1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions identifies calls to builtin functions that allocate
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "memory-builtins"
52 enum AllocType
: uint8_t {
53 OpNewLike
= 1<<0, // allocates; never returns null
54 MallocLike
= 1<<1 | OpNewLike
, // allocates; may return null
55 CallocLike
= 1<<2, // allocates + bzero
56 ReallocLike
= 1<<3, // reallocates
58 MallocOrCallocLike
= MallocLike
| CallocLike
,
59 AllocLike
= MallocLike
| CallocLike
| StrDupLike
,
60 AnyAlloc
= AllocLike
| ReallocLike
66 // First and Second size parameters (or -1 if unused)
67 int FstParam
, SndParam
;
70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
71 // know which functions are nounwind, noalias, nocapture parameters, etc.
72 static const std::pair
<LibFunc
, AllocFnsTy
> AllocationFnData
[] = {
73 {LibFunc_malloc
, {MallocLike
, 1, 0, -1}},
74 {LibFunc_valloc
, {MallocLike
, 1, 0, -1}},
75 {LibFunc_Znwj
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
76 {LibFunc_ZnwjRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
77 {LibFunc_ZnwjSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned int, align_val_t)
78 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t
, // new(unsigned int, align_val_t, nothrow)
79 {MallocLike
, 3, 0, -1}},
80 {LibFunc_Znwm
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long)
81 {LibFunc_ZnwmRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned long, nothrow)
82 {LibFunc_ZnwmSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned long, align_val_t)
83 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
, // new(unsigned long, align_val_t, nothrow)
84 {MallocLike
, 3, 0, -1}},
85 {LibFunc_Znaj
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
86 {LibFunc_ZnajRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
87 {LibFunc_ZnajSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned int, align_val_t)
88 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t
, // new[](unsigned int, align_val_t, nothrow)
89 {MallocLike
, 3, 0, -1}},
90 {LibFunc_Znam
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long)
91 {LibFunc_ZnamRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long, nothrow)
92 {LibFunc_ZnamSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned long, align_val_t)
93 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
, // new[](unsigned long, align_val_t, nothrow)
94 {MallocLike
, 3, 0, -1}},
95 {LibFunc_msvc_new_int
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
96 {LibFunc_msvc_new_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
97 {LibFunc_msvc_new_longlong
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long long)
98 {LibFunc_msvc_new_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned long long, nothrow)
99 {LibFunc_msvc_new_array_int
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
100 {LibFunc_msvc_new_array_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
101 {LibFunc_msvc_new_array_longlong
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long long)
102 {LibFunc_msvc_new_array_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long long, nothrow)
103 {LibFunc_calloc
, {CallocLike
, 2, 0, 1}},
104 {LibFunc_realloc
, {ReallocLike
, 2, 1, -1}},
105 {LibFunc_reallocf
, {ReallocLike
, 2, 1, -1}},
106 {LibFunc_strdup
, {StrDupLike
, 1, -1, -1}},
107 {LibFunc_strndup
, {StrDupLike
, 2, 1, -1}}
108 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
111 static const Function
*getCalledFunction(const Value
*V
, bool LookThroughBitCast
,
113 // Don't care about intrinsics in this case.
114 if (isa
<IntrinsicInst
>(V
))
117 if (LookThroughBitCast
)
118 V
= V
->stripPointerCasts();
120 ImmutableCallSite
CS(V
);
121 if (!CS
.getInstruction())
124 IsNoBuiltin
= CS
.isNoBuiltin();
126 if (const Function
*Callee
= CS
.getCalledFunction())
131 /// Returns the allocation data for the given value if it's either a call to a
132 /// known allocation function, or a call to a function with the allocsize
134 static Optional
<AllocFnsTy
>
135 getAllocationDataForFunction(const Function
*Callee
, AllocType AllocTy
,
136 const TargetLibraryInfo
*TLI
) {
137 // Make sure that the function is available.
138 StringRef FnName
= Callee
->getName();
140 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
143 const auto *Iter
= find_if(
144 AllocationFnData
, [TLIFn
](const std::pair
<LibFunc
, AllocFnsTy
> &P
) {
145 return P
.first
== TLIFn
;
148 if (Iter
== std::end(AllocationFnData
))
151 const AllocFnsTy
*FnData
= &Iter
->second
;
152 if ((FnData
->AllocTy
& AllocTy
) != FnData
->AllocTy
)
155 // Check function prototype.
156 int FstParam
= FnData
->FstParam
;
157 int SndParam
= FnData
->SndParam
;
158 FunctionType
*FTy
= Callee
->getFunctionType();
160 if (FTy
->getReturnType() == Type::getInt8PtrTy(FTy
->getContext()) &&
161 FTy
->getNumParams() == FnData
->NumParams
&&
163 (FTy
->getParamType(FstParam
)->isIntegerTy(32) ||
164 FTy
->getParamType(FstParam
)->isIntegerTy(64))) &&
166 FTy
->getParamType(SndParam
)->isIntegerTy(32) ||
167 FTy
->getParamType(SndParam
)->isIntegerTy(64)))
172 static Optional
<AllocFnsTy
> getAllocationData(const Value
*V
, AllocType AllocTy
,
173 const TargetLibraryInfo
*TLI
,
174 bool LookThroughBitCast
= false) {
175 bool IsNoBuiltinCall
;
176 if (const Function
*Callee
=
177 getCalledFunction(V
, LookThroughBitCast
, IsNoBuiltinCall
))
178 if (!IsNoBuiltinCall
)
179 return getAllocationDataForFunction(Callee
, AllocTy
, TLI
);
183 static Optional
<AllocFnsTy
> getAllocationSize(const Value
*V
,
184 const TargetLibraryInfo
*TLI
) {
185 bool IsNoBuiltinCall
;
186 const Function
*Callee
=
187 getCalledFunction(V
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
191 // Prefer to use existing information over allocsize. This will give us an
193 if (!IsNoBuiltinCall
)
194 if (Optional
<AllocFnsTy
> Data
=
195 getAllocationDataForFunction(Callee
, AnyAlloc
, TLI
))
198 Attribute Attr
= Callee
->getFnAttribute(Attribute::AllocSize
);
199 if (Attr
== Attribute())
202 std::pair
<unsigned, Optional
<unsigned>> Args
= Attr
.getAllocSizeArgs();
205 // Because allocsize only tells us how many bytes are allocated, we're not
206 // really allowed to assume anything, so we use MallocLike.
207 Result
.AllocTy
= MallocLike
;
208 Result
.NumParams
= Callee
->getNumOperands();
209 Result
.FstParam
= Args
.first
;
210 Result
.SndParam
= Args
.second
.getValueOr(-1);
214 static bool hasNoAliasAttr(const Value
*V
, bool LookThroughBitCast
) {
215 ImmutableCallSite
CS(LookThroughBitCast
? V
->stripPointerCasts() : V
);
216 return CS
&& CS
.hasRetAttr(Attribute::NoAlias
);
219 /// Tests if a value is a call or invoke to a library function that
220 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
222 bool llvm::isAllocationFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
223 bool LookThroughBitCast
) {
224 return getAllocationData(V
, AnyAlloc
, TLI
, LookThroughBitCast
).hasValue();
227 /// Tests if a value is a call or invoke to a function that returns a
228 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
229 bool llvm::isNoAliasFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
230 bool LookThroughBitCast
) {
231 // it's safe to consider realloc as noalias since accessing the original
232 // pointer is undefined behavior
233 return isAllocationFn(V
, TLI
, LookThroughBitCast
) ||
234 hasNoAliasAttr(V
, LookThroughBitCast
);
237 /// Tests if a value is a call or invoke to a library function that
238 /// allocates uninitialized memory (such as malloc).
239 bool llvm::isMallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
240 bool LookThroughBitCast
) {
241 return getAllocationData(V
, MallocLike
, TLI
, LookThroughBitCast
).hasValue();
244 /// Tests if a value is a call or invoke to a library function that
245 /// allocates zero-filled memory (such as calloc).
246 bool llvm::isCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
247 bool LookThroughBitCast
) {
248 return getAllocationData(V
, CallocLike
, TLI
, LookThroughBitCast
).hasValue();
251 /// Tests if a value is a call or invoke to a library function that
252 /// allocates memory similar to malloc or calloc.
253 bool llvm::isMallocOrCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
254 bool LookThroughBitCast
) {
255 return getAllocationData(V
, MallocOrCallocLike
, TLI
,
256 LookThroughBitCast
).hasValue();
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates memory (either malloc, calloc, or strdup like).
261 bool llvm::isAllocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
262 bool LookThroughBitCast
) {
263 return getAllocationData(V
, AllocLike
, TLI
, LookThroughBitCast
).hasValue();
266 /// Tests if a value is a call or invoke to a library function that
267 /// reallocates memory (e.g., realloc).
268 bool llvm::isReallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
269 bool LookThroughBitCast
) {
270 return getAllocationData(V
, ReallocLike
, TLI
, LookThroughBitCast
).hasValue();
273 /// Tests if a functions is a call or invoke to a library function that
274 /// reallocates memory (e.g., realloc).
275 bool llvm::isReallocLikeFn(const Function
*F
, const TargetLibraryInfo
*TLI
) {
276 return getAllocationDataForFunction(F
, ReallocLike
, TLI
).hasValue();
279 /// extractMallocCall - Returns the corresponding CallInst if the instruction
280 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
281 /// ignore InvokeInst here.
282 const CallInst
*llvm::extractMallocCall(const Value
*I
,
283 const TargetLibraryInfo
*TLI
) {
284 return isMallocLikeFn(I
, TLI
) ? dyn_cast
<CallInst
>(I
) : nullptr;
287 static Value
*computeArraySize(const CallInst
*CI
, const DataLayout
&DL
,
288 const TargetLibraryInfo
*TLI
,
289 bool LookThroughSExt
= false) {
293 // The size of the malloc's result type must be known to determine array size.
294 Type
*T
= getMallocAllocatedType(CI
, TLI
);
295 if (!T
|| !T
->isSized())
298 unsigned ElementSize
= DL
.getTypeAllocSize(T
);
299 if (StructType
*ST
= dyn_cast
<StructType
>(T
))
300 ElementSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
302 // If malloc call's arg can be determined to be a multiple of ElementSize,
303 // return the multiple. Otherwise, return NULL.
304 Value
*MallocArg
= CI
->getArgOperand(0);
305 Value
*Multiple
= nullptr;
306 if (ComputeMultiple(MallocArg
, ElementSize
, Multiple
, LookThroughSExt
))
312 /// getMallocType - Returns the PointerType resulting from the malloc call.
313 /// The PointerType depends on the number of bitcast uses of the malloc call:
314 /// 0: PointerType is the calls' return type.
315 /// 1: PointerType is the bitcast's result type.
316 /// >1: Unique PointerType cannot be determined, return NULL.
317 PointerType
*llvm::getMallocType(const CallInst
*CI
,
318 const TargetLibraryInfo
*TLI
) {
319 assert(isMallocLikeFn(CI
, TLI
) && "getMallocType and not malloc call");
321 PointerType
*MallocType
= nullptr;
322 unsigned NumOfBitCastUses
= 0;
324 // Determine if CallInst has a bitcast use.
325 for (Value::const_user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
327 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(*UI
++)) {
328 MallocType
= cast
<PointerType
>(BCI
->getDestTy());
332 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
333 if (NumOfBitCastUses
== 1)
336 // Malloc call was not bitcast, so type is the malloc function's return type.
337 if (NumOfBitCastUses
== 0)
338 return cast
<PointerType
>(CI
->getType());
340 // Type could not be determined.
344 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
345 /// The Type depends on the number of bitcast uses of the malloc call:
346 /// 0: PointerType is the malloc calls' return type.
347 /// 1: PointerType is the bitcast's result type.
348 /// >1: Unique PointerType cannot be determined, return NULL.
349 Type
*llvm::getMallocAllocatedType(const CallInst
*CI
,
350 const TargetLibraryInfo
*TLI
) {
351 PointerType
*PT
= getMallocType(CI
, TLI
);
352 return PT
? PT
->getElementType() : nullptr;
355 /// getMallocArraySize - Returns the array size of a malloc call. If the
356 /// argument passed to malloc is a multiple of the size of the malloced type,
357 /// then return that multiple. For non-array mallocs, the multiple is
358 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
360 Value
*llvm::getMallocArraySize(CallInst
*CI
, const DataLayout
&DL
,
361 const TargetLibraryInfo
*TLI
,
362 bool LookThroughSExt
) {
363 assert(isMallocLikeFn(CI
, TLI
) && "getMallocArraySize and not malloc call");
364 return computeArraySize(CI
, DL
, TLI
, LookThroughSExt
);
367 /// extractCallocCall - Returns the corresponding CallInst if the instruction
368 /// is a calloc call.
369 const CallInst
*llvm::extractCallocCall(const Value
*I
,
370 const TargetLibraryInfo
*TLI
) {
371 return isCallocLikeFn(I
, TLI
) ? cast
<CallInst
>(I
) : nullptr;
374 /// isLibFreeFunction - Returns true if the function is a builtin free()
375 bool llvm::isLibFreeFunction(const Function
*F
, const LibFunc TLIFn
) {
376 unsigned ExpectedNumParams
;
377 if (TLIFn
== LibFunc_free
||
378 TLIFn
== LibFunc_ZdlPv
|| // operator delete(void*)
379 TLIFn
== LibFunc_ZdaPv
|| // operator delete[](void*)
380 TLIFn
== LibFunc_msvc_delete_ptr32
|| // operator delete(void*)
381 TLIFn
== LibFunc_msvc_delete_ptr64
|| // operator delete(void*)
382 TLIFn
== LibFunc_msvc_delete_array_ptr32
|| // operator delete[](void*)
383 TLIFn
== LibFunc_msvc_delete_array_ptr64
) // operator delete[](void*)
384 ExpectedNumParams
= 1;
385 else if (TLIFn
== LibFunc_ZdlPvj
|| // delete(void*, uint)
386 TLIFn
== LibFunc_ZdlPvm
|| // delete(void*, ulong)
387 TLIFn
== LibFunc_ZdlPvRKSt9nothrow_t
|| // delete(void*, nothrow)
388 TLIFn
== LibFunc_ZdlPvSt11align_val_t
|| // delete(void*, align_val_t)
389 TLIFn
== LibFunc_ZdaPvj
|| // delete[](void*, uint)
390 TLIFn
== LibFunc_ZdaPvm
|| // delete[](void*, ulong)
391 TLIFn
== LibFunc_ZdaPvRKSt9nothrow_t
|| // delete[](void*, nothrow)
392 TLIFn
== LibFunc_ZdaPvSt11align_val_t
|| // delete[](void*, align_val_t)
393 TLIFn
== LibFunc_msvc_delete_ptr32_int
|| // delete(void*, uint)
394 TLIFn
== LibFunc_msvc_delete_ptr64_longlong
|| // delete(void*, ulonglong)
395 TLIFn
== LibFunc_msvc_delete_ptr32_nothrow
|| // delete(void*, nothrow)
396 TLIFn
== LibFunc_msvc_delete_ptr64_nothrow
|| // delete(void*, nothrow)
397 TLIFn
== LibFunc_msvc_delete_array_ptr32_int
|| // delete[](void*, uint)
398 TLIFn
== LibFunc_msvc_delete_array_ptr64_longlong
|| // delete[](void*, ulonglong)
399 TLIFn
== LibFunc_msvc_delete_array_ptr32_nothrow
|| // delete[](void*, nothrow)
400 TLIFn
== LibFunc_msvc_delete_array_ptr64_nothrow
) // delete[](void*, nothrow)
401 ExpectedNumParams
= 2;
402 else if (TLIFn
== LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t
|| // delete(void*, align_val_t, nothrow)
403 TLIFn
== LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t
) // delete[](void*, align_val_t, nothrow)
404 ExpectedNumParams
= 3;
408 // Check free prototype.
409 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
410 // attribute will exist.
411 FunctionType
*FTy
= F
->getFunctionType();
412 if (!FTy
->getReturnType()->isVoidTy())
414 if (FTy
->getNumParams() != ExpectedNumParams
)
416 if (FTy
->getParamType(0) != Type::getInt8PtrTy(F
->getContext()))
422 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
423 const CallInst
*llvm::isFreeCall(const Value
*I
, const TargetLibraryInfo
*TLI
) {
424 bool IsNoBuiltinCall
;
425 const Function
*Callee
=
426 getCalledFunction(I
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
427 if (Callee
== nullptr || IsNoBuiltinCall
)
430 StringRef FnName
= Callee
->getName();
432 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
435 return isLibFreeFunction(Callee
, TLIFn
) ? dyn_cast
<CallInst
>(I
) : nullptr;
439 //===----------------------------------------------------------------------===//
440 // Utility functions to compute size of objects.
442 static APInt
getSizeWithOverflow(const SizeOffsetType
&Data
) {
443 if (Data
.second
.isNegative() || Data
.first
.ult(Data
.second
))
444 return APInt(Data
.first
.getBitWidth(), 0);
445 return Data
.first
- Data
.second
;
448 /// Compute the size of the object pointed by Ptr. Returns true and the
449 /// object size in Size if successful, and false otherwise.
450 /// If RoundToAlign is true, then Size is rounded up to the alignment of
451 /// allocas, byval arguments, and global variables.
452 bool llvm::getObjectSize(const Value
*Ptr
, uint64_t &Size
, const DataLayout
&DL
,
453 const TargetLibraryInfo
*TLI
, ObjectSizeOpts Opts
) {
454 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Ptr
->getContext(), Opts
);
455 SizeOffsetType Data
= Visitor
.compute(const_cast<Value
*>(Ptr
));
456 if (!Visitor
.bothKnown(Data
))
459 Size
= getSizeWithOverflow(Data
).getZExtValue();
463 Value
*llvm::lowerObjectSizeCall(IntrinsicInst
*ObjectSize
,
464 const DataLayout
&DL
,
465 const TargetLibraryInfo
*TLI
,
467 assert(ObjectSize
->getIntrinsicID() == Intrinsic::objectsize
&&
468 "ObjectSize must be a call to llvm.objectsize!");
470 bool MaxVal
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(1))->isZero();
471 ObjectSizeOpts EvalOptions
;
472 // Unless we have to fold this to something, try to be as accurate as
475 EvalOptions
.EvalMode
=
476 MaxVal
? ObjectSizeOpts::Mode::Max
: ObjectSizeOpts::Mode::Min
;
478 EvalOptions
.EvalMode
= ObjectSizeOpts::Mode::Exact
;
480 EvalOptions
.NullIsUnknownSize
=
481 cast
<ConstantInt
>(ObjectSize
->getArgOperand(2))->isOne();
483 auto *ResultType
= cast
<IntegerType
>(ObjectSize
->getType());
484 bool StaticOnly
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(3))->isZero();
486 // FIXME: Does it make sense to just return a failure value if the size won't
487 // fit in the output and `!MustSucceed`?
489 if (getObjectSize(ObjectSize
->getArgOperand(0), Size
, DL
, TLI
, EvalOptions
) &&
490 isUIntN(ResultType
->getBitWidth(), Size
))
491 return ConstantInt::get(ResultType
, Size
);
493 LLVMContext
&Ctx
= ObjectSize
->getFunction()->getContext();
494 ObjectSizeOffsetEvaluator
Eval(DL
, TLI
, Ctx
, EvalOptions
);
495 SizeOffsetEvalType SizeOffsetPair
=
496 Eval
.compute(ObjectSize
->getArgOperand(0));
498 if (SizeOffsetPair
!= ObjectSizeOffsetEvaluator::unknown()) {
499 IRBuilder
<TargetFolder
> Builder(Ctx
, TargetFolder(DL
));
500 Builder
.SetInsertPoint(ObjectSize
);
502 // If we've outside the end of the object, then we can always access
505 Builder
.CreateSub(SizeOffsetPair
.first
, SizeOffsetPair
.second
);
507 Builder
.CreateICmpULT(SizeOffsetPair
.first
, SizeOffsetPair
.second
);
508 return Builder
.CreateSelect(UseZero
, ConstantInt::get(ResultType
, 0),
516 return ConstantInt::get(ResultType
, MaxVal
? -1ULL : 0);
519 STATISTIC(ObjectVisitorArgument
,
520 "Number of arguments with unsolved size and offset");
521 STATISTIC(ObjectVisitorLoad
,
522 "Number of load instructions with unsolved size and offset");
524 APInt
ObjectSizeOffsetVisitor::align(APInt Size
, uint64_t Align
) {
525 if (Options
.RoundToAlign
&& Align
)
526 return APInt(IntTyBits
, alignTo(Size
.getZExtValue(), Align
));
530 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout
&DL
,
531 const TargetLibraryInfo
*TLI
,
532 LLVMContext
&Context
,
533 ObjectSizeOpts Options
)
534 : DL(DL
), TLI(TLI
), Options(Options
) {
535 // Pointer size must be rechecked for each object visited since it could have
536 // a different address space.
539 SizeOffsetType
ObjectSizeOffsetVisitor::compute(Value
*V
) {
540 IntTyBits
= DL
.getPointerTypeSizeInBits(V
->getType());
541 Zero
= APInt::getNullValue(IntTyBits
);
543 V
= V
->stripPointerCasts();
544 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
545 // If we have already seen this instruction, bail out. Cycles can happen in
546 // unreachable code after constant propagation.
547 if (!SeenInsts
.insert(I
).second
)
550 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
))
551 return visitGEPOperator(*GEP
);
554 if (Argument
*A
= dyn_cast
<Argument
>(V
))
555 return visitArgument(*A
);
556 if (ConstantPointerNull
*P
= dyn_cast
<ConstantPointerNull
>(V
))
557 return visitConstantPointerNull(*P
);
558 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
559 return visitGlobalAlias(*GA
);
560 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
561 return visitGlobalVariable(*GV
);
562 if (UndefValue
*UV
= dyn_cast
<UndefValue
>(V
))
563 return visitUndefValue(*UV
);
564 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
565 if (CE
->getOpcode() == Instruction::IntToPtr
)
566 return unknown(); // clueless
567 if (CE
->getOpcode() == Instruction::GetElementPtr
)
568 return visitGEPOperator(cast
<GEPOperator
>(*CE
));
571 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
576 /// When we're compiling N-bit code, and the user uses parameters that are
577 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
578 /// trouble with APInt size issues. This function handles resizing + overflow
579 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
581 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt
&I
) {
582 // More bits than we can handle. Checking the bit width isn't necessary, but
583 // it's faster than checking active bits, and should give `false` in the
584 // vast majority of cases.
585 if (I
.getBitWidth() > IntTyBits
&& I
.getActiveBits() > IntTyBits
)
587 if (I
.getBitWidth() != IntTyBits
)
588 I
= I
.zextOrTrunc(IntTyBits
);
592 SizeOffsetType
ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst
&I
) {
593 if (!I
.getAllocatedType()->isSized())
596 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(I
.getAllocatedType()));
597 if (!I
.isArrayAllocation())
598 return std::make_pair(align(Size
, I
.getAlignment()), Zero
);
600 Value
*ArraySize
= I
.getArraySize();
601 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(ArraySize
)) {
602 APInt NumElems
= C
->getValue();
603 if (!CheckedZextOrTrunc(NumElems
))
607 Size
= Size
.umul_ov(NumElems
, Overflow
);
608 return Overflow
? unknown() : std::make_pair(align(Size
, I
.getAlignment()),
614 SizeOffsetType
ObjectSizeOffsetVisitor::visitArgument(Argument
&A
) {
615 // No interprocedural analysis is done at the moment.
616 if (!A
.hasByValOrInAllocaAttr()) {
617 ++ObjectVisitorArgument
;
620 PointerType
*PT
= cast
<PointerType
>(A
.getType());
621 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(PT
->getElementType()));
622 return std::make_pair(align(Size
, A
.getParamAlignment()), Zero
);
625 SizeOffsetType
ObjectSizeOffsetVisitor::visitCallSite(CallSite CS
) {
626 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
630 // Handle strdup-like functions separately.
631 if (FnData
->AllocTy
== StrDupLike
) {
632 APInt
Size(IntTyBits
, GetStringLength(CS
.getArgument(0)));
636 // Strndup limits strlen.
637 if (FnData
->FstParam
> 0) {
639 dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
643 APInt MaxSize
= Arg
->getValue().zextOrSelf(IntTyBits
);
644 if (Size
.ugt(MaxSize
))
647 return std::make_pair(Size
, Zero
);
650 ConstantInt
*Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
654 APInt Size
= Arg
->getValue();
655 if (!CheckedZextOrTrunc(Size
))
658 // Size is determined by just 1 parameter.
659 if (FnData
->SndParam
< 0)
660 return std::make_pair(Size
, Zero
);
662 Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->SndParam
));
666 APInt NumElems
= Arg
->getValue();
667 if (!CheckedZextOrTrunc(NumElems
))
671 Size
= Size
.umul_ov(NumElems
, Overflow
);
672 return Overflow
? unknown() : std::make_pair(Size
, Zero
);
674 // TODO: handle more standard functions (+ wchar cousins):
675 // - strdup / strndup
676 // - strcpy / strncpy
677 // - strcat / strncat
678 // - memcpy / memmove
679 // - strcat / strncat
684 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull
& CPN
) {
685 // If null is unknown, there's nothing we can do. Additionally, non-zero
686 // address spaces can make use of null, so we don't presume to know anything
689 // TODO: How should this work with address space casts? We currently just drop
690 // them on the floor, but it's unclear what we should do when a NULL from
691 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
692 if (Options
.NullIsUnknownSize
|| CPN
.getType()->getAddressSpace())
694 return std::make_pair(Zero
, Zero
);
698 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst
&) {
703 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst
&) {
704 // Easy cases were already folded by previous passes.
708 SizeOffsetType
ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator
&GEP
) {
709 SizeOffsetType PtrData
= compute(GEP
.getPointerOperand());
710 APInt
Offset(IntTyBits
, 0);
711 if (!bothKnown(PtrData
) || !GEP
.accumulateConstantOffset(DL
, Offset
))
714 return std::make_pair(PtrData
.first
, PtrData
.second
+ Offset
);
717 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias
&GA
) {
718 if (GA
.isInterposable())
720 return compute(GA
.getAliasee());
723 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable
&GV
){
724 if (!GV
.hasDefinitiveInitializer())
727 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(GV
.getValueType()));
728 return std::make_pair(align(Size
, GV
.getAlignment()), Zero
);
731 SizeOffsetType
ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst
&) {
736 SizeOffsetType
ObjectSizeOffsetVisitor::visitLoadInst(LoadInst
&) {
741 SizeOffsetType
ObjectSizeOffsetVisitor::visitPHINode(PHINode
&) {
742 // too complex to analyze statically.
746 SizeOffsetType
ObjectSizeOffsetVisitor::visitSelectInst(SelectInst
&I
) {
747 SizeOffsetType TrueSide
= compute(I
.getTrueValue());
748 SizeOffsetType FalseSide
= compute(I
.getFalseValue());
749 if (bothKnown(TrueSide
) && bothKnown(FalseSide
)) {
750 if (TrueSide
== FalseSide
) {
754 APInt TrueResult
= getSizeWithOverflow(TrueSide
);
755 APInt FalseResult
= getSizeWithOverflow(FalseSide
);
757 if (TrueResult
== FalseResult
) {
760 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Min
) {
761 if (TrueResult
.slt(FalseResult
))
765 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Max
) {
766 if (TrueResult
.sgt(FalseResult
))
774 SizeOffsetType
ObjectSizeOffsetVisitor::visitUndefValue(UndefValue
&) {
775 return std::make_pair(Zero
, Zero
);
778 SizeOffsetType
ObjectSizeOffsetVisitor::visitInstruction(Instruction
&I
) {
779 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
784 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
785 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, LLVMContext
&Context
,
786 ObjectSizeOpts EvalOpts
)
787 : DL(DL
), TLI(TLI
), Context(Context
),
788 Builder(Context
, TargetFolder(DL
),
789 IRBuilderCallbackInserter(
790 [&](Instruction
*I
) { InsertedInstructions
.insert(I
); })),
792 // IntTy and Zero must be set for each compute() since the address space may
793 // be different for later objects.
796 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute(Value
*V
) {
797 // XXX - Are vectors of pointers possible here?
798 IntTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
799 Zero
= ConstantInt::get(IntTy
, 0);
801 SizeOffsetEvalType Result
= compute_(V
);
803 if (!bothKnown(Result
)) {
804 // Erase everything that was computed in this iteration from the cache, so
805 // that no dangling references are left behind. We could be a bit smarter if
806 // we kept a dependency graph. It's probably not worth the complexity.
807 for (const Value
*SeenVal
: SeenVals
) {
808 CacheMapTy::iterator CacheIt
= CacheMap
.find(SeenVal
);
809 // non-computable results can be safely cached
810 if (CacheIt
!= CacheMap
.end() && anyKnown(CacheIt
->second
))
811 CacheMap
.erase(CacheIt
);
814 // Erase any instructions we inserted as part of the traversal.
815 for (Instruction
*I
: InsertedInstructions
) {
816 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
817 I
->eraseFromParent();
822 InsertedInstructions
.clear();
826 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute_(Value
*V
) {
827 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Context
, EvalOpts
);
828 SizeOffsetType Const
= Visitor
.compute(V
);
829 if (Visitor
.bothKnown(Const
))
830 return std::make_pair(ConstantInt::get(Context
, Const
.first
),
831 ConstantInt::get(Context
, Const
.second
));
833 V
= V
->stripPointerCasts();
836 CacheMapTy::iterator CacheIt
= CacheMap
.find(V
);
837 if (CacheIt
!= CacheMap
.end())
838 return CacheIt
->second
;
840 // Always generate code immediately before the instruction being
841 // processed, so that the generated code dominates the same BBs.
842 BuilderTy::InsertPointGuard
Guard(Builder
);
843 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
844 Builder
.SetInsertPoint(I
);
846 // Now compute the size and offset.
847 SizeOffsetEvalType Result
;
849 // Record the pointers that were handled in this run, so that they can be
850 // cleaned later if something fails. We also use this set to break cycles that
851 // can occur in dead code.
852 if (!SeenVals
.insert(V
).second
) {
854 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
855 Result
= visitGEPOperator(*GEP
);
856 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
858 } else if (isa
<Argument
>(V
) ||
859 (isa
<ConstantExpr
>(V
) &&
860 cast
<ConstantExpr
>(V
)->getOpcode() == Instruction::IntToPtr
) ||
861 isa
<GlobalAlias
>(V
) ||
862 isa
<GlobalVariable
>(V
)) {
863 // Ignore values where we cannot do more than ObjectSizeVisitor.
867 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
872 // Don't reuse CacheIt since it may be invalid at this point.
873 CacheMap
[V
] = Result
;
877 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst
&I
) {
878 if (!I
.getAllocatedType()->isSized())
882 assert(I
.isArrayAllocation());
883 Value
*ArraySize
= I
.getArraySize();
884 Value
*Size
= ConstantInt::get(ArraySize
->getType(),
885 DL
.getTypeAllocSize(I
.getAllocatedType()));
886 Size
= Builder
.CreateMul(Size
, ArraySize
);
887 return std::make_pair(Size
, Zero
);
890 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS
) {
891 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
895 // Handle strdup-like functions separately.
896 if (FnData
->AllocTy
== StrDupLike
) {
901 Value
*FirstArg
= CS
.getArgument(FnData
->FstParam
);
902 FirstArg
= Builder
.CreateZExt(FirstArg
, IntTy
);
903 if (FnData
->SndParam
< 0)
904 return std::make_pair(FirstArg
, Zero
);
906 Value
*SecondArg
= CS
.getArgument(FnData
->SndParam
);
907 SecondArg
= Builder
.CreateZExt(SecondArg
, IntTy
);
908 Value
*Size
= Builder
.CreateMul(FirstArg
, SecondArg
);
909 return std::make_pair(Size
, Zero
);
911 // TODO: handle more standard functions (+ wchar cousins):
912 // - strdup / strndup
913 // - strcpy / strncpy
914 // - strcat / strncat
915 // - memcpy / memmove
916 // - strcat / strncat
921 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst
&) {
926 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst
&) {
931 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator
&GEP
) {
932 SizeOffsetEvalType PtrData
= compute_(GEP
.getPointerOperand());
933 if (!bothKnown(PtrData
))
936 Value
*Offset
= EmitGEPOffset(&Builder
, DL
, &GEP
, /*NoAssumptions=*/true);
937 Offset
= Builder
.CreateAdd(PtrData
.second
, Offset
);
938 return std::make_pair(PtrData
.first
, Offset
);
941 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst
&) {
946 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst
&) {
950 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitPHINode(PHINode
&PHI
) {
951 // Create 2 PHIs: one for size and another for offset.
952 PHINode
*SizePHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
953 PHINode
*OffsetPHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
955 // Insert right away in the cache to handle recursive PHIs.
956 CacheMap
[&PHI
] = std::make_pair(SizePHI
, OffsetPHI
);
958 // Compute offset/size for each PHI incoming pointer.
959 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
) {
960 Builder
.SetInsertPoint(&*PHI
.getIncomingBlock(i
)->getFirstInsertionPt());
961 SizeOffsetEvalType EdgeData
= compute_(PHI
.getIncomingValue(i
));
963 if (!bothKnown(EdgeData
)) {
964 OffsetPHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
965 OffsetPHI
->eraseFromParent();
966 InsertedInstructions
.erase(OffsetPHI
);
967 SizePHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
968 SizePHI
->eraseFromParent();
969 InsertedInstructions
.erase(SizePHI
);
972 SizePHI
->addIncoming(EdgeData
.first
, PHI
.getIncomingBlock(i
));
973 OffsetPHI
->addIncoming(EdgeData
.second
, PHI
.getIncomingBlock(i
));
976 Value
*Size
= SizePHI
, *Offset
= OffsetPHI
;
977 if (Value
*Tmp
= SizePHI
->hasConstantValue()) {
979 SizePHI
->replaceAllUsesWith(Size
);
980 SizePHI
->eraseFromParent();
981 InsertedInstructions
.erase(SizePHI
);
983 if (Value
*Tmp
= OffsetPHI
->hasConstantValue()) {
985 OffsetPHI
->replaceAllUsesWith(Offset
);
986 OffsetPHI
->eraseFromParent();
987 InsertedInstructions
.erase(OffsetPHI
);
989 return std::make_pair(Size
, Offset
);
992 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst
&I
) {
993 SizeOffsetEvalType TrueSide
= compute_(I
.getTrueValue());
994 SizeOffsetEvalType FalseSide
= compute_(I
.getFalseValue());
996 if (!bothKnown(TrueSide
) || !bothKnown(FalseSide
))
998 if (TrueSide
== FalseSide
)
1001 Value
*Size
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.first
,
1003 Value
*Offset
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.second
,
1005 return std::make_pair(Size
, Offset
);
1008 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitInstruction(Instruction
&I
) {
1009 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I