USB: keyspan: fix null-deref at disconnect and release
[linux/fpc-iii.git] / drivers / clk / clk.c
blob54a191c5bbf0e3f4c1b23807c12a59cdb0d74031
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Standard functionality for the common clock API. See Documentation/clk.txt
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
24 static DEFINE_SPINLOCK(enable_lock);
25 static DEFINE_MUTEX(prepare_lock);
27 static struct task_struct *prepare_owner;
28 static struct task_struct *enable_owner;
30 static int prepare_refcnt;
31 static int enable_refcnt;
33 static HLIST_HEAD(clk_root_list);
34 static HLIST_HEAD(clk_orphan_list);
35 static LIST_HEAD(clk_notifier_list);
37 /*** locking ***/
38 static void clk_prepare_lock(void)
40 if (!mutex_trylock(&prepare_lock)) {
41 if (prepare_owner == current) {
42 prepare_refcnt++;
43 return;
45 mutex_lock(&prepare_lock);
47 WARN_ON_ONCE(prepare_owner != NULL);
48 WARN_ON_ONCE(prepare_refcnt != 0);
49 prepare_owner = current;
50 prepare_refcnt = 1;
53 static void clk_prepare_unlock(void)
55 WARN_ON_ONCE(prepare_owner != current);
56 WARN_ON_ONCE(prepare_refcnt == 0);
58 if (--prepare_refcnt)
59 return;
60 prepare_owner = NULL;
61 mutex_unlock(&prepare_lock);
64 static unsigned long clk_enable_lock(void)
66 unsigned long flags;
68 if (!spin_trylock_irqsave(&enable_lock, flags)) {
69 if (enable_owner == current) {
70 enable_refcnt++;
71 return flags;
73 spin_lock_irqsave(&enable_lock, flags);
75 WARN_ON_ONCE(enable_owner != NULL);
76 WARN_ON_ONCE(enable_refcnt != 0);
77 enable_owner = current;
78 enable_refcnt = 1;
79 return flags;
82 static void clk_enable_unlock(unsigned long flags)
84 WARN_ON_ONCE(enable_owner != current);
85 WARN_ON_ONCE(enable_refcnt == 0);
87 if (--enable_refcnt)
88 return;
89 enable_owner = NULL;
90 spin_unlock_irqrestore(&enable_lock, flags);
93 /*** debugfs support ***/
95 #ifdef CONFIG_COMMON_CLK_DEBUG
96 #include <linux/debugfs.h>
98 static struct dentry *rootdir;
99 static struct dentry *orphandir;
100 static int inited = 0;
102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
104 if (!c)
105 return;
107 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108 level * 3 + 1, "",
109 30 - level * 3, c->name,
110 c->enable_count, c->prepare_count, clk_get_rate(c));
111 seq_printf(s, "\n");
114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115 int level)
117 struct clk *child;
119 if (!c)
120 return;
122 clk_summary_show_one(s, c, level);
124 hlist_for_each_entry(child, &c->children, child_node)
125 clk_summary_show_subtree(s, child, level + 1);
128 static int clk_summary_show(struct seq_file *s, void *data)
130 struct clk *c;
132 seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
133 seq_printf(s, "---------------------------------------------------------------------\n");
135 clk_prepare_lock();
137 hlist_for_each_entry(c, &clk_root_list, child_node)
138 clk_summary_show_subtree(s, c, 0);
140 hlist_for_each_entry(c, &clk_orphan_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
143 clk_prepare_unlock();
145 return 0;
149 static int clk_summary_open(struct inode *inode, struct file *file)
151 return single_open(file, clk_summary_show, inode->i_private);
154 static const struct file_operations clk_summary_fops = {
155 .open = clk_summary_open,
156 .read = seq_read,
157 .llseek = seq_lseek,
158 .release = single_release,
161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
163 if (!c)
164 return;
166 seq_printf(s, "\"%s\": { ", c->name);
167 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
174 struct clk *child;
176 if (!c)
177 return;
179 clk_dump_one(s, c, level);
181 hlist_for_each_entry(child, &c->children, child_node) {
182 seq_printf(s, ",");
183 clk_dump_subtree(s, child, level + 1);
186 seq_printf(s, "}");
189 static int clk_dump(struct seq_file *s, void *data)
191 struct clk *c;
192 bool first_node = true;
194 seq_printf(s, "{");
196 clk_prepare_lock();
198 hlist_for_each_entry(c, &clk_root_list, child_node) {
199 if (!first_node)
200 seq_printf(s, ",");
201 first_node = false;
202 clk_dump_subtree(s, c, 0);
205 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206 seq_printf(s, ",");
207 clk_dump_subtree(s, c, 0);
210 clk_prepare_unlock();
212 seq_printf(s, "}");
213 return 0;
217 static int clk_dump_open(struct inode *inode, struct file *file)
219 return single_open(file, clk_dump, inode->i_private);
222 static const struct file_operations clk_dump_fops = {
223 .open = clk_dump_open,
224 .read = seq_read,
225 .llseek = seq_lseek,
226 .release = single_release,
229 /* caller must hold prepare_lock */
230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
232 struct dentry *d;
233 int ret = -ENOMEM;
235 if (!clk || !pdentry) {
236 ret = -EINVAL;
237 goto out;
240 d = debugfs_create_dir(clk->name, pdentry);
241 if (!d)
242 goto out;
244 clk->dentry = d;
246 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247 (u32 *)&clk->rate);
248 if (!d)
249 goto err_out;
251 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252 (u32 *)&clk->flags);
253 if (!d)
254 goto err_out;
256 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257 (u32 *)&clk->prepare_count);
258 if (!d)
259 goto err_out;
261 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262 (u32 *)&clk->enable_count);
263 if (!d)
264 goto err_out;
266 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267 (u32 *)&clk->notifier_count);
268 if (!d)
269 goto err_out;
271 ret = 0;
272 goto out;
274 err_out:
275 debugfs_remove(clk->dentry);
276 out:
277 return ret;
280 /* caller must hold prepare_lock */
281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
283 struct clk *child;
284 int ret = -EINVAL;;
286 if (!clk || !pdentry)
287 goto out;
289 ret = clk_debug_create_one(clk, pdentry);
291 if (ret)
292 goto out;
294 hlist_for_each_entry(child, &clk->children, child_node)
295 clk_debug_create_subtree(child, clk->dentry);
297 ret = 0;
298 out:
299 return ret;
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized. Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
310 * Caller must hold prepare_lock. Only clk_init calls this function (so
311 * far) so this is taken care.
313 static int clk_debug_register(struct clk *clk)
315 struct clk *parent;
316 struct dentry *pdentry;
317 int ret = 0;
319 if (!inited)
320 goto out;
322 parent = clk->parent;
325 * Check to see if a clk is a root clk. Also check that it is
326 * safe to add this clk to debugfs
328 if (!parent)
329 if (clk->flags & CLK_IS_ROOT)
330 pdentry = rootdir;
331 else
332 pdentry = orphandir;
333 else
334 if (parent->dentry)
335 pdentry = parent->dentry;
336 else
337 goto out;
339 ret = clk_debug_create_subtree(clk, pdentry);
341 out:
342 return ret;
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized. Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
354 * Caller must hold prepare_lock.
356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
358 struct dentry *d;
359 struct dentry *new_parent_d;
361 if (!inited)
362 return;
364 if (new_parent)
365 new_parent_d = new_parent->dentry;
366 else
367 new_parent_d = orphandir;
369 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370 new_parent_d, clk->name);
371 if (d)
372 clk->dentry = d;
373 else
374 pr_debug("%s: failed to rename debugfs entry for %s\n",
375 __func__, clk->name);
379 * clk_debug_init - lazily create the debugfs clk tree visualization
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree. This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
390 static int __init clk_debug_init(void)
392 struct clk *clk;
393 struct dentry *d;
395 rootdir = debugfs_create_dir("clk", NULL);
397 if (!rootdir)
398 return -ENOMEM;
400 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401 &clk_summary_fops);
402 if (!d)
403 return -ENOMEM;
405 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406 &clk_dump_fops);
407 if (!d)
408 return -ENOMEM;
410 orphandir = debugfs_create_dir("orphans", rootdir);
412 if (!orphandir)
413 return -ENOMEM;
415 clk_prepare_lock();
417 hlist_for_each_entry(clk, &clk_root_list, child_node)
418 clk_debug_create_subtree(clk, rootdir);
420 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421 clk_debug_create_subtree(clk, orphandir);
423 inited = 1;
425 clk_prepare_unlock();
427 return 0;
429 late_initcall(clk_debug_init);
430 #else
431 static inline int clk_debug_register(struct clk *clk) { return 0; }
432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
435 #endif
437 /* caller must hold prepare_lock */
438 static void clk_unprepare_unused_subtree(struct clk *clk)
440 struct clk *child;
442 if (!clk)
443 return;
445 hlist_for_each_entry(child, &clk->children, child_node)
446 clk_unprepare_unused_subtree(child);
448 if (clk->prepare_count)
449 return;
451 if (clk->flags & CLK_IGNORE_UNUSED)
452 return;
454 if (__clk_is_prepared(clk)) {
455 if (clk->ops->unprepare_unused)
456 clk->ops->unprepare_unused(clk->hw);
457 else if (clk->ops->unprepare)
458 clk->ops->unprepare(clk->hw);
461 EXPORT_SYMBOL_GPL(__clk_get_flags);
463 /* caller must hold prepare_lock */
464 static void clk_disable_unused_subtree(struct clk *clk)
466 struct clk *child;
467 unsigned long flags;
469 if (!clk)
470 goto out;
472 hlist_for_each_entry(child, &clk->children, child_node)
473 clk_disable_unused_subtree(child);
475 flags = clk_enable_lock();
477 if (clk->enable_count)
478 goto unlock_out;
480 if (clk->flags & CLK_IGNORE_UNUSED)
481 goto unlock_out;
484 * some gate clocks have special needs during the disable-unused
485 * sequence. call .disable_unused if available, otherwise fall
486 * back to .disable
488 if (__clk_is_enabled(clk)) {
489 if (clk->ops->disable_unused)
490 clk->ops->disable_unused(clk->hw);
491 else if (clk->ops->disable)
492 clk->ops->disable(clk->hw);
495 unlock_out:
496 clk_enable_unlock(flags);
498 out:
499 return;
502 static bool clk_ignore_unused;
503 static int __init clk_ignore_unused_setup(char *__unused)
505 clk_ignore_unused = true;
506 return 1;
508 __setup("clk_ignore_unused", clk_ignore_unused_setup);
510 static int clk_disable_unused(void)
512 struct clk *clk;
514 if (clk_ignore_unused) {
515 pr_warn("clk: Not disabling unused clocks\n");
516 return 0;
519 clk_prepare_lock();
521 hlist_for_each_entry(clk, &clk_root_list, child_node)
522 clk_disable_unused_subtree(clk);
524 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
525 clk_disable_unused_subtree(clk);
527 hlist_for_each_entry(clk, &clk_root_list, child_node)
528 clk_unprepare_unused_subtree(clk);
530 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
531 clk_unprepare_unused_subtree(clk);
533 clk_prepare_unlock();
535 return 0;
537 late_initcall_sync(clk_disable_unused);
539 /*** helper functions ***/
541 const char *__clk_get_name(struct clk *clk)
543 return !clk ? NULL : clk->name;
545 EXPORT_SYMBOL_GPL(__clk_get_name);
547 struct clk_hw *__clk_get_hw(struct clk *clk)
549 return !clk ? NULL : clk->hw;
552 u8 __clk_get_num_parents(struct clk *clk)
554 return !clk ? 0 : clk->num_parents;
557 struct clk *__clk_get_parent(struct clk *clk)
559 return !clk ? NULL : clk->parent;
562 unsigned int __clk_get_enable_count(struct clk *clk)
564 return !clk ? 0 : clk->enable_count;
567 unsigned int __clk_get_prepare_count(struct clk *clk)
569 return !clk ? 0 : clk->prepare_count;
572 unsigned long __clk_get_rate(struct clk *clk)
574 unsigned long ret;
576 if (!clk) {
577 ret = 0;
578 goto out;
581 ret = clk->rate;
583 if (clk->flags & CLK_IS_ROOT)
584 goto out;
586 if (!clk->parent)
587 ret = 0;
589 out:
590 return ret;
593 unsigned long __clk_get_flags(struct clk *clk)
595 return !clk ? 0 : clk->flags;
598 bool __clk_is_prepared(struct clk *clk)
600 int ret;
602 if (!clk)
603 return false;
606 * .is_prepared is optional for clocks that can prepare
607 * fall back to software usage counter if it is missing
609 if (!clk->ops->is_prepared) {
610 ret = clk->prepare_count ? 1 : 0;
611 goto out;
614 ret = clk->ops->is_prepared(clk->hw);
615 out:
616 return !!ret;
619 bool __clk_is_enabled(struct clk *clk)
621 int ret;
623 if (!clk)
624 return false;
627 * .is_enabled is only mandatory for clocks that gate
628 * fall back to software usage counter if .is_enabled is missing
630 if (!clk->ops->is_enabled) {
631 ret = clk->enable_count ? 1 : 0;
632 goto out;
635 ret = clk->ops->is_enabled(clk->hw);
636 out:
637 return !!ret;
640 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
642 struct clk *child;
643 struct clk *ret;
645 if (!strcmp(clk->name, name))
646 return clk;
648 hlist_for_each_entry(child, &clk->children, child_node) {
649 ret = __clk_lookup_subtree(name, child);
650 if (ret)
651 return ret;
654 return NULL;
657 struct clk *__clk_lookup(const char *name)
659 struct clk *root_clk;
660 struct clk *ret;
662 if (!name)
663 return NULL;
665 /* search the 'proper' clk tree first */
666 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
667 ret = __clk_lookup_subtree(name, root_clk);
668 if (ret)
669 return ret;
672 /* if not found, then search the orphan tree */
673 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
674 ret = __clk_lookup_subtree(name, root_clk);
675 if (ret)
676 return ret;
679 return NULL;
682 /*** clk api ***/
684 void __clk_unprepare(struct clk *clk)
686 if (!clk)
687 return;
689 if (WARN_ON(clk->prepare_count == 0))
690 return;
692 if (--clk->prepare_count > 0)
693 return;
695 WARN_ON(clk->enable_count > 0);
697 if (clk->ops->unprepare)
698 clk->ops->unprepare(clk->hw);
700 __clk_unprepare(clk->parent);
704 * clk_unprepare - undo preparation of a clock source
705 * @clk: the clk being unprepare
707 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
708 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
709 * if the operation may sleep. One example is a clk which is accessed over
710 * I2c. In the complex case a clk gate operation may require a fast and a slow
711 * part. It is this reason that clk_unprepare and clk_disable are not mutually
712 * exclusive. In fact clk_disable must be called before clk_unprepare.
714 void clk_unprepare(struct clk *clk)
716 clk_prepare_lock();
717 __clk_unprepare(clk);
718 clk_prepare_unlock();
720 EXPORT_SYMBOL_GPL(clk_unprepare);
722 int __clk_prepare(struct clk *clk)
724 int ret = 0;
726 if (!clk)
727 return 0;
729 if (clk->prepare_count == 0) {
730 ret = __clk_prepare(clk->parent);
731 if (ret)
732 return ret;
734 if (clk->ops->prepare) {
735 ret = clk->ops->prepare(clk->hw);
736 if (ret) {
737 __clk_unprepare(clk->parent);
738 return ret;
743 clk->prepare_count++;
745 return 0;
749 * clk_prepare - prepare a clock source
750 * @clk: the clk being prepared
752 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
753 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
754 * operation may sleep. One example is a clk which is accessed over I2c. In
755 * the complex case a clk ungate operation may require a fast and a slow part.
756 * It is this reason that clk_prepare and clk_enable are not mutually
757 * exclusive. In fact clk_prepare must be called before clk_enable.
758 * Returns 0 on success, -EERROR otherwise.
760 int clk_prepare(struct clk *clk)
762 int ret;
764 clk_prepare_lock();
765 ret = __clk_prepare(clk);
766 clk_prepare_unlock();
768 return ret;
770 EXPORT_SYMBOL_GPL(clk_prepare);
772 static void __clk_disable(struct clk *clk)
774 if (!clk)
775 return;
777 if (WARN_ON(IS_ERR(clk)))
778 return;
780 if (WARN_ON(clk->enable_count == 0))
781 return;
783 if (--clk->enable_count > 0)
784 return;
786 if (clk->ops->disable)
787 clk->ops->disable(clk->hw);
789 __clk_disable(clk->parent);
793 * clk_disable - gate a clock
794 * @clk: the clk being gated
796 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
797 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
798 * clk if the operation is fast and will never sleep. One example is a
799 * SoC-internal clk which is controlled via simple register writes. In the
800 * complex case a clk gate operation may require a fast and a slow part. It is
801 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
802 * In fact clk_disable must be called before clk_unprepare.
804 void clk_disable(struct clk *clk)
806 unsigned long flags;
808 flags = clk_enable_lock();
809 __clk_disable(clk);
810 clk_enable_unlock(flags);
812 EXPORT_SYMBOL_GPL(clk_disable);
814 static int __clk_enable(struct clk *clk)
816 int ret = 0;
818 if (!clk)
819 return 0;
821 if (WARN_ON(clk->prepare_count == 0))
822 return -ESHUTDOWN;
824 if (clk->enable_count == 0) {
825 ret = __clk_enable(clk->parent);
827 if (ret)
828 return ret;
830 if (clk->ops->enable) {
831 ret = clk->ops->enable(clk->hw);
832 if (ret) {
833 __clk_disable(clk->parent);
834 return ret;
839 clk->enable_count++;
840 return 0;
844 * clk_enable - ungate a clock
845 * @clk: the clk being ungated
847 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
848 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
849 * if the operation will never sleep. One example is a SoC-internal clk which
850 * is controlled via simple register writes. In the complex case a clk ungate
851 * operation may require a fast and a slow part. It is this reason that
852 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
853 * must be called before clk_enable. Returns 0 on success, -EERROR
854 * otherwise.
856 int clk_enable(struct clk *clk)
858 unsigned long flags;
859 int ret;
861 flags = clk_enable_lock();
862 ret = __clk_enable(clk);
863 clk_enable_unlock(flags);
865 return ret;
867 EXPORT_SYMBOL_GPL(clk_enable);
870 * __clk_round_rate - round the given rate for a clk
871 * @clk: round the rate of this clock
873 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
875 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
877 unsigned long parent_rate = 0;
879 if (!clk)
880 return 0;
882 if (!clk->ops->round_rate) {
883 if (clk->flags & CLK_SET_RATE_PARENT)
884 return __clk_round_rate(clk->parent, rate);
885 else
886 return clk->rate;
889 if (clk->parent)
890 parent_rate = clk->parent->rate;
892 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
896 * clk_round_rate - round the given rate for a clk
897 * @clk: the clk for which we are rounding a rate
898 * @rate: the rate which is to be rounded
900 * Takes in a rate as input and rounds it to a rate that the clk can actually
901 * use which is then returned. If clk doesn't support round_rate operation
902 * then the parent rate is returned.
904 long clk_round_rate(struct clk *clk, unsigned long rate)
906 unsigned long ret;
908 clk_prepare_lock();
909 ret = __clk_round_rate(clk, rate);
910 clk_prepare_unlock();
912 return ret;
914 EXPORT_SYMBOL_GPL(clk_round_rate);
917 * __clk_notify - call clk notifier chain
918 * @clk: struct clk * that is changing rate
919 * @msg: clk notifier type (see include/linux/clk.h)
920 * @old_rate: old clk rate
921 * @new_rate: new clk rate
923 * Triggers a notifier call chain on the clk rate-change notification
924 * for 'clk'. Passes a pointer to the struct clk and the previous
925 * and current rates to the notifier callback. Intended to be called by
926 * internal clock code only. Returns NOTIFY_DONE from the last driver
927 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
928 * a driver returns that.
930 static int __clk_notify(struct clk *clk, unsigned long msg,
931 unsigned long old_rate, unsigned long new_rate)
933 struct clk_notifier *cn;
934 struct clk_notifier_data cnd;
935 int ret = NOTIFY_DONE;
937 cnd.clk = clk;
938 cnd.old_rate = old_rate;
939 cnd.new_rate = new_rate;
941 list_for_each_entry(cn, &clk_notifier_list, node) {
942 if (cn->clk == clk) {
943 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
944 &cnd);
945 break;
949 return ret;
953 * __clk_recalc_rates
954 * @clk: first clk in the subtree
955 * @msg: notification type (see include/linux/clk.h)
957 * Walks the subtree of clks starting with clk and recalculates rates as it
958 * goes. Note that if a clk does not implement the .recalc_rate callback then
959 * it is assumed that the clock will take on the rate of it's parent.
961 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
962 * if necessary.
964 * Caller must hold prepare_lock.
966 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
968 unsigned long old_rate;
969 unsigned long parent_rate = 0;
970 struct clk *child;
972 old_rate = clk->rate;
974 if (clk->parent)
975 parent_rate = clk->parent->rate;
977 if (clk->ops->recalc_rate)
978 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
979 else
980 clk->rate = parent_rate;
983 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
984 * & ABORT_RATE_CHANGE notifiers
986 if (clk->notifier_count && msg)
987 __clk_notify(clk, msg, old_rate, clk->rate);
989 hlist_for_each_entry(child, &clk->children, child_node)
990 __clk_recalc_rates(child, msg);
994 * clk_get_rate - return the rate of clk
995 * @clk: the clk whose rate is being returned
997 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
998 * is set, which means a recalc_rate will be issued.
999 * If clk is NULL then returns 0.
1001 unsigned long clk_get_rate(struct clk *clk)
1003 unsigned long rate;
1005 clk_prepare_lock();
1007 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1008 __clk_recalc_rates(clk, 0);
1010 rate = __clk_get_rate(clk);
1011 clk_prepare_unlock();
1013 return rate;
1015 EXPORT_SYMBOL_GPL(clk_get_rate);
1018 * __clk_speculate_rates
1019 * @clk: first clk in the subtree
1020 * @parent_rate: the "future" rate of clk's parent
1022 * Walks the subtree of clks starting with clk, speculating rates as it
1023 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1025 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1026 * pre-rate change notifications and returns early if no clks in the
1027 * subtree have subscribed to the notifications. Note that if a clk does not
1028 * implement the .recalc_rate callback then it is assumed that the clock will
1029 * take on the rate of it's parent.
1031 * Caller must hold prepare_lock.
1033 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1035 struct clk *child;
1036 unsigned long new_rate;
1037 int ret = NOTIFY_DONE;
1039 if (clk->ops->recalc_rate)
1040 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1041 else
1042 new_rate = parent_rate;
1044 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1045 if (clk->notifier_count)
1046 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1048 if (ret & NOTIFY_STOP_MASK)
1049 goto out;
1051 hlist_for_each_entry(child, &clk->children, child_node) {
1052 ret = __clk_speculate_rates(child, new_rate);
1053 if (ret & NOTIFY_STOP_MASK)
1054 break;
1057 out:
1058 return ret;
1061 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
1063 struct clk *child;
1065 clk->new_rate = new_rate;
1067 hlist_for_each_entry(child, &clk->children, child_node) {
1068 if (child->ops->recalc_rate)
1069 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1070 else
1071 child->new_rate = new_rate;
1072 clk_calc_subtree(child, child->new_rate);
1077 * calculate the new rates returning the topmost clock that has to be
1078 * changed.
1080 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1082 struct clk *top = clk;
1083 unsigned long best_parent_rate = 0;
1084 unsigned long new_rate;
1086 /* sanity */
1087 if (IS_ERR_OR_NULL(clk))
1088 return NULL;
1090 /* save parent rate, if it exists */
1091 if (clk->parent)
1092 best_parent_rate = clk->parent->rate;
1094 /* never propagate up to the parent */
1095 if (!(clk->flags & CLK_SET_RATE_PARENT)) {
1096 if (!clk->ops->round_rate) {
1097 clk->new_rate = clk->rate;
1098 return NULL;
1100 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1101 goto out;
1104 /* need clk->parent from here on out */
1105 if (!clk->parent) {
1106 pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
1107 return NULL;
1110 if (!clk->ops->round_rate) {
1111 top = clk_calc_new_rates(clk->parent, rate);
1112 new_rate = clk->parent->new_rate;
1114 goto out;
1117 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1119 if (best_parent_rate != clk->parent->rate) {
1120 top = clk_calc_new_rates(clk->parent, best_parent_rate);
1122 goto out;
1125 out:
1126 clk_calc_subtree(clk, new_rate);
1128 return top;
1132 * Notify about rate changes in a subtree. Always walk down the whole tree
1133 * so that in case of an error we can walk down the whole tree again and
1134 * abort the change.
1136 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1138 struct clk *child, *fail_clk = NULL;
1139 int ret = NOTIFY_DONE;
1141 if (clk->rate == clk->new_rate)
1142 return NULL;
1144 if (clk->notifier_count) {
1145 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1146 if (ret & NOTIFY_STOP_MASK)
1147 fail_clk = clk;
1150 hlist_for_each_entry(child, &clk->children, child_node) {
1151 clk = clk_propagate_rate_change(child, event);
1152 if (clk)
1153 fail_clk = clk;
1156 return fail_clk;
1160 * walk down a subtree and set the new rates notifying the rate
1161 * change on the way
1163 static void clk_change_rate(struct clk *clk)
1165 struct clk *child;
1166 unsigned long old_rate;
1167 unsigned long best_parent_rate = 0;
1169 old_rate = clk->rate;
1171 if (clk->parent)
1172 best_parent_rate = clk->parent->rate;
1174 if (clk->ops->set_rate)
1175 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1177 if (clk->ops->recalc_rate)
1178 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1179 else
1180 clk->rate = best_parent_rate;
1182 if (clk->notifier_count && old_rate != clk->rate)
1183 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1185 hlist_for_each_entry(child, &clk->children, child_node)
1186 clk_change_rate(child);
1190 * clk_set_rate - specify a new rate for clk
1191 * @clk: the clk whose rate is being changed
1192 * @rate: the new rate for clk
1194 * In the simplest case clk_set_rate will only adjust the rate of clk.
1196 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1197 * propagate up to clk's parent; whether or not this happens depends on the
1198 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1199 * after calling .round_rate then upstream parent propagation is ignored. If
1200 * *parent_rate comes back with a new rate for clk's parent then we propagate
1201 * up to clk's parent and set it's rate. Upward propagation will continue
1202 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1203 * .round_rate stops requesting changes to clk's parent_rate.
1205 * Rate changes are accomplished via tree traversal that also recalculates the
1206 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1208 * Returns 0 on success, -EERROR otherwise.
1210 int clk_set_rate(struct clk *clk, unsigned long rate)
1212 struct clk *top, *fail_clk;
1213 int ret = 0;
1215 /* prevent racing with updates to the clock topology */
1216 clk_prepare_lock();
1218 /* bail early if nothing to do */
1219 if (rate == clk_get_rate(clk))
1220 goto out;
1222 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1223 ret = -EBUSY;
1224 goto out;
1227 /* calculate new rates and get the topmost changed clock */
1228 top = clk_calc_new_rates(clk, rate);
1229 if (!top) {
1230 ret = -EINVAL;
1231 goto out;
1234 /* notify that we are about to change rates */
1235 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1236 if (fail_clk) {
1237 pr_warn("%s: failed to set %s rate\n", __func__,
1238 fail_clk->name);
1239 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1240 ret = -EBUSY;
1241 goto out;
1244 /* change the rates */
1245 clk_change_rate(top);
1247 out:
1248 clk_prepare_unlock();
1250 return ret;
1252 EXPORT_SYMBOL_GPL(clk_set_rate);
1255 * clk_get_parent - return the parent of a clk
1256 * @clk: the clk whose parent gets returned
1258 * Simply returns clk->parent. Returns NULL if clk is NULL.
1260 struct clk *clk_get_parent(struct clk *clk)
1262 struct clk *parent;
1264 clk_prepare_lock();
1265 parent = __clk_get_parent(clk);
1266 clk_prepare_unlock();
1268 return parent;
1270 EXPORT_SYMBOL_GPL(clk_get_parent);
1273 * .get_parent is mandatory for clocks with multiple possible parents. It is
1274 * optional for single-parent clocks. Always call .get_parent if it is
1275 * available and WARN if it is missing for multi-parent clocks.
1277 * For single-parent clocks without .get_parent, first check to see if the
1278 * .parents array exists, and if so use it to avoid an expensive tree
1279 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1281 static struct clk *__clk_init_parent(struct clk *clk)
1283 struct clk *ret = NULL;
1284 u8 index;
1286 /* handle the trivial cases */
1288 if (!clk->num_parents)
1289 goto out;
1291 if (clk->num_parents == 1) {
1292 if (IS_ERR_OR_NULL(clk->parent))
1293 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1294 ret = clk->parent;
1295 goto out;
1298 if (!clk->ops->get_parent) {
1299 WARN(!clk->ops->get_parent,
1300 "%s: multi-parent clocks must implement .get_parent\n",
1301 __func__);
1302 goto out;
1306 * Do our best to cache parent clocks in clk->parents. This prevents
1307 * unnecessary and expensive calls to __clk_lookup. We don't set
1308 * clk->parent here; that is done by the calling function
1311 index = clk->ops->get_parent(clk->hw);
1313 if (!clk->parents)
1314 clk->parents =
1315 kzalloc((sizeof(struct clk*) * clk->num_parents),
1316 GFP_KERNEL);
1318 if (!clk->parents)
1319 ret = __clk_lookup(clk->parent_names[index]);
1320 else if (!clk->parents[index])
1321 ret = clk->parents[index] =
1322 __clk_lookup(clk->parent_names[index]);
1323 else
1324 ret = clk->parents[index];
1326 out:
1327 return ret;
1330 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1332 hlist_del(&clk->child_node);
1334 if (new_parent)
1335 hlist_add_head(&clk->child_node, &new_parent->children);
1336 else
1337 hlist_add_head(&clk->child_node, &clk_orphan_list);
1339 clk->parent = new_parent;
1342 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1344 clk_reparent(clk, new_parent);
1345 clk_debug_reparent(clk, new_parent);
1346 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1349 static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1351 u8 i;
1353 if (!clk->parents)
1354 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1355 GFP_KERNEL);
1358 * find index of new parent clock using cached parent ptrs,
1359 * or if not yet cached, use string name comparison and cache
1360 * them now to avoid future calls to __clk_lookup.
1362 for (i = 0; i < clk->num_parents; i++) {
1363 if (clk->parents && clk->parents[i] == parent)
1364 break;
1365 else if (!strcmp(clk->parent_names[i], parent->name)) {
1366 if (clk->parents)
1367 clk->parents[i] = __clk_lookup(parent->name);
1368 break;
1372 return i;
1375 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1377 unsigned long flags;
1378 int ret = 0;
1379 struct clk *old_parent = clk->parent;
1382 * Migrate prepare state between parents and prevent race with
1383 * clk_enable().
1385 * If the clock is not prepared, then a race with
1386 * clk_enable/disable() is impossible since we already have the
1387 * prepare lock (future calls to clk_enable() need to be preceded by
1388 * a clk_prepare()).
1390 * If the clock is prepared, migrate the prepared state to the new
1391 * parent and also protect against a race with clk_enable() by
1392 * forcing the clock and the new parent on. This ensures that all
1393 * future calls to clk_enable() are practically NOPs with respect to
1394 * hardware and software states.
1396 * See also: Comment for clk_set_parent() below.
1398 if (clk->prepare_count) {
1399 __clk_prepare(parent);
1400 clk_enable(parent);
1401 clk_enable(clk);
1404 /* update the clk tree topology */
1405 flags = clk_enable_lock();
1406 clk_reparent(clk, parent);
1407 clk_enable_unlock(flags);
1409 /* change clock input source */
1410 if (parent && clk->ops->set_parent)
1411 ret = clk->ops->set_parent(clk->hw, p_index);
1413 if (ret) {
1414 flags = clk_enable_lock();
1415 clk_reparent(clk, old_parent);
1416 clk_enable_unlock(flags);
1418 if (clk->prepare_count) {
1419 clk_disable(clk);
1420 clk_disable(parent);
1421 __clk_unprepare(parent);
1423 return ret;
1427 * Finish the migration of prepare state and undo the changes done
1428 * for preventing a race with clk_enable().
1430 if (clk->prepare_count) {
1431 clk_disable(clk);
1432 clk_disable(old_parent);
1433 __clk_unprepare(old_parent);
1436 /* update debugfs with new clk tree topology */
1437 clk_debug_reparent(clk, parent);
1438 return 0;
1442 * clk_set_parent - switch the parent of a mux clk
1443 * @clk: the mux clk whose input we are switching
1444 * @parent: the new input to clk
1446 * Re-parent clk to use parent as its new input source. If clk is in
1447 * prepared state, the clk will get enabled for the duration of this call. If
1448 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1449 * that, the reparenting is glitchy in hardware, etc), use the
1450 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1452 * After successfully changing clk's parent clk_set_parent will update the
1453 * clk topology, sysfs topology and propagate rate recalculation via
1454 * __clk_recalc_rates.
1456 * Returns 0 on success, -EERROR otherwise.
1458 int clk_set_parent(struct clk *clk, struct clk *parent)
1460 int ret = 0;
1461 u8 p_index = 0;
1462 unsigned long p_rate = 0;
1464 if (!clk || !clk->ops)
1465 return -EINVAL;
1467 /* verify ops for for multi-parent clks */
1468 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1469 return -ENOSYS;
1471 /* prevent racing with updates to the clock topology */
1472 clk_prepare_lock();
1474 if (clk->parent == parent)
1475 goto out;
1477 /* check that we are allowed to re-parent if the clock is in use */
1478 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1479 ret = -EBUSY;
1480 goto out;
1483 /* try finding the new parent index */
1484 if (parent) {
1485 p_index = clk_fetch_parent_index(clk, parent);
1486 p_rate = parent->rate;
1487 if (p_index == clk->num_parents) {
1488 pr_debug("%s: clk %s can not be parent of clk %s\n",
1489 __func__, parent->name, clk->name);
1490 ret = -EINVAL;
1491 goto out;
1495 /* propagate PRE_RATE_CHANGE notifications */
1496 ret = __clk_speculate_rates(clk, p_rate);
1498 /* abort if a driver objects */
1499 if (ret & NOTIFY_STOP_MASK)
1500 goto out;
1502 /* do the re-parent */
1503 ret = __clk_set_parent(clk, parent, p_index);
1505 /* propagate rate recalculation accordingly */
1506 if (ret)
1507 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1508 else
1509 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1511 out:
1512 clk_prepare_unlock();
1514 return ret;
1516 EXPORT_SYMBOL_GPL(clk_set_parent);
1519 * __clk_init - initialize the data structures in a struct clk
1520 * @dev: device initializing this clk, placeholder for now
1521 * @clk: clk being initialized
1523 * Initializes the lists in struct clk, queries the hardware for the
1524 * parent and rate and sets them both.
1526 int __clk_init(struct device *dev, struct clk *clk)
1528 int i, ret = 0;
1529 struct clk *orphan;
1530 struct hlist_node *tmp2;
1532 if (!clk)
1533 return -EINVAL;
1535 clk_prepare_lock();
1537 /* check to see if a clock with this name is already registered */
1538 if (__clk_lookup(clk->name)) {
1539 pr_debug("%s: clk %s already initialized\n",
1540 __func__, clk->name);
1541 ret = -EEXIST;
1542 goto out;
1545 /* check that clk_ops are sane. See Documentation/clk.txt */
1546 if (clk->ops->set_rate &&
1547 !(clk->ops->round_rate && clk->ops->recalc_rate)) {
1548 pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1549 __func__, clk->name);
1550 ret = -EINVAL;
1551 goto out;
1554 if (clk->ops->set_parent && !clk->ops->get_parent) {
1555 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1556 __func__, clk->name);
1557 ret = -EINVAL;
1558 goto out;
1561 /* throw a WARN if any entries in parent_names are NULL */
1562 for (i = 0; i < clk->num_parents; i++)
1563 WARN(!clk->parent_names[i],
1564 "%s: invalid NULL in %s's .parent_names\n",
1565 __func__, clk->name);
1568 * Allocate an array of struct clk *'s to avoid unnecessary string
1569 * look-ups of clk's possible parents. This can fail for clocks passed
1570 * in to clk_init during early boot; thus any access to clk->parents[]
1571 * must always check for a NULL pointer and try to populate it if
1572 * necessary.
1574 * If clk->parents is not NULL we skip this entire block. This allows
1575 * for clock drivers to statically initialize clk->parents.
1577 if (clk->num_parents > 1 && !clk->parents) {
1578 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1579 GFP_KERNEL);
1581 * __clk_lookup returns NULL for parents that have not been
1582 * clk_init'd; thus any access to clk->parents[] must check
1583 * for a NULL pointer. We can always perform lazy lookups for
1584 * missing parents later on.
1586 if (clk->parents)
1587 for (i = 0; i < clk->num_parents; i++)
1588 clk->parents[i] =
1589 __clk_lookup(clk->parent_names[i]);
1592 clk->parent = __clk_init_parent(clk);
1595 * Populate clk->parent if parent has already been __clk_init'd. If
1596 * parent has not yet been __clk_init'd then place clk in the orphan
1597 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1598 * clk list.
1600 * Every time a new clk is clk_init'd then we walk the list of orphan
1601 * clocks and re-parent any that are children of the clock currently
1602 * being clk_init'd.
1604 if (clk->parent)
1605 hlist_add_head(&clk->child_node,
1606 &clk->parent->children);
1607 else if (clk->flags & CLK_IS_ROOT)
1608 hlist_add_head(&clk->child_node, &clk_root_list);
1609 else
1610 hlist_add_head(&clk->child_node, &clk_orphan_list);
1613 * Set clk's rate. The preferred method is to use .recalc_rate. For
1614 * simple clocks and lazy developers the default fallback is to use the
1615 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1616 * then rate is set to zero.
1618 if (clk->ops->recalc_rate)
1619 clk->rate = clk->ops->recalc_rate(clk->hw,
1620 __clk_get_rate(clk->parent));
1621 else if (clk->parent)
1622 clk->rate = clk->parent->rate;
1623 else
1624 clk->rate = 0;
1627 * walk the list of orphan clocks and reparent any that are children of
1628 * this clock
1630 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1631 if (orphan->ops->get_parent) {
1632 i = orphan->ops->get_parent(orphan->hw);
1633 if (!strcmp(clk->name, orphan->parent_names[i]))
1634 __clk_reparent(orphan, clk);
1635 continue;
1638 for (i = 0; i < orphan->num_parents; i++)
1639 if (!strcmp(clk->name, orphan->parent_names[i])) {
1640 __clk_reparent(orphan, clk);
1641 break;
1646 * optional platform-specific magic
1648 * The .init callback is not used by any of the basic clock types, but
1649 * exists for weird hardware that must perform initialization magic.
1650 * Please consider other ways of solving initialization problems before
1651 * using this callback, as it's use is discouraged.
1653 if (clk->ops->init)
1654 clk->ops->init(clk->hw);
1656 clk_debug_register(clk);
1658 out:
1659 clk_prepare_unlock();
1661 return ret;
1665 * __clk_register - register a clock and return a cookie.
1667 * Same as clk_register, except that the .clk field inside hw shall point to a
1668 * preallocated (generally statically allocated) struct clk. None of the fields
1669 * of the struct clk need to be initialized.
1671 * The data pointed to by .init and .clk field shall NOT be marked as init
1672 * data.
1674 * __clk_register is only exposed via clk-private.h and is intended for use with
1675 * very large numbers of clocks that need to be statically initialized. It is
1676 * a layering violation to include clk-private.h from any code which implements
1677 * a clock's .ops; as such any statically initialized clock data MUST be in a
1678 * separate C file from the logic that implements it's operations. Returns 0
1679 * on success, otherwise an error code.
1681 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1683 int ret;
1684 struct clk *clk;
1686 clk = hw->clk;
1687 clk->name = hw->init->name;
1688 clk->ops = hw->init->ops;
1689 clk->hw = hw;
1690 clk->flags = hw->init->flags;
1691 clk->parent_names = hw->init->parent_names;
1692 clk->num_parents = hw->init->num_parents;
1694 ret = __clk_init(dev, clk);
1695 if (ret)
1696 return ERR_PTR(ret);
1698 return clk;
1700 EXPORT_SYMBOL_GPL(__clk_register);
1702 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1704 int i, ret;
1706 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1707 if (!clk->name) {
1708 pr_err("%s: could not allocate clk->name\n", __func__);
1709 ret = -ENOMEM;
1710 goto fail_name;
1712 clk->ops = hw->init->ops;
1713 clk->hw = hw;
1714 clk->flags = hw->init->flags;
1715 clk->num_parents = hw->init->num_parents;
1716 hw->clk = clk;
1718 /* allocate local copy in case parent_names is __initdata */
1719 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1720 GFP_KERNEL);
1722 if (!clk->parent_names) {
1723 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1724 ret = -ENOMEM;
1725 goto fail_parent_names;
1729 /* copy each string name in case parent_names is __initdata */
1730 for (i = 0; i < clk->num_parents; i++) {
1731 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1732 GFP_KERNEL);
1733 if (!clk->parent_names[i]) {
1734 pr_err("%s: could not copy parent_names\n", __func__);
1735 ret = -ENOMEM;
1736 goto fail_parent_names_copy;
1740 ret = __clk_init(dev, clk);
1741 if (!ret)
1742 return 0;
1744 fail_parent_names_copy:
1745 while (--i >= 0)
1746 kfree(clk->parent_names[i]);
1747 kfree(clk->parent_names);
1748 fail_parent_names:
1749 kfree(clk->name);
1750 fail_name:
1751 return ret;
1755 * clk_register - allocate a new clock, register it and return an opaque cookie
1756 * @dev: device that is registering this clock
1757 * @hw: link to hardware-specific clock data
1759 * clk_register is the primary interface for populating the clock tree with new
1760 * clock nodes. It returns a pointer to the newly allocated struct clk which
1761 * cannot be dereferenced by driver code but may be used in conjuction with the
1762 * rest of the clock API. In the event of an error clk_register will return an
1763 * error code; drivers must test for an error code after calling clk_register.
1765 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1767 int ret;
1768 struct clk *clk;
1770 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1771 if (!clk) {
1772 pr_err("%s: could not allocate clk\n", __func__);
1773 ret = -ENOMEM;
1774 goto fail_out;
1777 ret = _clk_register(dev, hw, clk);
1778 if (!ret)
1779 return clk;
1781 kfree(clk);
1782 fail_out:
1783 return ERR_PTR(ret);
1785 EXPORT_SYMBOL_GPL(clk_register);
1788 * clk_unregister - unregister a currently registered clock
1789 * @clk: clock to unregister
1791 * Currently unimplemented.
1793 void clk_unregister(struct clk *clk) {}
1794 EXPORT_SYMBOL_GPL(clk_unregister);
1796 static void devm_clk_release(struct device *dev, void *res)
1798 clk_unregister(res);
1802 * devm_clk_register - resource managed clk_register()
1803 * @dev: device that is registering this clock
1804 * @hw: link to hardware-specific clock data
1806 * Managed clk_register(). Clocks returned from this function are
1807 * automatically clk_unregister()ed on driver detach. See clk_register() for
1808 * more information.
1810 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1812 struct clk *clk;
1813 int ret;
1815 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1816 if (!clk)
1817 return ERR_PTR(-ENOMEM);
1819 ret = _clk_register(dev, hw, clk);
1820 if (!ret) {
1821 devres_add(dev, clk);
1822 } else {
1823 devres_free(clk);
1824 clk = ERR_PTR(ret);
1827 return clk;
1829 EXPORT_SYMBOL_GPL(devm_clk_register);
1831 static int devm_clk_match(struct device *dev, void *res, void *data)
1833 struct clk *c = res;
1834 if (WARN_ON(!c))
1835 return 0;
1836 return c == data;
1840 * devm_clk_unregister - resource managed clk_unregister()
1841 * @clk: clock to unregister
1843 * Deallocate a clock allocated with devm_clk_register(). Normally
1844 * this function will not need to be called and the resource management
1845 * code will ensure that the resource is freed.
1847 void devm_clk_unregister(struct device *dev, struct clk *clk)
1849 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1851 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1853 /*** clk rate change notifiers ***/
1856 * clk_notifier_register - add a clk rate change notifier
1857 * @clk: struct clk * to watch
1858 * @nb: struct notifier_block * with callback info
1860 * Request notification when clk's rate changes. This uses an SRCU
1861 * notifier because we want it to block and notifier unregistrations are
1862 * uncommon. The callbacks associated with the notifier must not
1863 * re-enter into the clk framework by calling any top-level clk APIs;
1864 * this will cause a nested prepare_lock mutex.
1866 * Pre-change notifier callbacks will be passed the current, pre-change
1867 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1868 * post-change rate of the clk is passed via struct
1869 * clk_notifier_data.new_rate.
1871 * Post-change notifiers will pass the now-current, post-change rate of
1872 * the clk in both struct clk_notifier_data.old_rate and struct
1873 * clk_notifier_data.new_rate.
1875 * Abort-change notifiers are effectively the opposite of pre-change
1876 * notifiers: the original pre-change clk rate is passed in via struct
1877 * clk_notifier_data.new_rate and the failed post-change rate is passed
1878 * in via struct clk_notifier_data.old_rate.
1880 * clk_notifier_register() must be called from non-atomic context.
1881 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1882 * allocation failure; otherwise, passes along the return value of
1883 * srcu_notifier_chain_register().
1885 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1887 struct clk_notifier *cn;
1888 int ret = -ENOMEM;
1890 if (!clk || !nb)
1891 return -EINVAL;
1893 clk_prepare_lock();
1895 /* search the list of notifiers for this clk */
1896 list_for_each_entry(cn, &clk_notifier_list, node)
1897 if (cn->clk == clk)
1898 break;
1900 /* if clk wasn't in the notifier list, allocate new clk_notifier */
1901 if (cn->clk != clk) {
1902 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1903 if (!cn)
1904 goto out;
1906 cn->clk = clk;
1907 srcu_init_notifier_head(&cn->notifier_head);
1909 list_add(&cn->node, &clk_notifier_list);
1912 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1914 clk->notifier_count++;
1916 out:
1917 clk_prepare_unlock();
1919 return ret;
1921 EXPORT_SYMBOL_GPL(clk_notifier_register);
1924 * clk_notifier_unregister - remove a clk rate change notifier
1925 * @clk: struct clk *
1926 * @nb: struct notifier_block * with callback info
1928 * Request no further notification for changes to 'clk' and frees memory
1929 * allocated in clk_notifier_register.
1931 * Returns -EINVAL if called with null arguments; otherwise, passes
1932 * along the return value of srcu_notifier_chain_unregister().
1934 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1936 struct clk_notifier *cn = NULL;
1937 int ret = -EINVAL;
1939 if (!clk || !nb)
1940 return -EINVAL;
1942 clk_prepare_lock();
1944 list_for_each_entry(cn, &clk_notifier_list, node)
1945 if (cn->clk == clk)
1946 break;
1948 if (cn->clk == clk) {
1949 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1951 clk->notifier_count--;
1953 /* XXX the notifier code should handle this better */
1954 if (!cn->notifier_head.head) {
1955 srcu_cleanup_notifier_head(&cn->notifier_head);
1956 list_del(&cn->node);
1957 kfree(cn);
1960 } else {
1961 ret = -ENOENT;
1964 clk_prepare_unlock();
1966 return ret;
1968 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
1970 #ifdef CONFIG_OF
1972 * struct of_clk_provider - Clock provider registration structure
1973 * @link: Entry in global list of clock providers
1974 * @node: Pointer to device tree node of clock provider
1975 * @get: Get clock callback. Returns NULL or a struct clk for the
1976 * given clock specifier
1977 * @data: context pointer to be passed into @get callback
1979 struct of_clk_provider {
1980 struct list_head link;
1982 struct device_node *node;
1983 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
1984 void *data;
1987 extern struct of_device_id __clk_of_table[];
1989 static const struct of_device_id __clk_of_table_sentinel
1990 __used __section(__clk_of_table_end);
1992 static LIST_HEAD(of_clk_providers);
1993 static DEFINE_MUTEX(of_clk_lock);
1995 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
1996 void *data)
1998 return data;
2000 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2002 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2004 struct clk_onecell_data *clk_data = data;
2005 unsigned int idx = clkspec->args[0];
2007 if (idx >= clk_data->clk_num) {
2008 pr_err("%s: invalid clock index %d\n", __func__, idx);
2009 return ERR_PTR(-EINVAL);
2012 return clk_data->clks[idx];
2014 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2017 * of_clk_add_provider() - Register a clock provider for a node
2018 * @np: Device node pointer associated with clock provider
2019 * @clk_src_get: callback for decoding clock
2020 * @data: context pointer for @clk_src_get callback.
2022 int of_clk_add_provider(struct device_node *np,
2023 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2024 void *data),
2025 void *data)
2027 struct of_clk_provider *cp;
2029 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2030 if (!cp)
2031 return -ENOMEM;
2033 cp->node = of_node_get(np);
2034 cp->data = data;
2035 cp->get = clk_src_get;
2037 mutex_lock(&of_clk_lock);
2038 list_add(&cp->link, &of_clk_providers);
2039 mutex_unlock(&of_clk_lock);
2040 pr_debug("Added clock from %s\n", np->full_name);
2042 return 0;
2044 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2047 * of_clk_del_provider() - Remove a previously registered clock provider
2048 * @np: Device node pointer associated with clock provider
2050 void of_clk_del_provider(struct device_node *np)
2052 struct of_clk_provider *cp;
2054 mutex_lock(&of_clk_lock);
2055 list_for_each_entry(cp, &of_clk_providers, link) {
2056 if (cp->node == np) {
2057 list_del(&cp->link);
2058 of_node_put(cp->node);
2059 kfree(cp);
2060 break;
2063 mutex_unlock(&of_clk_lock);
2065 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2067 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2069 struct of_clk_provider *provider;
2070 struct clk *clk = ERR_PTR(-ENOENT);
2072 /* Check if we have such a provider in our array */
2073 mutex_lock(&of_clk_lock);
2074 list_for_each_entry(provider, &of_clk_providers, link) {
2075 if (provider->node == clkspec->np)
2076 clk = provider->get(clkspec, provider->data);
2077 if (!IS_ERR(clk))
2078 break;
2080 mutex_unlock(&of_clk_lock);
2082 return clk;
2085 const char *of_clk_get_parent_name(struct device_node *np, int index)
2087 struct of_phandle_args clkspec;
2088 const char *clk_name;
2089 int rc;
2091 if (index < 0)
2092 return NULL;
2094 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2095 &clkspec);
2096 if (rc)
2097 return NULL;
2099 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2100 clkspec.args_count ? clkspec.args[0] : 0,
2101 &clk_name) < 0)
2102 clk_name = clkspec.np->name;
2104 of_node_put(clkspec.np);
2105 return clk_name;
2107 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2110 * of_clk_init() - Scan and init clock providers from the DT
2111 * @matches: array of compatible values and init functions for providers.
2113 * This function scans the device tree for matching clock providers and
2114 * calls their initialization functions
2116 void __init of_clk_init(const struct of_device_id *matches)
2118 struct device_node *np;
2120 if (!matches)
2121 matches = __clk_of_table;
2123 for_each_matching_node(np, matches) {
2124 const struct of_device_id *match = of_match_node(matches, np);
2125 of_clk_init_cb_t clk_init_cb = match->data;
2126 clk_init_cb(np);
2129 #endif