[ARM] MVE sext costs
[llvm-complete.git] / lib / MCA / InstrBuilder.cpp
blob2a177f6314e854af6fa6eea85203b652d0b20f66
1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the InstrBuilder interface.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/WithColor.h"
20 #include "llvm/Support/raw_ostream.h"
22 #define DEBUG_TYPE "llvm-mca"
24 namespace llvm {
25 namespace mca {
27 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
28 const llvm::MCInstrInfo &mcii,
29 const llvm::MCRegisterInfo &mri,
30 const llvm::MCInstrAnalysis *mcia)
31 : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
32 FirstReturnInst(true) {
33 const MCSchedModel &SM = STI.getSchedModel();
34 ProcResourceMasks.resize(SM.getNumProcResourceKinds());
35 computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
38 static void initializeUsedResources(InstrDesc &ID,
39 const MCSchedClassDesc &SCDesc,
40 const MCSubtargetInfo &STI,
41 ArrayRef<uint64_t> ProcResourceMasks) {
42 const MCSchedModel &SM = STI.getSchedModel();
44 // Populate resources consumed.
45 using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
46 std::vector<ResourcePlusCycles> Worklist;
48 // Track cycles contributed by resources that are in a "Super" relationship.
49 // This is required if we want to correctly match the behavior of method
50 // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
51 // of "consumed" processor resources and resource cycles, the logic in
52 // ExpandProcResource() doesn't update the number of resource cycles
53 // contributed by a "Super" resource to a group.
54 // We need to take this into account when we find that a processor resource is
55 // part of a group, and it is also used as the "Super" of other resources.
56 // This map stores the number of cycles contributed by sub-resources that are
57 // part of a "Super" resource. The key value is the "Super" resource mask ID.
58 DenseMap<uint64_t, unsigned> SuperResources;
60 unsigned NumProcResources = SM.getNumProcResourceKinds();
61 APInt Buffers(NumProcResources, 0);
63 bool AllInOrderResources = true;
64 bool AnyDispatchHazards = false;
65 for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
66 const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
67 const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
68 if (!PRE->Cycles) {
69 #ifndef NDEBUG
70 WithColor::warning()
71 << "Ignoring invalid write of zero cycles on processor resource "
72 << PR.Name << "\n";
73 WithColor::note() << "found in scheduling class " << SCDesc.Name
74 << " (write index #" << I << ")\n";
75 #endif
76 continue;
79 uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
80 if (PR.BufferSize < 0) {
81 AllInOrderResources = false;
82 } else {
83 Buffers.setBit(getResourceStateIndex(Mask));
84 AnyDispatchHazards |= (PR.BufferSize == 0);
85 AllInOrderResources &= (PR.BufferSize <= 1);
88 CycleSegment RCy(0, PRE->Cycles, false);
89 Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
90 if (PR.SuperIdx) {
91 uint64_t Super = ProcResourceMasks[PR.SuperIdx];
92 SuperResources[Super] += PRE->Cycles;
96 ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
98 // Sort elements by mask popcount, so that we prioritize resource units over
99 // resource groups, and smaller groups over larger groups.
100 sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
101 unsigned popcntA = countPopulation(A.first);
102 unsigned popcntB = countPopulation(B.first);
103 if (popcntA < popcntB)
104 return true;
105 if (popcntA > popcntB)
106 return false;
107 return A.first < B.first;
110 uint64_t UsedResourceUnits = 0;
111 uint64_t UsedResourceGroups = 0;
113 // Remove cycles contributed by smaller resources.
114 for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
115 ResourcePlusCycles &A = Worklist[I];
116 if (!A.second.size()) {
117 assert(countPopulation(A.first) > 1 && "Expected a group!");
118 UsedResourceGroups |= PowerOf2Floor(A.first);
119 continue;
122 ID.Resources.emplace_back(A);
123 uint64_t NormalizedMask = A.first;
124 if (countPopulation(A.first) == 1) {
125 UsedResourceUnits |= A.first;
126 } else {
127 // Remove the leading 1 from the resource group mask.
128 NormalizedMask ^= PowerOf2Floor(NormalizedMask);
129 UsedResourceGroups |= (A.first ^ NormalizedMask);
132 for (unsigned J = I + 1; J < E; ++J) {
133 ResourcePlusCycles &B = Worklist[J];
134 if ((NormalizedMask & B.first) == NormalizedMask) {
135 B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
136 if (countPopulation(B.first) > 1)
137 B.second.NumUnits++;
142 // A SchedWrite may specify a number of cycles in which a resource group
143 // is reserved. For example (on target x86; cpu Haswell):
145 // SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
146 // let ResourceCycles = [2, 2, 3];
147 // }
149 // This means:
150 // Resource units HWPort0 and HWPort1 are both used for 2cy.
151 // Resource group HWPort01 is the union of HWPort0 and HWPort1.
152 // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
153 // will not be usable for 2 entire cycles from instruction issue.
155 // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
156 // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
157 // extra delay on top of the 2 cycles latency.
158 // During those extra cycles, HWPort01 is not usable by other instructions.
159 for (ResourcePlusCycles &RPC : ID.Resources) {
160 if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
161 // Remove the leading 1 from the resource group mask.
162 uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
163 if ((Mask & UsedResourceUnits) == Mask)
164 RPC.second.setReserved();
168 // Identify extra buffers that are consumed through super resources.
169 for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
170 for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
171 const MCProcResourceDesc &PR = *SM.getProcResource(I);
172 if (PR.BufferSize == -1)
173 continue;
175 uint64_t Mask = ProcResourceMasks[I];
176 if (Mask != SR.first && ((Mask & SR.first) == SR.first))
177 Buffers.setBit(getResourceStateIndex(Mask));
181 ID.UsedBuffers = Buffers.getZExtValue();
182 ID.UsedProcResUnits = UsedResourceUnits;
183 ID.UsedProcResGroups = UsedResourceGroups;
185 LLVM_DEBUG({
186 for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
187 dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
188 << "Reserved=" << R.second.isReserved() << ", "
189 << "#Units=" << R.second.NumUnits << ", "
190 << "cy=" << R.second.size() << '\n';
191 uint64_t BufferIDs = ID.UsedBuffers;
192 while (BufferIDs) {
193 uint64_t Current = BufferIDs & (-BufferIDs);
194 dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
195 BufferIDs ^= Current;
197 dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
198 dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
199 << '\n';
203 static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
204 const MCSchedClassDesc &SCDesc,
205 const MCSubtargetInfo &STI) {
206 if (MCDesc.isCall()) {
207 // We cannot estimate how long this call will take.
208 // Artificially set an arbitrarily high latency (100cy).
209 ID.MaxLatency = 100U;
210 return;
213 int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
214 // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
215 ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
218 static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
219 // Count register definitions, and skip non register operands in the process.
220 unsigned I, E;
221 unsigned NumExplicitDefs = MCDesc.getNumDefs();
222 for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
223 const MCOperand &Op = MCI.getOperand(I);
224 if (Op.isReg())
225 --NumExplicitDefs;
228 if (NumExplicitDefs) {
229 return make_error<InstructionError<MCInst>>(
230 "Expected more register operand definitions.", MCI);
233 if (MCDesc.hasOptionalDef()) {
234 // Always assume that the optional definition is the last operand.
235 const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
236 if (I == MCI.getNumOperands() || !Op.isReg()) {
237 std::string Message =
238 "expected a register operand for an optional definition. Instruction "
239 "has not been correctly analyzed.";
240 return make_error<InstructionError<MCInst>>(Message, MCI);
244 return ErrorSuccess();
247 void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
248 unsigned SchedClassID) {
249 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
250 const MCSchedModel &SM = STI.getSchedModel();
251 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
253 // Assumptions made by this algorithm:
254 // 1. The number of explicit and implicit register definitions in a MCInst
255 // matches the number of explicit and implicit definitions according to
256 // the opcode descriptor (MCInstrDesc).
257 // 2. Uses start at index #(MCDesc.getNumDefs()).
258 // 3. There can only be a single optional register definition, an it is
259 // always the last operand of the sequence (excluding extra operands
260 // contributed by variadic opcodes).
262 // These assumptions work quite well for most out-of-order in-tree targets
263 // like x86. This is mainly because the vast majority of instructions is
264 // expanded to MCInst using a straightforward lowering logic that preserves
265 // the ordering of the operands.
267 // About assumption 1.
268 // The algorithm allows non-register operands between register operand
269 // definitions. This helps to handle some special ARM instructions with
270 // implicit operand increment (-mtriple=armv7):
272 // vld1.32 {d18, d19}, [r1]! @ <MCInst #1463 VLD1q32wb_fixed
273 // @ <MCOperand Reg:59>
274 // @ <MCOperand Imm:0> (!!)
275 // @ <MCOperand Reg:67>
276 // @ <MCOperand Imm:0>
277 // @ <MCOperand Imm:14>
278 // @ <MCOperand Reg:0>>
280 // MCDesc reports:
281 // 6 explicit operands.
282 // 1 optional definition
283 // 2 explicit definitions (!!)
285 // The presence of an 'Imm' operand between the two register definitions
286 // breaks the assumption that "register definitions are always at the
287 // beginning of the operand sequence".
289 // To workaround this issue, this algorithm ignores (i.e. skips) any
290 // non-register operands between register definitions. The optional
291 // definition is still at index #(NumOperands-1).
293 // According to assumption 2. register reads start at #(NumExplicitDefs-1).
294 // That means, register R1 from the example is both read and written.
295 unsigned NumExplicitDefs = MCDesc.getNumDefs();
296 unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
297 unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
298 unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
299 if (MCDesc.hasOptionalDef())
300 TotalDefs++;
302 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
303 ID.Writes.resize(TotalDefs + NumVariadicOps);
304 // Iterate over the operands list, and skip non-register operands.
305 // The first NumExplictDefs register operands are expected to be register
306 // definitions.
307 unsigned CurrentDef = 0;
308 unsigned i = 0;
309 for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
310 const MCOperand &Op = MCI.getOperand(i);
311 if (!Op.isReg())
312 continue;
314 WriteDescriptor &Write = ID.Writes[CurrentDef];
315 Write.OpIndex = i;
316 if (CurrentDef < NumWriteLatencyEntries) {
317 const MCWriteLatencyEntry &WLE =
318 *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
319 // Conservatively default to MaxLatency.
320 Write.Latency =
321 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
322 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
323 } else {
324 // Assign a default latency for this write.
325 Write.Latency = ID.MaxLatency;
326 Write.SClassOrWriteResourceID = 0;
328 Write.IsOptionalDef = false;
329 LLVM_DEBUG({
330 dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
331 << ", Latency=" << Write.Latency
332 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
334 CurrentDef++;
337 assert(CurrentDef == NumExplicitDefs &&
338 "Expected more register operand definitions.");
339 for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
340 unsigned Index = NumExplicitDefs + CurrentDef;
341 WriteDescriptor &Write = ID.Writes[Index];
342 Write.OpIndex = ~CurrentDef;
343 Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
344 if (Index < NumWriteLatencyEntries) {
345 const MCWriteLatencyEntry &WLE =
346 *STI.getWriteLatencyEntry(&SCDesc, Index);
347 // Conservatively default to MaxLatency.
348 Write.Latency =
349 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
350 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
351 } else {
352 // Assign a default latency for this write.
353 Write.Latency = ID.MaxLatency;
354 Write.SClassOrWriteResourceID = 0;
357 Write.IsOptionalDef = false;
358 assert(Write.RegisterID != 0 && "Expected a valid phys register!");
359 LLVM_DEBUG({
360 dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
361 << ", PhysReg=" << MRI.getName(Write.RegisterID)
362 << ", Latency=" << Write.Latency
363 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
367 if (MCDesc.hasOptionalDef()) {
368 WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
369 Write.OpIndex = MCDesc.getNumOperands() - 1;
370 // Assign a default latency for this write.
371 Write.Latency = ID.MaxLatency;
372 Write.SClassOrWriteResourceID = 0;
373 Write.IsOptionalDef = true;
374 LLVM_DEBUG({
375 dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
376 << ", Latency=" << Write.Latency
377 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
381 if (!NumVariadicOps)
382 return;
384 // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
385 // "unmodeledSideEffects', then this logic optimistically assumes that any
386 // extra register operands in the variadic sequence is not a register
387 // definition.
389 // Otherwise, we conservatively assume that any register operand from the
390 // variadic sequence is both a register read and a register write.
391 bool AssumeUsesOnly = MCDesc.mayStore() && !MCDesc.mayLoad() &&
392 !MCDesc.hasUnmodeledSideEffects();
393 CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
394 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
395 I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
396 const MCOperand &Op = MCI.getOperand(OpIndex);
397 if (!Op.isReg())
398 continue;
400 WriteDescriptor &Write = ID.Writes[CurrentDef];
401 Write.OpIndex = OpIndex;
402 // Assign a default latency for this write.
403 Write.Latency = ID.MaxLatency;
404 Write.SClassOrWriteResourceID = 0;
405 Write.IsOptionalDef = false;
406 ++CurrentDef;
407 LLVM_DEBUG({
408 dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
409 << ", Latency=" << Write.Latency
410 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
414 ID.Writes.resize(CurrentDef);
417 void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
418 unsigned SchedClassID) {
419 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
420 unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
421 unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
422 // Remove the optional definition.
423 if (MCDesc.hasOptionalDef())
424 --NumExplicitUses;
425 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
426 unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
427 ID.Reads.resize(TotalUses);
428 unsigned CurrentUse = 0;
429 for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
430 ++I, ++OpIndex) {
431 const MCOperand &Op = MCI.getOperand(OpIndex);
432 if (!Op.isReg())
433 continue;
435 ReadDescriptor &Read = ID.Reads[CurrentUse];
436 Read.OpIndex = OpIndex;
437 Read.UseIndex = I;
438 Read.SchedClassID = SchedClassID;
439 ++CurrentUse;
440 LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex
441 << ", UseIndex=" << Read.UseIndex << '\n');
444 // For the purpose of ReadAdvance, implicit uses come directly after explicit
445 // uses. The "UseIndex" must be updated according to that implicit layout.
446 for (unsigned I = 0; I < NumImplicitUses; ++I) {
447 ReadDescriptor &Read = ID.Reads[CurrentUse + I];
448 Read.OpIndex = ~I;
449 Read.UseIndex = NumExplicitUses + I;
450 Read.RegisterID = MCDesc.getImplicitUses()[I];
451 Read.SchedClassID = SchedClassID;
452 LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
453 << ", UseIndex=" << Read.UseIndex << ", RegisterID="
454 << MRI.getName(Read.RegisterID) << '\n');
457 CurrentUse += NumImplicitUses;
459 // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
460 // "unmodeledSideEffects", then this logic optimistically assumes that any
461 // extra register operands in the variadic sequence are not register
462 // definition.
464 bool AssumeDefsOnly = !MCDesc.mayStore() && MCDesc.mayLoad() &&
465 !MCDesc.hasUnmodeledSideEffects();
466 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
467 I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
468 const MCOperand &Op = MCI.getOperand(OpIndex);
469 if (!Op.isReg())
470 continue;
472 ReadDescriptor &Read = ID.Reads[CurrentUse];
473 Read.OpIndex = OpIndex;
474 Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
475 Read.SchedClassID = SchedClassID;
476 ++CurrentUse;
477 LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
478 << ", UseIndex=" << Read.UseIndex << '\n');
481 ID.Reads.resize(CurrentUse);
484 Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
485 const MCInst &MCI) const {
486 if (ID.NumMicroOps != 0)
487 return ErrorSuccess();
489 bool UsesMemory = ID.MayLoad || ID.MayStore;
490 bool UsesBuffers = ID.UsedBuffers;
491 bool UsesResources = !ID.Resources.empty();
492 if (!UsesMemory && !UsesBuffers && !UsesResources)
493 return ErrorSuccess();
495 StringRef Message;
496 if (UsesMemory) {
497 Message = "found an inconsistent instruction that decodes "
498 "into zero opcodes and that consumes load/store "
499 "unit resources.";
500 } else {
501 Message = "found an inconsistent instruction that decodes "
502 "to zero opcodes and that consumes scheduler "
503 "resources.";
506 return make_error<InstructionError<MCInst>>(Message, MCI);
509 Expected<const InstrDesc &>
510 InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
511 assert(STI.getSchedModel().hasInstrSchedModel() &&
512 "Itineraries are not yet supported!");
514 // Obtain the instruction descriptor from the opcode.
515 unsigned short Opcode = MCI.getOpcode();
516 const MCInstrDesc &MCDesc = MCII.get(Opcode);
517 const MCSchedModel &SM = STI.getSchedModel();
519 // Then obtain the scheduling class information from the instruction.
520 unsigned SchedClassID = MCDesc.getSchedClass();
521 bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
523 // Try to solve variant scheduling classes.
524 if (IsVariant) {
525 unsigned CPUID = SM.getProcessorID();
526 while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
527 SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);
529 if (!SchedClassID) {
530 return make_error<InstructionError<MCInst>>(
531 "unable to resolve scheduling class for write variant.", MCI);
535 // Check if this instruction is supported. Otherwise, report an error.
536 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
537 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
538 return make_error<InstructionError<MCInst>>(
539 "found an unsupported instruction in the input assembly sequence.",
540 MCI);
543 LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
544 LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
546 // Create a new empty descriptor.
547 std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
548 ID->NumMicroOps = SCDesc.NumMicroOps;
549 ID->SchedClassID = SchedClassID;
551 if (MCDesc.isCall() && FirstCallInst) {
552 // We don't correctly model calls.
553 WithColor::warning() << "found a call in the input assembly sequence.\n";
554 WithColor::note() << "call instructions are not correctly modeled. "
555 << "Assume a latency of 100cy.\n";
556 FirstCallInst = false;
559 if (MCDesc.isReturn() && FirstReturnInst) {
560 WithColor::warning() << "found a return instruction in the input"
561 << " assembly sequence.\n";
562 WithColor::note() << "program counter updates are ignored.\n";
563 FirstReturnInst = false;
566 ID->MayLoad = MCDesc.mayLoad();
567 ID->MayStore = MCDesc.mayStore();
568 ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
569 ID->BeginGroup = SCDesc.BeginGroup;
570 ID->EndGroup = SCDesc.EndGroup;
572 initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
573 computeMaxLatency(*ID, MCDesc, SCDesc, STI);
575 if (Error Err = verifyOperands(MCDesc, MCI))
576 return std::move(Err);
578 populateWrites(*ID, MCI, SchedClassID);
579 populateReads(*ID, MCI, SchedClassID);
581 LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
582 LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
584 // Sanity check on the instruction descriptor.
585 if (Error Err = verifyInstrDesc(*ID, MCI))
586 return std::move(Err);
588 // Now add the new descriptor.
589 bool IsVariadic = MCDesc.isVariadic();
590 if (!IsVariadic && !IsVariant) {
591 Descriptors[MCI.getOpcode()] = std::move(ID);
592 return *Descriptors[MCI.getOpcode()];
595 VariantDescriptors[&MCI] = std::move(ID);
596 return *VariantDescriptors[&MCI];
599 Expected<const InstrDesc &>
600 InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
601 if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
602 return *Descriptors[MCI.getOpcode()];
604 if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
605 return *VariantDescriptors[&MCI];
607 return createInstrDescImpl(MCI);
610 Expected<std::unique_ptr<Instruction>>
611 InstrBuilder::createInstruction(const MCInst &MCI) {
612 Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
613 if (!DescOrErr)
614 return DescOrErr.takeError();
615 const InstrDesc &D = *DescOrErr;
616 std::unique_ptr<Instruction> NewIS = std::make_unique<Instruction>(D);
618 // Check if this is a dependency breaking instruction.
619 APInt Mask;
621 bool IsZeroIdiom = false;
622 bool IsDepBreaking = false;
623 if (MCIA) {
624 unsigned ProcID = STI.getSchedModel().getProcessorID();
625 IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
626 IsDepBreaking =
627 IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
628 if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
629 NewIS->setOptimizableMove();
632 // Initialize Reads first.
633 for (const ReadDescriptor &RD : D.Reads) {
634 int RegID = -1;
635 if (!RD.isImplicitRead()) {
636 // explicit read.
637 const MCOperand &Op = MCI.getOperand(RD.OpIndex);
638 // Skip non-register operands.
639 if (!Op.isReg())
640 continue;
641 RegID = Op.getReg();
642 } else {
643 // Implicit read.
644 RegID = RD.RegisterID;
647 // Skip invalid register operands.
648 if (!RegID)
649 continue;
651 // Okay, this is a register operand. Create a ReadState for it.
652 assert(RegID > 0 && "Invalid register ID found!");
653 NewIS->getUses().emplace_back(RD, RegID);
654 ReadState &RS = NewIS->getUses().back();
656 if (IsDepBreaking) {
657 // A mask of all zeroes means: explicit input operands are not
658 // independent.
659 if (Mask.isNullValue()) {
660 if (!RD.isImplicitRead())
661 RS.setIndependentFromDef();
662 } else {
663 // Check if this register operand is independent according to `Mask`.
664 // Note that Mask may not have enough bits to describe all explicit and
665 // implicit input operands. If this register operand doesn't have a
666 // corresponding bit in Mask, then conservatively assume that it is
667 // dependent.
668 if (Mask.getBitWidth() > RD.UseIndex) {
669 // Okay. This map describe register use `RD.UseIndex`.
670 if (Mask[RD.UseIndex])
671 RS.setIndependentFromDef();
677 // Early exit if there are no writes.
678 if (D.Writes.empty())
679 return std::move(NewIS);
681 // Track register writes that implicitly clear the upper portion of the
682 // underlying super-registers using an APInt.
683 APInt WriteMask(D.Writes.size(), 0);
685 // Now query the MCInstrAnalysis object to obtain information about which
686 // register writes implicitly clear the upper portion of a super-register.
687 if (MCIA)
688 MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
690 // Initialize writes.
691 unsigned WriteIndex = 0;
692 for (const WriteDescriptor &WD : D.Writes) {
693 unsigned RegID = WD.isImplicitWrite() ? WD.RegisterID
694 : MCI.getOperand(WD.OpIndex).getReg();
695 // Check if this is a optional definition that references NoReg.
696 if (WD.IsOptionalDef && !RegID) {
697 ++WriteIndex;
698 continue;
701 assert(RegID && "Expected a valid register ID!");
702 NewIS->getDefs().emplace_back(WD, RegID,
703 /* ClearsSuperRegs */ WriteMask[WriteIndex],
704 /* WritesZero */ IsZeroIdiom);
705 ++WriteIndex;
708 return std::move(NewIS);
710 } // namespace mca
711 } // namespace llvm