ctx
)) {
2968 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
2969 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2970 if (unlikely(err
)) {
2971 ntfs_attr_put_search_ctx(ctx
);
2974 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
2975 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
2976 /* Update the access times if they have changed. */
2977 nt
= utc2ntfs(vi
->i_mtime
);
2978 if (si
->last_data_change_time
!= nt
) {
2979 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
2980 "new = 0x%llx", vi
->i_ino
, (long long)
2981 sle64_to_cpu(si
->last_data_change_time
),
2982 (long long)sle64_to_cpu(nt
));
2983 si
->last_data_change_time
= nt
;
2986 nt
= utc2ntfs(vi
->i_ctime
);
2987 if (si
->last_mft_change_time
!= nt
) {
2988 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
2989 "new = 0x%llx", vi
->i_ino
, (long long)
2990 sle64_to_cpu(si
->last_mft_change_time
),
2991 (long long)sle64_to_cpu(nt
));
2992 si
->last_mft_change_time
= nt
;
2995 nt
= utc2ntfs(vi
->i_atime
);
2996 if (si
->last_access_time
!= nt
) {
2997 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
2998 "new = 0x%llx", vi
->i_ino
,
2999 (long long)sle64_to_cpu(si
->last_access_time
),
3000 (long long)sle64_to_cpu(nt
));
3001 si
->last_access_time
= nt
;
3005 * If we just modified the standard information attribute we need to
3006 * mark the mft record it is in dirty. We do this manually so that
3007 * mark_inode_dirty() is not called which would redirty the inode and
3008 * hence result in an infinite loop of trying to write the inode.
3009 * There is no need to mark the base inode nor the base mft record
3010 * dirty, since we are going to write this mft record below in any case
3011 * and the base mft record may actually not have been modified so it
3012 * might not need to be written out.
3013 * NOTE: It is not a problem when the inode for $MFT itself is being
3014 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3015 * on the $MFT inode and hence ntfs_write_inode() will not be
3016 * re-invoked because of it which in turn is ok since the dirtied mft
3017 * record will be cleaned and written out to disk below, i.e. before
3018 * this function returns.
3021 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3022 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3023 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3024 ctx
->ntfs_ino
->page_ofs
);
3026 ntfs_attr_put_search_ctx(ctx
);
3027 /* Now the access times are updated, write the base mft record. */
3029 err
= write_mft_record(ni
, m
, sync
);
3030 /* Write all attached extent mft records. */
3031 mutex_lock(&ni
->extent_lock
);
3032 if (ni
->nr_extents
> 0) {
3033 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3036 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3037 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3038 ntfs_inode
*tni
= extent_nis
[i
];
3040 if (NInoDirty(tni
)) {
3041 MFT_RECORD
*tm
= map_mft_record(tni
);
3045 if (!err
|| err
== -ENOMEM
)
3049 ret
= write_mft_record(tni
, tm
, sync
);
3050 unmap_mft_record(tni
);
3051 if (unlikely(ret
)) {
3052 if (!err
|| err
== -ENOMEM
)
3058 mutex_unlock(&ni
->extent_lock
);
3059 unmap_mft_record(ni
);
3062 ntfs_debug("Done.");
3065 unmap_mft_record(ni
);
3067 if (err
== -ENOMEM
) {
3068 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3069 "Marking the inode dirty again, so the VFS "
3071 mark_inode_dirty(vi
);
3073 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3074 NVolSetErrors(ni
->vol
);
3079 #endif /* NTFS_RW */