4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida
);
40 static LIST_HEAD(input_dev_list
);
41 static LIST_HEAD(input_handler_list
);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex
);
51 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
53 static inline int is_event_supported(unsigned int code
,
54 unsigned long *bm
, unsigned int max
)
56 return code
<= max
&& test_bit(code
, bm
);
59 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
62 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
65 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
66 return (old_val
* 3 + value
) / 4;
68 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
69 return (old_val
+ value
) / 2;
75 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
77 if (test_bit(EV_REP
, dev
->evbit
) &&
78 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
79 dev
->timer
.function
) {
80 dev
->repeat_key
= code
;
81 mod_timer(&dev
->timer
,
82 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
86 static void input_stop_autorepeat(struct input_dev
*dev
)
88 del_timer(&dev
->timer
);
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
96 static unsigned int input_to_handler(struct input_handle
*handle
,
97 struct input_value
*vals
, unsigned int count
)
99 struct input_handler
*handler
= handle
->handler
;
100 struct input_value
*end
= vals
;
101 struct input_value
*v
;
103 if (handler
->filter
) {
104 for (v
= vals
; v
!= vals
+ count
; v
++) {
105 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
118 handler
->events(handle
, vals
, count
);
119 else if (handler
->event
)
120 for (v
= vals
; v
!= vals
+ count
; v
++)
121 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
131 static void input_pass_values(struct input_dev
*dev
,
132 struct input_value
*vals
, unsigned int count
)
134 struct input_handle
*handle
;
135 struct input_value
*v
;
142 handle
= rcu_dereference(dev
->grab
);
144 count
= input_to_handler(handle
, vals
, count
);
146 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
148 count
= input_to_handler(handle
, vals
, count
);
156 /* trigger auto repeat for key events */
157 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
158 for (v
= vals
; v
!= vals
+ count
; v
++) {
159 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
161 input_start_autorepeat(dev
, v
->code
);
163 input_stop_autorepeat(dev
);
169 static void input_pass_event(struct input_dev
*dev
,
170 unsigned int type
, unsigned int code
, int value
)
172 struct input_value vals
[] = { { type
, code
, value
} };
174 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
182 static void input_repeat_key(struct timer_list
*t
)
184 struct input_dev
*dev
= from_timer(dev
, t
, timer
);
187 spin_lock_irqsave(&dev
->event_lock
, flags
);
189 if (test_bit(dev
->repeat_key
, dev
->key
) &&
190 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
191 struct input_value vals
[] = {
192 { EV_KEY
, dev
->repeat_key
, 2 },
196 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
198 if (dev
->rep
[REP_PERIOD
])
199 mod_timer(&dev
->timer
, jiffies
+
200 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
203 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
206 #define INPUT_IGNORE_EVENT 0
207 #define INPUT_PASS_TO_HANDLERS 1
208 #define INPUT_PASS_TO_DEVICE 2
210 #define INPUT_FLUSH 8
211 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
213 static int input_handle_abs_event(struct input_dev
*dev
,
214 unsigned int code
, int *pval
)
216 struct input_mt
*mt
= dev
->mt
;
220 if (code
== ABS_MT_SLOT
) {
222 * "Stage" the event; we'll flush it later, when we
223 * get actual touch data.
225 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
228 return INPUT_IGNORE_EVENT
;
231 is_mt_event
= input_is_mt_value(code
);
234 pold
= &dev
->absinfo
[code
].value
;
236 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
239 * Bypass filtering for multi-touch events when
240 * not employing slots.
246 *pval
= input_defuzz_abs_event(*pval
, *pold
,
247 dev
->absinfo
[code
].fuzz
);
249 return INPUT_IGNORE_EVENT
;
254 /* Flush pending "slot" event */
255 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
256 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
257 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
260 return INPUT_PASS_TO_HANDLERS
;
263 static int input_get_disposition(struct input_dev
*dev
,
264 unsigned int type
, unsigned int code
, int *pval
)
266 int disposition
= INPUT_IGNORE_EVENT
;
274 disposition
= INPUT_PASS_TO_ALL
;
278 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
281 disposition
= INPUT_PASS_TO_HANDLERS
;
287 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
289 /* auto-repeat bypasses state updates */
291 disposition
= INPUT_PASS_TO_HANDLERS
;
295 if (!!test_bit(code
, dev
->key
) != !!value
) {
297 __change_bit(code
, dev
->key
);
298 disposition
= INPUT_PASS_TO_HANDLERS
;
304 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
305 !!test_bit(code
, dev
->sw
) != !!value
) {
307 __change_bit(code
, dev
->sw
);
308 disposition
= INPUT_PASS_TO_HANDLERS
;
313 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
314 disposition
= input_handle_abs_event(dev
, code
, &value
);
319 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
320 disposition
= INPUT_PASS_TO_HANDLERS
;
325 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
326 disposition
= INPUT_PASS_TO_ALL
;
331 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
332 !!test_bit(code
, dev
->led
) != !!value
) {
334 __change_bit(code
, dev
->led
);
335 disposition
= INPUT_PASS_TO_ALL
;
340 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
342 if (!!test_bit(code
, dev
->snd
) != !!value
)
343 __change_bit(code
, dev
->snd
);
344 disposition
= INPUT_PASS_TO_ALL
;
349 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
350 dev
->rep
[code
] = value
;
351 disposition
= INPUT_PASS_TO_ALL
;
357 disposition
= INPUT_PASS_TO_ALL
;
361 disposition
= INPUT_PASS_TO_ALL
;
369 static void input_handle_event(struct input_dev
*dev
,
370 unsigned int type
, unsigned int code
, int value
)
372 int disposition
= input_get_disposition(dev
, type
, code
, &value
);
374 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
375 add_input_randomness(type
, code
, value
);
377 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
378 dev
->event(dev
, type
, code
, value
);
383 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
384 struct input_value
*v
;
386 if (disposition
& INPUT_SLOT
) {
387 v
= &dev
->vals
[dev
->num_vals
++];
389 v
->code
= ABS_MT_SLOT
;
390 v
->value
= dev
->mt
->slot
;
393 v
= &dev
->vals
[dev
->num_vals
++];
399 if (disposition
& INPUT_FLUSH
) {
400 if (dev
->num_vals
>= 2)
401 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
403 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
404 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
405 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
412 * input_event() - report new input event
413 * @dev: device that generated the event
414 * @type: type of the event
416 * @value: value of the event
418 * This function should be used by drivers implementing various input
419 * devices to report input events. See also input_inject_event().
421 * NOTE: input_event() may be safely used right after input device was
422 * allocated with input_allocate_device(), even before it is registered
423 * with input_register_device(), but the event will not reach any of the
424 * input handlers. Such early invocation of input_event() may be used
425 * to 'seed' initial state of a switch or initial position of absolute
428 void input_event(struct input_dev
*dev
,
429 unsigned int type
, unsigned int code
, int value
)
433 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
435 spin_lock_irqsave(&dev
->event_lock
, flags
);
436 input_handle_event(dev
, type
, code
, value
);
437 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
440 EXPORT_SYMBOL(input_event
);
443 * input_inject_event() - send input event from input handler
444 * @handle: input handle to send event through
445 * @type: type of the event
447 * @value: value of the event
449 * Similar to input_event() but will ignore event if device is
450 * "grabbed" and handle injecting event is not the one that owns
453 void input_inject_event(struct input_handle
*handle
,
454 unsigned int type
, unsigned int code
, int value
)
456 struct input_dev
*dev
= handle
->dev
;
457 struct input_handle
*grab
;
460 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
461 spin_lock_irqsave(&dev
->event_lock
, flags
);
464 grab
= rcu_dereference(dev
->grab
);
465 if (!grab
|| grab
== handle
)
466 input_handle_event(dev
, type
, code
, value
);
469 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
472 EXPORT_SYMBOL(input_inject_event
);
475 * input_alloc_absinfo - allocates array of input_absinfo structs
476 * @dev: the input device emitting absolute events
478 * If the absinfo struct the caller asked for is already allocated, this
479 * functions will not do anything.
481 void input_alloc_absinfo(struct input_dev
*dev
)
486 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(*dev
->absinfo
), GFP_KERNEL
);
488 dev_err(dev
->dev
.parent
?: &dev
->dev
,
489 "%s: unable to allocate memory\n", __func__
);
491 * We will handle this allocation failure in
492 * input_register_device() when we refuse to register input
493 * device with ABS bits but without absinfo.
497 EXPORT_SYMBOL(input_alloc_absinfo
);
499 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
500 int min
, int max
, int fuzz
, int flat
)
502 struct input_absinfo
*absinfo
;
504 input_alloc_absinfo(dev
);
508 absinfo
= &dev
->absinfo
[axis
];
509 absinfo
->minimum
= min
;
510 absinfo
->maximum
= max
;
511 absinfo
->fuzz
= fuzz
;
512 absinfo
->flat
= flat
;
514 __set_bit(EV_ABS
, dev
->evbit
);
515 __set_bit(axis
, dev
->absbit
);
517 EXPORT_SYMBOL(input_set_abs_params
);
521 * input_grab_device - grabs device for exclusive use
522 * @handle: input handle that wants to own the device
524 * When a device is grabbed by an input handle all events generated by
525 * the device are delivered only to this handle. Also events injected
526 * by other input handles are ignored while device is grabbed.
528 int input_grab_device(struct input_handle
*handle
)
530 struct input_dev
*dev
= handle
->dev
;
533 retval
= mutex_lock_interruptible(&dev
->mutex
);
542 rcu_assign_pointer(dev
->grab
, handle
);
545 mutex_unlock(&dev
->mutex
);
548 EXPORT_SYMBOL(input_grab_device
);
550 static void __input_release_device(struct input_handle
*handle
)
552 struct input_dev
*dev
= handle
->dev
;
553 struct input_handle
*grabber
;
555 grabber
= rcu_dereference_protected(dev
->grab
,
556 lockdep_is_held(&dev
->mutex
));
557 if (grabber
== handle
) {
558 rcu_assign_pointer(dev
->grab
, NULL
);
559 /* Make sure input_pass_event() notices that grab is gone */
562 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
563 if (handle
->open
&& handle
->handler
->start
)
564 handle
->handler
->start(handle
);
569 * input_release_device - release previously grabbed device
570 * @handle: input handle that owns the device
572 * Releases previously grabbed device so that other input handles can
573 * start receiving input events. Upon release all handlers attached
574 * to the device have their start() method called so they have a change
575 * to synchronize device state with the rest of the system.
577 void input_release_device(struct input_handle
*handle
)
579 struct input_dev
*dev
= handle
->dev
;
581 mutex_lock(&dev
->mutex
);
582 __input_release_device(handle
);
583 mutex_unlock(&dev
->mutex
);
585 EXPORT_SYMBOL(input_release_device
);
588 * input_open_device - open input device
589 * @handle: handle through which device is being accessed
591 * This function should be called by input handlers when they
592 * want to start receive events from given input device.
594 int input_open_device(struct input_handle
*handle
)
596 struct input_dev
*dev
= handle
->dev
;
599 retval
= mutex_lock_interruptible(&dev
->mutex
);
603 if (dev
->going_away
) {
610 if (!dev
->users
++ && dev
->open
)
611 retval
= dev
->open(dev
);
615 if (!--handle
->open
) {
617 * Make sure we are not delivering any more events
618 * through this handle
625 mutex_unlock(&dev
->mutex
);
628 EXPORT_SYMBOL(input_open_device
);
630 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
632 struct input_dev
*dev
= handle
->dev
;
635 retval
= mutex_lock_interruptible(&dev
->mutex
);
640 retval
= dev
->flush(dev
, file
);
642 mutex_unlock(&dev
->mutex
);
645 EXPORT_SYMBOL(input_flush_device
);
648 * input_close_device - close input device
649 * @handle: handle through which device is being accessed
651 * This function should be called by input handlers when they
652 * want to stop receive events from given input device.
654 void input_close_device(struct input_handle
*handle
)
656 struct input_dev
*dev
= handle
->dev
;
658 mutex_lock(&dev
->mutex
);
660 __input_release_device(handle
);
662 if (!--dev
->users
&& dev
->close
)
665 if (!--handle
->open
) {
667 * synchronize_rcu() makes sure that input_pass_event()
668 * completed and that no more input events are delivered
669 * through this handle
674 mutex_unlock(&dev
->mutex
);
676 EXPORT_SYMBOL(input_close_device
);
679 * Simulate keyup events for all keys that are marked as pressed.
680 * The function must be called with dev->event_lock held.
682 static void input_dev_release_keys(struct input_dev
*dev
)
684 bool need_sync
= false;
687 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
688 for_each_set_bit(code
, dev
->key
, KEY_CNT
) {
689 input_pass_event(dev
, EV_KEY
, code
, 0);
694 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
696 memset(dev
->key
, 0, sizeof(dev
->key
));
701 * Prepare device for unregistering
703 static void input_disconnect_device(struct input_dev
*dev
)
705 struct input_handle
*handle
;
708 * Mark device as going away. Note that we take dev->mutex here
709 * not to protect access to dev->going_away but rather to ensure
710 * that there are no threads in the middle of input_open_device()
712 mutex_lock(&dev
->mutex
);
713 dev
->going_away
= true;
714 mutex_unlock(&dev
->mutex
);
716 spin_lock_irq(&dev
->event_lock
);
719 * Simulate keyup events for all pressed keys so that handlers
720 * are not left with "stuck" keys. The driver may continue
721 * generate events even after we done here but they will not
722 * reach any handlers.
724 input_dev_release_keys(dev
);
726 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
729 spin_unlock_irq(&dev
->event_lock
);
733 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
734 * @ke: keymap entry containing scancode to be converted.
735 * @scancode: pointer to the location where converted scancode should
738 * This function is used to convert scancode stored in &struct keymap_entry
739 * into scalar form understood by legacy keymap handling methods. These
740 * methods expect scancodes to be represented as 'unsigned int'.
742 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
743 unsigned int *scancode
)
747 *scancode
= *((u8
*)ke
->scancode
);
751 *scancode
= *((u16
*)ke
->scancode
);
755 *scancode
= *((u32
*)ke
->scancode
);
764 EXPORT_SYMBOL(input_scancode_to_scalar
);
767 * Those routines handle the default case where no [gs]etkeycode() is
768 * defined. In this case, an array indexed by the scancode is used.
771 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
774 switch (dev
->keycodesize
) {
776 return ((u8
*)dev
->keycode
)[index
];
779 return ((u16
*)dev
->keycode
)[index
];
782 return ((u32
*)dev
->keycode
)[index
];
786 static int input_default_getkeycode(struct input_dev
*dev
,
787 struct input_keymap_entry
*ke
)
792 if (!dev
->keycodesize
)
795 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
798 error
= input_scancode_to_scalar(ke
, &index
);
803 if (index
>= dev
->keycodemax
)
806 ke
->keycode
= input_fetch_keycode(dev
, index
);
808 ke
->len
= sizeof(index
);
809 memcpy(ke
->scancode
, &index
, sizeof(index
));
814 static int input_default_setkeycode(struct input_dev
*dev
,
815 const struct input_keymap_entry
*ke
,
816 unsigned int *old_keycode
)
822 if (!dev
->keycodesize
)
825 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
828 error
= input_scancode_to_scalar(ke
, &index
);
833 if (index
>= dev
->keycodemax
)
836 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
837 (ke
->keycode
>> (dev
->keycodesize
* 8)))
840 switch (dev
->keycodesize
) {
842 u8
*k
= (u8
*)dev
->keycode
;
843 *old_keycode
= k
[index
];
844 k
[index
] = ke
->keycode
;
848 u16
*k
= (u16
*)dev
->keycode
;
849 *old_keycode
= k
[index
];
850 k
[index
] = ke
->keycode
;
854 u32
*k
= (u32
*)dev
->keycode
;
855 *old_keycode
= k
[index
];
856 k
[index
] = ke
->keycode
;
861 __clear_bit(*old_keycode
, dev
->keybit
);
862 __set_bit(ke
->keycode
, dev
->keybit
);
864 for (i
= 0; i
< dev
->keycodemax
; i
++) {
865 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
866 __set_bit(*old_keycode
, dev
->keybit
);
867 break; /* Setting the bit twice is useless, so break */
875 * input_get_keycode - retrieve keycode currently mapped to a given scancode
876 * @dev: input device which keymap is being queried
879 * This function should be called by anyone interested in retrieving current
880 * keymap. Presently evdev handlers use it.
882 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
887 spin_lock_irqsave(&dev
->event_lock
, flags
);
888 retval
= dev
->getkeycode(dev
, ke
);
889 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
893 EXPORT_SYMBOL(input_get_keycode
);
896 * input_set_keycode - attribute a keycode to a given scancode
897 * @dev: input device which keymap is being updated
898 * @ke: new keymap entry
900 * This function should be called by anyone needing to update current
901 * keymap. Presently keyboard and evdev handlers use it.
903 int input_set_keycode(struct input_dev
*dev
,
904 const struct input_keymap_entry
*ke
)
907 unsigned int old_keycode
;
910 if (ke
->keycode
> KEY_MAX
)
913 spin_lock_irqsave(&dev
->event_lock
, flags
);
915 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
919 /* Make sure KEY_RESERVED did not get enabled. */
920 __clear_bit(KEY_RESERVED
, dev
->keybit
);
923 * Simulate keyup event if keycode is not present
924 * in the keymap anymore
926 if (test_bit(EV_KEY
, dev
->evbit
) &&
927 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
928 __test_and_clear_bit(old_keycode
, dev
->key
)) {
929 struct input_value vals
[] = {
930 { EV_KEY
, old_keycode
, 0 },
934 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
938 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
942 EXPORT_SYMBOL(input_set_keycode
);
944 bool input_match_device_id(const struct input_dev
*dev
,
945 const struct input_device_id
*id
)
947 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
948 if (id
->bustype
!= dev
->id
.bustype
)
951 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
952 if (id
->vendor
!= dev
->id
.vendor
)
955 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
956 if (id
->product
!= dev
->id
.product
)
959 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
960 if (id
->version
!= dev
->id
.version
)
963 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
) ||
964 !bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
) ||
965 !bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
) ||
966 !bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
) ||
967 !bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
) ||
968 !bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
) ||
969 !bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
) ||
970 !bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
) ||
971 !bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
) ||
972 !bitmap_subset(id
->propbit
, dev
->propbit
, INPUT_PROP_MAX
)) {
978 EXPORT_SYMBOL(input_match_device_id
);
980 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
981 struct input_dev
*dev
)
983 const struct input_device_id
*id
;
985 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
986 if (input_match_device_id(dev
, id
) &&
987 (!handler
->match
|| handler
->match(handler
, dev
))) {
995 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
997 const struct input_device_id
*id
;
1000 id
= input_match_device(handler
, dev
);
1004 error
= handler
->connect(handler
, dev
, id
);
1005 if (error
&& error
!= -ENODEV
)
1006 pr_err("failed to attach handler %s to device %s, error: %d\n",
1007 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1012 #ifdef CONFIG_COMPAT
1014 static int input_bits_to_string(char *buf
, int buf_size
,
1015 unsigned long bits
, bool skip_empty
)
1019 if (in_compat_syscall()) {
1020 u32 dword
= bits
>> 32;
1021 if (dword
|| !skip_empty
)
1022 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1024 dword
= bits
& 0xffffffffUL
;
1025 if (dword
|| !skip_empty
|| len
)
1026 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1029 if (bits
|| !skip_empty
)
1030 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1036 #else /* !CONFIG_COMPAT */
1038 static int input_bits_to_string(char *buf
, int buf_size
,
1039 unsigned long bits
, bool skip_empty
)
1041 return bits
|| !skip_empty
?
1042 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1047 #ifdef CONFIG_PROC_FS
1049 static struct proc_dir_entry
*proc_bus_input_dir
;
1050 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1051 static int input_devices_state
;
1053 static inline void input_wakeup_procfs_readers(void)
1055 input_devices_state
++;
1056 wake_up(&input_devices_poll_wait
);
1059 static __poll_t
input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1061 poll_wait(file
, &input_devices_poll_wait
, wait
);
1062 if (file
->f_version
!= input_devices_state
) {
1063 file
->f_version
= input_devices_state
;
1064 return EPOLLIN
| EPOLLRDNORM
;
1070 union input_seq_state
{
1073 bool mutex_acquired
;
1078 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1080 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1083 /* We need to fit into seq->private pointer */
1084 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1086 error
= mutex_lock_interruptible(&input_mutex
);
1088 state
->mutex_acquired
= false;
1089 return ERR_PTR(error
);
1092 state
->mutex_acquired
= true;
1094 return seq_list_start(&input_dev_list
, *pos
);
1097 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1099 return seq_list_next(v
, &input_dev_list
, pos
);
1102 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1104 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1106 if (state
->mutex_acquired
)
1107 mutex_unlock(&input_mutex
);
1110 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1111 unsigned long *bitmap
, int max
)
1114 bool skip_empty
= true;
1117 seq_printf(seq
, "B: %s=", name
);
1119 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1120 if (input_bits_to_string(buf
, sizeof(buf
),
1121 bitmap
[i
], skip_empty
)) {
1123 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1128 * If no output was produced print a single 0.
1133 seq_putc(seq
, '\n');
1136 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1138 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1139 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1140 struct input_handle
*handle
;
1142 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1143 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1145 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1146 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1147 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1148 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1149 seq_puts(seq
, "H: Handlers=");
1151 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1152 seq_printf(seq
, "%s ", handle
->name
);
1153 seq_putc(seq
, '\n');
1155 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1157 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1158 if (test_bit(EV_KEY
, dev
->evbit
))
1159 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1160 if (test_bit(EV_REL
, dev
->evbit
))
1161 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1162 if (test_bit(EV_ABS
, dev
->evbit
))
1163 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1164 if (test_bit(EV_MSC
, dev
->evbit
))
1165 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1166 if (test_bit(EV_LED
, dev
->evbit
))
1167 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1168 if (test_bit(EV_SND
, dev
->evbit
))
1169 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1170 if (test_bit(EV_FF
, dev
->evbit
))
1171 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1172 if (test_bit(EV_SW
, dev
->evbit
))
1173 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1175 seq_putc(seq
, '\n');
1181 static const struct seq_operations input_devices_seq_ops
= {
1182 .start
= input_devices_seq_start
,
1183 .next
= input_devices_seq_next
,
1184 .stop
= input_seq_stop
,
1185 .show
= input_devices_seq_show
,
1188 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1190 return seq_open(file
, &input_devices_seq_ops
);
1193 static const struct file_operations input_devices_fileops
= {
1194 .owner
= THIS_MODULE
,
1195 .open
= input_proc_devices_open
,
1196 .poll
= input_proc_devices_poll
,
1198 .llseek
= seq_lseek
,
1199 .release
= seq_release
,
1202 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1204 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1207 /* We need to fit into seq->private pointer */
1208 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1210 error
= mutex_lock_interruptible(&input_mutex
);
1212 state
->mutex_acquired
= false;
1213 return ERR_PTR(error
);
1216 state
->mutex_acquired
= true;
1219 return seq_list_start(&input_handler_list
, *pos
);
1222 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1224 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1226 state
->pos
= *pos
+ 1;
1227 return seq_list_next(v
, &input_handler_list
, pos
);
1230 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1232 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1233 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1235 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1236 if (handler
->filter
)
1237 seq_puts(seq
, " (filter)");
1238 if (handler
->legacy_minors
)
1239 seq_printf(seq
, " Minor=%d", handler
->minor
);
1240 seq_putc(seq
, '\n');
1245 static const struct seq_operations input_handlers_seq_ops
= {
1246 .start
= input_handlers_seq_start
,
1247 .next
= input_handlers_seq_next
,
1248 .stop
= input_seq_stop
,
1249 .show
= input_handlers_seq_show
,
1252 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1254 return seq_open(file
, &input_handlers_seq_ops
);
1257 static const struct file_operations input_handlers_fileops
= {
1258 .owner
= THIS_MODULE
,
1259 .open
= input_proc_handlers_open
,
1261 .llseek
= seq_lseek
,
1262 .release
= seq_release
,
1265 static int __init
input_proc_init(void)
1267 struct proc_dir_entry
*entry
;
1269 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1270 if (!proc_bus_input_dir
)
1273 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1274 &input_devices_fileops
);
1278 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1279 &input_handlers_fileops
);
1285 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1286 fail1
: remove_proc_entry("bus/input", NULL
);
1290 static void input_proc_exit(void)
1292 remove_proc_entry("devices", proc_bus_input_dir
);
1293 remove_proc_entry("handlers", proc_bus_input_dir
);
1294 remove_proc_entry("bus/input", NULL
);
1297 #else /* !CONFIG_PROC_FS */
1298 static inline void input_wakeup_procfs_readers(void) { }
1299 static inline int input_proc_init(void) { return 0; }
1300 static inline void input_proc_exit(void) { }
1303 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1304 static ssize_t input_dev_show_##name(struct device *dev, \
1305 struct device_attribute *attr, \
1308 struct input_dev *input_dev = to_input_dev(dev); \
1310 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1311 input_dev->name ? input_dev->name : ""); \
1313 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1315 INPUT_DEV_STRING_ATTR_SHOW(name
);
1316 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1317 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1319 static int input_print_modalias_bits(char *buf
, int size
,
1320 char name
, unsigned long *bm
,
1321 unsigned int min_bit
, unsigned int max_bit
)
1325 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1326 for (i
= min_bit
; i
< max_bit
; i
++)
1327 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1328 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1332 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1337 len
= snprintf(buf
, max(size
, 0),
1338 "input:b%04Xv%04Xp%04Xe%04X-",
1339 id
->id
.bustype
, id
->id
.vendor
,
1340 id
->id
.product
, id
->id
.version
);
1342 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1343 'e', id
->evbit
, 0, EV_MAX
);
1344 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1345 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1346 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1347 'r', id
->relbit
, 0, REL_MAX
);
1348 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1349 'a', id
->absbit
, 0, ABS_MAX
);
1350 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1351 'm', id
->mscbit
, 0, MSC_MAX
);
1352 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1353 'l', id
->ledbit
, 0, LED_MAX
);
1354 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1355 's', id
->sndbit
, 0, SND_MAX
);
1356 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1357 'f', id
->ffbit
, 0, FF_MAX
);
1358 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1359 'w', id
->swbit
, 0, SW_MAX
);
1362 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1367 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1368 struct device_attribute
*attr
,
1371 struct input_dev
*id
= to_input_dev(dev
);
1374 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1376 return min_t(int, len
, PAGE_SIZE
);
1378 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1380 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1381 int max
, int add_cr
);
1383 static ssize_t
input_dev_show_properties(struct device
*dev
,
1384 struct device_attribute
*attr
,
1387 struct input_dev
*input_dev
= to_input_dev(dev
);
1388 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1389 INPUT_PROP_MAX
, true);
1390 return min_t(int, len
, PAGE_SIZE
);
1392 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1394 static struct attribute
*input_dev_attrs
[] = {
1395 &dev_attr_name
.attr
,
1396 &dev_attr_phys
.attr
,
1397 &dev_attr_uniq
.attr
,
1398 &dev_attr_modalias
.attr
,
1399 &dev_attr_properties
.attr
,
1403 static const struct attribute_group input_dev_attr_group
= {
1404 .attrs
= input_dev_attrs
,
1407 #define INPUT_DEV_ID_ATTR(name) \
1408 static ssize_t input_dev_show_id_##name(struct device *dev, \
1409 struct device_attribute *attr, \
1412 struct input_dev *input_dev = to_input_dev(dev); \
1413 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1415 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1417 INPUT_DEV_ID_ATTR(bustype
);
1418 INPUT_DEV_ID_ATTR(vendor
);
1419 INPUT_DEV_ID_ATTR(product
);
1420 INPUT_DEV_ID_ATTR(version
);
1422 static struct attribute
*input_dev_id_attrs
[] = {
1423 &dev_attr_bustype
.attr
,
1424 &dev_attr_vendor
.attr
,
1425 &dev_attr_product
.attr
,
1426 &dev_attr_version
.attr
,
1430 static const struct attribute_group input_dev_id_attr_group
= {
1432 .attrs
= input_dev_id_attrs
,
1435 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1436 int max
, int add_cr
)
1440 bool skip_empty
= true;
1442 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1443 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1444 bitmap
[i
], skip_empty
);
1448 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1453 * If no output was produced print a single 0.
1456 len
= snprintf(buf
, buf_size
, "%d", 0);
1459 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1464 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1465 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1466 struct device_attribute *attr, \
1469 struct input_dev *input_dev = to_input_dev(dev); \
1470 int len = input_print_bitmap(buf, PAGE_SIZE, \
1471 input_dev->bm##bit, ev##_MAX, \
1473 return min_t(int, len, PAGE_SIZE); \
1475 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1477 INPUT_DEV_CAP_ATTR(EV
, ev
);
1478 INPUT_DEV_CAP_ATTR(KEY
, key
);
1479 INPUT_DEV_CAP_ATTR(REL
, rel
);
1480 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1481 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1482 INPUT_DEV_CAP_ATTR(LED
, led
);
1483 INPUT_DEV_CAP_ATTR(SND
, snd
);
1484 INPUT_DEV_CAP_ATTR(FF
, ff
);
1485 INPUT_DEV_CAP_ATTR(SW
, sw
);
1487 static struct attribute
*input_dev_caps_attrs
[] = {
1500 static const struct attribute_group input_dev_caps_attr_group
= {
1501 .name
= "capabilities",
1502 .attrs
= input_dev_caps_attrs
,
1505 static const struct attribute_group
*input_dev_attr_groups
[] = {
1506 &input_dev_attr_group
,
1507 &input_dev_id_attr_group
,
1508 &input_dev_caps_attr_group
,
1512 static void input_dev_release(struct device
*device
)
1514 struct input_dev
*dev
= to_input_dev(device
);
1516 input_ff_destroy(dev
);
1517 input_mt_destroy_slots(dev
);
1518 kfree(dev
->absinfo
);
1522 module_put(THIS_MODULE
);
1526 * Input uevent interface - loading event handlers based on
1529 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1530 const char *name
, unsigned long *bitmap
, int max
)
1534 if (add_uevent_var(env
, "%s", name
))
1537 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1538 sizeof(env
->buf
) - env
->buflen
,
1539 bitmap
, max
, false);
1540 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1547 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1548 struct input_dev
*dev
)
1552 if (add_uevent_var(env
, "MODALIAS="))
1555 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1556 sizeof(env
->buf
) - env
->buflen
,
1558 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1565 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1567 int err = add_uevent_var(env, fmt, val); \
1572 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1574 int err = input_add_uevent_bm_var(env, name, bm, max); \
1579 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1581 int err = input_add_uevent_modalias_var(env, dev); \
1586 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1588 struct input_dev
*dev
= to_input_dev(device
);
1590 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1591 dev
->id
.bustype
, dev
->id
.vendor
,
1592 dev
->id
.product
, dev
->id
.version
);
1594 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1596 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1598 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1600 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1602 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1603 if (test_bit(EV_KEY
, dev
->evbit
))
1604 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1605 if (test_bit(EV_REL
, dev
->evbit
))
1606 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1607 if (test_bit(EV_ABS
, dev
->evbit
))
1608 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1609 if (test_bit(EV_MSC
, dev
->evbit
))
1610 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1611 if (test_bit(EV_LED
, dev
->evbit
))
1612 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1613 if (test_bit(EV_SND
, dev
->evbit
))
1614 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1615 if (test_bit(EV_FF
, dev
->evbit
))
1616 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1617 if (test_bit(EV_SW
, dev
->evbit
))
1618 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1620 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1625 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1630 if (!test_bit(EV_##type, dev->evbit)) \
1633 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1634 active = test_bit(i, dev->bits); \
1635 if (!active && !on) \
1638 dev->event(dev, EV_##type, i, on ? active : 0); \
1642 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1647 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1648 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1650 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1651 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1652 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1657 * input_reset_device() - reset/restore the state of input device
1658 * @dev: input device whose state needs to be reset
1660 * This function tries to reset the state of an opened input device and
1661 * bring internal state and state if the hardware in sync with each other.
1662 * We mark all keys as released, restore LED state, repeat rate, etc.
1664 void input_reset_device(struct input_dev
*dev
)
1666 unsigned long flags
;
1668 mutex_lock(&dev
->mutex
);
1669 spin_lock_irqsave(&dev
->event_lock
, flags
);
1671 input_dev_toggle(dev
, true);
1672 input_dev_release_keys(dev
);
1674 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1675 mutex_unlock(&dev
->mutex
);
1677 EXPORT_SYMBOL(input_reset_device
);
1679 #ifdef CONFIG_PM_SLEEP
1680 static int input_dev_suspend(struct device
*dev
)
1682 struct input_dev
*input_dev
= to_input_dev(dev
);
1684 spin_lock_irq(&input_dev
->event_lock
);
1687 * Keys that are pressed now are unlikely to be
1688 * still pressed when we resume.
1690 input_dev_release_keys(input_dev
);
1692 /* Turn off LEDs and sounds, if any are active. */
1693 input_dev_toggle(input_dev
, false);
1695 spin_unlock_irq(&input_dev
->event_lock
);
1700 static int input_dev_resume(struct device
*dev
)
1702 struct input_dev
*input_dev
= to_input_dev(dev
);
1704 spin_lock_irq(&input_dev
->event_lock
);
1706 /* Restore state of LEDs and sounds, if any were active. */
1707 input_dev_toggle(input_dev
, true);
1709 spin_unlock_irq(&input_dev
->event_lock
);
1714 static int input_dev_freeze(struct device
*dev
)
1716 struct input_dev
*input_dev
= to_input_dev(dev
);
1718 spin_lock_irq(&input_dev
->event_lock
);
1721 * Keys that are pressed now are unlikely to be
1722 * still pressed when we resume.
1724 input_dev_release_keys(input_dev
);
1726 spin_unlock_irq(&input_dev
->event_lock
);
1731 static int input_dev_poweroff(struct device
*dev
)
1733 struct input_dev
*input_dev
= to_input_dev(dev
);
1735 spin_lock_irq(&input_dev
->event_lock
);
1737 /* Turn off LEDs and sounds, if any are active. */
1738 input_dev_toggle(input_dev
, false);
1740 spin_unlock_irq(&input_dev
->event_lock
);
1745 static const struct dev_pm_ops input_dev_pm_ops
= {
1746 .suspend
= input_dev_suspend
,
1747 .resume
= input_dev_resume
,
1748 .freeze
= input_dev_freeze
,
1749 .poweroff
= input_dev_poweroff
,
1750 .restore
= input_dev_resume
,
1752 #endif /* CONFIG_PM */
1754 static const struct device_type input_dev_type
= {
1755 .groups
= input_dev_attr_groups
,
1756 .release
= input_dev_release
,
1757 .uevent
= input_dev_uevent
,
1758 #ifdef CONFIG_PM_SLEEP
1759 .pm
= &input_dev_pm_ops
,
1763 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1765 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1768 struct class input_class
= {
1770 .devnode
= input_devnode
,
1772 EXPORT_SYMBOL_GPL(input_class
);
1775 * input_allocate_device - allocate memory for new input device
1777 * Returns prepared struct input_dev or %NULL.
1779 * NOTE: Use input_free_device() to free devices that have not been
1780 * registered; input_unregister_device() should be used for already
1781 * registered devices.
1783 struct input_dev
*input_allocate_device(void)
1785 static atomic_t input_no
= ATOMIC_INIT(-1);
1786 struct input_dev
*dev
;
1788 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1790 dev
->dev
.type
= &input_dev_type
;
1791 dev
->dev
.class = &input_class
;
1792 device_initialize(&dev
->dev
);
1793 mutex_init(&dev
->mutex
);
1794 spin_lock_init(&dev
->event_lock
);
1795 timer_setup(&dev
->timer
, NULL
, 0);
1796 INIT_LIST_HEAD(&dev
->h_list
);
1797 INIT_LIST_HEAD(&dev
->node
);
1799 dev_set_name(&dev
->dev
, "input%lu",
1800 (unsigned long)atomic_inc_return(&input_no
));
1802 __module_get(THIS_MODULE
);
1807 EXPORT_SYMBOL(input_allocate_device
);
1809 struct input_devres
{
1810 struct input_dev
*input
;
1813 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1815 struct input_devres
*devres
= res
;
1817 return devres
->input
== data
;
1820 static void devm_input_device_release(struct device
*dev
, void *res
)
1822 struct input_devres
*devres
= res
;
1823 struct input_dev
*input
= devres
->input
;
1825 dev_dbg(dev
, "%s: dropping reference to %s\n",
1826 __func__
, dev_name(&input
->dev
));
1827 input_put_device(input
);
1831 * devm_input_allocate_device - allocate managed input device
1832 * @dev: device owning the input device being created
1834 * Returns prepared struct input_dev or %NULL.
1836 * Managed input devices do not need to be explicitly unregistered or
1837 * freed as it will be done automatically when owner device unbinds from
1838 * its driver (or binding fails). Once managed input device is allocated,
1839 * it is ready to be set up and registered in the same fashion as regular
1840 * input device. There are no special devm_input_device_[un]register()
1841 * variants, regular ones work with both managed and unmanaged devices,
1842 * should you need them. In most cases however, managed input device need
1843 * not be explicitly unregistered or freed.
1845 * NOTE: the owner device is set up as parent of input device and users
1846 * should not override it.
1848 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1850 struct input_dev
*input
;
1851 struct input_devres
*devres
;
1853 devres
= devres_alloc(devm_input_device_release
,
1854 sizeof(*devres
), GFP_KERNEL
);
1858 input
= input_allocate_device();
1860 devres_free(devres
);
1864 input
->dev
.parent
= dev
;
1865 input
->devres_managed
= true;
1867 devres
->input
= input
;
1868 devres_add(dev
, devres
);
1872 EXPORT_SYMBOL(devm_input_allocate_device
);
1875 * input_free_device - free memory occupied by input_dev structure
1876 * @dev: input device to free
1878 * This function should only be used if input_register_device()
1879 * was not called yet or if it failed. Once device was registered
1880 * use input_unregister_device() and memory will be freed once last
1881 * reference to the device is dropped.
1883 * Device should be allocated by input_allocate_device().
1885 * NOTE: If there are references to the input device then memory
1886 * will not be freed until last reference is dropped.
1888 void input_free_device(struct input_dev
*dev
)
1891 if (dev
->devres_managed
)
1892 WARN_ON(devres_destroy(dev
->dev
.parent
,
1893 devm_input_device_release
,
1894 devm_input_device_match
,
1896 input_put_device(dev
);
1899 EXPORT_SYMBOL(input_free_device
);
1902 * input_set_capability - mark device as capable of a certain event
1903 * @dev: device that is capable of emitting or accepting event
1904 * @type: type of the event (EV_KEY, EV_REL, etc...)
1907 * In addition to setting up corresponding bit in appropriate capability
1908 * bitmap the function also adjusts dev->evbit.
1910 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1914 __set_bit(code
, dev
->keybit
);
1918 __set_bit(code
, dev
->relbit
);
1922 input_alloc_absinfo(dev
);
1926 __set_bit(code
, dev
->absbit
);
1930 __set_bit(code
, dev
->mscbit
);
1934 __set_bit(code
, dev
->swbit
);
1938 __set_bit(code
, dev
->ledbit
);
1942 __set_bit(code
, dev
->sndbit
);
1946 __set_bit(code
, dev
->ffbit
);
1954 pr_err("%s: unknown type %u (code %u)\n", __func__
, type
, code
);
1959 __set_bit(type
, dev
->evbit
);
1961 EXPORT_SYMBOL(input_set_capability
);
1963 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
1967 unsigned int events
;
1970 mt_slots
= dev
->mt
->num_slots
;
1971 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
1972 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
1973 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
1974 mt_slots
= clamp(mt_slots
, 2, 32);
1975 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
1981 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
1983 if (test_bit(EV_ABS
, dev
->evbit
))
1984 for_each_set_bit(i
, dev
->absbit
, ABS_CNT
)
1985 events
+= input_is_mt_axis(i
) ? mt_slots
: 1;
1987 if (test_bit(EV_REL
, dev
->evbit
))
1988 events
+= bitmap_weight(dev
->relbit
, REL_CNT
);
1990 /* Make room for KEY and MSC events */
1996 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1998 if (!test_bit(EV_##type, dev->evbit)) \
1999 memset(dev->bits##bit, 0, \
2000 sizeof(dev->bits##bit)); \
2003 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2005 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2006 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2007 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2008 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2009 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2010 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2011 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2012 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2015 static void __input_unregister_device(struct input_dev
*dev
)
2017 struct input_handle
*handle
, *next
;
2019 input_disconnect_device(dev
);
2021 mutex_lock(&input_mutex
);
2023 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2024 handle
->handler
->disconnect(handle
);
2025 WARN_ON(!list_empty(&dev
->h_list
));
2027 del_timer_sync(&dev
->timer
);
2028 list_del_init(&dev
->node
);
2030 input_wakeup_procfs_readers();
2032 mutex_unlock(&input_mutex
);
2034 device_del(&dev
->dev
);
2037 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2039 struct input_devres
*devres
= res
;
2040 struct input_dev
*input
= devres
->input
;
2042 dev_dbg(dev
, "%s: unregistering device %s\n",
2043 __func__
, dev_name(&input
->dev
));
2044 __input_unregister_device(input
);
2048 * input_enable_softrepeat - enable software autorepeat
2049 * @dev: input device
2050 * @delay: repeat delay
2051 * @period: repeat period
2053 * Enable software autorepeat on the input device.
2055 void input_enable_softrepeat(struct input_dev
*dev
, int delay
, int period
)
2057 dev
->timer
.function
= input_repeat_key
;
2058 dev
->rep
[REP_DELAY
] = delay
;
2059 dev
->rep
[REP_PERIOD
] = period
;
2061 EXPORT_SYMBOL(input_enable_softrepeat
);
2064 * input_register_device - register device with input core
2065 * @dev: device to be registered
2067 * This function registers device with input core. The device must be
2068 * allocated with input_allocate_device() and all it's capabilities
2069 * set up before registering.
2070 * If function fails the device must be freed with input_free_device().
2071 * Once device has been successfully registered it can be unregistered
2072 * with input_unregister_device(); input_free_device() should not be
2073 * called in this case.
2075 * Note that this function is also used to register managed input devices
2076 * (ones allocated with devm_input_allocate_device()). Such managed input
2077 * devices need not be explicitly unregistered or freed, their tear down
2078 * is controlled by the devres infrastructure. It is also worth noting
2079 * that tear down of managed input devices is internally a 2-step process:
2080 * registered managed input device is first unregistered, but stays in
2081 * memory and can still handle input_event() calls (although events will
2082 * not be delivered anywhere). The freeing of managed input device will
2083 * happen later, when devres stack is unwound to the point where device
2084 * allocation was made.
2086 int input_register_device(struct input_dev
*dev
)
2088 struct input_devres
*devres
= NULL
;
2089 struct input_handler
*handler
;
2090 unsigned int packet_size
;
2094 if (test_bit(EV_ABS
, dev
->evbit
) && !dev
->absinfo
) {
2096 "Absolute device without dev->absinfo, refusing to register\n");
2100 if (dev
->devres_managed
) {
2101 devres
= devres_alloc(devm_input_device_unregister
,
2102 sizeof(*devres
), GFP_KERNEL
);
2106 devres
->input
= dev
;
2109 /* Every input device generates EV_SYN/SYN_REPORT events. */
2110 __set_bit(EV_SYN
, dev
->evbit
);
2112 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2113 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2115 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2116 input_cleanse_bitmasks(dev
);
2118 packet_size
= input_estimate_events_per_packet(dev
);
2119 if (dev
->hint_events_per_packet
< packet_size
)
2120 dev
->hint_events_per_packet
= packet_size
;
2122 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2123 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2126 goto err_devres_free
;
2130 * If delay and period are pre-set by the driver, then autorepeating
2131 * is handled by the driver itself and we don't do it in input.c.
2133 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
])
2134 input_enable_softrepeat(dev
, 250, 33);
2136 if (!dev
->getkeycode
)
2137 dev
->getkeycode
= input_default_getkeycode
;
2139 if (!dev
->setkeycode
)
2140 dev
->setkeycode
= input_default_setkeycode
;
2142 error
= device_add(&dev
->dev
);
2146 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2147 pr_info("%s as %s\n",
2148 dev
->name
? dev
->name
: "Unspecified device",
2149 path
? path
: "N/A");
2152 error
= mutex_lock_interruptible(&input_mutex
);
2154 goto err_device_del
;
2156 list_add_tail(&dev
->node
, &input_dev_list
);
2158 list_for_each_entry(handler
, &input_handler_list
, node
)
2159 input_attach_handler(dev
, handler
);
2161 input_wakeup_procfs_readers();
2163 mutex_unlock(&input_mutex
);
2165 if (dev
->devres_managed
) {
2166 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2167 __func__
, dev_name(&dev
->dev
));
2168 devres_add(dev
->dev
.parent
, devres
);
2173 device_del(&dev
->dev
);
2178 devres_free(devres
);
2181 EXPORT_SYMBOL(input_register_device
);
2184 * input_unregister_device - unregister previously registered device
2185 * @dev: device to be unregistered
2187 * This function unregisters an input device. Once device is unregistered
2188 * the caller should not try to access it as it may get freed at any moment.
2190 void input_unregister_device(struct input_dev
*dev
)
2192 if (dev
->devres_managed
) {
2193 WARN_ON(devres_destroy(dev
->dev
.parent
,
2194 devm_input_device_unregister
,
2195 devm_input_device_match
,
2197 __input_unregister_device(dev
);
2199 * We do not do input_put_device() here because it will be done
2200 * when 2nd devres fires up.
2203 __input_unregister_device(dev
);
2204 input_put_device(dev
);
2207 EXPORT_SYMBOL(input_unregister_device
);
2210 * input_register_handler - register a new input handler
2211 * @handler: handler to be registered
2213 * This function registers a new input handler (interface) for input
2214 * devices in the system and attaches it to all input devices that
2215 * are compatible with the handler.
2217 int input_register_handler(struct input_handler
*handler
)
2219 struct input_dev
*dev
;
2222 error
= mutex_lock_interruptible(&input_mutex
);
2226 INIT_LIST_HEAD(&handler
->h_list
);
2228 list_add_tail(&handler
->node
, &input_handler_list
);
2230 list_for_each_entry(dev
, &input_dev_list
, node
)
2231 input_attach_handler(dev
, handler
);
2233 input_wakeup_procfs_readers();
2235 mutex_unlock(&input_mutex
);
2238 EXPORT_SYMBOL(input_register_handler
);
2241 * input_unregister_handler - unregisters an input handler
2242 * @handler: handler to be unregistered
2244 * This function disconnects a handler from its input devices and
2245 * removes it from lists of known handlers.
2247 void input_unregister_handler(struct input_handler
*handler
)
2249 struct input_handle
*handle
, *next
;
2251 mutex_lock(&input_mutex
);
2253 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2254 handler
->disconnect(handle
);
2255 WARN_ON(!list_empty(&handler
->h_list
));
2257 list_del_init(&handler
->node
);
2259 input_wakeup_procfs_readers();
2261 mutex_unlock(&input_mutex
);
2263 EXPORT_SYMBOL(input_unregister_handler
);
2266 * input_handler_for_each_handle - handle iterator
2267 * @handler: input handler to iterate
2268 * @data: data for the callback
2269 * @fn: function to be called for each handle
2271 * Iterate over @bus's list of devices, and call @fn for each, passing
2272 * it @data and stop when @fn returns a non-zero value. The function is
2273 * using RCU to traverse the list and therefore may be using in atomic
2274 * contexts. The @fn callback is invoked from RCU critical section and
2275 * thus must not sleep.
2277 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2278 int (*fn
)(struct input_handle
*, void *))
2280 struct input_handle
*handle
;
2285 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2286 retval
= fn(handle
, data
);
2295 EXPORT_SYMBOL(input_handler_for_each_handle
);
2298 * input_register_handle - register a new input handle
2299 * @handle: handle to register
2301 * This function puts a new input handle onto device's
2302 * and handler's lists so that events can flow through
2303 * it once it is opened using input_open_device().
2305 * This function is supposed to be called from handler's
2308 int input_register_handle(struct input_handle
*handle
)
2310 struct input_handler
*handler
= handle
->handler
;
2311 struct input_dev
*dev
= handle
->dev
;
2315 * We take dev->mutex here to prevent race with
2316 * input_release_device().
2318 error
= mutex_lock_interruptible(&dev
->mutex
);
2323 * Filters go to the head of the list, normal handlers
2326 if (handler
->filter
)
2327 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2329 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2331 mutex_unlock(&dev
->mutex
);
2334 * Since we are supposed to be called from ->connect()
2335 * which is mutually exclusive with ->disconnect()
2336 * we can't be racing with input_unregister_handle()
2337 * and so separate lock is not needed here.
2339 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2342 handler
->start(handle
);
2346 EXPORT_SYMBOL(input_register_handle
);
2349 * input_unregister_handle - unregister an input handle
2350 * @handle: handle to unregister
2352 * This function removes input handle from device's
2353 * and handler's lists.
2355 * This function is supposed to be called from handler's
2356 * disconnect() method.
2358 void input_unregister_handle(struct input_handle
*handle
)
2360 struct input_dev
*dev
= handle
->dev
;
2362 list_del_rcu(&handle
->h_node
);
2365 * Take dev->mutex to prevent race with input_release_device().
2367 mutex_lock(&dev
->mutex
);
2368 list_del_rcu(&handle
->d_node
);
2369 mutex_unlock(&dev
->mutex
);
2373 EXPORT_SYMBOL(input_unregister_handle
);
2376 * input_get_new_minor - allocates a new input minor number
2377 * @legacy_base: beginning or the legacy range to be searched
2378 * @legacy_num: size of legacy range
2379 * @allow_dynamic: whether we can also take ID from the dynamic range
2381 * This function allocates a new device minor for from input major namespace.
2382 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2383 * parameters and whether ID can be allocated from dynamic range if there are
2384 * no free IDs in legacy range.
2386 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2390 * This function should be called from input handler's ->connect()
2391 * methods, which are serialized with input_mutex, so no additional
2392 * locking is needed here.
2394 if (legacy_base
>= 0) {
2395 int minor
= ida_simple_get(&input_ida
,
2397 legacy_base
+ legacy_num
,
2399 if (minor
>= 0 || !allow_dynamic
)
2403 return ida_simple_get(&input_ida
,
2404 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2407 EXPORT_SYMBOL(input_get_new_minor
);
2410 * input_free_minor - release previously allocated minor
2411 * @minor: minor to be released
2413 * This function releases previously allocated input minor so that it can be
2416 void input_free_minor(unsigned int minor
)
2418 ida_simple_remove(&input_ida
, minor
);
2420 EXPORT_SYMBOL(input_free_minor
);
2422 static int __init
input_init(void)
2426 err
= class_register(&input_class
);
2428 pr_err("unable to register input_dev class\n");
2432 err
= input_proc_init();
2436 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2437 INPUT_MAX_CHAR_DEVICES
, "input");
2439 pr_err("unable to register char major %d", INPUT_MAJOR
);
2445 fail2
: input_proc_exit();
2446 fail1
: class_unregister(&input_class
);
2450 static void __exit
input_exit(void)
2453 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2454 INPUT_MAX_CHAR_DEVICES
);
2455 class_unregister(&input_class
);
2458 subsys_initcall(input_init
);
2459 module_exit(input_exit
);