2 * Core registration and callback routines for MTD
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
50 struct backing_dev_info
*mtd_bdi
;
52 #ifdef CONFIG_PM_SLEEP
54 static int mtd_cls_suspend(struct device
*dev
)
56 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
58 return mtd
? mtd_suspend(mtd
) : 0;
61 static int mtd_cls_resume(struct device
*dev
)
63 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops
, mtd_cls_suspend
, mtd_cls_resume
);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #define MTD_CLS_PM_OPS NULL
76 static struct class mtd_class
= {
82 static DEFINE_IDR(mtd_idr
);
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex
);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex
);
89 struct mtd_info
*__mtd_next_device(int i
)
91 return idr_get_next(&mtd_idr
, &i
);
93 EXPORT_SYMBOL_GPL(__mtd_next_device
);
95 static LIST_HEAD(mtd_notifiers
);
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
103 static void mtd_release(struct device
*dev
)
105 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
106 dev_t index
= MTD_DEVT(mtd
->index
);
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class
, index
+ 1);
112 static ssize_t
mtd_type_show(struct device
*dev
,
113 struct device_attribute
*attr
, char *buf
)
115 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
140 case MTD_MLCNANDFLASH
:
147 return snprintf(buf
, PAGE_SIZE
, "%s\n", type
);
149 static DEVICE_ATTR(type
, S_IRUGO
, mtd_type_show
, NULL
);
151 static ssize_t
mtd_flags_show(struct device
*dev
,
152 struct device_attribute
*attr
, char *buf
)
154 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
156 return snprintf(buf
, PAGE_SIZE
, "0x%lx\n", (unsigned long)mtd
->flags
);
159 static DEVICE_ATTR(flags
, S_IRUGO
, mtd_flags_show
, NULL
);
161 static ssize_t
mtd_size_show(struct device
*dev
,
162 struct device_attribute
*attr
, char *buf
)
164 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
166 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
167 (unsigned long long)mtd
->size
);
170 static DEVICE_ATTR(size
, S_IRUGO
, mtd_size_show
, NULL
);
172 static ssize_t
mtd_erasesize_show(struct device
*dev
,
173 struct device_attribute
*attr
, char *buf
)
175 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
177 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->erasesize
);
180 static DEVICE_ATTR(erasesize
, S_IRUGO
, mtd_erasesize_show
, NULL
);
182 static ssize_t
mtd_writesize_show(struct device
*dev
,
183 struct device_attribute
*attr
, char *buf
)
185 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
187 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->writesize
);
190 static DEVICE_ATTR(writesize
, S_IRUGO
, mtd_writesize_show
, NULL
);
192 static ssize_t
mtd_subpagesize_show(struct device
*dev
,
193 struct device_attribute
*attr
, char *buf
)
195 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
196 unsigned int subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
198 return snprintf(buf
, PAGE_SIZE
, "%u\n", subpagesize
);
201 static DEVICE_ATTR(subpagesize
, S_IRUGO
, mtd_subpagesize_show
, NULL
);
203 static ssize_t
mtd_oobsize_show(struct device
*dev
,
204 struct device_attribute
*attr
, char *buf
)
206 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
208 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->oobsize
);
211 static DEVICE_ATTR(oobsize
, S_IRUGO
, mtd_oobsize_show
, NULL
);
213 static ssize_t
mtd_oobavail_show(struct device
*dev
,
214 struct device_attribute
*attr
, char *buf
)
216 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
218 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->oobavail
);
220 static DEVICE_ATTR(oobavail
, S_IRUGO
, mtd_oobavail_show
, NULL
);
222 static ssize_t
mtd_numeraseregions_show(struct device
*dev
,
223 struct device_attribute
*attr
, char *buf
)
225 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
227 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->numeraseregions
);
230 static DEVICE_ATTR(numeraseregions
, S_IRUGO
, mtd_numeraseregions_show
,
233 static ssize_t
mtd_name_show(struct device
*dev
,
234 struct device_attribute
*attr
, char *buf
)
236 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
238 return snprintf(buf
, PAGE_SIZE
, "%s\n", mtd
->name
);
241 static DEVICE_ATTR(name
, S_IRUGO
, mtd_name_show
, NULL
);
243 static ssize_t
mtd_ecc_strength_show(struct device
*dev
,
244 struct device_attribute
*attr
, char *buf
)
246 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
248 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_strength
);
250 static DEVICE_ATTR(ecc_strength
, S_IRUGO
, mtd_ecc_strength_show
, NULL
);
252 static ssize_t
mtd_bitflip_threshold_show(struct device
*dev
,
253 struct device_attribute
*attr
,
256 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
258 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->bitflip_threshold
);
261 static ssize_t
mtd_bitflip_threshold_store(struct device
*dev
,
262 struct device_attribute
*attr
,
263 const char *buf
, size_t count
)
265 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
266 unsigned int bitflip_threshold
;
269 retval
= kstrtouint(buf
, 0, &bitflip_threshold
);
273 mtd
->bitflip_threshold
= bitflip_threshold
;
276 static DEVICE_ATTR(bitflip_threshold
, S_IRUGO
| S_IWUSR
,
277 mtd_bitflip_threshold_show
,
278 mtd_bitflip_threshold_store
);
280 static ssize_t
mtd_ecc_step_size_show(struct device
*dev
,
281 struct device_attribute
*attr
, char *buf
)
283 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
285 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_step_size
);
288 static DEVICE_ATTR(ecc_step_size
, S_IRUGO
, mtd_ecc_step_size_show
, NULL
);
290 static ssize_t
mtd_ecc_stats_corrected_show(struct device
*dev
,
291 struct device_attribute
*attr
, char *buf
)
293 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
294 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
296 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->corrected
);
298 static DEVICE_ATTR(corrected_bits
, S_IRUGO
,
299 mtd_ecc_stats_corrected_show
, NULL
);
301 static ssize_t
mtd_ecc_stats_errors_show(struct device
*dev
,
302 struct device_attribute
*attr
, char *buf
)
304 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
305 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
307 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->failed
);
309 static DEVICE_ATTR(ecc_failures
, S_IRUGO
, mtd_ecc_stats_errors_show
, NULL
);
311 static ssize_t
mtd_badblocks_show(struct device
*dev
,
312 struct device_attribute
*attr
, char *buf
)
314 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
315 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
317 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->badblocks
);
319 static DEVICE_ATTR(bad_blocks
, S_IRUGO
, mtd_badblocks_show
, NULL
);
321 static ssize_t
mtd_bbtblocks_show(struct device
*dev
,
322 struct device_attribute
*attr
, char *buf
)
324 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
325 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
327 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->bbtblocks
);
329 static DEVICE_ATTR(bbt_blocks
, S_IRUGO
, mtd_bbtblocks_show
, NULL
);
331 static struct attribute
*mtd_attrs
[] = {
333 &dev_attr_flags
.attr
,
335 &dev_attr_erasesize
.attr
,
336 &dev_attr_writesize
.attr
,
337 &dev_attr_subpagesize
.attr
,
338 &dev_attr_oobsize
.attr
,
339 &dev_attr_oobavail
.attr
,
340 &dev_attr_numeraseregions
.attr
,
342 &dev_attr_ecc_strength
.attr
,
343 &dev_attr_ecc_step_size
.attr
,
344 &dev_attr_corrected_bits
.attr
,
345 &dev_attr_ecc_failures
.attr
,
346 &dev_attr_bad_blocks
.attr
,
347 &dev_attr_bbt_blocks
.attr
,
348 &dev_attr_bitflip_threshold
.attr
,
351 ATTRIBUTE_GROUPS(mtd
);
353 static const struct device_type mtd_devtype
= {
355 .groups
= mtd_groups
,
356 .release
= mtd_release
,
360 unsigned mtd_mmap_capabilities(struct mtd_info
*mtd
)
364 return NOMMU_MAP_COPY
| NOMMU_MAP_DIRECT
| NOMMU_MAP_EXEC
|
365 NOMMU_MAP_READ
| NOMMU_MAP_WRITE
;
367 return NOMMU_MAP_COPY
| NOMMU_MAP_DIRECT
| NOMMU_MAP_EXEC
|
370 return NOMMU_MAP_COPY
;
373 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities
);
376 static int mtd_reboot_notifier(struct notifier_block
*n
, unsigned long state
,
379 struct mtd_info
*mtd
;
381 mtd
= container_of(n
, struct mtd_info
, reboot_notifier
);
388 * mtd_wunit_to_pairing_info - get pairing information of a wunit
389 * @mtd: pointer to new MTD device info structure
390 * @wunit: write unit we are interested in
391 * @info: returned pairing information
393 * Retrieve pairing information associated to the wunit.
394 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
395 * paired together, and where programming a page may influence the page it is
397 * The notion of page is replaced by the term wunit (write-unit) to stay
398 * consistent with the ->writesize field.
400 * The @wunit argument can be extracted from an absolute offset using
401 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
404 * From the pairing info the MTD user can find all the wunits paired with
405 * @wunit using the following loop:
407 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
409 * mtd_pairing_info_to_wunit(mtd, &info);
413 int mtd_wunit_to_pairing_info(struct mtd_info
*mtd
, int wunit
,
414 struct mtd_pairing_info
*info
)
416 int npairs
= mtd_wunit_per_eb(mtd
) / mtd_pairing_groups(mtd
);
418 if (wunit
< 0 || wunit
>= npairs
)
421 if (mtd
->pairing
&& mtd
->pairing
->get_info
)
422 return mtd
->pairing
->get_info(mtd
, wunit
, info
);
429 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info
);
432 * mtd_pairing_info_to_wunit - get wunit from pairing information
433 * @mtd: pointer to new MTD device info structure
434 * @info: pairing information struct
436 * Returns a positive number representing the wunit associated to the info
437 * struct, or a negative error code.
439 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
440 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
443 * It can also be used to only program the first page of each pair (i.e.
444 * page attached to group 0), which allows one to use an MLC NAND in
445 * software-emulated SLC mode:
448 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
449 * for (info.pair = 0; info.pair < npairs; info.pair++) {
450 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
451 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
452 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
455 int mtd_pairing_info_to_wunit(struct mtd_info
*mtd
,
456 const struct mtd_pairing_info
*info
)
458 int ngroups
= mtd_pairing_groups(mtd
);
459 int npairs
= mtd_wunit_per_eb(mtd
) / ngroups
;
461 if (!info
|| info
->pair
< 0 || info
->pair
>= npairs
||
462 info
->group
< 0 || info
->group
>= ngroups
)
465 if (mtd
->pairing
&& mtd
->pairing
->get_wunit
)
466 return mtd
->pairing
->get_wunit(mtd
, info
);
470 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit
);
473 * mtd_pairing_groups - get the number of pairing groups
474 * @mtd: pointer to new MTD device info structure
476 * Returns the number of pairing groups.
478 * This number is usually equal to the number of bits exposed by a single
479 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
480 * to iterate over all pages of a given pair.
482 int mtd_pairing_groups(struct mtd_info
*mtd
)
484 if (!mtd
->pairing
|| !mtd
->pairing
->ngroups
)
487 return mtd
->pairing
->ngroups
;
489 EXPORT_SYMBOL_GPL(mtd_pairing_groups
);
491 static struct dentry
*dfs_dir_mtd
;
494 * add_mtd_device - register an MTD device
495 * @mtd: pointer to new MTD device info structure
497 * Add a device to the list of MTD devices present in the system, and
498 * notify each currently active MTD 'user' of its arrival. Returns
499 * zero on success or non-zero on failure.
502 int add_mtd_device(struct mtd_info
*mtd
)
504 struct mtd_notifier
*not;
508 * May occur, for instance, on buggy drivers which call
509 * mtd_device_parse_register() multiple times on the same master MTD,
510 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
512 if (WARN_ONCE(mtd
->dev
.type
, "MTD already registered\n"))
515 BUG_ON(mtd
->writesize
== 0);
517 if (WARN_ON((!mtd
->erasesize
|| !mtd
->_erase
) &&
518 !(mtd
->flags
& MTD_NO_ERASE
)))
521 mutex_lock(&mtd_table_mutex
);
523 i
= idr_alloc(&mtd_idr
, mtd
, 0, 0, GFP_KERNEL
);
532 /* default value if not set by driver */
533 if (mtd
->bitflip_threshold
== 0)
534 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
536 if (is_power_of_2(mtd
->erasesize
))
537 mtd
->erasesize_shift
= ffs(mtd
->erasesize
) - 1;
539 mtd
->erasesize_shift
= 0;
541 if (is_power_of_2(mtd
->writesize
))
542 mtd
->writesize_shift
= ffs(mtd
->writesize
) - 1;
544 mtd
->writesize_shift
= 0;
546 mtd
->erasesize_mask
= (1 << mtd
->erasesize_shift
) - 1;
547 mtd
->writesize_mask
= (1 << mtd
->writesize_shift
) - 1;
549 /* Some chips always power up locked. Unlock them now */
550 if ((mtd
->flags
& MTD_WRITEABLE
) && (mtd
->flags
& MTD_POWERUP_LOCK
)) {
551 error
= mtd_unlock(mtd
, 0, mtd
->size
);
552 if (error
&& error
!= -EOPNOTSUPP
)
554 "%s: unlock failed, writes may not work\n",
556 /* Ignore unlock failures? */
560 /* Caller should have set dev.parent to match the
561 * physical device, if appropriate.
563 mtd
->dev
.type
= &mtd_devtype
;
564 mtd
->dev
.class = &mtd_class
;
565 mtd
->dev
.devt
= MTD_DEVT(i
);
566 dev_set_name(&mtd
->dev
, "mtd%d", i
);
567 dev_set_drvdata(&mtd
->dev
, mtd
);
568 of_node_get(mtd_get_of_node(mtd
));
569 error
= device_register(&mtd
->dev
);
573 if (!IS_ERR_OR_NULL(dfs_dir_mtd
)) {
574 mtd
->dbg
.dfs_dir
= debugfs_create_dir(dev_name(&mtd
->dev
), dfs_dir_mtd
);
575 if (IS_ERR_OR_NULL(mtd
->dbg
.dfs_dir
)) {
576 pr_debug("mtd device %s won't show data in debugfs\n",
577 dev_name(&mtd
->dev
));
581 device_create(&mtd_class
, mtd
->dev
.parent
, MTD_DEVT(i
) + 1, NULL
,
584 pr_debug("mtd: Giving out device %d to %s\n", i
, mtd
->name
);
585 /* No need to get a refcount on the module containing
586 the notifier, since we hold the mtd_table_mutex */
587 list_for_each_entry(not, &mtd_notifiers
, list
)
590 mutex_unlock(&mtd_table_mutex
);
591 /* We _know_ we aren't being removed, because
592 our caller is still holding us here. So none
593 of this try_ nonsense, and no bitching about it
595 __module_get(THIS_MODULE
);
599 of_node_put(mtd_get_of_node(mtd
));
600 idr_remove(&mtd_idr
, i
);
602 mutex_unlock(&mtd_table_mutex
);
607 * del_mtd_device - unregister an MTD device
608 * @mtd: pointer to MTD device info structure
610 * Remove a device from the list of MTD devices present in the system,
611 * and notify each currently active MTD 'user' of its departure.
612 * Returns zero on success or 1 on failure, which currently will happen
613 * if the requested device does not appear to be present in the list.
616 int del_mtd_device(struct mtd_info
*mtd
)
619 struct mtd_notifier
*not;
621 mutex_lock(&mtd_table_mutex
);
623 debugfs_remove_recursive(mtd
->dbg
.dfs_dir
);
625 if (idr_find(&mtd_idr
, mtd
->index
) != mtd
) {
630 /* No need to get a refcount on the module containing
631 the notifier, since we hold the mtd_table_mutex */
632 list_for_each_entry(not, &mtd_notifiers
, list
)
636 printk(KERN_NOTICE
"Removing MTD device #%d (%s) with use count %d\n",
637 mtd
->index
, mtd
->name
, mtd
->usecount
);
640 device_unregister(&mtd
->dev
);
642 idr_remove(&mtd_idr
, mtd
->index
);
643 of_node_put(mtd_get_of_node(mtd
));
645 module_put(THIS_MODULE
);
650 mutex_unlock(&mtd_table_mutex
);
655 * Set a few defaults based on the parent devices, if not provided by the
658 static void mtd_set_dev_defaults(struct mtd_info
*mtd
)
660 if (mtd
->dev
.parent
) {
661 if (!mtd
->owner
&& mtd
->dev
.parent
->driver
)
662 mtd
->owner
= mtd
->dev
.parent
->driver
->owner
;
664 mtd
->name
= dev_name(mtd
->dev
.parent
);
666 pr_debug("mtd device won't show a device symlink in sysfs\n");
671 * mtd_device_parse_register - parse partitions and register an MTD device.
673 * @mtd: the MTD device to register
674 * @types: the list of MTD partition probes to try, see
675 * 'parse_mtd_partitions()' for more information
676 * @parser_data: MTD partition parser-specific data
677 * @parts: fallback partition information to register, if parsing fails;
678 * only valid if %nr_parts > %0
679 * @nr_parts: the number of partitions in parts, if zero then the full
680 * MTD device is registered if no partition info is found
682 * This function aggregates MTD partitions parsing (done by
683 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
684 * basically follows the most common pattern found in many MTD drivers:
686 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
688 * * Then It tries to probe partitions on MTD device @mtd using parsers
689 * specified in @types (if @types is %NULL, then the default list of parsers
690 * is used, see 'parse_mtd_partitions()' for more information). If none are
691 * found this functions tries to fallback to information specified in
693 * * If no partitions were found this function just registers the MTD device
696 * Returns zero in case of success and a negative error code in case of failure.
698 int mtd_device_parse_register(struct mtd_info
*mtd
, const char * const *types
,
699 struct mtd_part_parser_data
*parser_data
,
700 const struct mtd_partition
*parts
,
705 mtd_set_dev_defaults(mtd
);
707 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER
)) {
708 ret
= add_mtd_device(mtd
);
713 /* Prefer parsed partitions over driver-provided fallback */
714 ret
= parse_mtd_partitions(mtd
, types
, parser_data
);
718 ret
= add_mtd_partitions(mtd
, parts
, nr_parts
);
719 else if (!device_is_registered(&mtd
->dev
))
720 ret
= add_mtd_device(mtd
);
728 * FIXME: some drivers unfortunately call this function more than once.
729 * So we have to check if we've already assigned the reboot notifier.
731 * Generally, we can make multiple calls work for most cases, but it
732 * does cause problems with parse_mtd_partitions() above (e.g.,
733 * cmdlineparts will register partitions more than once).
735 WARN_ONCE(mtd
->_reboot
&& mtd
->reboot_notifier
.notifier_call
,
736 "MTD already registered\n");
737 if (mtd
->_reboot
&& !mtd
->reboot_notifier
.notifier_call
) {
738 mtd
->reboot_notifier
.notifier_call
= mtd_reboot_notifier
;
739 register_reboot_notifier(&mtd
->reboot_notifier
);
743 if (ret
&& device_is_registered(&mtd
->dev
))
748 EXPORT_SYMBOL_GPL(mtd_device_parse_register
);
751 * mtd_device_unregister - unregister an existing MTD device.
753 * @master: the MTD device to unregister. This will unregister both the master
754 * and any partitions if registered.
756 int mtd_device_unregister(struct mtd_info
*master
)
761 unregister_reboot_notifier(&master
->reboot_notifier
);
763 err
= del_mtd_partitions(master
);
767 if (!device_is_registered(&master
->dev
))
770 return del_mtd_device(master
);
772 EXPORT_SYMBOL_GPL(mtd_device_unregister
);
775 * register_mtd_user - register a 'user' of MTD devices.
776 * @new: pointer to notifier info structure
778 * Registers a pair of callbacks function to be called upon addition
779 * or removal of MTD devices. Causes the 'add' callback to be immediately
780 * invoked for each MTD device currently present in the system.
782 void register_mtd_user (struct mtd_notifier
*new)
784 struct mtd_info
*mtd
;
786 mutex_lock(&mtd_table_mutex
);
788 list_add(&new->list
, &mtd_notifiers
);
790 __module_get(THIS_MODULE
);
792 mtd_for_each_device(mtd
)
795 mutex_unlock(&mtd_table_mutex
);
797 EXPORT_SYMBOL_GPL(register_mtd_user
);
800 * unregister_mtd_user - unregister a 'user' of MTD devices.
801 * @old: pointer to notifier info structure
803 * Removes a callback function pair from the list of 'users' to be
804 * notified upon addition or removal of MTD devices. Causes the
805 * 'remove' callback to be immediately invoked for each MTD device
806 * currently present in the system.
808 int unregister_mtd_user (struct mtd_notifier
*old
)
810 struct mtd_info
*mtd
;
812 mutex_lock(&mtd_table_mutex
);
814 module_put(THIS_MODULE
);
816 mtd_for_each_device(mtd
)
819 list_del(&old
->list
);
820 mutex_unlock(&mtd_table_mutex
);
823 EXPORT_SYMBOL_GPL(unregister_mtd_user
);
826 * get_mtd_device - obtain a validated handle for an MTD device
827 * @mtd: last known address of the required MTD device
828 * @num: internal device number of the required MTD device
830 * Given a number and NULL address, return the num'th entry in the device
831 * table, if any. Given an address and num == -1, search the device table
832 * for a device with that address and return if it's still present. Given
833 * both, return the num'th driver only if its address matches. Return
836 struct mtd_info
*get_mtd_device(struct mtd_info
*mtd
, int num
)
838 struct mtd_info
*ret
= NULL
, *other
;
841 mutex_lock(&mtd_table_mutex
);
844 mtd_for_each_device(other
) {
850 } else if (num
>= 0) {
851 ret
= idr_find(&mtd_idr
, num
);
852 if (mtd
&& mtd
!= ret
)
861 err
= __get_mtd_device(ret
);
865 mutex_unlock(&mtd_table_mutex
);
868 EXPORT_SYMBOL_GPL(get_mtd_device
);
871 int __get_mtd_device(struct mtd_info
*mtd
)
875 if (!try_module_get(mtd
->owner
))
878 if (mtd
->_get_device
) {
879 err
= mtd
->_get_device(mtd
);
882 module_put(mtd
->owner
);
889 EXPORT_SYMBOL_GPL(__get_mtd_device
);
892 * get_mtd_device_nm - obtain a validated handle for an MTD device by
894 * @name: MTD device name to open
896 * This function returns MTD device description structure in case of
897 * success and an error code in case of failure.
899 struct mtd_info
*get_mtd_device_nm(const char *name
)
902 struct mtd_info
*mtd
= NULL
, *other
;
904 mutex_lock(&mtd_table_mutex
);
906 mtd_for_each_device(other
) {
907 if (!strcmp(name
, other
->name
)) {
916 err
= __get_mtd_device(mtd
);
920 mutex_unlock(&mtd_table_mutex
);
924 mutex_unlock(&mtd_table_mutex
);
927 EXPORT_SYMBOL_GPL(get_mtd_device_nm
);
929 void put_mtd_device(struct mtd_info
*mtd
)
931 mutex_lock(&mtd_table_mutex
);
932 __put_mtd_device(mtd
);
933 mutex_unlock(&mtd_table_mutex
);
936 EXPORT_SYMBOL_GPL(put_mtd_device
);
938 void __put_mtd_device(struct mtd_info
*mtd
)
941 BUG_ON(mtd
->usecount
< 0);
943 if (mtd
->_put_device
)
944 mtd
->_put_device(mtd
);
946 module_put(mtd
->owner
);
948 EXPORT_SYMBOL_GPL(__put_mtd_device
);
951 * Erase is an synchronous operation. Device drivers are epected to return a
952 * negative error code if the operation failed and update instr->fail_addr
953 * to point the portion that was not properly erased.
955 int mtd_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
957 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
959 if (!mtd
->erasesize
|| !mtd
->_erase
)
962 if (instr
->addr
>= mtd
->size
|| instr
->len
> mtd
->size
- instr
->addr
)
964 if (!(mtd
->flags
& MTD_WRITEABLE
))
970 ledtrig_mtd_activity();
971 return mtd
->_erase(mtd
, instr
);
973 EXPORT_SYMBOL_GPL(mtd_erase
);
976 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
978 int mtd_point(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
979 void **virt
, resource_size_t
*phys
)
987 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
991 return mtd
->_point(mtd
, from
, len
, retlen
, virt
, phys
);
993 EXPORT_SYMBOL_GPL(mtd_point
);
995 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
996 int mtd_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1000 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
1004 return mtd
->_unpoint(mtd
, from
, len
);
1006 EXPORT_SYMBOL_GPL(mtd_unpoint
);
1009 * Allow NOMMU mmap() to directly map the device (if not NULL)
1010 * - return the address to which the offset maps
1011 * - return -ENOSYS to indicate refusal to do the mapping
1013 unsigned long mtd_get_unmapped_area(struct mtd_info
*mtd
, unsigned long len
,
1014 unsigned long offset
, unsigned long flags
)
1020 ret
= mtd_point(mtd
, offset
, len
, &retlen
, &virt
, NULL
);
1023 if (retlen
!= len
) {
1024 mtd_unpoint(mtd
, offset
, retlen
);
1027 return (unsigned long)virt
;
1029 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area
);
1031 int mtd_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
1036 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
1041 ledtrig_mtd_activity();
1043 * In the absence of an error, drivers return a non-negative integer
1044 * representing the maximum number of bitflips that were corrected on
1045 * any one ecc region (if applicable; zero otherwise).
1048 ret_code
= mtd
->_read(mtd
, from
, len
, retlen
, buf
);
1049 } else if (mtd
->_read_oob
) {
1050 struct mtd_oob_ops ops
= {
1055 ret_code
= mtd
->_read_oob(mtd
, from
, &ops
);
1056 *retlen
= ops
.retlen
;
1061 if (unlikely(ret_code
< 0))
1063 if (mtd
->ecc_strength
== 0)
1064 return 0; /* device lacks ecc */
1065 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
1067 EXPORT_SYMBOL_GPL(mtd_read
);
1069 int mtd_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
1073 if (to
< 0 || to
>= mtd
->size
|| len
> mtd
->size
- to
)
1075 if ((!mtd
->_write
&& !mtd
->_write_oob
) ||
1076 !(mtd
->flags
& MTD_WRITEABLE
))
1080 ledtrig_mtd_activity();
1083 struct mtd_oob_ops ops
= {
1085 .datbuf
= (u8
*)buf
,
1089 ret
= mtd
->_write_oob(mtd
, to
, &ops
);
1090 *retlen
= ops
.retlen
;
1094 return mtd
->_write(mtd
, to
, len
, retlen
, buf
);
1096 EXPORT_SYMBOL_GPL(mtd_write
);
1099 * In blackbox flight recorder like scenarios we want to make successful writes
1100 * in interrupt context. panic_write() is only intended to be called when its
1101 * known the kernel is about to panic and we need the write to succeed. Since
1102 * the kernel is not going to be running for much longer, this function can
1103 * break locks and delay to ensure the write succeeds (but not sleep).
1105 int mtd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
1109 if (!mtd
->_panic_write
)
1111 if (to
< 0 || to
>= mtd
->size
|| len
> mtd
->size
- to
)
1113 if (!(mtd
->flags
& MTD_WRITEABLE
))
1117 return mtd
->_panic_write(mtd
, to
, len
, retlen
, buf
);
1119 EXPORT_SYMBOL_GPL(mtd_panic_write
);
1121 static int mtd_check_oob_ops(struct mtd_info
*mtd
, loff_t offs
,
1122 struct mtd_oob_ops
*ops
)
1125 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1126 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1135 if (offs
< 0 || offs
+ ops
->len
> mtd
->size
)
1141 if (ops
->ooboffs
>= mtd_oobavail(mtd
, ops
))
1144 maxooblen
= ((mtd_div_by_ws(mtd
->size
, mtd
) -
1145 mtd_div_by_ws(offs
, mtd
)) *
1146 mtd_oobavail(mtd
, ops
)) - ops
->ooboffs
;
1147 if (ops
->ooblen
> maxooblen
)
1154 int mtd_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
1157 ops
->retlen
= ops
->oobretlen
= 0;
1159 ret_code
= mtd_check_oob_ops(mtd
, from
, ops
);
1163 ledtrig_mtd_activity();
1165 /* Check the validity of a potential fallback on mtd->_read */
1166 if (!mtd
->_read_oob
&& (!mtd
->_read
|| ops
->oobbuf
))
1170 ret_code
= mtd
->_read_oob(mtd
, from
, ops
);
1172 ret_code
= mtd
->_read(mtd
, from
, ops
->len
, &ops
->retlen
,
1176 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1177 * similar to mtd->_read(), returning a non-negative integer
1178 * representing max bitflips. In other cases, mtd->_read_oob() may
1179 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1181 if (unlikely(ret_code
< 0))
1183 if (mtd
->ecc_strength
== 0)
1184 return 0; /* device lacks ecc */
1185 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
1187 EXPORT_SYMBOL_GPL(mtd_read_oob
);
1189 int mtd_write_oob(struct mtd_info
*mtd
, loff_t to
,
1190 struct mtd_oob_ops
*ops
)
1194 ops
->retlen
= ops
->oobretlen
= 0;
1196 if (!(mtd
->flags
& MTD_WRITEABLE
))
1199 ret
= mtd_check_oob_ops(mtd
, to
, ops
);
1203 ledtrig_mtd_activity();
1205 /* Check the validity of a potential fallback on mtd->_write */
1206 if (!mtd
->_write_oob
&& (!mtd
->_write
|| ops
->oobbuf
))
1209 if (mtd
->_write_oob
)
1210 return mtd
->_write_oob(mtd
, to
, ops
);
1212 return mtd
->_write(mtd
, to
, ops
->len
, &ops
->retlen
,
1215 EXPORT_SYMBOL_GPL(mtd_write_oob
);
1218 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1219 * @mtd: MTD device structure
1220 * @section: ECC section. Depending on the layout you may have all the ECC
1221 * bytes stored in a single contiguous section, or one section
1222 * per ECC chunk (and sometime several sections for a single ECC
1224 * @oobecc: OOB region struct filled with the appropriate ECC position
1227 * This function returns ECC section information in the OOB area. If you want
1228 * to get all the ECC bytes information, then you should call
1229 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1231 * Returns zero on success, a negative error code otherwise.
1233 int mtd_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1234 struct mtd_oob_region
*oobecc
)
1236 memset(oobecc
, 0, sizeof(*oobecc
));
1238 if (!mtd
|| section
< 0)
1241 if (!mtd
->ooblayout
|| !mtd
->ooblayout
->ecc
)
1244 return mtd
->ooblayout
->ecc(mtd
, section
, oobecc
);
1246 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc
);
1249 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1251 * @mtd: MTD device structure
1252 * @section: Free section you are interested in. Depending on the layout
1253 * you may have all the free bytes stored in a single contiguous
1254 * section, or one section per ECC chunk plus an extra section
1255 * for the remaining bytes (or other funky layout).
1256 * @oobfree: OOB region struct filled with the appropriate free position
1259 * This function returns free bytes position in the OOB area. If you want
1260 * to get all the free bytes information, then you should call
1261 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1263 * Returns zero on success, a negative error code otherwise.
1265 int mtd_ooblayout_free(struct mtd_info
*mtd
, int section
,
1266 struct mtd_oob_region
*oobfree
)
1268 memset(oobfree
, 0, sizeof(*oobfree
));
1270 if (!mtd
|| section
< 0)
1273 if (!mtd
->ooblayout
|| !mtd
->ooblayout
->free
)
1276 return mtd
->ooblayout
->free(mtd
, section
, oobfree
);
1278 EXPORT_SYMBOL_GPL(mtd_ooblayout_free
);
1281 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1282 * @mtd: mtd info structure
1283 * @byte: the byte we are searching for
1284 * @sectionp: pointer where the section id will be stored
1285 * @oobregion: used to retrieve the ECC position
1286 * @iter: iterator function. Should be either mtd_ooblayout_free or
1287 * mtd_ooblayout_ecc depending on the region type you're searching for
1289 * This function returns the section id and oobregion information of a
1290 * specific byte. For example, say you want to know where the 4th ECC byte is
1291 * stored, you'll use:
1293 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1295 * Returns zero on success, a negative error code otherwise.
1297 static int mtd_ooblayout_find_region(struct mtd_info
*mtd
, int byte
,
1298 int *sectionp
, struct mtd_oob_region
*oobregion
,
1299 int (*iter
)(struct mtd_info
*,
1301 struct mtd_oob_region
*oobregion
))
1303 int pos
= 0, ret
, section
= 0;
1305 memset(oobregion
, 0, sizeof(*oobregion
));
1308 ret
= iter(mtd
, section
, oobregion
);
1312 if (pos
+ oobregion
->length
> byte
)
1315 pos
+= oobregion
->length
;
1320 * Adjust region info to make it start at the beginning at the
1323 oobregion
->offset
+= byte
- pos
;
1324 oobregion
->length
-= byte
- pos
;
1325 *sectionp
= section
;
1331 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1333 * @mtd: mtd info structure
1334 * @eccbyte: the byte we are searching for
1335 * @sectionp: pointer where the section id will be stored
1336 * @oobregion: OOB region information
1338 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1341 * Returns zero on success, a negative error code otherwise.
1343 int mtd_ooblayout_find_eccregion(struct mtd_info
*mtd
, int eccbyte
,
1345 struct mtd_oob_region
*oobregion
)
1347 return mtd_ooblayout_find_region(mtd
, eccbyte
, section
, oobregion
,
1350 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion
);
1353 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1354 * @mtd: mtd info structure
1355 * @buf: destination buffer to store OOB bytes
1356 * @oobbuf: OOB buffer
1357 * @start: first byte to retrieve
1358 * @nbytes: number of bytes to retrieve
1359 * @iter: section iterator
1361 * Extract bytes attached to a specific category (ECC or free)
1362 * from the OOB buffer and copy them into buf.
1364 * Returns zero on success, a negative error code otherwise.
1366 static int mtd_ooblayout_get_bytes(struct mtd_info
*mtd
, u8
*buf
,
1367 const u8
*oobbuf
, int start
, int nbytes
,
1368 int (*iter
)(struct mtd_info
*,
1370 struct mtd_oob_region
*oobregion
))
1372 struct mtd_oob_region oobregion
;
1375 ret
= mtd_ooblayout_find_region(mtd
, start
, §ion
,
1381 cnt
= min_t(int, nbytes
, oobregion
.length
);
1382 memcpy(buf
, oobbuf
+ oobregion
.offset
, cnt
);
1389 ret
= iter(mtd
, ++section
, &oobregion
);
1396 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1397 * @mtd: mtd info structure
1398 * @buf: source buffer to get OOB bytes from
1399 * @oobbuf: OOB buffer
1400 * @start: first OOB byte to set
1401 * @nbytes: number of OOB bytes to set
1402 * @iter: section iterator
1404 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1405 * is selected by passing the appropriate iterator.
1407 * Returns zero on success, a negative error code otherwise.
1409 static int mtd_ooblayout_set_bytes(struct mtd_info
*mtd
, const u8
*buf
,
1410 u8
*oobbuf
, int start
, int nbytes
,
1411 int (*iter
)(struct mtd_info
*,
1413 struct mtd_oob_region
*oobregion
))
1415 struct mtd_oob_region oobregion
;
1418 ret
= mtd_ooblayout_find_region(mtd
, start
, §ion
,
1424 cnt
= min_t(int, nbytes
, oobregion
.length
);
1425 memcpy(oobbuf
+ oobregion
.offset
, buf
, cnt
);
1432 ret
= iter(mtd
, ++section
, &oobregion
);
1439 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1440 * @mtd: mtd info structure
1441 * @iter: category iterator
1443 * Count the number of bytes in a given category.
1445 * Returns a positive value on success, a negative error code otherwise.
1447 static int mtd_ooblayout_count_bytes(struct mtd_info
*mtd
,
1448 int (*iter
)(struct mtd_info
*,
1450 struct mtd_oob_region
*oobregion
))
1452 struct mtd_oob_region oobregion
;
1453 int section
= 0, ret
, nbytes
= 0;
1456 ret
= iter(mtd
, section
++, &oobregion
);
1463 nbytes
+= oobregion
.length
;
1470 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1471 * @mtd: mtd info structure
1472 * @eccbuf: destination buffer to store ECC bytes
1473 * @oobbuf: OOB buffer
1474 * @start: first ECC byte to retrieve
1475 * @nbytes: number of ECC bytes to retrieve
1477 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1479 * Returns zero on success, a negative error code otherwise.
1481 int mtd_ooblayout_get_eccbytes(struct mtd_info
*mtd
, u8
*eccbuf
,
1482 const u8
*oobbuf
, int start
, int nbytes
)
1484 return mtd_ooblayout_get_bytes(mtd
, eccbuf
, oobbuf
, start
, nbytes
,
1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes
);
1490 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1491 * @mtd: mtd info structure
1492 * @eccbuf: source buffer to get ECC bytes from
1493 * @oobbuf: OOB buffer
1494 * @start: first ECC byte to set
1495 * @nbytes: number of ECC bytes to set
1497 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1499 * Returns zero on success, a negative error code otherwise.
1501 int mtd_ooblayout_set_eccbytes(struct mtd_info
*mtd
, const u8
*eccbuf
,
1502 u8
*oobbuf
, int start
, int nbytes
)
1504 return mtd_ooblayout_set_bytes(mtd
, eccbuf
, oobbuf
, start
, nbytes
,
1507 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes
);
1510 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1511 * @mtd: mtd info structure
1512 * @databuf: destination buffer to store ECC bytes
1513 * @oobbuf: OOB buffer
1514 * @start: first ECC byte to retrieve
1515 * @nbytes: number of ECC bytes to retrieve
1517 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1519 * Returns zero on success, a negative error code otherwise.
1521 int mtd_ooblayout_get_databytes(struct mtd_info
*mtd
, u8
*databuf
,
1522 const u8
*oobbuf
, int start
, int nbytes
)
1524 return mtd_ooblayout_get_bytes(mtd
, databuf
, oobbuf
, start
, nbytes
,
1525 mtd_ooblayout_free
);
1527 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes
);
1530 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1531 * @mtd: mtd info structure
1532 * @databuf: source buffer to get data bytes from
1533 * @oobbuf: OOB buffer
1534 * @start: first ECC byte to set
1535 * @nbytes: number of ECC bytes to set
1537 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1539 * Returns zero on success, a negative error code otherwise.
1541 int mtd_ooblayout_set_databytes(struct mtd_info
*mtd
, const u8
*databuf
,
1542 u8
*oobbuf
, int start
, int nbytes
)
1544 return mtd_ooblayout_set_bytes(mtd
, databuf
, oobbuf
, start
, nbytes
,
1545 mtd_ooblayout_free
);
1547 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes
);
1550 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1551 * @mtd: mtd info structure
1553 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1555 * Returns zero on success, a negative error code otherwise.
1557 int mtd_ooblayout_count_freebytes(struct mtd_info
*mtd
)
1559 return mtd_ooblayout_count_bytes(mtd
, mtd_ooblayout_free
);
1561 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes
);
1564 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1565 * @mtd: mtd info structure
1567 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1569 * Returns zero on success, a negative error code otherwise.
1571 int mtd_ooblayout_count_eccbytes(struct mtd_info
*mtd
)
1573 return mtd_ooblayout_count_bytes(mtd
, mtd_ooblayout_ecc
);
1575 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes
);
1578 * Method to access the protection register area, present in some flash
1579 * devices. The user data is one time programmable but the factory data is read
1582 int mtd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
1583 struct otp_info
*buf
)
1585 if (!mtd
->_get_fact_prot_info
)
1589 return mtd
->_get_fact_prot_info(mtd
, len
, retlen
, buf
);
1591 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info
);
1593 int mtd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1594 size_t *retlen
, u_char
*buf
)
1597 if (!mtd
->_read_fact_prot_reg
)
1601 return mtd
->_read_fact_prot_reg(mtd
, from
, len
, retlen
, buf
);
1603 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg
);
1605 int mtd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
1606 struct otp_info
*buf
)
1608 if (!mtd
->_get_user_prot_info
)
1612 return mtd
->_get_user_prot_info(mtd
, len
, retlen
, buf
);
1614 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info
);
1616 int mtd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1617 size_t *retlen
, u_char
*buf
)
1620 if (!mtd
->_read_user_prot_reg
)
1624 return mtd
->_read_user_prot_reg(mtd
, from
, len
, retlen
, buf
);
1626 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg
);
1628 int mtd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1629 size_t *retlen
, u_char
*buf
)
1634 if (!mtd
->_write_user_prot_reg
)
1638 ret
= mtd
->_write_user_prot_reg(mtd
, to
, len
, retlen
, buf
);
1643 * If no data could be written at all, we are out of memory and
1644 * must return -ENOSPC.
1646 return (*retlen
) ? 0 : -ENOSPC
;
1648 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg
);
1650 int mtd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1652 if (!mtd
->_lock_user_prot_reg
)
1656 return mtd
->_lock_user_prot_reg(mtd
, from
, len
);
1658 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg
);
1660 /* Chip-supported device locking */
1661 int mtd_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1665 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1669 return mtd
->_lock(mtd
, ofs
, len
);
1671 EXPORT_SYMBOL_GPL(mtd_lock
);
1673 int mtd_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1677 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1681 return mtd
->_unlock(mtd
, ofs
, len
);
1683 EXPORT_SYMBOL_GPL(mtd_unlock
);
1685 int mtd_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1687 if (!mtd
->_is_locked
)
1689 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1693 return mtd
->_is_locked(mtd
, ofs
, len
);
1695 EXPORT_SYMBOL_GPL(mtd_is_locked
);
1697 int mtd_block_isreserved(struct mtd_info
*mtd
, loff_t ofs
)
1699 if (ofs
< 0 || ofs
>= mtd
->size
)
1701 if (!mtd
->_block_isreserved
)
1703 return mtd
->_block_isreserved(mtd
, ofs
);
1705 EXPORT_SYMBOL_GPL(mtd_block_isreserved
);
1707 int mtd_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
1709 if (ofs
< 0 || ofs
>= mtd
->size
)
1711 if (!mtd
->_block_isbad
)
1713 return mtd
->_block_isbad(mtd
, ofs
);
1715 EXPORT_SYMBOL_GPL(mtd_block_isbad
);
1717 int mtd_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1719 if (!mtd
->_block_markbad
)
1721 if (ofs
< 0 || ofs
>= mtd
->size
)
1723 if (!(mtd
->flags
& MTD_WRITEABLE
))
1725 return mtd
->_block_markbad(mtd
, ofs
);
1727 EXPORT_SYMBOL_GPL(mtd_block_markbad
);
1730 * default_mtd_writev - the default writev method
1731 * @mtd: mtd device description object pointer
1732 * @vecs: the vectors to write
1733 * @count: count of vectors in @vecs
1734 * @to: the MTD device offset to write to
1735 * @retlen: on exit contains the count of bytes written to the MTD device.
1737 * This function returns zero in case of success and a negative error code in
1740 static int default_mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1741 unsigned long count
, loff_t to
, size_t *retlen
)
1744 size_t totlen
= 0, thislen
;
1747 for (i
= 0; i
< count
; i
++) {
1748 if (!vecs
[i
].iov_len
)
1750 ret
= mtd_write(mtd
, to
, vecs
[i
].iov_len
, &thislen
,
1753 if (ret
|| thislen
!= vecs
[i
].iov_len
)
1755 to
+= vecs
[i
].iov_len
;
1762 * mtd_writev - the vector-based MTD write method
1763 * @mtd: mtd device description object pointer
1764 * @vecs: the vectors to write
1765 * @count: count of vectors in @vecs
1766 * @to: the MTD device offset to write to
1767 * @retlen: on exit contains the count of bytes written to the MTD device.
1769 * This function returns zero in case of success and a negative error code in
1772 int mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1773 unsigned long count
, loff_t to
, size_t *retlen
)
1776 if (!(mtd
->flags
& MTD_WRITEABLE
))
1779 return default_mtd_writev(mtd
, vecs
, count
, to
, retlen
);
1780 return mtd
->_writev(mtd
, vecs
, count
, to
, retlen
);
1782 EXPORT_SYMBOL_GPL(mtd_writev
);
1785 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1786 * @mtd: mtd device description object pointer
1787 * @size: a pointer to the ideal or maximum size of the allocation, points
1788 * to the actual allocation size on success.
1790 * This routine attempts to allocate a contiguous kernel buffer up to
1791 * the specified size, backing off the size of the request exponentially
1792 * until the request succeeds or until the allocation size falls below
1793 * the system page size. This attempts to make sure it does not adversely
1794 * impact system performance, so when allocating more than one page, we
1795 * ask the memory allocator to avoid re-trying, swapping, writing back
1796 * or performing I/O.
1798 * Note, this function also makes sure that the allocated buffer is aligned to
1799 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1801 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1802 * to handle smaller (i.e. degraded) buffer allocations under low- or
1803 * fragmented-memory situations where such reduced allocations, from a
1804 * requested ideal, are allowed.
1806 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1808 void *mtd_kmalloc_up_to(const struct mtd_info
*mtd
, size_t *size
)
1810 gfp_t flags
= __GFP_NOWARN
| __GFP_DIRECT_RECLAIM
| __GFP_NORETRY
;
1811 size_t min_alloc
= max_t(size_t, mtd
->writesize
, PAGE_SIZE
);
1814 *size
= min_t(size_t, *size
, KMALLOC_MAX_SIZE
);
1816 while (*size
> min_alloc
) {
1817 kbuf
= kmalloc(*size
, flags
);
1822 *size
= ALIGN(*size
, mtd
->writesize
);
1826 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1827 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1829 return kmalloc(*size
, GFP_KERNEL
);
1831 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to
);
1833 #ifdef CONFIG_PROC_FS
1835 /*====================================================================*/
1836 /* Support for /proc/mtd */
1838 static int mtd_proc_show(struct seq_file
*m
, void *v
)
1840 struct mtd_info
*mtd
;
1842 seq_puts(m
, "dev: size erasesize name\n");
1843 mutex_lock(&mtd_table_mutex
);
1844 mtd_for_each_device(mtd
) {
1845 seq_printf(m
, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1846 mtd
->index
, (unsigned long long)mtd
->size
,
1847 mtd
->erasesize
, mtd
->name
);
1849 mutex_unlock(&mtd_table_mutex
);
1852 #endif /* CONFIG_PROC_FS */
1854 /*====================================================================*/
1857 static struct backing_dev_info
* __init
mtd_bdi_init(char *name
)
1859 struct backing_dev_info
*bdi
;
1862 bdi
= bdi_alloc(GFP_KERNEL
);
1864 return ERR_PTR(-ENOMEM
);
1868 * We put '-0' suffix to the name to get the same name format as we
1869 * used to get. Since this is called only once, we get a unique name.
1871 ret
= bdi_register(bdi
, "%.28s-0", name
);
1875 return ret
? ERR_PTR(ret
) : bdi
;
1878 static struct proc_dir_entry
*proc_mtd
;
1880 static int __init
init_mtd(void)
1884 ret
= class_register(&mtd_class
);
1888 mtd_bdi
= mtd_bdi_init("mtd");
1889 if (IS_ERR(mtd_bdi
)) {
1890 ret
= PTR_ERR(mtd_bdi
);
1894 proc_mtd
= proc_create_single("mtd", 0, NULL
, mtd_proc_show
);
1896 ret
= init_mtdchar();
1900 dfs_dir_mtd
= debugfs_create_dir("mtd", NULL
);
1906 remove_proc_entry("mtd", NULL
);
1909 class_unregister(&mtd_class
);
1911 pr_err("Error registering mtd class or bdi: %d\n", ret
);
1915 static void __exit
cleanup_mtd(void)
1917 debugfs_remove_recursive(dfs_dir_mtd
);
1920 remove_proc_entry("mtd", NULL
);
1921 class_unregister(&mtd_class
);
1923 idr_destroy(&mtd_idr
);
1926 module_init(init_mtd
);
1927 module_exit(cleanup_mtd
);
1929 MODULE_LICENSE("GPL");
1930 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1931 MODULE_DESCRIPTION("Core MTD registration and access routines");