[ARM] Fix for MVE VPT block pass
[llvm-complete.git] / utils / TableGen / CodeGenDAGPatterns.h
blob2b49a64c3f1d685f959094989fcbe0144a6e1d04
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17 #include "CodeGenHwModes.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenTarget.h"
20 #include "SDNodeProperties.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <array>
29 #include <functional>
30 #include <map>
31 #include <numeric>
32 #include <set>
33 #include <vector>
35 namespace llvm {
37 class Record;
38 class Init;
39 class ListInit;
40 class DagInit;
41 class SDNodeInfo;
42 class TreePattern;
43 class TreePatternNode;
44 class CodeGenDAGPatterns;
45 class ComplexPattern;
47 /// Shared pointer for TreePatternNode.
48 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
50 /// This represents a set of MVTs. Since the underlying type for the MVT
51 /// is uint8_t, there are at most 256 values. To reduce the number of memory
52 /// allocations and deallocations, represent the set as a sequence of bits.
53 /// To reduce the allocations even further, make MachineValueTypeSet own
54 /// the storage and use std::array as the bit container.
55 struct MachineValueTypeSet {
56 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
57 uint8_t>::value,
58 "Change uint8_t here to the SimpleValueType's type");
59 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
60 using WordType = uint64_t;
61 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
62 static unsigned constexpr NumWords = Capacity/WordWidth;
63 static_assert(NumWords*WordWidth == Capacity,
64 "Capacity should be a multiple of WordWidth");
66 LLVM_ATTRIBUTE_ALWAYS_INLINE
67 MachineValueTypeSet() {
68 clear();
71 LLVM_ATTRIBUTE_ALWAYS_INLINE
72 unsigned size() const {
73 unsigned Count = 0;
74 for (WordType W : Words)
75 Count += countPopulation(W);
76 return Count;
78 LLVM_ATTRIBUTE_ALWAYS_INLINE
79 void clear() {
80 std::memset(Words.data(), 0, NumWords*sizeof(WordType));
82 LLVM_ATTRIBUTE_ALWAYS_INLINE
83 bool empty() const {
84 for (WordType W : Words)
85 if (W != 0)
86 return false;
87 return true;
89 LLVM_ATTRIBUTE_ALWAYS_INLINE
90 unsigned count(MVT T) const {
91 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
93 std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
94 bool V = count(T.SimpleTy);
95 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
96 return {*this, V};
98 MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
99 for (unsigned i = 0; i != NumWords; ++i)
100 Words[i] |= S.Words[i];
101 return *this;
103 LLVM_ATTRIBUTE_ALWAYS_INLINE
104 void erase(MVT T) {
105 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
108 struct const_iterator {
109 // Some implementations of the C++ library require these traits to be
110 // defined.
111 using iterator_category = std::forward_iterator_tag;
112 using value_type = MVT;
113 using difference_type = ptrdiff_t;
114 using pointer = const MVT*;
115 using reference = const MVT&;
117 LLVM_ATTRIBUTE_ALWAYS_INLINE
118 MVT operator*() const {
119 assert(Pos != Capacity);
120 return MVT::SimpleValueType(Pos);
122 LLVM_ATTRIBUTE_ALWAYS_INLINE
123 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
124 Pos = End ? Capacity : find_from_pos(0);
126 LLVM_ATTRIBUTE_ALWAYS_INLINE
127 const_iterator &operator++() {
128 assert(Pos != Capacity);
129 Pos = find_from_pos(Pos+1);
130 return *this;
133 LLVM_ATTRIBUTE_ALWAYS_INLINE
134 bool operator==(const const_iterator &It) const {
135 return Set == It.Set && Pos == It.Pos;
137 LLVM_ATTRIBUTE_ALWAYS_INLINE
138 bool operator!=(const const_iterator &It) const {
139 return !operator==(It);
142 private:
143 unsigned find_from_pos(unsigned P) const {
144 unsigned SkipWords = P / WordWidth;
145 unsigned SkipBits = P % WordWidth;
146 unsigned Count = SkipWords * WordWidth;
148 // If P is in the middle of a word, process it manually here, because
149 // the trailing bits need to be masked off to use findFirstSet.
150 if (SkipBits != 0) {
151 WordType W = Set->Words[SkipWords];
152 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
153 if (W != 0)
154 return Count + findFirstSet(W);
155 Count += WordWidth;
156 SkipWords++;
159 for (unsigned i = SkipWords; i != NumWords; ++i) {
160 WordType W = Set->Words[i];
161 if (W != 0)
162 return Count + findFirstSet(W);
163 Count += WordWidth;
165 return Capacity;
168 const MachineValueTypeSet *Set;
169 unsigned Pos;
172 LLVM_ATTRIBUTE_ALWAYS_INLINE
173 const_iterator begin() const { return const_iterator(this, false); }
174 LLVM_ATTRIBUTE_ALWAYS_INLINE
175 const_iterator end() const { return const_iterator(this, true); }
177 LLVM_ATTRIBUTE_ALWAYS_INLINE
178 bool operator==(const MachineValueTypeSet &S) const {
179 return Words == S.Words;
181 LLVM_ATTRIBUTE_ALWAYS_INLINE
182 bool operator!=(const MachineValueTypeSet &S) const {
183 return !operator==(S);
186 private:
187 friend struct const_iterator;
188 std::array<WordType,NumWords> Words;
191 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
192 using SetType = MachineValueTypeSet;
193 std::vector<unsigned> AddrSpaces;
195 TypeSetByHwMode() = default;
196 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
197 TypeSetByHwMode(MVT::SimpleValueType VT)
198 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
199 TypeSetByHwMode(ValueTypeByHwMode VT)
200 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
201 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
203 SetType &getOrCreate(unsigned Mode) {
204 if (hasMode(Mode))
205 return get(Mode);
206 return Map.insert({Mode,SetType()}).first->second;
209 bool isValueTypeByHwMode(bool AllowEmpty) const;
210 ValueTypeByHwMode getValueTypeByHwMode() const;
212 LLVM_ATTRIBUTE_ALWAYS_INLINE
213 bool isMachineValueType() const {
214 return isDefaultOnly() && Map.begin()->second.size() == 1;
217 LLVM_ATTRIBUTE_ALWAYS_INLINE
218 MVT getMachineValueType() const {
219 assert(isMachineValueType());
220 return *Map.begin()->second.begin();
223 bool isPossible() const;
225 LLVM_ATTRIBUTE_ALWAYS_INLINE
226 bool isDefaultOnly() const {
227 return Map.size() == 1 && Map.begin()->first == DefaultMode;
230 bool isPointer() const {
231 return getValueTypeByHwMode().isPointer();
234 unsigned getPtrAddrSpace() const {
235 assert(isPointer());
236 return getValueTypeByHwMode().PtrAddrSpace;
239 bool insert(const ValueTypeByHwMode &VVT);
240 bool constrain(const TypeSetByHwMode &VTS);
241 template <typename Predicate> bool constrain(Predicate P);
242 template <typename Predicate>
243 bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
245 void writeToStream(raw_ostream &OS) const;
246 static void writeToStream(const SetType &S, raw_ostream &OS);
248 bool operator==(const TypeSetByHwMode &VTS) const;
249 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
251 void dump() const;
252 bool validate() const;
254 private:
255 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
256 /// Intersect two sets. Return true if anything has changed.
257 bool intersect(SetType &Out, const SetType &In);
260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
262 struct TypeInfer {
263 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
265 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
266 return VTS.isValueTypeByHwMode(AllowEmpty);
268 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
269 bool AllowEmpty) const {
270 assert(VTS.isValueTypeByHwMode(AllowEmpty));
271 return VTS.getValueTypeByHwMode();
274 /// The protocol in the following functions (Merge*, force*, Enforce*,
275 /// expand*) is to return "true" if a change has been made, "false"
276 /// otherwise.
278 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
279 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
280 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
282 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
283 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
286 /// Reduce the set \p Out to have at most one element for each mode.
287 bool forceArbitrary(TypeSetByHwMode &Out);
289 /// The following four functions ensure that upon return the set \p Out
290 /// will only contain types of the specified kind: integer, floating-point,
291 /// scalar, or vector.
292 /// If \p Out is empty, all legal types of the specified kind will be added
293 /// to it. Otherwise, all types that are not of the specified kind will be
294 /// removed from \p Out.
295 bool EnforceInteger(TypeSetByHwMode &Out);
296 bool EnforceFloatingPoint(TypeSetByHwMode &Out);
297 bool EnforceScalar(TypeSetByHwMode &Out);
298 bool EnforceVector(TypeSetByHwMode &Out);
300 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
301 /// unchanged.
302 bool EnforceAny(TypeSetByHwMode &Out);
303 /// Make sure that for each type in \p Small, there exists a larger type
304 /// in \p Big.
305 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
306 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
307 /// for each type U in \p Elem, U is a scalar type.
308 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
309 /// (vector) type T in \p Vec, such that U is the element type of T.
310 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
311 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
312 const ValueTypeByHwMode &VVT);
313 /// Ensure that for each type T in \p Sub, T is a vector type, and there
314 /// exists a type U in \p Vec such that U is a vector type with the same
315 /// element type as T and at least as many elements as T.
316 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
317 TypeSetByHwMode &Sub);
318 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
319 /// 2. Ensure that for each vector type T in \p V, there exists a vector
320 /// type U in \p W, such that T and U have the same number of elements.
321 /// 3. Ensure that for each vector type U in \p W, there exists a vector
322 /// type T in \p V, such that T and U have the same number of elements
323 /// (reverse of 2).
324 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
325 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
326 /// such that T and U have equal size in bits.
327 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
328 /// such that T and U have equal size in bits (reverse of 1).
329 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
331 /// For each overloaded type (i.e. of form *Any), replace it with the
332 /// corresponding subset of legal, specific types.
333 void expandOverloads(TypeSetByHwMode &VTS);
334 void expandOverloads(TypeSetByHwMode::SetType &Out,
335 const TypeSetByHwMode::SetType &Legal);
337 struct ValidateOnExit {
338 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
339 #ifndef NDEBUG
340 ~ValidateOnExit();
341 #else
342 ~ValidateOnExit() {} // Empty destructor with NDEBUG.
343 #endif
344 TypeInfer &Infer;
345 TypeSetByHwMode &VTS;
348 struct SuppressValidation {
349 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
350 Infer.Validate = false;
352 ~SuppressValidation() {
353 Infer.Validate = SavedValidate;
355 TypeInfer &Infer;
356 bool SavedValidate;
359 TreePattern &TP;
360 unsigned ForceMode; // Mode to use when set.
361 bool CodeGen = false; // Set during generation of matcher code.
362 bool Validate = true; // Indicate whether to validate types.
364 private:
365 const TypeSetByHwMode &getLegalTypes();
367 /// Cached legal types (in default mode).
368 bool LegalTypesCached = false;
369 TypeSetByHwMode LegalCache;
372 /// Set type used to track multiply used variables in patterns
373 typedef StringSet<> MultipleUseVarSet;
375 /// SDTypeConstraint - This is a discriminated union of constraints,
376 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
377 struct SDTypeConstraint {
378 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
380 unsigned OperandNo; // The operand # this constraint applies to.
381 enum {
382 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
383 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
384 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
385 } ConstraintType;
387 union { // The discriminated union.
388 struct {
389 unsigned OtherOperandNum;
390 } SDTCisSameAs_Info;
391 struct {
392 unsigned OtherOperandNum;
393 } SDTCisVTSmallerThanOp_Info;
394 struct {
395 unsigned BigOperandNum;
396 } SDTCisOpSmallerThanOp_Info;
397 struct {
398 unsigned OtherOperandNum;
399 } SDTCisEltOfVec_Info;
400 struct {
401 unsigned OtherOperandNum;
402 } SDTCisSubVecOfVec_Info;
403 struct {
404 unsigned OtherOperandNum;
405 } SDTCisSameNumEltsAs_Info;
406 struct {
407 unsigned OtherOperandNum;
408 } SDTCisSameSizeAs_Info;
409 } x;
411 // The VT for SDTCisVT and SDTCVecEltisVT.
412 // Must not be in the union because it has a non-trivial destructor.
413 ValueTypeByHwMode VVT;
415 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
416 /// constraint to the nodes operands. This returns true if it makes a
417 /// change, false otherwise. If a type contradiction is found, an error
418 /// is flagged.
419 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
420 TreePattern &TP) const;
423 /// ScopedName - A name of a node associated with a "scope" that indicates
424 /// the context (e.g. instance of Pattern or PatFrag) in which the name was
425 /// used. This enables substitution of pattern fragments while keeping track
426 /// of what name(s) were originally given to various nodes in the tree.
427 class ScopedName {
428 unsigned Scope;
429 std::string Identifier;
430 public:
431 ScopedName(unsigned Scope, StringRef Identifier)
432 : Scope(Scope), Identifier(Identifier) {
433 assert(Scope != 0 &&
434 "Scope == 0 is used to indicate predicates without arguments");
437 unsigned getScope() const { return Scope; }
438 const std::string &getIdentifier() const { return Identifier; }
440 std::string getFullName() const;
442 bool operator==(const ScopedName &o) const;
443 bool operator!=(const ScopedName &o) const;
446 /// SDNodeInfo - One of these records is created for each SDNode instance in
447 /// the target .td file. This represents the various dag nodes we will be
448 /// processing.
449 class SDNodeInfo {
450 Record *Def;
451 StringRef EnumName;
452 StringRef SDClassName;
453 unsigned Properties;
454 unsigned NumResults;
455 int NumOperands;
456 std::vector<SDTypeConstraint> TypeConstraints;
457 public:
458 // Parse the specified record.
459 SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
461 unsigned getNumResults() const { return NumResults; }
463 /// getNumOperands - This is the number of operands required or -1 if
464 /// variadic.
465 int getNumOperands() const { return NumOperands; }
466 Record *getRecord() const { return Def; }
467 StringRef getEnumName() const { return EnumName; }
468 StringRef getSDClassName() const { return SDClassName; }
470 const std::vector<SDTypeConstraint> &getTypeConstraints() const {
471 return TypeConstraints;
474 /// getKnownType - If the type constraints on this node imply a fixed type
475 /// (e.g. all stores return void, etc), then return it as an
476 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
477 MVT::SimpleValueType getKnownType(unsigned ResNo) const;
479 /// hasProperty - Return true if this node has the specified property.
481 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
483 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
484 /// constraints for this node to the operands of the node. This returns
485 /// true if it makes a change, false otherwise. If a type contradiction is
486 /// found, an error is flagged.
487 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
490 /// TreePredicateFn - This is an abstraction that represents the predicates on
491 /// a PatFrag node. This is a simple one-word wrapper around a pointer to
492 /// provide nice accessors.
493 class TreePredicateFn {
494 /// PatFragRec - This is the TreePattern for the PatFrag that we
495 /// originally came from.
496 TreePattern *PatFragRec;
497 public:
498 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
499 TreePredicateFn(TreePattern *N);
502 TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
504 /// isAlwaysTrue - Return true if this is a noop predicate.
505 bool isAlwaysTrue() const;
507 bool isImmediatePattern() const { return hasImmCode(); }
509 /// getImmediatePredicateCode - Return the code that evaluates this pattern if
510 /// this is an immediate predicate. It is an error to call this on a
511 /// non-immediate pattern.
512 std::string getImmediatePredicateCode() const {
513 std::string Result = getImmCode();
514 assert(!Result.empty() && "Isn't an immediate pattern!");
515 return Result;
518 bool operator==(const TreePredicateFn &RHS) const {
519 return PatFragRec == RHS.PatFragRec;
522 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
524 /// Return the name to use in the generated code to reference this, this is
525 /// "Predicate_foo" if from a pattern fragment "foo".
526 std::string getFnName() const;
528 /// getCodeToRunOnSDNode - Return the code for the function body that
529 /// evaluates this predicate. The argument is expected to be in "Node",
530 /// not N. This handles casting and conversion to a concrete node type as
531 /// appropriate.
532 std::string getCodeToRunOnSDNode() const;
534 /// Get the data type of the argument to getImmediatePredicateCode().
535 StringRef getImmType() const;
537 /// Get a string that describes the type returned by getImmType() but is
538 /// usable as part of an identifier.
539 StringRef getImmTypeIdentifier() const;
541 // Predicate code uses the PatFrag's captured operands.
542 bool usesOperands() const;
544 // Is the desired predefined predicate for a load?
545 bool isLoad() const;
546 // Is the desired predefined predicate for a store?
547 bool isStore() const;
548 // Is the desired predefined predicate for an atomic?
549 bool isAtomic() const;
551 /// Is this predicate the predefined unindexed load predicate?
552 /// Is this predicate the predefined unindexed store predicate?
553 bool isUnindexed() const;
554 /// Is this predicate the predefined non-extending load predicate?
555 bool isNonExtLoad() const;
556 /// Is this predicate the predefined any-extend load predicate?
557 bool isAnyExtLoad() const;
558 /// Is this predicate the predefined sign-extend load predicate?
559 bool isSignExtLoad() const;
560 /// Is this predicate the predefined zero-extend load predicate?
561 bool isZeroExtLoad() const;
562 /// Is this predicate the predefined non-truncating store predicate?
563 bool isNonTruncStore() const;
564 /// Is this predicate the predefined truncating store predicate?
565 bool isTruncStore() const;
567 /// Is this predicate the predefined monotonic atomic predicate?
568 bool isAtomicOrderingMonotonic() const;
569 /// Is this predicate the predefined acquire atomic predicate?
570 bool isAtomicOrderingAcquire() const;
571 /// Is this predicate the predefined release atomic predicate?
572 bool isAtomicOrderingRelease() const;
573 /// Is this predicate the predefined acquire-release atomic predicate?
574 bool isAtomicOrderingAcquireRelease() const;
575 /// Is this predicate the predefined sequentially consistent atomic predicate?
576 bool isAtomicOrderingSequentiallyConsistent() const;
578 /// Is this predicate the predefined acquire-or-stronger atomic predicate?
579 bool isAtomicOrderingAcquireOrStronger() const;
580 /// Is this predicate the predefined weaker-than-acquire atomic predicate?
581 bool isAtomicOrderingWeakerThanAcquire() const;
583 /// Is this predicate the predefined release-or-stronger atomic predicate?
584 bool isAtomicOrderingReleaseOrStronger() const;
585 /// Is this predicate the predefined weaker-than-release atomic predicate?
586 bool isAtomicOrderingWeakerThanRelease() const;
588 /// If non-null, indicates that this predicate is a predefined memory VT
589 /// predicate for a load/store and returns the ValueType record for the memory VT.
590 Record *getMemoryVT() const;
591 /// If non-null, indicates that this predicate is a predefined memory VT
592 /// predicate (checking only the scalar type) for load/store and returns the
593 /// ValueType record for the memory VT.
594 Record *getScalarMemoryVT() const;
596 ListInit *getAddressSpaces() const;
598 // If true, indicates that GlobalISel-based C++ code was supplied.
599 bool hasGISelPredicateCode() const;
600 std::string getGISelPredicateCode() const;
602 private:
603 bool hasPredCode() const;
604 bool hasImmCode() const;
605 std::string getPredCode() const;
606 std::string getImmCode() const;
607 bool immCodeUsesAPInt() const;
608 bool immCodeUsesAPFloat() const;
610 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
613 struct TreePredicateCall {
614 TreePredicateFn Fn;
616 // Scope -- unique identifier for retrieving named arguments. 0 is used when
617 // the predicate does not use named arguments.
618 unsigned Scope;
620 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
621 : Fn(Fn), Scope(Scope) {}
623 bool operator==(const TreePredicateCall &o) const {
624 return Fn == o.Fn && Scope == o.Scope;
626 bool operator!=(const TreePredicateCall &o) const {
627 return !(*this == o);
631 class TreePatternNode {
632 /// The type of each node result. Before and during type inference, each
633 /// result may be a set of possible types. After (successful) type inference,
634 /// each is a single concrete type.
635 std::vector<TypeSetByHwMode> Types;
637 /// The index of each result in results of the pattern.
638 std::vector<unsigned> ResultPerm;
640 /// Operator - The Record for the operator if this is an interior node (not
641 /// a leaf).
642 Record *Operator;
644 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
646 Init *Val;
648 /// Name - The name given to this node with the :$foo notation.
650 std::string Name;
652 std::vector<ScopedName> NamesAsPredicateArg;
654 /// PredicateCalls - The predicate functions to execute on this node to check
655 /// for a match. If this list is empty, no predicate is involved.
656 std::vector<TreePredicateCall> PredicateCalls;
658 /// TransformFn - The transformation function to execute on this node before
659 /// it can be substituted into the resulting instruction on a pattern match.
660 Record *TransformFn;
662 std::vector<TreePatternNodePtr> Children;
664 public:
665 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
666 unsigned NumResults)
667 : Operator(Op), Val(nullptr), TransformFn(nullptr),
668 Children(std::move(Ch)) {
669 Types.resize(NumResults);
670 ResultPerm.resize(NumResults);
671 std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
673 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
674 : Operator(nullptr), Val(val), TransformFn(nullptr) {
675 Types.resize(NumResults);
676 ResultPerm.resize(NumResults);
677 std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
680 bool hasName() const { return !Name.empty(); }
681 const std::string &getName() const { return Name; }
682 void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
684 const std::vector<ScopedName> &getNamesAsPredicateArg() const {
685 return NamesAsPredicateArg;
687 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
688 NamesAsPredicateArg = Names;
690 void addNameAsPredicateArg(const ScopedName &N) {
691 NamesAsPredicateArg.push_back(N);
694 bool isLeaf() const { return Val != nullptr; }
696 // Type accessors.
697 unsigned getNumTypes() const { return Types.size(); }
698 ValueTypeByHwMode getType(unsigned ResNo) const {
699 return Types[ResNo].getValueTypeByHwMode();
701 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
702 const TypeSetByHwMode &getExtType(unsigned ResNo) const {
703 return Types[ResNo];
705 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
706 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
707 MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
708 return Types[ResNo].getMachineValueType().SimpleTy;
711 bool hasConcreteType(unsigned ResNo) const {
712 return Types[ResNo].isValueTypeByHwMode(false);
714 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
715 return Types[ResNo].empty();
718 unsigned getNumResults() const { return ResultPerm.size(); }
719 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
720 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
722 Init *getLeafValue() const { assert(isLeaf()); return Val; }
723 Record *getOperator() const { assert(!isLeaf()); return Operator; }
725 unsigned getNumChildren() const { return Children.size(); }
726 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
727 const TreePatternNodePtr &getChildShared(unsigned N) const {
728 return Children[N];
730 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
732 /// hasChild - Return true if N is any of our children.
733 bool hasChild(const TreePatternNode *N) const {
734 for (unsigned i = 0, e = Children.size(); i != e; ++i)
735 if (Children[i].get() == N)
736 return true;
737 return false;
740 bool hasProperTypeByHwMode() const;
741 bool hasPossibleType() const;
742 bool setDefaultMode(unsigned Mode);
744 bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
746 const std::vector<TreePredicateCall> &getPredicateCalls() const {
747 return PredicateCalls;
749 void clearPredicateCalls() { PredicateCalls.clear(); }
750 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
751 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
752 PredicateCalls = Calls;
754 void addPredicateCall(const TreePredicateCall &Call) {
755 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
756 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
757 PredicateCalls.push_back(Call);
759 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
760 assert((Scope != 0) == Fn.usesOperands());
761 addPredicateCall(TreePredicateCall(Fn, Scope));
764 Record *getTransformFn() const { return TransformFn; }
765 void setTransformFn(Record *Fn) { TransformFn = Fn; }
767 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
768 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
769 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
771 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
772 /// return the ComplexPattern information, otherwise return null.
773 const ComplexPattern *
774 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
776 /// Returns the number of MachineInstr operands that would be produced by this
777 /// node if it mapped directly to an output Instruction's
778 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
779 /// for Operands; otherwise 1.
780 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
782 /// NodeHasProperty - Return true if this node has the specified property.
783 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
785 /// TreeHasProperty - Return true if any node in this tree has the specified
786 /// property.
787 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
789 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
790 /// marked isCommutative.
791 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
793 void print(raw_ostream &OS) const;
794 void dump() const;
796 public: // Higher level manipulation routines.
798 /// clone - Return a new copy of this tree.
800 TreePatternNodePtr clone() const;
802 /// RemoveAllTypes - Recursively strip all the types of this tree.
803 void RemoveAllTypes();
805 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
806 /// the specified node. For this comparison, all of the state of the node
807 /// is considered, except for the assigned name. Nodes with differing names
808 /// that are otherwise identical are considered isomorphic.
809 bool isIsomorphicTo(const TreePatternNode *N,
810 const MultipleUseVarSet &DepVars) const;
812 /// SubstituteFormalArguments - Replace the formal arguments in this tree
813 /// with actual values specified by ArgMap.
814 void
815 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
817 /// InlinePatternFragments - If this pattern refers to any pattern
818 /// fragments, return the set of inlined versions (this can be more than
819 /// one if a PatFrags record has multiple alternatives).
820 void InlinePatternFragments(TreePatternNodePtr T,
821 TreePattern &TP,
822 std::vector<TreePatternNodePtr> &OutAlternatives);
824 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
825 /// this node and its children in the tree. This returns true if it makes a
826 /// change, false otherwise. If a type contradiction is found, flag an error.
827 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
829 /// UpdateNodeType - Set the node type of N to VT if VT contains
830 /// information. If N already contains a conflicting type, then flag an
831 /// error. This returns true if any information was updated.
833 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
834 TreePattern &TP);
835 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
836 TreePattern &TP);
837 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
838 TreePattern &TP);
840 // Update node type with types inferred from an instruction operand or result
841 // def from the ins/outs lists.
842 // Return true if the type changed.
843 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
845 /// ContainsUnresolvedType - Return true if this tree contains any
846 /// unresolved types.
847 bool ContainsUnresolvedType(TreePattern &TP) const;
849 /// canPatternMatch - If it is impossible for this pattern to match on this
850 /// target, fill in Reason and return false. Otherwise, return true.
851 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
854 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
855 TPN.print(OS);
856 return OS;
860 /// TreePattern - Represent a pattern, used for instructions, pattern
861 /// fragments, etc.
863 class TreePattern {
864 /// Trees - The list of pattern trees which corresponds to this pattern.
865 /// Note that PatFrag's only have a single tree.
867 std::vector<TreePatternNodePtr> Trees;
869 /// NamedNodes - This is all of the nodes that have names in the trees in this
870 /// pattern.
871 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
873 /// TheRecord - The actual TableGen record corresponding to this pattern.
875 Record *TheRecord;
877 /// Args - This is a list of all of the arguments to this pattern (for
878 /// PatFrag patterns), which are the 'node' markers in this pattern.
879 std::vector<std::string> Args;
881 /// CDP - the top-level object coordinating this madness.
883 CodeGenDAGPatterns &CDP;
885 /// isInputPattern - True if this is an input pattern, something to match.
886 /// False if this is an output pattern, something to emit.
887 bool isInputPattern;
889 /// hasError - True if the currently processed nodes have unresolvable types
890 /// or other non-fatal errors
891 bool HasError;
893 /// It's important that the usage of operands in ComplexPatterns is
894 /// consistent: each named operand can be defined by at most one
895 /// ComplexPattern. This records the ComplexPattern instance and the operand
896 /// number for each operand encountered in a ComplexPattern to aid in that
897 /// check.
898 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
900 TypeInfer Infer;
902 public:
904 /// TreePattern constructor - Parse the specified DagInits into the
905 /// current record.
906 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
907 CodeGenDAGPatterns &ise);
908 TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
909 CodeGenDAGPatterns &ise);
910 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
911 CodeGenDAGPatterns &ise);
913 /// getTrees - Return the tree patterns which corresponds to this pattern.
915 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
916 unsigned getNumTrees() const { return Trees.size(); }
917 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
918 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
919 const TreePatternNodePtr &getOnlyTree() const {
920 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
921 return Trees[0];
924 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
925 if (NamedNodes.empty())
926 ComputeNamedNodes();
927 return NamedNodes;
930 /// getRecord - Return the actual TableGen record corresponding to this
931 /// pattern.
933 Record *getRecord() const { return TheRecord; }
935 unsigned getNumArgs() const { return Args.size(); }
936 const std::string &getArgName(unsigned i) const {
937 assert(i < Args.size() && "Argument reference out of range!");
938 return Args[i];
940 std::vector<std::string> &getArgList() { return Args; }
942 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
944 /// InlinePatternFragments - If this pattern refers to any pattern
945 /// fragments, inline them into place, giving us a pattern without any
946 /// PatFrags references. This may increase the number of trees in the
947 /// pattern if a PatFrags has multiple alternatives.
948 void InlinePatternFragments() {
949 std::vector<TreePatternNodePtr> Copy = Trees;
950 Trees.clear();
951 for (unsigned i = 0, e = Copy.size(); i != e; ++i)
952 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
955 /// InferAllTypes - Infer/propagate as many types throughout the expression
956 /// patterns as possible. Return true if all types are inferred, false
957 /// otherwise. Bail out if a type contradiction is found.
958 bool InferAllTypes(
959 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
961 /// error - If this is the first error in the current resolution step,
962 /// print it and set the error flag. Otherwise, continue silently.
963 void error(const Twine &Msg);
964 bool hasError() const {
965 return HasError;
967 void resetError() {
968 HasError = false;
971 TypeInfer &getInfer() { return Infer; }
973 void print(raw_ostream &OS) const;
974 void dump() const;
976 private:
977 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
978 void ComputeNamedNodes();
979 void ComputeNamedNodes(TreePatternNode *N);
983 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
984 const TypeSetByHwMode &InTy,
985 TreePattern &TP) {
986 TypeSetByHwMode VTS(InTy);
987 TP.getInfer().expandOverloads(VTS);
988 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
991 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
992 MVT::SimpleValueType InTy,
993 TreePattern &TP) {
994 TypeSetByHwMode VTS(InTy);
995 TP.getInfer().expandOverloads(VTS);
996 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
999 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
1000 ValueTypeByHwMode InTy,
1001 TreePattern &TP) {
1002 TypeSetByHwMode VTS(InTy);
1003 TP.getInfer().expandOverloads(VTS);
1004 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1008 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1009 /// that has a set ExecuteAlways / DefaultOps field.
1010 struct DAGDefaultOperand {
1011 std::vector<TreePatternNodePtr> DefaultOps;
1014 class DAGInstruction {
1015 std::vector<Record*> Results;
1016 std::vector<Record*> Operands;
1017 std::vector<Record*> ImpResults;
1018 TreePatternNodePtr SrcPattern;
1019 TreePatternNodePtr ResultPattern;
1021 public:
1022 DAGInstruction(const std::vector<Record*> &results,
1023 const std::vector<Record*> &operands,
1024 const std::vector<Record*> &impresults,
1025 TreePatternNodePtr srcpattern = nullptr,
1026 TreePatternNodePtr resultpattern = nullptr)
1027 : Results(results), Operands(operands), ImpResults(impresults),
1028 SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1030 unsigned getNumResults() const { return Results.size(); }
1031 unsigned getNumOperands() const { return Operands.size(); }
1032 unsigned getNumImpResults() const { return ImpResults.size(); }
1033 const std::vector<Record*>& getImpResults() const { return ImpResults; }
1035 Record *getResult(unsigned RN) const {
1036 assert(RN < Results.size());
1037 return Results[RN];
1040 Record *getOperand(unsigned ON) const {
1041 assert(ON < Operands.size());
1042 return Operands[ON];
1045 Record *getImpResult(unsigned RN) const {
1046 assert(RN < ImpResults.size());
1047 return ImpResults[RN];
1050 TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1051 TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1054 /// This class represents a condition that has to be satisfied for a pattern
1055 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
1056 /// in addition to the Target.td's predicates, this class can also represent
1057 /// conditions associated with HW modes. Both types will eventually become
1058 /// strings containing C++ code to be executed, the difference is in how
1059 /// these strings are generated.
1060 class Predicate {
1061 public:
1062 Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
1063 assert(R->isSubClassOf("Predicate") &&
1064 "Predicate objects should only be created for records derived"
1065 "from Predicate class");
1067 Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
1068 IfCond(C), IsHwMode(true) {}
1070 /// Return a string which contains the C++ condition code that will serve
1071 /// as a predicate during instruction selection.
1072 std::string getCondString() const {
1073 // The string will excute in a subclass of SelectionDAGISel.
1074 // Cast to std::string explicitly to avoid ambiguity with StringRef.
1075 std::string C = IsHwMode
1076 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
1077 : std::string(Def->getValueAsString("CondString"));
1078 return IfCond ? C : "!("+C+')';
1080 bool operator==(const Predicate &P) const {
1081 return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
1083 bool operator<(const Predicate &P) const {
1084 if (IsHwMode != P.IsHwMode)
1085 return IsHwMode < P.IsHwMode;
1086 assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
1087 if (IfCond != P.IfCond)
1088 return IfCond < P.IfCond;
1089 if (Def)
1090 return LessRecord()(Def, P.Def);
1091 return Features < P.Features;
1093 Record *Def; ///< Predicate definition from .td file, null for
1094 ///< HW modes.
1095 std::string Features; ///< Feature string for HW mode.
1096 bool IfCond; ///< The boolean value that the condition has to
1097 ///< evaluate to for this predicate to be true.
1098 bool IsHwMode; ///< Does this predicate correspond to a HW mode?
1101 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1102 /// processed to produce isel.
1103 class PatternToMatch {
1104 public:
1105 PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
1106 TreePatternNodePtr src, TreePatternNodePtr dst,
1107 std::vector<Record *> dstregs, int complexity,
1108 unsigned uid, unsigned setmode = 0)
1109 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
1110 Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
1111 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
1113 Record *SrcRecord; // Originating Record for the pattern.
1114 TreePatternNodePtr SrcPattern; // Source pattern to match.
1115 TreePatternNodePtr DstPattern; // Resulting pattern.
1116 std::vector<Predicate> Predicates; // Top level predicate conditions
1117 // to match.
1118 std::vector<Record*> Dstregs; // Physical register defs being matched.
1119 int AddedComplexity; // Add to matching pattern complexity.
1120 unsigned ID; // Unique ID for the record.
1121 unsigned ForceMode; // Force this mode in type inference when set.
1123 Record *getSrcRecord() const { return SrcRecord; }
1124 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
1125 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1126 TreePatternNode *getDstPattern() const { return DstPattern.get(); }
1127 TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1128 const std::vector<Record*> &getDstRegs() const { return Dstregs; }
1129 int getAddedComplexity() const { return AddedComplexity; }
1130 const std::vector<Predicate> &getPredicates() const { return Predicates; }
1132 std::string getPredicateCheck() const;
1134 /// Compute the complexity metric for the input pattern. This roughly
1135 /// corresponds to the number of nodes that are covered.
1136 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1139 class CodeGenDAGPatterns {
1140 RecordKeeper &Records;
1141 CodeGenTarget Target;
1142 CodeGenIntrinsicTable Intrinsics;
1143 CodeGenIntrinsicTable TgtIntrinsics;
1145 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1146 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1147 SDNodeXForms;
1148 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1149 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1150 PatternFragments;
1151 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1152 std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1154 // Specific SDNode definitions:
1155 Record *intrinsic_void_sdnode;
1156 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1158 /// PatternsToMatch - All of the things we are matching on the DAG. The first
1159 /// value is the pattern to match, the second pattern is the result to
1160 /// emit.
1161 std::vector<PatternToMatch> PatternsToMatch;
1163 TypeSetByHwMode LegalVTS;
1165 using PatternRewriterFn = std::function<void (TreePattern *)>;
1166 PatternRewriterFn PatternRewriter;
1168 unsigned NumScopes = 0;
1170 public:
1171 CodeGenDAGPatterns(RecordKeeper &R,
1172 PatternRewriterFn PatternRewriter = nullptr);
1174 CodeGenTarget &getTargetInfo() { return Target; }
1175 const CodeGenTarget &getTargetInfo() const { return Target; }
1176 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1178 Record *getSDNodeNamed(const std::string &Name) const;
1180 const SDNodeInfo &getSDNodeInfo(Record *R) const {
1181 auto F = SDNodes.find(R);
1182 assert(F != SDNodes.end() && "Unknown node!");
1183 return F->second;
1186 // Node transformation lookups.
1187 typedef std::pair<Record*, std::string> NodeXForm;
1188 const NodeXForm &getSDNodeTransform(Record *R) const {
1189 auto F = SDNodeXForms.find(R);
1190 assert(F != SDNodeXForms.end() && "Invalid transform!");
1191 return F->second;
1194 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
1195 nx_iterator;
1196 nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
1197 nx_iterator nx_end() const { return SDNodeXForms.end(); }
1200 const ComplexPattern &getComplexPattern(Record *R) const {
1201 auto F = ComplexPatterns.find(R);
1202 assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1203 return F->second;
1206 const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1207 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1208 if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1209 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1210 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
1211 llvm_unreachable("Unknown intrinsic!");
1214 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1215 if (IID-1 < Intrinsics.size())
1216 return Intrinsics[IID-1];
1217 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
1218 return TgtIntrinsics[IID-Intrinsics.size()-1];
1219 llvm_unreachable("Bad intrinsic ID!");
1222 unsigned getIntrinsicID(Record *R) const {
1223 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1224 if (Intrinsics[i].TheDef == R) return i;
1225 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1226 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
1227 llvm_unreachable("Unknown intrinsic!");
1230 const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1231 auto F = DefaultOperands.find(R);
1232 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1233 return F->second;
1236 // Pattern Fragment information.
1237 TreePattern *getPatternFragment(Record *R) const {
1238 auto F = PatternFragments.find(R);
1239 assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1240 return F->second.get();
1242 TreePattern *getPatternFragmentIfRead(Record *R) const {
1243 auto F = PatternFragments.find(R);
1244 if (F == PatternFragments.end())
1245 return nullptr;
1246 return F->second.get();
1249 typedef std::map<Record *, std::unique_ptr<TreePattern>,
1250 LessRecordByID>::const_iterator pf_iterator;
1251 pf_iterator pf_begin() const { return PatternFragments.begin(); }
1252 pf_iterator pf_end() const { return PatternFragments.end(); }
1253 iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1255 // Patterns to match information.
1256 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1257 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1258 ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1259 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1261 /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1262 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1263 void parseInstructionPattern(
1264 CodeGenInstruction &CGI, ListInit *Pattern,
1265 DAGInstMap &DAGInsts);
1267 const DAGInstruction &getInstruction(Record *R) const {
1268 auto F = Instructions.find(R);
1269 assert(F != Instructions.end() && "Unknown instruction!");
1270 return F->second;
1273 Record *get_intrinsic_void_sdnode() const {
1274 return intrinsic_void_sdnode;
1276 Record *get_intrinsic_w_chain_sdnode() const {
1277 return intrinsic_w_chain_sdnode;
1279 Record *get_intrinsic_wo_chain_sdnode() const {
1280 return intrinsic_wo_chain_sdnode;
1283 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
1285 unsigned allocateScope() { return ++NumScopes; }
1287 bool operandHasDefault(Record *Op) const {
1288 return Op->isSubClassOf("OperandWithDefaultOps") &&
1289 !getDefaultOperand(Op).DefaultOps.empty();
1292 private:
1293 void ParseNodeInfo();
1294 void ParseNodeTransforms();
1295 void ParseComplexPatterns();
1296 void ParsePatternFragments(bool OutFrags = false);
1297 void ParseDefaultOperands();
1298 void ParseInstructions();
1299 void ParsePatterns();
1300 void ExpandHwModeBasedTypes();
1301 void InferInstructionFlags();
1302 void GenerateVariants();
1303 void VerifyInstructionFlags();
1305 std::vector<Predicate> makePredList(ListInit *L);
1307 void ParseOnePattern(Record *TheDef,
1308 TreePattern &Pattern, TreePattern &Result,
1309 const std::vector<Record *> &InstImpResults);
1310 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1311 void FindPatternInputsAndOutputs(
1312 TreePattern &I, TreePatternNodePtr Pat,
1313 std::map<std::string, TreePatternNodePtr> &InstInputs,
1314 MapVector<std::string, TreePatternNodePtr,
1315 std::map<std::string, unsigned>> &InstResults,
1316 std::vector<Record *> &InstImpResults);
1320 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1321 TreePattern &TP) const {
1322 bool MadeChange = false;
1323 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1324 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1325 return MadeChange;
1328 } // end namespace llvm
1330 #endif