USB: keyspan: fix null-deref at disconnect and release
[linux/fpc-iii.git] / drivers / firewire / ohci.c
blobafb701ec90cabd50ceb03b1298beba38e97717b4
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
75 #define DESCRIPTOR_CMD (0xf << 12)
77 struct descriptor {
78 __le16 req_count;
79 __le16 control;
80 __le32 data_address;
81 __le32 branch_address;
82 __le16 res_count;
83 __le16 transfer_status;
84 } __attribute__((aligned(16)));
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
100 struct ar_context {
101 struct fw_ohci *ohci;
102 struct page *pages[AR_BUFFERS];
103 void *buffer;
104 struct descriptor *descriptors;
105 dma_addr_t descriptors_bus;
106 void *pointer;
107 unsigned int last_buffer_index;
108 u32 regs;
109 struct tasklet_struct tasklet;
112 struct context;
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115 struct descriptor *d,
116 struct descriptor *last);
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
122 struct descriptor_buffer {
123 struct list_head list;
124 dma_addr_t buffer_bus;
125 size_t buffer_size;
126 size_t used;
127 struct descriptor buffer[0];
130 struct context {
131 struct fw_ohci *ohci;
132 u32 regs;
133 int total_allocation;
134 u32 current_bus;
135 bool running;
136 bool flushing;
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
141 * free buffers.
143 struct list_head buffer_list;
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
149 struct descriptor_buffer *buffer_tail;
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
155 struct descriptor *last;
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
161 struct descriptor *prev;
162 int prev_z;
164 descriptor_callback_t callback;
166 struct tasklet_struct tasklet;
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
176 struct iso_context {
177 struct fw_iso_context base;
178 struct context context;
179 void *header;
180 size_t header_length;
181 unsigned long flushing_completions;
182 u32 mc_buffer_bus;
183 u16 mc_completed;
184 u16 last_timestamp;
185 u8 sync;
186 u8 tags;
189 #define CONFIG_ROM_SIZE 1024
191 struct fw_ohci {
192 struct fw_card card;
194 __iomem char *registers;
195 int node_id;
196 int generation;
197 int request_generation; /* for timestamping incoming requests */
198 unsigned quirks;
199 unsigned int pri_req_max;
200 u32 bus_time;
201 bool bus_time_running;
202 bool is_root;
203 bool csr_state_setclear_abdicate;
204 int n_ir;
205 int n_it;
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
210 spinlock_t lock;
212 struct mutex phy_reg_mutex;
214 void *misc_buffer;
215 dma_addr_t misc_buffer_bus;
217 struct ar_context ar_request_ctx;
218 struct ar_context ar_response_ctx;
219 struct context at_request_ctx;
220 struct context at_response_ctx;
222 u32 it_context_support;
223 u32 it_context_mask; /* unoccupied IT contexts */
224 struct iso_context *it_context_list;
225 u64 ir_context_channels; /* unoccupied channels */
226 u32 ir_context_support;
227 u32 ir_context_mask; /* unoccupied IR contexts */
228 struct iso_context *ir_context_list;
229 u64 mc_channels; /* channels in use by the multichannel IR context */
230 bool mc_allocated;
232 __be32 *config_rom;
233 dma_addr_t config_rom_bus;
234 __be32 *next_config_rom;
235 dma_addr_t next_config_rom_bus;
236 __be32 next_header;
238 __le32 *self_id_cpu;
239 dma_addr_t self_id_bus;
240 struct work_struct bus_reset_work;
242 u32 self_id_buffer[512];
245 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
247 return container_of(card, struct fw_ohci, card);
250 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
251 #define IR_CONTEXT_BUFFER_FILL 0x80000000
252 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
253 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
254 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
255 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
257 #define CONTEXT_RUN 0x8000
258 #define CONTEXT_WAKE 0x1000
259 #define CONTEXT_DEAD 0x0800
260 #define CONTEXT_ACTIVE 0x0400
262 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
263 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
264 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
266 #define OHCI1394_REGISTER_SIZE 0x800
267 #define OHCI1394_PCI_HCI_Control 0x40
268 #define SELF_ID_BUF_SIZE 0x800
269 #define OHCI_TCODE_PHY_PACKET 0x0e
270 #define OHCI_VERSION_1_1 0x010010
272 static char ohci_driver_name[] = KBUILD_MODNAME;
274 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
275 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
276 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
277 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
278 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
279 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
280 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
281 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
282 #define PCI_REV_ID_VIA_VT6306 0x46
284 #define QUIRK_CYCLE_TIMER 1
285 #define QUIRK_RESET_PACKET 2
286 #define QUIRK_BE_HEADERS 4
287 #define QUIRK_NO_1394A 8
288 #define QUIRK_NO_MSI 16
289 #define QUIRK_TI_SLLZ059 32
290 #define QUIRK_IR_WAKE 64
291 #define QUIRK_PHY_LCTRL_TIMEOUT 128
293 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
294 static const struct {
295 unsigned short vendor, device, revision, flags;
296 } ohci_quirks[] = {
297 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
298 QUIRK_CYCLE_TIMER},
300 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
301 QUIRK_BE_HEADERS},
303 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
304 QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},
306 {PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
307 QUIRK_PHY_LCTRL_TIMEOUT},
309 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
310 QUIRK_RESET_PACKET},
312 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
313 QUIRK_NO_MSI},
315 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
316 QUIRK_CYCLE_TIMER},
318 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
319 QUIRK_NO_MSI},
321 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
322 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
324 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
325 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
327 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
328 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
330 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
331 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
333 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
334 QUIRK_RESET_PACKET},
336 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
337 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
339 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
340 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
343 /* This overrides anything that was found in ohci_quirks[]. */
344 static int param_quirks;
345 module_param_named(quirks, param_quirks, int, 0644);
346 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
347 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
348 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
349 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
350 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
351 ", disable MSI = " __stringify(QUIRK_NO_MSI)
352 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
353 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
354 ", phy LCtrl timeout = " __stringify(QUIRK_PHY_LCTRL_TIMEOUT)
355 ")");
357 #define OHCI_PARAM_DEBUG_AT_AR 1
358 #define OHCI_PARAM_DEBUG_SELFIDS 2
359 #define OHCI_PARAM_DEBUG_IRQS 4
360 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
362 static int param_debug;
363 module_param_named(debug, param_debug, int, 0644);
364 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
365 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
366 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
367 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
368 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
369 ", or a combination, or all = -1)");
371 static void log_irqs(struct fw_ohci *ohci, u32 evt)
373 if (likely(!(param_debug &
374 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
375 return;
377 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
378 !(evt & OHCI1394_busReset))
379 return;
381 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
382 evt & OHCI1394_selfIDComplete ? " selfID" : "",
383 evt & OHCI1394_RQPkt ? " AR_req" : "",
384 evt & OHCI1394_RSPkt ? " AR_resp" : "",
385 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
386 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
387 evt & OHCI1394_isochRx ? " IR" : "",
388 evt & OHCI1394_isochTx ? " IT" : "",
389 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
390 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
391 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
392 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
393 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
394 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
395 evt & OHCI1394_busReset ? " busReset" : "",
396 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
397 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
398 OHCI1394_respTxComplete | OHCI1394_isochRx |
399 OHCI1394_isochTx | OHCI1394_postedWriteErr |
400 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
401 OHCI1394_cycleInconsistent |
402 OHCI1394_regAccessFail | OHCI1394_busReset)
403 ? " ?" : "");
406 static const char *speed[] = {
407 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
409 static const char *power[] = {
410 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
411 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
413 static const char port[] = { '.', '-', 'p', 'c', };
415 static char _p(u32 *s, int shift)
417 return port[*s >> shift & 3];
420 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
422 u32 *s;
424 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
425 return;
427 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
428 self_id_count, generation, ohci->node_id);
430 for (s = ohci->self_id_buffer; self_id_count--; ++s)
431 if ((*s & 1 << 23) == 0)
432 ohci_notice(ohci,
433 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
434 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
435 speed[*s >> 14 & 3], *s >> 16 & 63,
436 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
437 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
438 else
439 ohci_notice(ohci,
440 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
441 *s, *s >> 24 & 63,
442 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
443 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
446 static const char *evts[] = {
447 [0x00] = "evt_no_status", [0x01] = "-reserved-",
448 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
449 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
450 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
451 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
452 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
453 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
454 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
455 [0x10] = "-reserved-", [0x11] = "ack_complete",
456 [0x12] = "ack_pending ", [0x13] = "-reserved-",
457 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
458 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
459 [0x18] = "-reserved-", [0x19] = "-reserved-",
460 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
461 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
462 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
463 [0x20] = "pending/cancelled",
465 static const char *tcodes[] = {
466 [0x0] = "QW req", [0x1] = "BW req",
467 [0x2] = "W resp", [0x3] = "-reserved-",
468 [0x4] = "QR req", [0x5] = "BR req",
469 [0x6] = "QR resp", [0x7] = "BR resp",
470 [0x8] = "cycle start", [0x9] = "Lk req",
471 [0xa] = "async stream packet", [0xb] = "Lk resp",
472 [0xc] = "-reserved-", [0xd] = "-reserved-",
473 [0xe] = "link internal", [0xf] = "-reserved-",
476 static void log_ar_at_event(struct fw_ohci *ohci,
477 char dir, int speed, u32 *header, int evt)
479 int tcode = header[0] >> 4 & 0xf;
480 char specific[12];
482 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
483 return;
485 if (unlikely(evt >= ARRAY_SIZE(evts)))
486 evt = 0x1f;
488 if (evt == OHCI1394_evt_bus_reset) {
489 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
490 dir, (header[2] >> 16) & 0xff);
491 return;
494 switch (tcode) {
495 case 0x0: case 0x6: case 0x8:
496 snprintf(specific, sizeof(specific), " = %08x",
497 be32_to_cpu((__force __be32)header[3]));
498 break;
499 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
500 snprintf(specific, sizeof(specific), " %x,%x",
501 header[3] >> 16, header[3] & 0xffff);
502 break;
503 default:
504 specific[0] = '\0';
507 switch (tcode) {
508 case 0xa:
509 ohci_notice(ohci, "A%c %s, %s\n",
510 dir, evts[evt], tcodes[tcode]);
511 break;
512 case 0xe:
513 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
514 dir, evts[evt], header[1], header[2]);
515 break;
516 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
517 ohci_notice(ohci,
518 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
519 dir, speed, header[0] >> 10 & 0x3f,
520 header[1] >> 16, header[0] >> 16, evts[evt],
521 tcodes[tcode], header[1] & 0xffff, header[2], specific);
522 break;
523 default:
524 ohci_notice(ohci,
525 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
526 dir, speed, header[0] >> 10 & 0x3f,
527 header[1] >> 16, header[0] >> 16, evts[evt],
528 tcodes[tcode], specific);
532 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
534 writel(data, ohci->registers + offset);
537 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
539 return readl(ohci->registers + offset);
542 static inline void flush_writes(const struct fw_ohci *ohci)
544 /* Do a dummy read to flush writes. */
545 reg_read(ohci, OHCI1394_Version);
549 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
550 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
551 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
552 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
554 static int read_phy_reg(struct fw_ohci *ohci, int addr)
556 u32 val;
557 int i;
559 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
560 for (i = 0; i < 3 + 100; i++) {
561 val = reg_read(ohci, OHCI1394_PhyControl);
562 if (!~val)
563 return -ENODEV; /* Card was ejected. */
565 if (val & OHCI1394_PhyControl_ReadDone)
566 return OHCI1394_PhyControl_ReadData(val);
569 * Try a few times without waiting. Sleeping is necessary
570 * only when the link/PHY interface is busy.
572 if (i >= 3)
573 msleep(1);
575 ohci_err(ohci, "failed to read phy reg %d\n", addr);
576 dump_stack();
578 return -EBUSY;
581 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
583 int i;
585 reg_write(ohci, OHCI1394_PhyControl,
586 OHCI1394_PhyControl_Write(addr, val));
587 for (i = 0; i < 3 + 100; i++) {
588 val = reg_read(ohci, OHCI1394_PhyControl);
589 if (!~val)
590 return -ENODEV; /* Card was ejected. */
592 if (!(val & OHCI1394_PhyControl_WritePending))
593 return 0;
595 if (i >= 3)
596 msleep(1);
598 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
599 dump_stack();
601 return -EBUSY;
604 static int update_phy_reg(struct fw_ohci *ohci, int addr,
605 int clear_bits, int set_bits)
607 int ret = read_phy_reg(ohci, addr);
608 if (ret < 0)
609 return ret;
612 * The interrupt status bits are cleared by writing a one bit.
613 * Avoid clearing them unless explicitly requested in set_bits.
615 if (addr == 5)
616 clear_bits |= PHY_INT_STATUS_BITS;
618 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
621 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
623 int ret;
625 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
626 if (ret < 0)
627 return ret;
629 return read_phy_reg(ohci, addr);
632 static int ohci_read_phy_reg(struct fw_card *card, int addr)
634 struct fw_ohci *ohci = fw_ohci(card);
635 int ret;
637 mutex_lock(&ohci->phy_reg_mutex);
638 ret = read_phy_reg(ohci, addr);
639 mutex_unlock(&ohci->phy_reg_mutex);
641 return ret;
644 static int ohci_update_phy_reg(struct fw_card *card, int addr,
645 int clear_bits, int set_bits)
647 struct fw_ohci *ohci = fw_ohci(card);
648 int ret;
650 mutex_lock(&ohci->phy_reg_mutex);
651 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
652 mutex_unlock(&ohci->phy_reg_mutex);
654 return ret;
657 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
659 return page_private(ctx->pages[i]);
662 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
664 struct descriptor *d;
666 d = &ctx->descriptors[index];
667 d->branch_address &= cpu_to_le32(~0xf);
668 d->res_count = cpu_to_le16(PAGE_SIZE);
669 d->transfer_status = 0;
671 wmb(); /* finish init of new descriptors before branch_address update */
672 d = &ctx->descriptors[ctx->last_buffer_index];
673 d->branch_address |= cpu_to_le32(1);
675 ctx->last_buffer_index = index;
677 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
680 static void ar_context_release(struct ar_context *ctx)
682 unsigned int i;
684 if (ctx->buffer)
685 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
687 for (i = 0; i < AR_BUFFERS; i++)
688 if (ctx->pages[i]) {
689 dma_unmap_page(ctx->ohci->card.device,
690 ar_buffer_bus(ctx, i),
691 PAGE_SIZE, DMA_FROM_DEVICE);
692 __free_page(ctx->pages[i]);
696 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
698 struct fw_ohci *ohci = ctx->ohci;
700 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
701 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
702 flush_writes(ohci);
704 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
706 /* FIXME: restart? */
709 static inline unsigned int ar_next_buffer_index(unsigned int index)
711 return (index + 1) % AR_BUFFERS;
714 static inline unsigned int ar_prev_buffer_index(unsigned int index)
716 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
719 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
721 return ar_next_buffer_index(ctx->last_buffer_index);
725 * We search for the buffer that contains the last AR packet DMA data written
726 * by the controller.
728 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
729 unsigned int *buffer_offset)
731 unsigned int i, next_i, last = ctx->last_buffer_index;
732 __le16 res_count, next_res_count;
734 i = ar_first_buffer_index(ctx);
735 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
737 /* A buffer that is not yet completely filled must be the last one. */
738 while (i != last && res_count == 0) {
740 /* Peek at the next descriptor. */
741 next_i = ar_next_buffer_index(i);
742 rmb(); /* read descriptors in order */
743 next_res_count = ACCESS_ONCE(
744 ctx->descriptors[next_i].res_count);
746 * If the next descriptor is still empty, we must stop at this
747 * descriptor.
749 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
751 * The exception is when the DMA data for one packet is
752 * split over three buffers; in this case, the middle
753 * buffer's descriptor might be never updated by the
754 * controller and look still empty, and we have to peek
755 * at the third one.
757 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
758 next_i = ar_next_buffer_index(next_i);
759 rmb();
760 next_res_count = ACCESS_ONCE(
761 ctx->descriptors[next_i].res_count);
762 if (next_res_count != cpu_to_le16(PAGE_SIZE))
763 goto next_buffer_is_active;
766 break;
769 next_buffer_is_active:
770 i = next_i;
771 res_count = next_res_count;
774 rmb(); /* read res_count before the DMA data */
776 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
777 if (*buffer_offset > PAGE_SIZE) {
778 *buffer_offset = 0;
779 ar_context_abort(ctx, "corrupted descriptor");
782 return i;
785 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
786 unsigned int end_buffer_index,
787 unsigned int end_buffer_offset)
789 unsigned int i;
791 i = ar_first_buffer_index(ctx);
792 while (i != end_buffer_index) {
793 dma_sync_single_for_cpu(ctx->ohci->card.device,
794 ar_buffer_bus(ctx, i),
795 PAGE_SIZE, DMA_FROM_DEVICE);
796 i = ar_next_buffer_index(i);
798 if (end_buffer_offset > 0)
799 dma_sync_single_for_cpu(ctx->ohci->card.device,
800 ar_buffer_bus(ctx, i),
801 end_buffer_offset, DMA_FROM_DEVICE);
804 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
805 #define cond_le32_to_cpu(v) \
806 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
807 #else
808 #define cond_le32_to_cpu(v) le32_to_cpu(v)
809 #endif
811 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
813 struct fw_ohci *ohci = ctx->ohci;
814 struct fw_packet p;
815 u32 status, length, tcode;
816 int evt;
818 p.header[0] = cond_le32_to_cpu(buffer[0]);
819 p.header[1] = cond_le32_to_cpu(buffer[1]);
820 p.header[2] = cond_le32_to_cpu(buffer[2]);
822 tcode = (p.header[0] >> 4) & 0x0f;
823 switch (tcode) {
824 case TCODE_WRITE_QUADLET_REQUEST:
825 case TCODE_READ_QUADLET_RESPONSE:
826 p.header[3] = (__force __u32) buffer[3];
827 p.header_length = 16;
828 p.payload_length = 0;
829 break;
831 case TCODE_READ_BLOCK_REQUEST :
832 p.header[3] = cond_le32_to_cpu(buffer[3]);
833 p.header_length = 16;
834 p.payload_length = 0;
835 break;
837 case TCODE_WRITE_BLOCK_REQUEST:
838 case TCODE_READ_BLOCK_RESPONSE:
839 case TCODE_LOCK_REQUEST:
840 case TCODE_LOCK_RESPONSE:
841 p.header[3] = cond_le32_to_cpu(buffer[3]);
842 p.header_length = 16;
843 p.payload_length = p.header[3] >> 16;
844 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
845 ar_context_abort(ctx, "invalid packet length");
846 return NULL;
848 break;
850 case TCODE_WRITE_RESPONSE:
851 case TCODE_READ_QUADLET_REQUEST:
852 case OHCI_TCODE_PHY_PACKET:
853 p.header_length = 12;
854 p.payload_length = 0;
855 break;
857 default:
858 ar_context_abort(ctx, "invalid tcode");
859 return NULL;
862 p.payload = (void *) buffer + p.header_length;
864 /* FIXME: What to do about evt_* errors? */
865 length = (p.header_length + p.payload_length + 3) / 4;
866 status = cond_le32_to_cpu(buffer[length]);
867 evt = (status >> 16) & 0x1f;
869 p.ack = evt - 16;
870 p.speed = (status >> 21) & 0x7;
871 p.timestamp = status & 0xffff;
872 p.generation = ohci->request_generation;
874 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
877 * Several controllers, notably from NEC and VIA, forget to
878 * write ack_complete status at PHY packet reception.
880 if (evt == OHCI1394_evt_no_status &&
881 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
882 p.ack = ACK_COMPLETE;
885 * The OHCI bus reset handler synthesizes a PHY packet with
886 * the new generation number when a bus reset happens (see
887 * section 8.4.2.3). This helps us determine when a request
888 * was received and make sure we send the response in the same
889 * generation. We only need this for requests; for responses
890 * we use the unique tlabel for finding the matching
891 * request.
893 * Alas some chips sometimes emit bus reset packets with a
894 * wrong generation. We set the correct generation for these
895 * at a slightly incorrect time (in bus_reset_work).
897 if (evt == OHCI1394_evt_bus_reset) {
898 if (!(ohci->quirks & QUIRK_RESET_PACKET))
899 ohci->request_generation = (p.header[2] >> 16) & 0xff;
900 } else if (ctx == &ohci->ar_request_ctx) {
901 fw_core_handle_request(&ohci->card, &p);
902 } else {
903 fw_core_handle_response(&ohci->card, &p);
906 return buffer + length + 1;
909 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
911 void *next;
913 while (p < end) {
914 next = handle_ar_packet(ctx, p);
915 if (!next)
916 return p;
917 p = next;
920 return p;
923 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
925 unsigned int i;
927 i = ar_first_buffer_index(ctx);
928 while (i != end_buffer) {
929 dma_sync_single_for_device(ctx->ohci->card.device,
930 ar_buffer_bus(ctx, i),
931 PAGE_SIZE, DMA_FROM_DEVICE);
932 ar_context_link_page(ctx, i);
933 i = ar_next_buffer_index(i);
937 static void ar_context_tasklet(unsigned long data)
939 struct ar_context *ctx = (struct ar_context *)data;
940 unsigned int end_buffer_index, end_buffer_offset;
941 void *p, *end;
943 p = ctx->pointer;
944 if (!p)
945 return;
947 end_buffer_index = ar_search_last_active_buffer(ctx,
948 &end_buffer_offset);
949 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
950 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
952 if (end_buffer_index < ar_first_buffer_index(ctx)) {
954 * The filled part of the overall buffer wraps around; handle
955 * all packets up to the buffer end here. If the last packet
956 * wraps around, its tail will be visible after the buffer end
957 * because the buffer start pages are mapped there again.
959 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
960 p = handle_ar_packets(ctx, p, buffer_end);
961 if (p < buffer_end)
962 goto error;
963 /* adjust p to point back into the actual buffer */
964 p -= AR_BUFFERS * PAGE_SIZE;
967 p = handle_ar_packets(ctx, p, end);
968 if (p != end) {
969 if (p > end)
970 ar_context_abort(ctx, "inconsistent descriptor");
971 goto error;
974 ctx->pointer = p;
975 ar_recycle_buffers(ctx, end_buffer_index);
977 return;
979 error:
980 ctx->pointer = NULL;
983 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
984 unsigned int descriptors_offset, u32 regs)
986 unsigned int i;
987 dma_addr_t dma_addr;
988 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
989 struct descriptor *d;
991 ctx->regs = regs;
992 ctx->ohci = ohci;
993 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
995 for (i = 0; i < AR_BUFFERS; i++) {
996 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
997 if (!ctx->pages[i])
998 goto out_of_memory;
999 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1000 0, PAGE_SIZE, DMA_FROM_DEVICE);
1001 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1002 __free_page(ctx->pages[i]);
1003 ctx->pages[i] = NULL;
1004 goto out_of_memory;
1006 set_page_private(ctx->pages[i], dma_addr);
1009 for (i = 0; i < AR_BUFFERS; i++)
1010 pages[i] = ctx->pages[i];
1011 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1012 pages[AR_BUFFERS + i] = ctx->pages[i];
1013 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1014 -1, PAGE_KERNEL);
1015 if (!ctx->buffer)
1016 goto out_of_memory;
1018 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1019 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1021 for (i = 0; i < AR_BUFFERS; i++) {
1022 d = &ctx->descriptors[i];
1023 d->req_count = cpu_to_le16(PAGE_SIZE);
1024 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1025 DESCRIPTOR_STATUS |
1026 DESCRIPTOR_BRANCH_ALWAYS);
1027 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1028 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1029 ar_next_buffer_index(i) * sizeof(struct descriptor));
1032 return 0;
1034 out_of_memory:
1035 ar_context_release(ctx);
1037 return -ENOMEM;
1040 static void ar_context_run(struct ar_context *ctx)
1042 unsigned int i;
1044 for (i = 0; i < AR_BUFFERS; i++)
1045 ar_context_link_page(ctx, i);
1047 ctx->pointer = ctx->buffer;
1049 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1050 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1053 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1055 __le16 branch;
1057 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1059 /* figure out which descriptor the branch address goes in */
1060 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1061 return d;
1062 else
1063 return d + z - 1;
1066 static void context_tasklet(unsigned long data)
1068 struct context *ctx = (struct context *) data;
1069 struct descriptor *d, *last;
1070 u32 address;
1071 int z;
1072 struct descriptor_buffer *desc;
1074 desc = list_entry(ctx->buffer_list.next,
1075 struct descriptor_buffer, list);
1076 last = ctx->last;
1077 while (last->branch_address != 0) {
1078 struct descriptor_buffer *old_desc = desc;
1079 address = le32_to_cpu(last->branch_address);
1080 z = address & 0xf;
1081 address &= ~0xf;
1082 ctx->current_bus = address;
1084 /* If the branch address points to a buffer outside of the
1085 * current buffer, advance to the next buffer. */
1086 if (address < desc->buffer_bus ||
1087 address >= desc->buffer_bus + desc->used)
1088 desc = list_entry(desc->list.next,
1089 struct descriptor_buffer, list);
1090 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1091 last = find_branch_descriptor(d, z);
1093 if (!ctx->callback(ctx, d, last))
1094 break;
1096 if (old_desc != desc) {
1097 /* If we've advanced to the next buffer, move the
1098 * previous buffer to the free list. */
1099 unsigned long flags;
1100 old_desc->used = 0;
1101 spin_lock_irqsave(&ctx->ohci->lock, flags);
1102 list_move_tail(&old_desc->list, &ctx->buffer_list);
1103 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1105 ctx->last = last;
1110 * Allocate a new buffer and add it to the list of free buffers for this
1111 * context. Must be called with ohci->lock held.
1113 static int context_add_buffer(struct context *ctx)
1115 struct descriptor_buffer *desc;
1116 dma_addr_t uninitialized_var(bus_addr);
1117 int offset;
1120 * 16MB of descriptors should be far more than enough for any DMA
1121 * program. This will catch run-away userspace or DoS attacks.
1123 if (ctx->total_allocation >= 16*1024*1024)
1124 return -ENOMEM;
1126 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1127 &bus_addr, GFP_ATOMIC);
1128 if (!desc)
1129 return -ENOMEM;
1131 offset = (void *)&desc->buffer - (void *)desc;
1132 desc->buffer_size = PAGE_SIZE - offset;
1133 desc->buffer_bus = bus_addr + offset;
1134 desc->used = 0;
1136 list_add_tail(&desc->list, &ctx->buffer_list);
1137 ctx->total_allocation += PAGE_SIZE;
1139 return 0;
1142 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1143 u32 regs, descriptor_callback_t callback)
1145 ctx->ohci = ohci;
1146 ctx->regs = regs;
1147 ctx->total_allocation = 0;
1149 INIT_LIST_HEAD(&ctx->buffer_list);
1150 if (context_add_buffer(ctx) < 0)
1151 return -ENOMEM;
1153 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1154 struct descriptor_buffer, list);
1156 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1157 ctx->callback = callback;
1160 * We put a dummy descriptor in the buffer that has a NULL
1161 * branch address and looks like it's been sent. That way we
1162 * have a descriptor to append DMA programs to.
1164 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1165 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1166 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1167 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1168 ctx->last = ctx->buffer_tail->buffer;
1169 ctx->prev = ctx->buffer_tail->buffer;
1170 ctx->prev_z = 1;
1172 return 0;
1175 static void context_release(struct context *ctx)
1177 struct fw_card *card = &ctx->ohci->card;
1178 struct descriptor_buffer *desc, *tmp;
1180 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1181 dma_free_coherent(card->device, PAGE_SIZE, desc,
1182 desc->buffer_bus -
1183 ((void *)&desc->buffer - (void *)desc));
1186 /* Must be called with ohci->lock held */
1187 static struct descriptor *context_get_descriptors(struct context *ctx,
1188 int z, dma_addr_t *d_bus)
1190 struct descriptor *d = NULL;
1191 struct descriptor_buffer *desc = ctx->buffer_tail;
1193 if (z * sizeof(*d) > desc->buffer_size)
1194 return NULL;
1196 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1197 /* No room for the descriptor in this buffer, so advance to the
1198 * next one. */
1200 if (desc->list.next == &ctx->buffer_list) {
1201 /* If there is no free buffer next in the list,
1202 * allocate one. */
1203 if (context_add_buffer(ctx) < 0)
1204 return NULL;
1206 desc = list_entry(desc->list.next,
1207 struct descriptor_buffer, list);
1208 ctx->buffer_tail = desc;
1211 d = desc->buffer + desc->used / sizeof(*d);
1212 memset(d, 0, z * sizeof(*d));
1213 *d_bus = desc->buffer_bus + desc->used;
1215 return d;
1218 static void context_run(struct context *ctx, u32 extra)
1220 struct fw_ohci *ohci = ctx->ohci;
1222 reg_write(ohci, COMMAND_PTR(ctx->regs),
1223 le32_to_cpu(ctx->last->branch_address));
1224 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1225 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1226 ctx->running = true;
1227 flush_writes(ohci);
1230 static void context_append(struct context *ctx,
1231 struct descriptor *d, int z, int extra)
1233 dma_addr_t d_bus;
1234 struct descriptor_buffer *desc = ctx->buffer_tail;
1235 struct descriptor *d_branch;
1237 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1239 desc->used += (z + extra) * sizeof(*d);
1241 wmb(); /* finish init of new descriptors before branch_address update */
1243 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1244 d_branch->branch_address = cpu_to_le32(d_bus | z);
1247 * VT6306 incorrectly checks only the single descriptor at the
1248 * CommandPtr when the wake bit is written, so if it's a
1249 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1250 * the branch address in the first descriptor.
1252 * Not doing this for transmit contexts since not sure how it interacts
1253 * with skip addresses.
1255 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1256 d_branch != ctx->prev &&
1257 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1258 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1259 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1262 ctx->prev = d;
1263 ctx->prev_z = z;
1266 static void context_stop(struct context *ctx)
1268 struct fw_ohci *ohci = ctx->ohci;
1269 u32 reg;
1270 int i;
1272 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1273 ctx->running = false;
1275 for (i = 0; i < 1000; i++) {
1276 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1277 if ((reg & CONTEXT_ACTIVE) == 0)
1278 return;
1280 if (i)
1281 udelay(10);
1283 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1286 struct driver_data {
1287 u8 inline_data[8];
1288 struct fw_packet *packet;
1292 * This function apppends a packet to the DMA queue for transmission.
1293 * Must always be called with the ochi->lock held to ensure proper
1294 * generation handling and locking around packet queue manipulation.
1296 static int at_context_queue_packet(struct context *ctx,
1297 struct fw_packet *packet)
1299 struct fw_ohci *ohci = ctx->ohci;
1300 dma_addr_t d_bus, uninitialized_var(payload_bus);
1301 struct driver_data *driver_data;
1302 struct descriptor *d, *last;
1303 __le32 *header;
1304 int z, tcode;
1306 d = context_get_descriptors(ctx, 4, &d_bus);
1307 if (d == NULL) {
1308 packet->ack = RCODE_SEND_ERROR;
1309 return -1;
1312 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1313 d[0].res_count = cpu_to_le16(packet->timestamp);
1316 * The DMA format for asynchronous link packets is different
1317 * from the IEEE1394 layout, so shift the fields around
1318 * accordingly.
1321 tcode = (packet->header[0] >> 4) & 0x0f;
1322 header = (__le32 *) &d[1];
1323 switch (tcode) {
1324 case TCODE_WRITE_QUADLET_REQUEST:
1325 case TCODE_WRITE_BLOCK_REQUEST:
1326 case TCODE_WRITE_RESPONSE:
1327 case TCODE_READ_QUADLET_REQUEST:
1328 case TCODE_READ_BLOCK_REQUEST:
1329 case TCODE_READ_QUADLET_RESPONSE:
1330 case TCODE_READ_BLOCK_RESPONSE:
1331 case TCODE_LOCK_REQUEST:
1332 case TCODE_LOCK_RESPONSE:
1333 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1334 (packet->speed << 16));
1335 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1336 (packet->header[0] & 0xffff0000));
1337 header[2] = cpu_to_le32(packet->header[2]);
1339 if (TCODE_IS_BLOCK_PACKET(tcode))
1340 header[3] = cpu_to_le32(packet->header[3]);
1341 else
1342 header[3] = (__force __le32) packet->header[3];
1344 d[0].req_count = cpu_to_le16(packet->header_length);
1345 break;
1347 case TCODE_LINK_INTERNAL:
1348 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1349 (packet->speed << 16));
1350 header[1] = cpu_to_le32(packet->header[1]);
1351 header[2] = cpu_to_le32(packet->header[2]);
1352 d[0].req_count = cpu_to_le16(12);
1354 if (is_ping_packet(&packet->header[1]))
1355 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1356 break;
1358 case TCODE_STREAM_DATA:
1359 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1360 (packet->speed << 16));
1361 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1362 d[0].req_count = cpu_to_le16(8);
1363 break;
1365 default:
1366 /* BUG(); */
1367 packet->ack = RCODE_SEND_ERROR;
1368 return -1;
1371 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1372 driver_data = (struct driver_data *) &d[3];
1373 driver_data->packet = packet;
1374 packet->driver_data = driver_data;
1376 if (packet->payload_length > 0) {
1377 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1378 payload_bus = dma_map_single(ohci->card.device,
1379 packet->payload,
1380 packet->payload_length,
1381 DMA_TO_DEVICE);
1382 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1383 packet->ack = RCODE_SEND_ERROR;
1384 return -1;
1386 packet->payload_bus = payload_bus;
1387 packet->payload_mapped = true;
1388 } else {
1389 memcpy(driver_data->inline_data, packet->payload,
1390 packet->payload_length);
1391 payload_bus = d_bus + 3 * sizeof(*d);
1394 d[2].req_count = cpu_to_le16(packet->payload_length);
1395 d[2].data_address = cpu_to_le32(payload_bus);
1396 last = &d[2];
1397 z = 3;
1398 } else {
1399 last = &d[0];
1400 z = 2;
1403 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1404 DESCRIPTOR_IRQ_ALWAYS |
1405 DESCRIPTOR_BRANCH_ALWAYS);
1407 /* FIXME: Document how the locking works. */
1408 if (ohci->generation != packet->generation) {
1409 if (packet->payload_mapped)
1410 dma_unmap_single(ohci->card.device, payload_bus,
1411 packet->payload_length, DMA_TO_DEVICE);
1412 packet->ack = RCODE_GENERATION;
1413 return -1;
1416 context_append(ctx, d, z, 4 - z);
1418 if (ctx->running)
1419 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1420 else
1421 context_run(ctx, 0);
1423 return 0;
1426 static void at_context_flush(struct context *ctx)
1428 tasklet_disable(&ctx->tasklet);
1430 ctx->flushing = true;
1431 context_tasklet((unsigned long)ctx);
1432 ctx->flushing = false;
1434 tasklet_enable(&ctx->tasklet);
1437 static int handle_at_packet(struct context *context,
1438 struct descriptor *d,
1439 struct descriptor *last)
1441 struct driver_data *driver_data;
1442 struct fw_packet *packet;
1443 struct fw_ohci *ohci = context->ohci;
1444 int evt;
1446 if (last->transfer_status == 0 && !context->flushing)
1447 /* This descriptor isn't done yet, stop iteration. */
1448 return 0;
1450 driver_data = (struct driver_data *) &d[3];
1451 packet = driver_data->packet;
1452 if (packet == NULL)
1453 /* This packet was cancelled, just continue. */
1454 return 1;
1456 if (packet->payload_mapped)
1457 dma_unmap_single(ohci->card.device, packet->payload_bus,
1458 packet->payload_length, DMA_TO_DEVICE);
1460 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1461 packet->timestamp = le16_to_cpu(last->res_count);
1463 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1465 switch (evt) {
1466 case OHCI1394_evt_timeout:
1467 /* Async response transmit timed out. */
1468 packet->ack = RCODE_CANCELLED;
1469 break;
1471 case OHCI1394_evt_flushed:
1473 * The packet was flushed should give same error as
1474 * when we try to use a stale generation count.
1476 packet->ack = RCODE_GENERATION;
1477 break;
1479 case OHCI1394_evt_missing_ack:
1480 if (context->flushing)
1481 packet->ack = RCODE_GENERATION;
1482 else {
1484 * Using a valid (current) generation count, but the
1485 * node is not on the bus or not sending acks.
1487 packet->ack = RCODE_NO_ACK;
1489 break;
1491 case ACK_COMPLETE + 0x10:
1492 case ACK_PENDING + 0x10:
1493 case ACK_BUSY_X + 0x10:
1494 case ACK_BUSY_A + 0x10:
1495 case ACK_BUSY_B + 0x10:
1496 case ACK_DATA_ERROR + 0x10:
1497 case ACK_TYPE_ERROR + 0x10:
1498 packet->ack = evt - 0x10;
1499 break;
1501 case OHCI1394_evt_no_status:
1502 if (context->flushing) {
1503 packet->ack = RCODE_GENERATION;
1504 break;
1506 /* fall through */
1508 default:
1509 packet->ack = RCODE_SEND_ERROR;
1510 break;
1513 packet->callback(packet, &ohci->card, packet->ack);
1515 return 1;
1518 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1519 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1520 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1521 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1522 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1524 static void handle_local_rom(struct fw_ohci *ohci,
1525 struct fw_packet *packet, u32 csr)
1527 struct fw_packet response;
1528 int tcode, length, i;
1530 tcode = HEADER_GET_TCODE(packet->header[0]);
1531 if (TCODE_IS_BLOCK_PACKET(tcode))
1532 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1533 else
1534 length = 4;
1536 i = csr - CSR_CONFIG_ROM;
1537 if (i + length > CONFIG_ROM_SIZE) {
1538 fw_fill_response(&response, packet->header,
1539 RCODE_ADDRESS_ERROR, NULL, 0);
1540 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1541 fw_fill_response(&response, packet->header,
1542 RCODE_TYPE_ERROR, NULL, 0);
1543 } else {
1544 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1545 (void *) ohci->config_rom + i, length);
1548 fw_core_handle_response(&ohci->card, &response);
1551 static void handle_local_lock(struct fw_ohci *ohci,
1552 struct fw_packet *packet, u32 csr)
1554 struct fw_packet response;
1555 int tcode, length, ext_tcode, sel, try;
1556 __be32 *payload, lock_old;
1557 u32 lock_arg, lock_data;
1559 tcode = HEADER_GET_TCODE(packet->header[0]);
1560 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1561 payload = packet->payload;
1562 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1564 if (tcode == TCODE_LOCK_REQUEST &&
1565 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1566 lock_arg = be32_to_cpu(payload[0]);
1567 lock_data = be32_to_cpu(payload[1]);
1568 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1569 lock_arg = 0;
1570 lock_data = 0;
1571 } else {
1572 fw_fill_response(&response, packet->header,
1573 RCODE_TYPE_ERROR, NULL, 0);
1574 goto out;
1577 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1578 reg_write(ohci, OHCI1394_CSRData, lock_data);
1579 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1580 reg_write(ohci, OHCI1394_CSRControl, sel);
1582 for (try = 0; try < 20; try++)
1583 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1584 lock_old = cpu_to_be32(reg_read(ohci,
1585 OHCI1394_CSRData));
1586 fw_fill_response(&response, packet->header,
1587 RCODE_COMPLETE,
1588 &lock_old, sizeof(lock_old));
1589 goto out;
1592 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1593 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1595 out:
1596 fw_core_handle_response(&ohci->card, &response);
1599 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1601 u64 offset, csr;
1603 if (ctx == &ctx->ohci->at_request_ctx) {
1604 packet->ack = ACK_PENDING;
1605 packet->callback(packet, &ctx->ohci->card, packet->ack);
1608 offset =
1609 ((unsigned long long)
1610 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1611 packet->header[2];
1612 csr = offset - CSR_REGISTER_BASE;
1614 /* Handle config rom reads. */
1615 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1616 handle_local_rom(ctx->ohci, packet, csr);
1617 else switch (csr) {
1618 case CSR_BUS_MANAGER_ID:
1619 case CSR_BANDWIDTH_AVAILABLE:
1620 case CSR_CHANNELS_AVAILABLE_HI:
1621 case CSR_CHANNELS_AVAILABLE_LO:
1622 handle_local_lock(ctx->ohci, packet, csr);
1623 break;
1624 default:
1625 if (ctx == &ctx->ohci->at_request_ctx)
1626 fw_core_handle_request(&ctx->ohci->card, packet);
1627 else
1628 fw_core_handle_response(&ctx->ohci->card, packet);
1629 break;
1632 if (ctx == &ctx->ohci->at_response_ctx) {
1633 packet->ack = ACK_COMPLETE;
1634 packet->callback(packet, &ctx->ohci->card, packet->ack);
1638 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1640 unsigned long flags;
1641 int ret;
1643 spin_lock_irqsave(&ctx->ohci->lock, flags);
1645 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1646 ctx->ohci->generation == packet->generation) {
1647 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1648 handle_local_request(ctx, packet);
1649 return;
1652 ret = at_context_queue_packet(ctx, packet);
1653 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1655 if (ret < 0)
1656 packet->callback(packet, &ctx->ohci->card, packet->ack);
1660 static void detect_dead_context(struct fw_ohci *ohci,
1661 const char *name, unsigned int regs)
1663 u32 ctl;
1665 ctl = reg_read(ohci, CONTROL_SET(regs));
1666 if (ctl & CONTEXT_DEAD)
1667 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1668 name, evts[ctl & 0x1f]);
1671 static void handle_dead_contexts(struct fw_ohci *ohci)
1673 unsigned int i;
1674 char name[8];
1676 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1677 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1678 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1679 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1680 for (i = 0; i < 32; ++i) {
1681 if (!(ohci->it_context_support & (1 << i)))
1682 continue;
1683 sprintf(name, "IT%u", i);
1684 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1686 for (i = 0; i < 32; ++i) {
1687 if (!(ohci->ir_context_support & (1 << i)))
1688 continue;
1689 sprintf(name, "IR%u", i);
1690 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1692 /* TODO: maybe try to flush and restart the dead contexts */
1695 static u32 cycle_timer_ticks(u32 cycle_timer)
1697 u32 ticks;
1699 ticks = cycle_timer & 0xfff;
1700 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1701 ticks += (3072 * 8000) * (cycle_timer >> 25);
1703 return ticks;
1707 * Some controllers exhibit one or more of the following bugs when updating the
1708 * iso cycle timer register:
1709 * - When the lowest six bits are wrapping around to zero, a read that happens
1710 * at the same time will return garbage in the lowest ten bits.
1711 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1712 * not incremented for about 60 ns.
1713 * - Occasionally, the entire register reads zero.
1715 * To catch these, we read the register three times and ensure that the
1716 * difference between each two consecutive reads is approximately the same, i.e.
1717 * less than twice the other. Furthermore, any negative difference indicates an
1718 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1719 * execute, so we have enough precision to compute the ratio of the differences.)
1721 static u32 get_cycle_time(struct fw_ohci *ohci)
1723 u32 c0, c1, c2;
1724 u32 t0, t1, t2;
1725 s32 diff01, diff12;
1726 int i;
1728 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1731 i = 0;
1732 c1 = c2;
1733 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1734 do {
1735 c0 = c1;
1736 c1 = c2;
1737 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1738 t0 = cycle_timer_ticks(c0);
1739 t1 = cycle_timer_ticks(c1);
1740 t2 = cycle_timer_ticks(c2);
1741 diff01 = t1 - t0;
1742 diff12 = t2 - t1;
1743 } while ((diff01 <= 0 || diff12 <= 0 ||
1744 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1745 && i++ < 20);
1748 return c2;
1752 * This function has to be called at least every 64 seconds. The bus_time
1753 * field stores not only the upper 25 bits of the BUS_TIME register but also
1754 * the most significant bit of the cycle timer in bit 6 so that we can detect
1755 * changes in this bit.
1757 static u32 update_bus_time(struct fw_ohci *ohci)
1759 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1761 if (unlikely(!ohci->bus_time_running)) {
1762 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1763 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1764 (cycle_time_seconds & 0x40);
1765 ohci->bus_time_running = true;
1768 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1769 ohci->bus_time += 0x40;
1771 return ohci->bus_time | cycle_time_seconds;
1774 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1776 int reg;
1778 mutex_lock(&ohci->phy_reg_mutex);
1779 reg = write_phy_reg(ohci, 7, port_index);
1780 if (reg >= 0)
1781 reg = read_phy_reg(ohci, 8);
1782 mutex_unlock(&ohci->phy_reg_mutex);
1783 if (reg < 0)
1784 return reg;
1786 switch (reg & 0x0f) {
1787 case 0x06:
1788 return 2; /* is child node (connected to parent node) */
1789 case 0x0e:
1790 return 3; /* is parent node (connected to child node) */
1792 return 1; /* not connected */
1795 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1796 int self_id_count)
1798 int i;
1799 u32 entry;
1801 for (i = 0; i < self_id_count; i++) {
1802 entry = ohci->self_id_buffer[i];
1803 if ((self_id & 0xff000000) == (entry & 0xff000000))
1804 return -1;
1805 if ((self_id & 0xff000000) < (entry & 0xff000000))
1806 return i;
1808 return i;
1811 static int initiated_reset(struct fw_ohci *ohci)
1813 int reg;
1814 int ret = 0;
1816 mutex_lock(&ohci->phy_reg_mutex);
1817 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1818 if (reg >= 0) {
1819 reg = read_phy_reg(ohci, 8);
1820 reg |= 0x40;
1821 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1822 if (reg >= 0) {
1823 reg = read_phy_reg(ohci, 12); /* read register 12 */
1824 if (reg >= 0) {
1825 if ((reg & 0x08) == 0x08) {
1826 /* bit 3 indicates "initiated reset" */
1827 ret = 0x2;
1832 mutex_unlock(&ohci->phy_reg_mutex);
1833 return ret;
1837 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1838 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1839 * Construct the selfID from phy register contents.
1841 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1843 int reg, i, pos, status;
1844 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1845 u32 self_id = 0x8040c800;
1847 reg = reg_read(ohci, OHCI1394_NodeID);
1848 if (!(reg & OHCI1394_NodeID_idValid)) {
1849 ohci_notice(ohci,
1850 "node ID not valid, new bus reset in progress\n");
1851 return -EBUSY;
1853 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1855 reg = ohci_read_phy_reg(&ohci->card, 4);
1856 if (reg < 0)
1857 return reg;
1858 self_id |= ((reg & 0x07) << 8); /* power class */
1860 reg = ohci_read_phy_reg(&ohci->card, 1);
1861 if (reg < 0)
1862 return reg;
1863 self_id |= ((reg & 0x3f) << 16); /* gap count */
1865 for (i = 0; i < 3; i++) {
1866 status = get_status_for_port(ohci, i);
1867 if (status < 0)
1868 return status;
1869 self_id |= ((status & 0x3) << (6 - (i * 2)));
1872 self_id |= initiated_reset(ohci);
1874 pos = get_self_id_pos(ohci, self_id, self_id_count);
1875 if (pos >= 0) {
1876 memmove(&(ohci->self_id_buffer[pos+1]),
1877 &(ohci->self_id_buffer[pos]),
1878 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1879 ohci->self_id_buffer[pos] = self_id;
1880 self_id_count++;
1882 return self_id_count;
1885 static void bus_reset_work(struct work_struct *work)
1887 struct fw_ohci *ohci =
1888 container_of(work, struct fw_ohci, bus_reset_work);
1889 int self_id_count, generation, new_generation, i, j;
1890 u32 reg;
1891 void *free_rom = NULL;
1892 dma_addr_t free_rom_bus = 0;
1893 bool is_new_root;
1895 reg = reg_read(ohci, OHCI1394_NodeID);
1896 if (!(reg & OHCI1394_NodeID_idValid)) {
1897 ohci_notice(ohci,
1898 "node ID not valid, new bus reset in progress\n");
1899 return;
1901 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1902 ohci_notice(ohci, "malconfigured bus\n");
1903 return;
1905 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1906 OHCI1394_NodeID_nodeNumber);
1908 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1909 if (!(ohci->is_root && is_new_root))
1910 reg_write(ohci, OHCI1394_LinkControlSet,
1911 OHCI1394_LinkControl_cycleMaster);
1912 ohci->is_root = is_new_root;
1914 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1915 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1916 ohci_notice(ohci, "self ID receive error\n");
1917 return;
1920 * The count in the SelfIDCount register is the number of
1921 * bytes in the self ID receive buffer. Since we also receive
1922 * the inverted quadlets and a header quadlet, we shift one
1923 * bit extra to get the actual number of self IDs.
1925 self_id_count = (reg >> 3) & 0xff;
1927 if (self_id_count > 252) {
1928 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1929 return;
1932 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1933 rmb();
1935 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1936 u32 id = cond_le32_to_cpu(ohci->self_id_cpu[i]);
1937 u32 id2 = cond_le32_to_cpu(ohci->self_id_cpu[i + 1]);
1939 if (id != ~id2) {
1941 * If the invalid data looks like a cycle start packet,
1942 * it's likely to be the result of the cycle master
1943 * having a wrong gap count. In this case, the self IDs
1944 * so far are valid and should be processed so that the
1945 * bus manager can then correct the gap count.
1947 if (id == 0xffff008f) {
1948 ohci_notice(ohci, "ignoring spurious self IDs\n");
1949 self_id_count = j;
1950 break;
1953 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1954 j, self_id_count, id, id2);
1955 return;
1957 ohci->self_id_buffer[j] = id;
1960 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1961 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1962 if (self_id_count < 0) {
1963 ohci_notice(ohci,
1964 "could not construct local self ID\n");
1965 return;
1969 if (self_id_count == 0) {
1970 ohci_notice(ohci, "no self IDs\n");
1971 return;
1973 rmb();
1976 * Check the consistency of the self IDs we just read. The
1977 * problem we face is that a new bus reset can start while we
1978 * read out the self IDs from the DMA buffer. If this happens,
1979 * the DMA buffer will be overwritten with new self IDs and we
1980 * will read out inconsistent data. The OHCI specification
1981 * (section 11.2) recommends a technique similar to
1982 * linux/seqlock.h, where we remember the generation of the
1983 * self IDs in the buffer before reading them out and compare
1984 * it to the current generation after reading them out. If
1985 * the two generations match we know we have a consistent set
1986 * of self IDs.
1989 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1990 if (new_generation != generation) {
1991 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1992 return;
1995 /* FIXME: Document how the locking works. */
1996 spin_lock_irq(&ohci->lock);
1998 ohci->generation = -1; /* prevent AT packet queueing */
1999 context_stop(&ohci->at_request_ctx);
2000 context_stop(&ohci->at_response_ctx);
2002 spin_unlock_irq(&ohci->lock);
2005 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2006 * packets in the AT queues and software needs to drain them.
2007 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2009 at_context_flush(&ohci->at_request_ctx);
2010 at_context_flush(&ohci->at_response_ctx);
2012 spin_lock_irq(&ohci->lock);
2014 ohci->generation = generation;
2015 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2017 if (ohci->quirks & QUIRK_RESET_PACKET)
2018 ohci->request_generation = generation;
2021 * This next bit is unrelated to the AT context stuff but we
2022 * have to do it under the spinlock also. If a new config rom
2023 * was set up before this reset, the old one is now no longer
2024 * in use and we can free it. Update the config rom pointers
2025 * to point to the current config rom and clear the
2026 * next_config_rom pointer so a new update can take place.
2029 if (ohci->next_config_rom != NULL) {
2030 if (ohci->next_config_rom != ohci->config_rom) {
2031 free_rom = ohci->config_rom;
2032 free_rom_bus = ohci->config_rom_bus;
2034 ohci->config_rom = ohci->next_config_rom;
2035 ohci->config_rom_bus = ohci->next_config_rom_bus;
2036 ohci->next_config_rom = NULL;
2039 * Restore config_rom image and manually update
2040 * config_rom registers. Writing the header quadlet
2041 * will indicate that the config rom is ready, so we
2042 * do that last.
2044 reg_write(ohci, OHCI1394_BusOptions,
2045 be32_to_cpu(ohci->config_rom[2]));
2046 ohci->config_rom[0] = ohci->next_header;
2047 reg_write(ohci, OHCI1394_ConfigROMhdr,
2048 be32_to_cpu(ohci->next_header));
2051 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2052 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2053 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2054 #endif
2056 spin_unlock_irq(&ohci->lock);
2058 if (free_rom)
2059 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2060 free_rom, free_rom_bus);
2062 log_selfids(ohci, generation, self_id_count);
2064 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2065 self_id_count, ohci->self_id_buffer,
2066 ohci->csr_state_setclear_abdicate);
2067 ohci->csr_state_setclear_abdicate = false;
2070 static irqreturn_t irq_handler(int irq, void *data)
2072 struct fw_ohci *ohci = data;
2073 u32 event, iso_event;
2074 int i;
2076 event = reg_read(ohci, OHCI1394_IntEventClear);
2078 if (!event || !~event)
2079 return IRQ_NONE;
2082 * busReset and postedWriteErr must not be cleared yet
2083 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2085 reg_write(ohci, OHCI1394_IntEventClear,
2086 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2087 log_irqs(ohci, event);
2089 if (event & OHCI1394_selfIDComplete)
2090 queue_work(fw_workqueue, &ohci->bus_reset_work);
2092 if (event & OHCI1394_RQPkt)
2093 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2095 if (event & OHCI1394_RSPkt)
2096 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2098 if (event & OHCI1394_reqTxComplete)
2099 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2101 if (event & OHCI1394_respTxComplete)
2102 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2104 if (event & OHCI1394_isochRx) {
2105 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2106 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2108 while (iso_event) {
2109 i = ffs(iso_event) - 1;
2110 tasklet_schedule(
2111 &ohci->ir_context_list[i].context.tasklet);
2112 iso_event &= ~(1 << i);
2116 if (event & OHCI1394_isochTx) {
2117 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2118 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2120 while (iso_event) {
2121 i = ffs(iso_event) - 1;
2122 tasklet_schedule(
2123 &ohci->it_context_list[i].context.tasklet);
2124 iso_event &= ~(1 << i);
2128 if (unlikely(event & OHCI1394_regAccessFail))
2129 ohci_err(ohci, "register access failure\n");
2131 if (unlikely(event & OHCI1394_postedWriteErr)) {
2132 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2133 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2134 reg_write(ohci, OHCI1394_IntEventClear,
2135 OHCI1394_postedWriteErr);
2136 if (printk_ratelimit())
2137 ohci_err(ohci, "PCI posted write error\n");
2140 if (unlikely(event & OHCI1394_cycleTooLong)) {
2141 if (printk_ratelimit())
2142 ohci_notice(ohci, "isochronous cycle too long\n");
2143 reg_write(ohci, OHCI1394_LinkControlSet,
2144 OHCI1394_LinkControl_cycleMaster);
2147 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2149 * We need to clear this event bit in order to make
2150 * cycleMatch isochronous I/O work. In theory we should
2151 * stop active cycleMatch iso contexts now and restart
2152 * them at least two cycles later. (FIXME?)
2154 if (printk_ratelimit())
2155 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2158 if (unlikely(event & OHCI1394_unrecoverableError))
2159 handle_dead_contexts(ohci);
2161 if (event & OHCI1394_cycle64Seconds) {
2162 spin_lock(&ohci->lock);
2163 update_bus_time(ohci);
2164 spin_unlock(&ohci->lock);
2165 } else
2166 flush_writes(ohci);
2168 return IRQ_HANDLED;
2171 static int software_reset(struct fw_ohci *ohci)
2173 u32 val;
2174 int i;
2176 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2177 for (i = 0; i < 500; i++) {
2178 val = reg_read(ohci, OHCI1394_HCControlSet);
2179 if (!~val)
2180 return -ENODEV; /* Card was ejected. */
2182 if (!(val & OHCI1394_HCControl_softReset))
2183 return 0;
2185 msleep(1);
2188 return -EBUSY;
2191 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2193 size_t size = length * 4;
2195 memcpy(dest, src, size);
2196 if (size < CONFIG_ROM_SIZE)
2197 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2200 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2202 bool enable_1394a;
2203 int ret, clear, set, offset;
2205 /* Check if the driver should configure link and PHY. */
2206 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2207 OHCI1394_HCControl_programPhyEnable))
2208 return 0;
2210 /* Paranoia: check whether the PHY supports 1394a, too. */
2211 enable_1394a = false;
2212 ret = read_phy_reg(ohci, 2);
2213 if (ret < 0)
2214 return ret;
2215 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2216 ret = read_paged_phy_reg(ohci, 1, 8);
2217 if (ret < 0)
2218 return ret;
2219 if (ret >= 1)
2220 enable_1394a = true;
2223 if (ohci->quirks & QUIRK_NO_1394A)
2224 enable_1394a = false;
2226 /* Configure PHY and link consistently. */
2227 if (enable_1394a) {
2228 clear = 0;
2229 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2230 } else {
2231 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2232 set = 0;
2234 ret = update_phy_reg(ohci, 5, clear, set);
2235 if (ret < 0)
2236 return ret;
2238 if (enable_1394a)
2239 offset = OHCI1394_HCControlSet;
2240 else
2241 offset = OHCI1394_HCControlClear;
2242 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2244 /* Clean up: configuration has been taken care of. */
2245 reg_write(ohci, OHCI1394_HCControlClear,
2246 OHCI1394_HCControl_programPhyEnable);
2248 return 0;
2251 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2253 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2254 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2255 int reg, i;
2257 reg = read_phy_reg(ohci, 2);
2258 if (reg < 0)
2259 return reg;
2260 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2261 return 0;
2263 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2264 reg = read_paged_phy_reg(ohci, 1, i + 10);
2265 if (reg < 0)
2266 return reg;
2267 if (reg != id[i])
2268 return 0;
2270 return 1;
2273 static int ohci_enable(struct fw_card *card,
2274 const __be32 *config_rom, size_t length)
2276 struct fw_ohci *ohci = fw_ohci(card);
2277 u32 lps, version, irqs;
2278 int i, ret;
2280 if (software_reset(ohci)) {
2281 ohci_err(ohci, "failed to reset ohci card\n");
2282 return -EBUSY;
2286 * Now enable LPS, which we need in order to start accessing
2287 * most of the registers. In fact, on some cards (ALI M5251),
2288 * accessing registers in the SClk domain without LPS enabled
2289 * will lock up the machine. Wait 50msec to make sure we have
2290 * full link enabled. However, with some cards (well, at least
2291 * a JMicron PCIe card), we have to try again sometimes.
2293 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2294 * cannot actually use the phy at that time. These need tens of
2295 * millisecods pause between LPS write and first phy access too.
2297 * But do not wait for 50msec on Agere/LSI cards. Their phy
2298 * arbitration state machine may time out during such a long wait.
2301 reg_write(ohci, OHCI1394_HCControlSet,
2302 OHCI1394_HCControl_LPS |
2303 OHCI1394_HCControl_postedWriteEnable);
2304 flush_writes(ohci);
2306 if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2307 msleep(50);
2309 for (lps = 0, i = 0; !lps && i < 150; i++) {
2310 msleep(1);
2311 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2312 OHCI1394_HCControl_LPS;
2315 if (!lps) {
2316 ohci_err(ohci, "failed to set Link Power Status\n");
2317 return -EIO;
2320 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2321 ret = probe_tsb41ba3d(ohci);
2322 if (ret < 0)
2323 return ret;
2324 if (ret)
2325 ohci_notice(ohci, "local TSB41BA3D phy\n");
2326 else
2327 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2330 reg_write(ohci, OHCI1394_HCControlClear,
2331 OHCI1394_HCControl_noByteSwapData);
2333 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2334 reg_write(ohci, OHCI1394_LinkControlSet,
2335 OHCI1394_LinkControl_cycleTimerEnable |
2336 OHCI1394_LinkControl_cycleMaster);
2338 reg_write(ohci, OHCI1394_ATRetries,
2339 OHCI1394_MAX_AT_REQ_RETRIES |
2340 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2341 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2342 (200 << 16));
2344 ohci->bus_time_running = false;
2346 for (i = 0; i < 32; i++)
2347 if (ohci->ir_context_support & (1 << i))
2348 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2349 IR_CONTEXT_MULTI_CHANNEL_MODE);
2351 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2352 if (version >= OHCI_VERSION_1_1) {
2353 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2354 0xfffffffe);
2355 card->broadcast_channel_auto_allocated = true;
2358 /* Get implemented bits of the priority arbitration request counter. */
2359 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2360 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2361 reg_write(ohci, OHCI1394_FairnessControl, 0);
2362 card->priority_budget_implemented = ohci->pri_req_max != 0;
2364 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2365 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2366 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2368 ret = configure_1394a_enhancements(ohci);
2369 if (ret < 0)
2370 return ret;
2372 /* Activate link_on bit and contender bit in our self ID packets.*/
2373 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2374 if (ret < 0)
2375 return ret;
2378 * When the link is not yet enabled, the atomic config rom
2379 * update mechanism described below in ohci_set_config_rom()
2380 * is not active. We have to update ConfigRomHeader and
2381 * BusOptions manually, and the write to ConfigROMmap takes
2382 * effect immediately. We tie this to the enabling of the
2383 * link, so we have a valid config rom before enabling - the
2384 * OHCI requires that ConfigROMhdr and BusOptions have valid
2385 * values before enabling.
2387 * However, when the ConfigROMmap is written, some controllers
2388 * always read back quadlets 0 and 2 from the config rom to
2389 * the ConfigRomHeader and BusOptions registers on bus reset.
2390 * They shouldn't do that in this initial case where the link
2391 * isn't enabled. This means we have to use the same
2392 * workaround here, setting the bus header to 0 and then write
2393 * the right values in the bus reset tasklet.
2396 if (config_rom) {
2397 ohci->next_config_rom =
2398 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2399 &ohci->next_config_rom_bus,
2400 GFP_KERNEL);
2401 if (ohci->next_config_rom == NULL)
2402 return -ENOMEM;
2404 copy_config_rom(ohci->next_config_rom, config_rom, length);
2405 } else {
2407 * In the suspend case, config_rom is NULL, which
2408 * means that we just reuse the old config rom.
2410 ohci->next_config_rom = ohci->config_rom;
2411 ohci->next_config_rom_bus = ohci->config_rom_bus;
2414 ohci->next_header = ohci->next_config_rom[0];
2415 ohci->next_config_rom[0] = 0;
2416 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2417 reg_write(ohci, OHCI1394_BusOptions,
2418 be32_to_cpu(ohci->next_config_rom[2]));
2419 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2421 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2423 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2424 OHCI1394_RQPkt | OHCI1394_RSPkt |
2425 OHCI1394_isochTx | OHCI1394_isochRx |
2426 OHCI1394_postedWriteErr |
2427 OHCI1394_selfIDComplete |
2428 OHCI1394_regAccessFail |
2429 OHCI1394_cycleInconsistent |
2430 OHCI1394_unrecoverableError |
2431 OHCI1394_cycleTooLong |
2432 OHCI1394_masterIntEnable;
2433 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2434 irqs |= OHCI1394_busReset;
2435 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2437 reg_write(ohci, OHCI1394_HCControlSet,
2438 OHCI1394_HCControl_linkEnable |
2439 OHCI1394_HCControl_BIBimageValid);
2441 reg_write(ohci, OHCI1394_LinkControlSet,
2442 OHCI1394_LinkControl_rcvSelfID |
2443 OHCI1394_LinkControl_rcvPhyPkt);
2445 ar_context_run(&ohci->ar_request_ctx);
2446 ar_context_run(&ohci->ar_response_ctx);
2448 flush_writes(ohci);
2450 /* We are ready to go, reset bus to finish initialization. */
2451 fw_schedule_bus_reset(&ohci->card, false, true);
2453 return 0;
2456 static int ohci_set_config_rom(struct fw_card *card,
2457 const __be32 *config_rom, size_t length)
2459 struct fw_ohci *ohci;
2460 __be32 *next_config_rom;
2461 dma_addr_t uninitialized_var(next_config_rom_bus);
2463 ohci = fw_ohci(card);
2466 * When the OHCI controller is enabled, the config rom update
2467 * mechanism is a bit tricky, but easy enough to use. See
2468 * section 5.5.6 in the OHCI specification.
2470 * The OHCI controller caches the new config rom address in a
2471 * shadow register (ConfigROMmapNext) and needs a bus reset
2472 * for the changes to take place. When the bus reset is
2473 * detected, the controller loads the new values for the
2474 * ConfigRomHeader and BusOptions registers from the specified
2475 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2476 * shadow register. All automatically and atomically.
2478 * Now, there's a twist to this story. The automatic load of
2479 * ConfigRomHeader and BusOptions doesn't honor the
2480 * noByteSwapData bit, so with a be32 config rom, the
2481 * controller will load be32 values in to these registers
2482 * during the atomic update, even on litte endian
2483 * architectures. The workaround we use is to put a 0 in the
2484 * header quadlet; 0 is endian agnostic and means that the
2485 * config rom isn't ready yet. In the bus reset tasklet we
2486 * then set up the real values for the two registers.
2488 * We use ohci->lock to avoid racing with the code that sets
2489 * ohci->next_config_rom to NULL (see bus_reset_work).
2492 next_config_rom =
2493 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494 &next_config_rom_bus, GFP_KERNEL);
2495 if (next_config_rom == NULL)
2496 return -ENOMEM;
2498 spin_lock_irq(&ohci->lock);
2501 * If there is not an already pending config_rom update,
2502 * push our new allocation into the ohci->next_config_rom
2503 * and then mark the local variable as null so that we
2504 * won't deallocate the new buffer.
2506 * OTOH, if there is a pending config_rom update, just
2507 * use that buffer with the new config_rom data, and
2508 * let this routine free the unused DMA allocation.
2511 if (ohci->next_config_rom == NULL) {
2512 ohci->next_config_rom = next_config_rom;
2513 ohci->next_config_rom_bus = next_config_rom_bus;
2514 next_config_rom = NULL;
2517 copy_config_rom(ohci->next_config_rom, config_rom, length);
2519 ohci->next_header = config_rom[0];
2520 ohci->next_config_rom[0] = 0;
2522 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2524 spin_unlock_irq(&ohci->lock);
2526 /* If we didn't use the DMA allocation, delete it. */
2527 if (next_config_rom != NULL)
2528 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2529 next_config_rom, next_config_rom_bus);
2532 * Now initiate a bus reset to have the changes take
2533 * effect. We clean up the old config rom memory and DMA
2534 * mappings in the bus reset tasklet, since the OHCI
2535 * controller could need to access it before the bus reset
2536 * takes effect.
2539 fw_schedule_bus_reset(&ohci->card, true, true);
2541 return 0;
2544 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2546 struct fw_ohci *ohci = fw_ohci(card);
2548 at_context_transmit(&ohci->at_request_ctx, packet);
2551 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2553 struct fw_ohci *ohci = fw_ohci(card);
2555 at_context_transmit(&ohci->at_response_ctx, packet);
2558 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2560 struct fw_ohci *ohci = fw_ohci(card);
2561 struct context *ctx = &ohci->at_request_ctx;
2562 struct driver_data *driver_data = packet->driver_data;
2563 int ret = -ENOENT;
2565 tasklet_disable(&ctx->tasklet);
2567 if (packet->ack != 0)
2568 goto out;
2570 if (packet->payload_mapped)
2571 dma_unmap_single(ohci->card.device, packet->payload_bus,
2572 packet->payload_length, DMA_TO_DEVICE);
2574 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2575 driver_data->packet = NULL;
2576 packet->ack = RCODE_CANCELLED;
2577 packet->callback(packet, &ohci->card, packet->ack);
2578 ret = 0;
2579 out:
2580 tasklet_enable(&ctx->tasklet);
2582 return ret;
2585 static int ohci_enable_phys_dma(struct fw_card *card,
2586 int node_id, int generation)
2588 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2589 return 0;
2590 #else
2591 struct fw_ohci *ohci = fw_ohci(card);
2592 unsigned long flags;
2593 int n, ret = 0;
2596 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2597 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2600 spin_lock_irqsave(&ohci->lock, flags);
2602 if (ohci->generation != generation) {
2603 ret = -ESTALE;
2604 goto out;
2608 * Note, if the node ID contains a non-local bus ID, physical DMA is
2609 * enabled for _all_ nodes on remote buses.
2612 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2613 if (n < 32)
2614 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2615 else
2616 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2618 flush_writes(ohci);
2619 out:
2620 spin_unlock_irqrestore(&ohci->lock, flags);
2622 return ret;
2623 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2626 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2628 struct fw_ohci *ohci = fw_ohci(card);
2629 unsigned long flags;
2630 u32 value;
2632 switch (csr_offset) {
2633 case CSR_STATE_CLEAR:
2634 case CSR_STATE_SET:
2635 if (ohci->is_root &&
2636 (reg_read(ohci, OHCI1394_LinkControlSet) &
2637 OHCI1394_LinkControl_cycleMaster))
2638 value = CSR_STATE_BIT_CMSTR;
2639 else
2640 value = 0;
2641 if (ohci->csr_state_setclear_abdicate)
2642 value |= CSR_STATE_BIT_ABDICATE;
2644 return value;
2646 case CSR_NODE_IDS:
2647 return reg_read(ohci, OHCI1394_NodeID) << 16;
2649 case CSR_CYCLE_TIME:
2650 return get_cycle_time(ohci);
2652 case CSR_BUS_TIME:
2654 * We might be called just after the cycle timer has wrapped
2655 * around but just before the cycle64Seconds handler, so we
2656 * better check here, too, if the bus time needs to be updated.
2658 spin_lock_irqsave(&ohci->lock, flags);
2659 value = update_bus_time(ohci);
2660 spin_unlock_irqrestore(&ohci->lock, flags);
2661 return value;
2663 case CSR_BUSY_TIMEOUT:
2664 value = reg_read(ohci, OHCI1394_ATRetries);
2665 return (value >> 4) & 0x0ffff00f;
2667 case CSR_PRIORITY_BUDGET:
2668 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2669 (ohci->pri_req_max << 8);
2671 default:
2672 WARN_ON(1);
2673 return 0;
2677 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2679 struct fw_ohci *ohci = fw_ohci(card);
2680 unsigned long flags;
2682 switch (csr_offset) {
2683 case CSR_STATE_CLEAR:
2684 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2685 reg_write(ohci, OHCI1394_LinkControlClear,
2686 OHCI1394_LinkControl_cycleMaster);
2687 flush_writes(ohci);
2689 if (value & CSR_STATE_BIT_ABDICATE)
2690 ohci->csr_state_setclear_abdicate = false;
2691 break;
2693 case CSR_STATE_SET:
2694 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2695 reg_write(ohci, OHCI1394_LinkControlSet,
2696 OHCI1394_LinkControl_cycleMaster);
2697 flush_writes(ohci);
2699 if (value & CSR_STATE_BIT_ABDICATE)
2700 ohci->csr_state_setclear_abdicate = true;
2701 break;
2703 case CSR_NODE_IDS:
2704 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2705 flush_writes(ohci);
2706 break;
2708 case CSR_CYCLE_TIME:
2709 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2710 reg_write(ohci, OHCI1394_IntEventSet,
2711 OHCI1394_cycleInconsistent);
2712 flush_writes(ohci);
2713 break;
2715 case CSR_BUS_TIME:
2716 spin_lock_irqsave(&ohci->lock, flags);
2717 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2718 (value & ~0x7f);
2719 spin_unlock_irqrestore(&ohci->lock, flags);
2720 break;
2722 case CSR_BUSY_TIMEOUT:
2723 value = (value & 0xf) | ((value & 0xf) << 4) |
2724 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2725 reg_write(ohci, OHCI1394_ATRetries, value);
2726 flush_writes(ohci);
2727 break;
2729 case CSR_PRIORITY_BUDGET:
2730 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2731 flush_writes(ohci);
2732 break;
2734 default:
2735 WARN_ON(1);
2736 break;
2740 static void flush_iso_completions(struct iso_context *ctx)
2742 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2743 ctx->header_length, ctx->header,
2744 ctx->base.callback_data);
2745 ctx->header_length = 0;
2748 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2750 u32 *ctx_hdr;
2752 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2753 if (ctx->base.drop_overflow_headers)
2754 return;
2755 flush_iso_completions(ctx);
2758 ctx_hdr = ctx->header + ctx->header_length;
2759 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2762 * The two iso header quadlets are byteswapped to little
2763 * endian by the controller, but we want to present them
2764 * as big endian for consistency with the bus endianness.
2766 if (ctx->base.header_size > 0)
2767 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2768 if (ctx->base.header_size > 4)
2769 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2770 if (ctx->base.header_size > 8)
2771 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2772 ctx->header_length += ctx->base.header_size;
2775 static int handle_ir_packet_per_buffer(struct context *context,
2776 struct descriptor *d,
2777 struct descriptor *last)
2779 struct iso_context *ctx =
2780 container_of(context, struct iso_context, context);
2781 struct descriptor *pd;
2782 u32 buffer_dma;
2784 for (pd = d; pd <= last; pd++)
2785 if (pd->transfer_status)
2786 break;
2787 if (pd > last)
2788 /* Descriptor(s) not done yet, stop iteration */
2789 return 0;
2791 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2792 d++;
2793 buffer_dma = le32_to_cpu(d->data_address);
2794 dma_sync_single_range_for_cpu(context->ohci->card.device,
2795 buffer_dma & PAGE_MASK,
2796 buffer_dma & ~PAGE_MASK,
2797 le16_to_cpu(d->req_count),
2798 DMA_FROM_DEVICE);
2801 copy_iso_headers(ctx, (u32 *) (last + 1));
2803 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2804 flush_iso_completions(ctx);
2806 return 1;
2809 /* d == last because each descriptor block is only a single descriptor. */
2810 static int handle_ir_buffer_fill(struct context *context,
2811 struct descriptor *d,
2812 struct descriptor *last)
2814 struct iso_context *ctx =
2815 container_of(context, struct iso_context, context);
2816 unsigned int req_count, res_count, completed;
2817 u32 buffer_dma;
2819 req_count = le16_to_cpu(last->req_count);
2820 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2821 completed = req_count - res_count;
2822 buffer_dma = le32_to_cpu(last->data_address);
2824 if (completed > 0) {
2825 ctx->mc_buffer_bus = buffer_dma;
2826 ctx->mc_completed = completed;
2829 if (res_count != 0)
2830 /* Descriptor(s) not done yet, stop iteration */
2831 return 0;
2833 dma_sync_single_range_for_cpu(context->ohci->card.device,
2834 buffer_dma & PAGE_MASK,
2835 buffer_dma & ~PAGE_MASK,
2836 completed, DMA_FROM_DEVICE);
2838 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2839 ctx->base.callback.mc(&ctx->base,
2840 buffer_dma + completed,
2841 ctx->base.callback_data);
2842 ctx->mc_completed = 0;
2845 return 1;
2848 static void flush_ir_buffer_fill(struct iso_context *ctx)
2850 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2851 ctx->mc_buffer_bus & PAGE_MASK,
2852 ctx->mc_buffer_bus & ~PAGE_MASK,
2853 ctx->mc_completed, DMA_FROM_DEVICE);
2855 ctx->base.callback.mc(&ctx->base,
2856 ctx->mc_buffer_bus + ctx->mc_completed,
2857 ctx->base.callback_data);
2858 ctx->mc_completed = 0;
2861 static inline void sync_it_packet_for_cpu(struct context *context,
2862 struct descriptor *pd)
2864 __le16 control;
2865 u32 buffer_dma;
2867 /* only packets beginning with OUTPUT_MORE* have data buffers */
2868 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2869 return;
2871 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2872 pd += 2;
2875 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2876 * data buffer is in the context program's coherent page and must not
2877 * be synced.
2879 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2880 (context->current_bus & PAGE_MASK)) {
2881 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2882 return;
2883 pd++;
2886 do {
2887 buffer_dma = le32_to_cpu(pd->data_address);
2888 dma_sync_single_range_for_cpu(context->ohci->card.device,
2889 buffer_dma & PAGE_MASK,
2890 buffer_dma & ~PAGE_MASK,
2891 le16_to_cpu(pd->req_count),
2892 DMA_TO_DEVICE);
2893 control = pd->control;
2894 pd++;
2895 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2898 static int handle_it_packet(struct context *context,
2899 struct descriptor *d,
2900 struct descriptor *last)
2902 struct iso_context *ctx =
2903 container_of(context, struct iso_context, context);
2904 struct descriptor *pd;
2905 __be32 *ctx_hdr;
2907 for (pd = d; pd <= last; pd++)
2908 if (pd->transfer_status)
2909 break;
2910 if (pd > last)
2911 /* Descriptor(s) not done yet, stop iteration */
2912 return 0;
2914 sync_it_packet_for_cpu(context, d);
2916 if (ctx->header_length + 4 > PAGE_SIZE) {
2917 if (ctx->base.drop_overflow_headers)
2918 return 1;
2919 flush_iso_completions(ctx);
2922 ctx_hdr = ctx->header + ctx->header_length;
2923 ctx->last_timestamp = le16_to_cpu(last->res_count);
2924 /* Present this value as big-endian to match the receive code */
2925 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2926 le16_to_cpu(pd->res_count));
2927 ctx->header_length += 4;
2929 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2930 flush_iso_completions(ctx);
2932 return 1;
2935 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2937 u32 hi = channels >> 32, lo = channels;
2939 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2940 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2941 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2942 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2943 mmiowb();
2944 ohci->mc_channels = channels;
2947 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2948 int type, int channel, size_t header_size)
2950 struct fw_ohci *ohci = fw_ohci(card);
2951 struct iso_context *uninitialized_var(ctx);
2952 descriptor_callback_t uninitialized_var(callback);
2953 u64 *uninitialized_var(channels);
2954 u32 *uninitialized_var(mask), uninitialized_var(regs);
2955 int index, ret = -EBUSY;
2957 spin_lock_irq(&ohci->lock);
2959 switch (type) {
2960 case FW_ISO_CONTEXT_TRANSMIT:
2961 mask = &ohci->it_context_mask;
2962 callback = handle_it_packet;
2963 index = ffs(*mask) - 1;
2964 if (index >= 0) {
2965 *mask &= ~(1 << index);
2966 regs = OHCI1394_IsoXmitContextBase(index);
2967 ctx = &ohci->it_context_list[index];
2969 break;
2971 case FW_ISO_CONTEXT_RECEIVE:
2972 channels = &ohci->ir_context_channels;
2973 mask = &ohci->ir_context_mask;
2974 callback = handle_ir_packet_per_buffer;
2975 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2976 if (index >= 0) {
2977 *channels &= ~(1ULL << channel);
2978 *mask &= ~(1 << index);
2979 regs = OHCI1394_IsoRcvContextBase(index);
2980 ctx = &ohci->ir_context_list[index];
2982 break;
2984 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2985 mask = &ohci->ir_context_mask;
2986 callback = handle_ir_buffer_fill;
2987 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2988 if (index >= 0) {
2989 ohci->mc_allocated = true;
2990 *mask &= ~(1 << index);
2991 regs = OHCI1394_IsoRcvContextBase(index);
2992 ctx = &ohci->ir_context_list[index];
2994 break;
2996 default:
2997 index = -1;
2998 ret = -ENOSYS;
3001 spin_unlock_irq(&ohci->lock);
3003 if (index < 0)
3004 return ERR_PTR(ret);
3006 memset(ctx, 0, sizeof(*ctx));
3007 ctx->header_length = 0;
3008 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3009 if (ctx->header == NULL) {
3010 ret = -ENOMEM;
3011 goto out;
3013 ret = context_init(&ctx->context, ohci, regs, callback);
3014 if (ret < 0)
3015 goto out_with_header;
3017 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3018 set_multichannel_mask(ohci, 0);
3019 ctx->mc_completed = 0;
3022 return &ctx->base;
3024 out_with_header:
3025 free_page((unsigned long)ctx->header);
3026 out:
3027 spin_lock_irq(&ohci->lock);
3029 switch (type) {
3030 case FW_ISO_CONTEXT_RECEIVE:
3031 *channels |= 1ULL << channel;
3032 break;
3034 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3035 ohci->mc_allocated = false;
3036 break;
3038 *mask |= 1 << index;
3040 spin_unlock_irq(&ohci->lock);
3042 return ERR_PTR(ret);
3045 static int ohci_start_iso(struct fw_iso_context *base,
3046 s32 cycle, u32 sync, u32 tags)
3048 struct iso_context *ctx = container_of(base, struct iso_context, base);
3049 struct fw_ohci *ohci = ctx->context.ohci;
3050 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3051 int index;
3053 /* the controller cannot start without any queued packets */
3054 if (ctx->context.last->branch_address == 0)
3055 return -ENODATA;
3057 switch (ctx->base.type) {
3058 case FW_ISO_CONTEXT_TRANSMIT:
3059 index = ctx - ohci->it_context_list;
3060 match = 0;
3061 if (cycle >= 0)
3062 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3063 (cycle & 0x7fff) << 16;
3065 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3066 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3067 context_run(&ctx->context, match);
3068 break;
3070 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3071 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3072 /* fall through */
3073 case FW_ISO_CONTEXT_RECEIVE:
3074 index = ctx - ohci->ir_context_list;
3075 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3076 if (cycle >= 0) {
3077 match |= (cycle & 0x07fff) << 12;
3078 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3081 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3082 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3083 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3084 context_run(&ctx->context, control);
3086 ctx->sync = sync;
3087 ctx->tags = tags;
3089 break;
3092 return 0;
3095 static int ohci_stop_iso(struct fw_iso_context *base)
3097 struct fw_ohci *ohci = fw_ohci(base->card);
3098 struct iso_context *ctx = container_of(base, struct iso_context, base);
3099 int index;
3101 switch (ctx->base.type) {
3102 case FW_ISO_CONTEXT_TRANSMIT:
3103 index = ctx - ohci->it_context_list;
3104 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3105 break;
3107 case FW_ISO_CONTEXT_RECEIVE:
3108 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3109 index = ctx - ohci->ir_context_list;
3110 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3111 break;
3113 flush_writes(ohci);
3114 context_stop(&ctx->context);
3115 tasklet_kill(&ctx->context.tasklet);
3117 return 0;
3120 static void ohci_free_iso_context(struct fw_iso_context *base)
3122 struct fw_ohci *ohci = fw_ohci(base->card);
3123 struct iso_context *ctx = container_of(base, struct iso_context, base);
3124 unsigned long flags;
3125 int index;
3127 ohci_stop_iso(base);
3128 context_release(&ctx->context);
3129 free_page((unsigned long)ctx->header);
3131 spin_lock_irqsave(&ohci->lock, flags);
3133 switch (base->type) {
3134 case FW_ISO_CONTEXT_TRANSMIT:
3135 index = ctx - ohci->it_context_list;
3136 ohci->it_context_mask |= 1 << index;
3137 break;
3139 case FW_ISO_CONTEXT_RECEIVE:
3140 index = ctx - ohci->ir_context_list;
3141 ohci->ir_context_mask |= 1 << index;
3142 ohci->ir_context_channels |= 1ULL << base->channel;
3143 break;
3145 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146 index = ctx - ohci->ir_context_list;
3147 ohci->ir_context_mask |= 1 << index;
3148 ohci->ir_context_channels |= ohci->mc_channels;
3149 ohci->mc_channels = 0;
3150 ohci->mc_allocated = false;
3151 break;
3154 spin_unlock_irqrestore(&ohci->lock, flags);
3157 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3159 struct fw_ohci *ohci = fw_ohci(base->card);
3160 unsigned long flags;
3161 int ret;
3163 switch (base->type) {
3164 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3166 spin_lock_irqsave(&ohci->lock, flags);
3168 /* Don't allow multichannel to grab other contexts' channels. */
3169 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3170 *channels = ohci->ir_context_channels;
3171 ret = -EBUSY;
3172 } else {
3173 set_multichannel_mask(ohci, *channels);
3174 ret = 0;
3177 spin_unlock_irqrestore(&ohci->lock, flags);
3179 break;
3180 default:
3181 ret = -EINVAL;
3184 return ret;
3187 #ifdef CONFIG_PM
3188 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3190 int i;
3191 struct iso_context *ctx;
3193 for (i = 0 ; i < ohci->n_ir ; i++) {
3194 ctx = &ohci->ir_context_list[i];
3195 if (ctx->context.running)
3196 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3199 for (i = 0 ; i < ohci->n_it ; i++) {
3200 ctx = &ohci->it_context_list[i];
3201 if (ctx->context.running)
3202 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3205 #endif
3207 static int queue_iso_transmit(struct iso_context *ctx,
3208 struct fw_iso_packet *packet,
3209 struct fw_iso_buffer *buffer,
3210 unsigned long payload)
3212 struct descriptor *d, *last, *pd;
3213 struct fw_iso_packet *p;
3214 __le32 *header;
3215 dma_addr_t d_bus, page_bus;
3216 u32 z, header_z, payload_z, irq;
3217 u32 payload_index, payload_end_index, next_page_index;
3218 int page, end_page, i, length, offset;
3220 p = packet;
3221 payload_index = payload;
3223 if (p->skip)
3224 z = 1;
3225 else
3226 z = 2;
3227 if (p->header_length > 0)
3228 z++;
3230 /* Determine the first page the payload isn't contained in. */
3231 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3232 if (p->payload_length > 0)
3233 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3234 else
3235 payload_z = 0;
3237 z += payload_z;
3239 /* Get header size in number of descriptors. */
3240 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3242 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3243 if (d == NULL)
3244 return -ENOMEM;
3246 if (!p->skip) {
3247 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3248 d[0].req_count = cpu_to_le16(8);
3250 * Link the skip address to this descriptor itself. This causes
3251 * a context to skip a cycle whenever lost cycles or FIFO
3252 * overruns occur, without dropping the data. The application
3253 * should then decide whether this is an error condition or not.
3254 * FIXME: Make the context's cycle-lost behaviour configurable?
3256 d[0].branch_address = cpu_to_le32(d_bus | z);
3258 header = (__le32 *) &d[1];
3259 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3260 IT_HEADER_TAG(p->tag) |
3261 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3262 IT_HEADER_CHANNEL(ctx->base.channel) |
3263 IT_HEADER_SPEED(ctx->base.speed));
3264 header[1] =
3265 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3266 p->payload_length));
3269 if (p->header_length > 0) {
3270 d[2].req_count = cpu_to_le16(p->header_length);
3271 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3272 memcpy(&d[z], p->header, p->header_length);
3275 pd = d + z - payload_z;
3276 payload_end_index = payload_index + p->payload_length;
3277 for (i = 0; i < payload_z; i++) {
3278 page = payload_index >> PAGE_SHIFT;
3279 offset = payload_index & ~PAGE_MASK;
3280 next_page_index = (page + 1) << PAGE_SHIFT;
3281 length =
3282 min(next_page_index, payload_end_index) - payload_index;
3283 pd[i].req_count = cpu_to_le16(length);
3285 page_bus = page_private(buffer->pages[page]);
3286 pd[i].data_address = cpu_to_le32(page_bus + offset);
3288 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3289 page_bus, offset, length,
3290 DMA_TO_DEVICE);
3292 payload_index += length;
3295 if (p->interrupt)
3296 irq = DESCRIPTOR_IRQ_ALWAYS;
3297 else
3298 irq = DESCRIPTOR_NO_IRQ;
3300 last = z == 2 ? d : d + z - 1;
3301 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3302 DESCRIPTOR_STATUS |
3303 DESCRIPTOR_BRANCH_ALWAYS |
3304 irq);
3306 context_append(&ctx->context, d, z, header_z);
3308 return 0;
3311 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3312 struct fw_iso_packet *packet,
3313 struct fw_iso_buffer *buffer,
3314 unsigned long payload)
3316 struct device *device = ctx->context.ohci->card.device;
3317 struct descriptor *d, *pd;
3318 dma_addr_t d_bus, page_bus;
3319 u32 z, header_z, rest;
3320 int i, j, length;
3321 int page, offset, packet_count, header_size, payload_per_buffer;
3324 * The OHCI controller puts the isochronous header and trailer in the
3325 * buffer, so we need at least 8 bytes.
3327 packet_count = packet->header_length / ctx->base.header_size;
3328 header_size = max(ctx->base.header_size, (size_t)8);
3330 /* Get header size in number of descriptors. */
3331 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3332 page = payload >> PAGE_SHIFT;
3333 offset = payload & ~PAGE_MASK;
3334 payload_per_buffer = packet->payload_length / packet_count;
3336 for (i = 0; i < packet_count; i++) {
3337 /* d points to the header descriptor */
3338 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3339 d = context_get_descriptors(&ctx->context,
3340 z + header_z, &d_bus);
3341 if (d == NULL)
3342 return -ENOMEM;
3344 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3345 DESCRIPTOR_INPUT_MORE);
3346 if (packet->skip && i == 0)
3347 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3348 d->req_count = cpu_to_le16(header_size);
3349 d->res_count = d->req_count;
3350 d->transfer_status = 0;
3351 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3353 rest = payload_per_buffer;
3354 pd = d;
3355 for (j = 1; j < z; j++) {
3356 pd++;
3357 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3358 DESCRIPTOR_INPUT_MORE);
3360 if (offset + rest < PAGE_SIZE)
3361 length = rest;
3362 else
3363 length = PAGE_SIZE - offset;
3364 pd->req_count = cpu_to_le16(length);
3365 pd->res_count = pd->req_count;
3366 pd->transfer_status = 0;
3368 page_bus = page_private(buffer->pages[page]);
3369 pd->data_address = cpu_to_le32(page_bus + offset);
3371 dma_sync_single_range_for_device(device, page_bus,
3372 offset, length,
3373 DMA_FROM_DEVICE);
3375 offset = (offset + length) & ~PAGE_MASK;
3376 rest -= length;
3377 if (offset == 0)
3378 page++;
3380 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3381 DESCRIPTOR_INPUT_LAST |
3382 DESCRIPTOR_BRANCH_ALWAYS);
3383 if (packet->interrupt && i == packet_count - 1)
3384 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3386 context_append(&ctx->context, d, z, header_z);
3389 return 0;
3392 static int queue_iso_buffer_fill(struct iso_context *ctx,
3393 struct fw_iso_packet *packet,
3394 struct fw_iso_buffer *buffer,
3395 unsigned long payload)
3397 struct descriptor *d;
3398 dma_addr_t d_bus, page_bus;
3399 int page, offset, rest, z, i, length;
3401 page = payload >> PAGE_SHIFT;
3402 offset = payload & ~PAGE_MASK;
3403 rest = packet->payload_length;
3405 /* We need one descriptor for each page in the buffer. */
3406 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3408 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3409 return -EFAULT;
3411 for (i = 0; i < z; i++) {
3412 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3413 if (d == NULL)
3414 return -ENOMEM;
3416 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3417 DESCRIPTOR_BRANCH_ALWAYS);
3418 if (packet->skip && i == 0)
3419 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3420 if (packet->interrupt && i == z - 1)
3421 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3423 if (offset + rest < PAGE_SIZE)
3424 length = rest;
3425 else
3426 length = PAGE_SIZE - offset;
3427 d->req_count = cpu_to_le16(length);
3428 d->res_count = d->req_count;
3429 d->transfer_status = 0;
3431 page_bus = page_private(buffer->pages[page]);
3432 d->data_address = cpu_to_le32(page_bus + offset);
3434 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3435 page_bus, offset, length,
3436 DMA_FROM_DEVICE);
3438 rest -= length;
3439 offset = 0;
3440 page++;
3442 context_append(&ctx->context, d, 1, 0);
3445 return 0;
3448 static int ohci_queue_iso(struct fw_iso_context *base,
3449 struct fw_iso_packet *packet,
3450 struct fw_iso_buffer *buffer,
3451 unsigned long payload)
3453 struct iso_context *ctx = container_of(base, struct iso_context, base);
3454 unsigned long flags;
3455 int ret = -ENOSYS;
3457 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3458 switch (base->type) {
3459 case FW_ISO_CONTEXT_TRANSMIT:
3460 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3461 break;
3462 case FW_ISO_CONTEXT_RECEIVE:
3463 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3464 break;
3465 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3466 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3467 break;
3469 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3471 return ret;
3474 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3476 struct context *ctx =
3477 &container_of(base, struct iso_context, base)->context;
3479 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3482 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3484 struct iso_context *ctx = container_of(base, struct iso_context, base);
3485 int ret = 0;
3487 tasklet_disable(&ctx->context.tasklet);
3489 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3490 context_tasklet((unsigned long)&ctx->context);
3492 switch (base->type) {
3493 case FW_ISO_CONTEXT_TRANSMIT:
3494 case FW_ISO_CONTEXT_RECEIVE:
3495 if (ctx->header_length != 0)
3496 flush_iso_completions(ctx);
3497 break;
3498 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3499 if (ctx->mc_completed != 0)
3500 flush_ir_buffer_fill(ctx);
3501 break;
3502 default:
3503 ret = -ENOSYS;
3506 clear_bit_unlock(0, &ctx->flushing_completions);
3507 smp_mb__after_clear_bit();
3510 tasklet_enable(&ctx->context.tasklet);
3512 return ret;
3515 static const struct fw_card_driver ohci_driver = {
3516 .enable = ohci_enable,
3517 .read_phy_reg = ohci_read_phy_reg,
3518 .update_phy_reg = ohci_update_phy_reg,
3519 .set_config_rom = ohci_set_config_rom,
3520 .send_request = ohci_send_request,
3521 .send_response = ohci_send_response,
3522 .cancel_packet = ohci_cancel_packet,
3523 .enable_phys_dma = ohci_enable_phys_dma,
3524 .read_csr = ohci_read_csr,
3525 .write_csr = ohci_write_csr,
3527 .allocate_iso_context = ohci_allocate_iso_context,
3528 .free_iso_context = ohci_free_iso_context,
3529 .set_iso_channels = ohci_set_iso_channels,
3530 .queue_iso = ohci_queue_iso,
3531 .flush_queue_iso = ohci_flush_queue_iso,
3532 .flush_iso_completions = ohci_flush_iso_completions,
3533 .start_iso = ohci_start_iso,
3534 .stop_iso = ohci_stop_iso,
3537 #ifdef CONFIG_PPC_PMAC
3538 static void pmac_ohci_on(struct pci_dev *dev)
3540 if (machine_is(powermac)) {
3541 struct device_node *ofn = pci_device_to_OF_node(dev);
3543 if (ofn) {
3544 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3545 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3550 static void pmac_ohci_off(struct pci_dev *dev)
3552 if (machine_is(powermac)) {
3553 struct device_node *ofn = pci_device_to_OF_node(dev);
3555 if (ofn) {
3556 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3557 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3561 #else
3562 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3563 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3564 #endif /* CONFIG_PPC_PMAC */
3566 static int pci_probe(struct pci_dev *dev,
3567 const struct pci_device_id *ent)
3569 struct fw_ohci *ohci;
3570 u32 bus_options, max_receive, link_speed, version;
3571 u64 guid;
3572 int i, err;
3573 size_t size;
3575 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3576 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3577 return -ENOSYS;
3580 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3581 if (ohci == NULL) {
3582 err = -ENOMEM;
3583 goto fail;
3586 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3588 pmac_ohci_on(dev);
3590 err = pci_enable_device(dev);
3591 if (err) {
3592 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3593 goto fail_free;
3596 pci_set_master(dev);
3597 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3598 pci_set_drvdata(dev, ohci);
3600 spin_lock_init(&ohci->lock);
3601 mutex_init(&ohci->phy_reg_mutex);
3603 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3605 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3606 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3607 ohci_err(ohci, "invalid MMIO resource\n");
3608 err = -ENXIO;
3609 goto fail_disable;
3612 err = pci_request_region(dev, 0, ohci_driver_name);
3613 if (err) {
3614 ohci_err(ohci, "MMIO resource unavailable\n");
3615 goto fail_disable;
3618 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3619 if (ohci->registers == NULL) {
3620 ohci_err(ohci, "failed to remap registers\n");
3621 err = -ENXIO;
3622 goto fail_iomem;
3625 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3626 if ((ohci_quirks[i].vendor == dev->vendor) &&
3627 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3628 ohci_quirks[i].device == dev->device) &&
3629 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3630 ohci_quirks[i].revision >= dev->revision)) {
3631 ohci->quirks = ohci_quirks[i].flags;
3632 break;
3634 if (param_quirks)
3635 ohci->quirks = param_quirks;
3638 * Because dma_alloc_coherent() allocates at least one page,
3639 * we save space by using a common buffer for the AR request/
3640 * response descriptors and the self IDs buffer.
3642 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3643 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3644 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3645 PAGE_SIZE,
3646 &ohci->misc_buffer_bus,
3647 GFP_KERNEL);
3648 if (!ohci->misc_buffer) {
3649 err = -ENOMEM;
3650 goto fail_iounmap;
3653 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3654 OHCI1394_AsReqRcvContextControlSet);
3655 if (err < 0)
3656 goto fail_misc_buf;
3658 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3659 OHCI1394_AsRspRcvContextControlSet);
3660 if (err < 0)
3661 goto fail_arreq_ctx;
3663 err = context_init(&ohci->at_request_ctx, ohci,
3664 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3665 if (err < 0)
3666 goto fail_arrsp_ctx;
3668 err = context_init(&ohci->at_response_ctx, ohci,
3669 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3670 if (err < 0)
3671 goto fail_atreq_ctx;
3673 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3674 ohci->ir_context_channels = ~0ULL;
3675 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3676 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3677 ohci->ir_context_mask = ohci->ir_context_support;
3678 ohci->n_ir = hweight32(ohci->ir_context_mask);
3679 size = sizeof(struct iso_context) * ohci->n_ir;
3680 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3682 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3683 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3684 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3685 ohci->it_context_mask = ohci->it_context_support;
3686 ohci->n_it = hweight32(ohci->it_context_mask);
3687 size = sizeof(struct iso_context) * ohci->n_it;
3688 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3690 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3691 err = -ENOMEM;
3692 goto fail_contexts;
3695 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3696 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3698 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3699 max_receive = (bus_options >> 12) & 0xf;
3700 link_speed = bus_options & 0x7;
3701 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3702 reg_read(ohci, OHCI1394_GUIDLo);
3704 if (!(ohci->quirks & QUIRK_NO_MSI))
3705 pci_enable_msi(dev);
3706 if (request_irq(dev->irq, irq_handler,
3707 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3708 ohci_driver_name, ohci)) {
3709 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3710 err = -EIO;
3711 goto fail_msi;
3714 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3715 if (err)
3716 goto fail_irq;
3718 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3719 ohci_notice(ohci,
3720 "added OHCI v%x.%x device as card %d, "
3721 "%d IR + %d IT contexts, quirks 0x%x\n",
3722 version >> 16, version & 0xff, ohci->card.index,
3723 ohci->n_ir, ohci->n_it, ohci->quirks);
3725 return 0;
3727 fail_irq:
3728 free_irq(dev->irq, ohci);
3729 fail_msi:
3730 pci_disable_msi(dev);
3731 fail_contexts:
3732 kfree(ohci->ir_context_list);
3733 kfree(ohci->it_context_list);
3734 context_release(&ohci->at_response_ctx);
3735 fail_atreq_ctx:
3736 context_release(&ohci->at_request_ctx);
3737 fail_arrsp_ctx:
3738 ar_context_release(&ohci->ar_response_ctx);
3739 fail_arreq_ctx:
3740 ar_context_release(&ohci->ar_request_ctx);
3741 fail_misc_buf:
3742 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3743 ohci->misc_buffer, ohci->misc_buffer_bus);
3744 fail_iounmap:
3745 pci_iounmap(dev, ohci->registers);
3746 fail_iomem:
3747 pci_release_region(dev, 0);
3748 fail_disable:
3749 pci_disable_device(dev);
3750 fail_free:
3751 kfree(ohci);
3752 pmac_ohci_off(dev);
3753 fail:
3754 return err;
3757 static void pci_remove(struct pci_dev *dev)
3759 struct fw_ohci *ohci = pci_get_drvdata(dev);
3762 * If the removal is happening from the suspend state, LPS won't be
3763 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3765 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3766 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3767 flush_writes(ohci);
3769 cancel_work_sync(&ohci->bus_reset_work);
3770 fw_core_remove_card(&ohci->card);
3773 * FIXME: Fail all pending packets here, now that the upper
3774 * layers can't queue any more.
3777 software_reset(ohci);
3778 free_irq(dev->irq, ohci);
3780 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3781 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3782 ohci->next_config_rom, ohci->next_config_rom_bus);
3783 if (ohci->config_rom)
3784 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3785 ohci->config_rom, ohci->config_rom_bus);
3786 ar_context_release(&ohci->ar_request_ctx);
3787 ar_context_release(&ohci->ar_response_ctx);
3788 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3789 ohci->misc_buffer, ohci->misc_buffer_bus);
3790 context_release(&ohci->at_request_ctx);
3791 context_release(&ohci->at_response_ctx);
3792 kfree(ohci->it_context_list);
3793 kfree(ohci->ir_context_list);
3794 pci_disable_msi(dev);
3795 pci_iounmap(dev, ohci->registers);
3796 pci_release_region(dev, 0);
3797 pci_disable_device(dev);
3798 kfree(ohci);
3799 pmac_ohci_off(dev);
3801 dev_notice(&dev->dev, "removed fw-ohci device\n");
3804 #ifdef CONFIG_PM
3805 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3807 struct fw_ohci *ohci = pci_get_drvdata(dev);
3808 int err;
3810 software_reset(ohci);
3811 err = pci_save_state(dev);
3812 if (err) {
3813 ohci_err(ohci, "pci_save_state failed\n");
3814 return err;
3816 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3817 if (err)
3818 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3819 pmac_ohci_off(dev);
3821 return 0;
3824 static int pci_resume(struct pci_dev *dev)
3826 struct fw_ohci *ohci = pci_get_drvdata(dev);
3827 int err;
3829 pmac_ohci_on(dev);
3830 pci_set_power_state(dev, PCI_D0);
3831 pci_restore_state(dev);
3832 err = pci_enable_device(dev);
3833 if (err) {
3834 ohci_err(ohci, "pci_enable_device failed\n");
3835 return err;
3838 /* Some systems don't setup GUID register on resume from ram */
3839 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3840 !reg_read(ohci, OHCI1394_GUIDHi)) {
3841 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3842 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3845 err = ohci_enable(&ohci->card, NULL, 0);
3846 if (err)
3847 return err;
3849 ohci_resume_iso_dma(ohci);
3851 return 0;
3853 #endif
3855 static const struct pci_device_id pci_table[] = {
3856 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3860 MODULE_DEVICE_TABLE(pci, pci_table);
3862 static struct pci_driver fw_ohci_pci_driver = {
3863 .name = ohci_driver_name,
3864 .id_table = pci_table,
3865 .probe = pci_probe,
3866 .remove = pci_remove,
3867 #ifdef CONFIG_PM
3868 .resume = pci_resume,
3869 .suspend = pci_suspend,
3870 #endif
3873 module_pci_driver(fw_ohci_pci_driver);
3875 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3876 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3877 MODULE_LICENSE("GPL");
3879 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3880 MODULE_ALIAS("ohci1394");