1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Implement an interface to specify and query how an illegal operation on a
11 // given type should be expanded.
13 // Issues to be resolved:
15 // + Support weird types like i3, <7 x i3>, ...
16 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
18 //===----------------------------------------------------------------------===//
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
36 using namespace LegalizeActions
;
38 #define DEBUG_TYPE "legalizer-info"
40 cl::opt
<bool> llvm::DisableGISelLegalityCheck(
41 "disable-gisel-legality-check",
42 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
45 raw_ostream
&LegalityQuery::print(raw_ostream
&OS
) const {
46 OS
<< Opcode
<< ", Tys={";
47 for (const auto &Type
: Types
) {
52 OS
<< Opcode
<< ", MMOs={";
53 for (const auto &MMODescr
: MMODescrs
) {
54 OS
<< MMODescr
.Size
<< ", ";
61 LegalizeActionStep
LegalizeRuleSet::apply(const LegalityQuery
&Query
) const {
62 LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query
.print(dbgs());
65 LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
66 return {LegalizeAction::UseLegacyRules
, 0, LLT
{}};
68 for (const auto &Rule
: Rules
) {
69 if (Rule
.match(Query
)) {
70 LLVM_DEBUG(dbgs() << ".. match\n");
71 std::pair
<unsigned, LLT
> Mutation
= Rule
.determineMutation(Query
);
72 LLVM_DEBUG(dbgs() << ".. .. " << (unsigned)Rule
.getAction() << ", "
73 << Mutation
.first
<< ", " << Mutation
.second
<< "\n");
74 assert((Query
.Types
[Mutation
.first
] != Mutation
.second
||
75 Rule
.getAction() == Lower
||
76 Rule
.getAction() == MoreElements
||
77 Rule
.getAction() == FewerElements
) &&
78 "Simple loop detected");
79 return {Rule
.getAction(), Mutation
.first
, Mutation
.second
};
81 LLVM_DEBUG(dbgs() << ".. no match\n");
83 LLVM_DEBUG(dbgs() << ".. unsupported\n");
84 return {LegalizeAction::Unsupported
, 0, LLT
{}};
87 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs
) const {
91 dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
94 const int64_t FirstUncovered
= TypeIdxsCovered
.find_first_unset();
95 if (FirstUncovered
< 0) {
96 LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
97 " user-defined predicate detected\n");
100 const bool AllCovered
= (FirstUncovered
>= NumTypeIdxs
);
101 LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
102 << ", " << (AllCovered
? "OK" : "FAIL") << "\n");
109 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
111 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
112 // fundamental load/store Jakob proposed. Once loads & stores are supported.
113 setScalarAction(TargetOpcode::G_ANYEXT
, 1, {{1, Legal
}});
114 setScalarAction(TargetOpcode::G_ZEXT
, 1, {{1, Legal
}});
115 setScalarAction(TargetOpcode::G_SEXT
, 1, {{1, Legal
}});
116 setScalarAction(TargetOpcode::G_TRUNC
, 0, {{1, Legal
}});
117 setScalarAction(TargetOpcode::G_TRUNC
, 1, {{1, Legal
}});
119 setScalarAction(TargetOpcode::G_INTRINSIC
, 0, {{1, Legal
}});
120 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
, 0, {{1, Legal
}});
122 setLegalizeScalarToDifferentSizeStrategy(
123 TargetOpcode::G_IMPLICIT_DEF
, 0, narrowToSmallerAndUnsupportedIfTooSmall
);
124 setLegalizeScalarToDifferentSizeStrategy(
125 TargetOpcode::G_ADD
, 0, widenToLargerTypesAndNarrowToLargest
);
126 setLegalizeScalarToDifferentSizeStrategy(
127 TargetOpcode::G_OR
, 0, widenToLargerTypesAndNarrowToLargest
);
128 setLegalizeScalarToDifferentSizeStrategy(
129 TargetOpcode::G_LOAD
, 0, narrowToSmallerAndUnsupportedIfTooSmall
);
130 setLegalizeScalarToDifferentSizeStrategy(
131 TargetOpcode::G_STORE
, 0, narrowToSmallerAndUnsupportedIfTooSmall
);
133 setLegalizeScalarToDifferentSizeStrategy(
134 TargetOpcode::G_BRCOND
, 0, widenToLargerTypesUnsupportedOtherwise
);
135 setLegalizeScalarToDifferentSizeStrategy(
136 TargetOpcode::G_INSERT
, 0, narrowToSmallerAndUnsupportedIfTooSmall
);
137 setLegalizeScalarToDifferentSizeStrategy(
138 TargetOpcode::G_EXTRACT
, 0, narrowToSmallerAndUnsupportedIfTooSmall
);
139 setLegalizeScalarToDifferentSizeStrategy(
140 TargetOpcode::G_EXTRACT
, 1, narrowToSmallerAndUnsupportedIfTooSmall
);
141 setScalarAction(TargetOpcode::G_FNEG
, 0, {{1, Lower
}});
144 void LegalizerInfo::computeTables() {
145 assert(TablesInitialized
== false);
147 for (unsigned OpcodeIdx
= 0; OpcodeIdx
<= LastOp
- FirstOp
; ++OpcodeIdx
) {
148 const unsigned Opcode
= FirstOp
+ OpcodeIdx
;
149 for (unsigned TypeIdx
= 0; TypeIdx
!= SpecifiedActions
[OpcodeIdx
].size();
151 // 0. Collect information specified through the setAction API, i.e.
152 // for specific bit sizes.
154 SizeAndActionsVec ScalarSpecifiedActions
;
155 // For pointer types:
156 std::map
<uint16_t, SizeAndActionsVec
> AddressSpace2SpecifiedActions
;
158 std::map
<uint16_t, SizeAndActionsVec
> ElemSize2SpecifiedActions
;
159 for (auto LLT2Action
: SpecifiedActions
[OpcodeIdx
][TypeIdx
]) {
160 const LLT Type
= LLT2Action
.first
;
161 const LegalizeAction Action
= LLT2Action
.second
;
163 auto SizeAction
= std::make_pair(Type
.getSizeInBits(), Action
);
164 if (Type
.isPointer())
165 AddressSpace2SpecifiedActions
[Type
.getAddressSpace()].push_back(
167 else if (Type
.isVector())
168 ElemSize2SpecifiedActions
[Type
.getElementType().getSizeInBits()]
169 .push_back(SizeAction
);
171 ScalarSpecifiedActions
.push_back(SizeAction
);
174 // 1. Handle scalar types
176 // Decide how to handle bit sizes for which no explicit specification
178 SizeChangeStrategy S
= &unsupportedForDifferentSizes
;
179 if (TypeIdx
< ScalarSizeChangeStrategies
[OpcodeIdx
].size() &&
180 ScalarSizeChangeStrategies
[OpcodeIdx
][TypeIdx
] != nullptr)
181 S
= ScalarSizeChangeStrategies
[OpcodeIdx
][TypeIdx
];
182 llvm::sort(ScalarSpecifiedActions
.begin(),
183 ScalarSpecifiedActions
.end());
184 checkPartialSizeAndActionsVector(ScalarSpecifiedActions
);
185 setScalarAction(Opcode
, TypeIdx
, S(ScalarSpecifiedActions
));
188 // 2. Handle pointer types
189 for (auto PointerSpecifiedActions
: AddressSpace2SpecifiedActions
) {
190 llvm::sort(PointerSpecifiedActions
.second
.begin(),
191 PointerSpecifiedActions
.second
.end());
192 checkPartialSizeAndActionsVector(PointerSpecifiedActions
.second
);
193 // For pointer types, we assume that there isn't a meaningfull way
194 // to change the number of bits used in the pointer.
196 Opcode
, TypeIdx
, PointerSpecifiedActions
.first
,
197 unsupportedForDifferentSizes(PointerSpecifiedActions
.second
));
200 // 3. Handle vector types
201 SizeAndActionsVec ElementSizesSeen
;
202 for (auto VectorSpecifiedActions
: ElemSize2SpecifiedActions
) {
203 llvm::sort(VectorSpecifiedActions
.second
.begin(),
204 VectorSpecifiedActions
.second
.end());
205 const uint16_t ElementSize
= VectorSpecifiedActions
.first
;
206 ElementSizesSeen
.push_back({ElementSize
, Legal
});
207 checkPartialSizeAndActionsVector(VectorSpecifiedActions
.second
);
208 // For vector types, we assume that the best way to adapt the number
209 // of elements is to the next larger number of elements type for which
210 // the vector type is legal, unless there is no such type. In that case,
211 // legalize towards a vector type with a smaller number of elements.
212 SizeAndActionsVec NumElementsActions
;
213 for (SizeAndAction BitsizeAndAction
: VectorSpecifiedActions
.second
) {
214 assert(BitsizeAndAction
.first
% ElementSize
== 0);
215 const uint16_t NumElements
= BitsizeAndAction
.first
/ ElementSize
;
216 NumElementsActions
.push_back({NumElements
, BitsizeAndAction
.second
});
218 setVectorNumElementAction(
219 Opcode
, TypeIdx
, ElementSize
,
220 moreToWiderTypesAndLessToWidest(NumElementsActions
));
222 llvm::sort(ElementSizesSeen
);
223 SizeChangeStrategy VectorElementSizeChangeStrategy
=
224 &unsupportedForDifferentSizes
;
225 if (TypeIdx
< VectorElementSizeChangeStrategies
[OpcodeIdx
].size() &&
226 VectorElementSizeChangeStrategies
[OpcodeIdx
][TypeIdx
] != nullptr)
227 VectorElementSizeChangeStrategy
=
228 VectorElementSizeChangeStrategies
[OpcodeIdx
][TypeIdx
];
229 setScalarInVectorAction(
230 Opcode
, TypeIdx
, VectorElementSizeChangeStrategy(ElementSizesSeen
));
234 TablesInitialized
= true;
237 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
238 // probably going to need specialized lookup structures for various types before
239 // we have any hope of doing well with something like <13 x i3>. Even the common
240 // cases should do better than what we have now.
241 std::pair
<LegalizeAction
, LLT
>
242 LegalizerInfo::getAspectAction(const InstrAspect
&Aspect
) const {
243 assert(TablesInitialized
&& "backend forgot to call computeTables");
244 // These *have* to be implemented for now, they're the fundamental basis of
245 // how everything else is transformed.
246 if (Aspect
.Type
.isScalar() || Aspect
.Type
.isPointer())
247 return findScalarLegalAction(Aspect
);
248 assert(Aspect
.Type
.isVector());
249 return findVectorLegalAction(Aspect
);
252 /// Helper function to get LLT for the given type index.
253 static LLT
getTypeFromTypeIdx(const MachineInstr
&MI
,
254 const MachineRegisterInfo
&MRI
, unsigned OpIdx
,
256 assert(TypeIdx
< MI
.getNumOperands() && "Unexpected TypeIdx");
257 // G_UNMERGE_VALUES has variable number of operands, but there is only
258 // one source type and one destination type as all destinations must be the
259 // same type. So, get the last operand if TypeIdx == 1.
260 if (MI
.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& TypeIdx
== 1)
261 return MRI
.getType(MI
.getOperand(MI
.getNumOperands() - 1).getReg());
262 return MRI
.getType(MI
.getOperand(OpIdx
).getReg());
265 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode
) const {
266 assert(Opcode
>= FirstOp
&& Opcode
<= LastOp
&& "Unsupported opcode");
267 return Opcode
- FirstOp
;
270 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode
) const {
271 unsigned OpcodeIdx
= getOpcodeIdxForOpcode(Opcode
);
272 if (unsigned Alias
= RulesForOpcode
[OpcodeIdx
].getAlias()) {
273 LLVM_DEBUG(dbgs() << ".. opcode " << Opcode
<< " is aliased to " << Alias
275 OpcodeIdx
= getOpcodeIdxForOpcode(Alias
);
276 LLVM_DEBUG(dbgs() << ".. opcode " << Alias
<< " is aliased to "
277 << RulesForOpcode
[OpcodeIdx
].getAlias() << "\n");
278 assert(RulesForOpcode
[OpcodeIdx
].getAlias() == 0 && "Cannot chain aliases");
284 const LegalizeRuleSet
&
285 LegalizerInfo::getActionDefinitions(unsigned Opcode
) const {
286 unsigned OpcodeIdx
= getActionDefinitionsIdx(Opcode
);
287 return RulesForOpcode
[OpcodeIdx
];
290 LegalizeRuleSet
&LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode
) {
291 unsigned OpcodeIdx
= getActionDefinitionsIdx(Opcode
);
292 auto &Result
= RulesForOpcode
[OpcodeIdx
];
293 assert(!Result
.isAliasedByAnother() && "Modifying this opcode will modify aliases");
297 LegalizeRuleSet
&LegalizerInfo::getActionDefinitionsBuilder(
298 std::initializer_list
<unsigned> Opcodes
) {
299 unsigned Representative
= *Opcodes
.begin();
301 assert(Opcodes
.begin() != Opcodes
.end() &&
302 Opcodes
.begin() + 1 != Opcodes
.end() &&
303 "Initializer list must have at least two opcodes");
305 for (auto I
= Opcodes
.begin() + 1, E
= Opcodes
.end(); I
!= E
; ++I
)
306 aliasActionDefinitions(Representative
, *I
);
308 auto &Return
= getActionDefinitionsBuilder(Representative
);
309 Return
.setIsAliasedByAnother();
313 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo
,
314 unsigned OpcodeFrom
) {
315 assert(OpcodeTo
!= OpcodeFrom
&& "Cannot alias to self");
316 assert(OpcodeTo
>= FirstOp
&& OpcodeTo
<= LastOp
&& "Unsupported opcode");
317 const unsigned OpcodeFromIdx
= getOpcodeIdxForOpcode(OpcodeFrom
);
318 RulesForOpcode
[OpcodeFromIdx
].aliasTo(OpcodeTo
);
322 LegalizerInfo::getAction(const LegalityQuery
&Query
) const {
323 LegalizeActionStep Step
= getActionDefinitions(Query
.Opcode
).apply(Query
);
324 if (Step
.Action
!= LegalizeAction::UseLegacyRules
) {
328 for (unsigned i
= 0; i
< Query
.Types
.size(); ++i
) {
329 auto Action
= getAspectAction({Query
.Opcode
, i
, Query
.Types
[i
]});
330 if (Action
.first
!= Legal
) {
331 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i
332 << " Action=" << (unsigned)Action
.first
<< ", "
333 << Action
.second
<< "\n");
334 return {Action
.first
, i
, Action
.second
};
336 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i
<< " Legal\n");
338 LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
339 return {Legal
, 0, LLT
{}};
343 LegalizerInfo::getAction(const MachineInstr
&MI
,
344 const MachineRegisterInfo
&MRI
) const {
345 SmallVector
<LLT
, 2> Types
;
346 SmallBitVector
SeenTypes(8);
347 const MCOperandInfo
*OpInfo
= MI
.getDesc().OpInfo
;
348 // FIXME: probably we'll need to cache the results here somehow?
349 for (unsigned i
= 0; i
< MI
.getDesc().getNumOperands(); ++i
) {
350 if (!OpInfo
[i
].isGenericType())
353 // We must only record actions once for each TypeIdx; otherwise we'd
354 // try to legalize operands multiple times down the line.
355 unsigned TypeIdx
= OpInfo
[i
].getGenericTypeIndex();
356 if (SeenTypes
[TypeIdx
])
359 SeenTypes
.set(TypeIdx
);
361 LLT Ty
= getTypeFromTypeIdx(MI
, MRI
, i
, TypeIdx
);
365 SmallVector
<LegalityQuery::MemDesc
, 2> MemDescrs
;
366 for (const auto &MMO
: MI
.memoperands())
368 {MMO
->getSize() /* in bytes */ * 8, MMO
->getOrdering()});
370 return getAction({MI
.getOpcode(), Types
, MemDescrs
});
373 bool LegalizerInfo::isLegal(const MachineInstr
&MI
,
374 const MachineRegisterInfo
&MRI
) const {
375 return getAction(MI
, MRI
).Action
== Legal
;
378 bool LegalizerInfo::legalizeCustom(MachineInstr
&MI
, MachineRegisterInfo
&MRI
,
379 MachineIRBuilder
&MIRBuilder
) const {
383 LegalizerInfo::SizeAndActionsVec
384 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
385 const SizeAndActionsVec
&v
, LegalizeAction IncreaseAction
,
386 LegalizeAction DecreaseAction
) {
387 SizeAndActionsVec result
;
388 unsigned LargestSizeSoFar
= 0;
389 if (v
.size() >= 1 && v
[0].first
!= 1)
390 result
.push_back({1, IncreaseAction
});
391 for (size_t i
= 0; i
< v
.size(); ++i
) {
392 result
.push_back(v
[i
]);
393 LargestSizeSoFar
= v
[i
].first
;
394 if (i
+ 1 < v
.size() && v
[i
+ 1].first
!= v
[i
].first
+ 1) {
395 result
.push_back({LargestSizeSoFar
+ 1, IncreaseAction
});
396 LargestSizeSoFar
= v
[i
].first
+ 1;
399 result
.push_back({LargestSizeSoFar
+ 1, DecreaseAction
});
403 LegalizerInfo::SizeAndActionsVec
404 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
405 const SizeAndActionsVec
&v
, LegalizeAction DecreaseAction
,
406 LegalizeAction IncreaseAction
) {
407 SizeAndActionsVec result
;
408 if (v
.size() == 0 || v
[0].first
!= 1)
409 result
.push_back({1, IncreaseAction
});
410 for (size_t i
= 0; i
< v
.size(); ++i
) {
411 result
.push_back(v
[i
]);
412 if (i
+ 1 == v
.size() || v
[i
+ 1].first
!= v
[i
].first
+ 1) {
413 result
.push_back({v
[i
].first
+ 1, DecreaseAction
});
419 LegalizerInfo::SizeAndAction
420 LegalizerInfo::findAction(const SizeAndActionsVec
&Vec
, const uint32_t Size
) {
422 // Find the last element in Vec that has a bitsize equal to or smaller than
423 // the requested bit size.
424 // That is the element just before the first element that is bigger than Size.
425 auto VecIt
= std::upper_bound(
426 Vec
.begin(), Vec
.end(), Size
,
427 [](const uint32_t Size
, const SizeAndAction lhs
) -> bool {
428 return Size
< lhs
.first
;
430 assert(VecIt
!= Vec
.begin() && "Does Vec not start with size 1?");
432 int VecIdx
= VecIt
- Vec
.begin();
434 LegalizeAction Action
= Vec
[VecIdx
].second
;
440 return {Size
, Action
};
442 // FIXME: is this special case still needed and correct?
443 // Special case for scalarization:
444 if (Vec
== SizeAndActionsVec({{1, FewerElements
}}))
445 return {1, FewerElements
};
448 // The following needs to be a loop, as for now, we do allow needing to
449 // go over "Unsupported" bit sizes before finding a legalizable bit size.
450 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
451 // we need to iterate over s9, and then to s32 to return (s32, Legal).
452 // If we want to get rid of the below loop, we should have stronger asserts
453 // when building the SizeAndActionsVecs, probably not allowing
454 // "Unsupported" unless at the ends of the vector.
455 for (int i
= VecIdx
- 1; i
>= 0; --i
)
456 if (!needsLegalizingToDifferentSize(Vec
[i
].second
) &&
457 Vec
[i
].second
!= Unsupported
)
458 return {Vec
[i
].first
, Action
};
459 llvm_unreachable("");
463 // See above, the following needs to be a loop, at least for now.
464 for (std::size_t i
= VecIdx
+ 1; i
< Vec
.size(); ++i
)
465 if (!needsLegalizingToDifferentSize(Vec
[i
].second
) &&
466 Vec
[i
].second
!= Unsupported
)
467 return {Vec
[i
].first
, Action
};
468 llvm_unreachable("");
471 return {Size
, Unsupported
};
474 llvm_unreachable("NotFound");
476 llvm_unreachable("Action has an unknown enum value");
479 std::pair
<LegalizeAction
, LLT
>
480 LegalizerInfo::findScalarLegalAction(const InstrAspect
&Aspect
) const {
481 assert(Aspect
.Type
.isScalar() || Aspect
.Type
.isPointer());
482 if (Aspect
.Opcode
< FirstOp
|| Aspect
.Opcode
> LastOp
)
483 return {NotFound
, LLT()};
484 const unsigned OpcodeIdx
= getOpcodeIdxForOpcode(Aspect
.Opcode
);
485 if (Aspect
.Type
.isPointer() &&
486 AddrSpace2PointerActions
[OpcodeIdx
].find(Aspect
.Type
.getAddressSpace()) ==
487 AddrSpace2PointerActions
[OpcodeIdx
].end()) {
488 return {NotFound
, LLT()};
490 const SmallVector
<SizeAndActionsVec
, 1> &Actions
=
491 Aspect
.Type
.isPointer()
492 ? AddrSpace2PointerActions
[OpcodeIdx
]
493 .find(Aspect
.Type
.getAddressSpace())
495 : ScalarActions
[OpcodeIdx
];
496 if (Aspect
.Idx
>= Actions
.size())
497 return {NotFound
, LLT()};
498 const SizeAndActionsVec
&Vec
= Actions
[Aspect
.Idx
];
499 // FIXME: speed up this search, e.g. by using a results cache for repeated
501 auto SizeAndAction
= findAction(Vec
, Aspect
.Type
.getSizeInBits());
502 return {SizeAndAction
.second
,
503 Aspect
.Type
.isScalar() ? LLT::scalar(SizeAndAction
.first
)
504 : LLT::pointer(Aspect
.Type
.getAddressSpace(),
505 SizeAndAction
.first
)};
508 std::pair
<LegalizeAction
, LLT
>
509 LegalizerInfo::findVectorLegalAction(const InstrAspect
&Aspect
) const {
510 assert(Aspect
.Type
.isVector());
511 // First legalize the vector element size, then legalize the number of
512 // lanes in the vector.
513 if (Aspect
.Opcode
< FirstOp
|| Aspect
.Opcode
> LastOp
)
514 return {NotFound
, Aspect
.Type
};
515 const unsigned OpcodeIdx
= getOpcodeIdxForOpcode(Aspect
.Opcode
);
516 const unsigned TypeIdx
= Aspect
.Idx
;
517 if (TypeIdx
>= ScalarInVectorActions
[OpcodeIdx
].size())
518 return {NotFound
, Aspect
.Type
};
519 const SizeAndActionsVec
&ElemSizeVec
=
520 ScalarInVectorActions
[OpcodeIdx
][TypeIdx
];
522 LLT IntermediateType
;
523 auto ElementSizeAndAction
=
524 findAction(ElemSizeVec
, Aspect
.Type
.getScalarSizeInBits());
526 LLT::vector(Aspect
.Type
.getNumElements(), ElementSizeAndAction
.first
);
527 if (ElementSizeAndAction
.second
!= Legal
)
528 return {ElementSizeAndAction
.second
, IntermediateType
};
530 auto i
= NumElements2Actions
[OpcodeIdx
].find(
531 IntermediateType
.getScalarSizeInBits());
532 if (i
== NumElements2Actions
[OpcodeIdx
].end()) {
533 return {NotFound
, IntermediateType
};
535 const SizeAndActionsVec
&NumElementsVec
= (*i
).second
[TypeIdx
];
536 auto NumElementsAndAction
=
537 findAction(NumElementsVec
, IntermediateType
.getNumElements());
538 return {NumElementsAndAction
.second
,
539 LLT::vector(NumElementsAndAction
.first
,
540 IntermediateType
.getScalarSizeInBits())};
543 /// \pre Type indices of every opcode form a dense set starting from 0.
544 void LegalizerInfo::verify(const MCInstrInfo
&MII
) const {
546 std::vector
<unsigned> FailedOpcodes
;
547 for (unsigned Opcode
= FirstOp
; Opcode
<= LastOp
; ++Opcode
) {
548 const MCInstrDesc
&MCID
= MII
.get(Opcode
);
549 const unsigned NumTypeIdxs
= std::accumulate(
550 MCID
.opInfo_begin(), MCID
.opInfo_end(), 0U,
551 [](unsigned Acc
, const MCOperandInfo
&OpInfo
) {
552 return OpInfo
.isGenericType()
553 ? std::max(OpInfo
.getGenericTypeIndex() + 1U, Acc
)
556 LLVM_DEBUG(dbgs() << MII
.getName(Opcode
) << " (opcode " << Opcode
557 << "): " << NumTypeIdxs
<< " type ind"
558 << (NumTypeIdxs
== 1 ? "ex" : "ices") << "\n");
559 const LegalizeRuleSet
&RuleSet
= getActionDefinitions(Opcode
);
560 if (!RuleSet
.verifyTypeIdxsCoverage(NumTypeIdxs
))
561 FailedOpcodes
.push_back(Opcode
);
563 if (!FailedOpcodes
.empty()) {
564 errs() << "The following opcodes have ill-defined legalization rules:";
565 for (unsigned Opcode
: FailedOpcodes
)
566 errs() << " " << MII
.getName(Opcode
);
569 report_fatal_error("ill-defined LegalizerInfo"
570 ", try -debug-only=legalizer-info for details");
576 // FIXME: This should be in the MachineVerifier, but it can't use the
577 // LegalizerInfo as it's currently in the separate GlobalISel library.
578 // Note that RegBankSelected property already checked in the verifier
579 // has the same layering problem, but we only use inline methods so
580 // end up not needing to link against the GlobalISel library.
581 const MachineInstr
*llvm::machineFunctionIsIllegal(const MachineFunction
&MF
) {
582 if (const LegalizerInfo
*MLI
= MF
.getSubtarget().getLegalizerInfo()) {
583 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
584 for (const MachineBasicBlock
&MBB
: MF
)
585 for (const MachineInstr
&MI
: MBB
)
586 if (isPreISelGenericOpcode(MI
.getOpcode()) && !MLI
->isLegal(MI
, MRI
))