[AArch64] Default to SEH exception handling on MinGW
[llvm-complete.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
blobecf0bef13df252cf45d9a9f8c2cbf22bbd786cef
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 // 1. The exit condition for the loop is canonicalized to compare the
16 // induction value against the exit value. This turns loops like:
17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 // 2. Any use outside of the loop of an expression derived from the indvar
19 // is changed to compute the derived value outside of the loop, eliminating
20 // the dependence on the exit value of the induction variable. If the only
21 // purpose of the loop is to compute the exit value of some derived
22 // expression, this transformation will make the loop dead.
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/iterator_range.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/LoopUtils.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
86 using namespace llvm;
88 #define DEBUG_TYPE "indvars"
90 STATISTIC(NumWidened , "Number of indvars widened");
91 STATISTIC(NumReplaced , "Number of exit values replaced");
92 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100 "verify-indvars", cl::Hidden,
101 cl::desc("Verify the ScalarEvolution result after running indvars"));
103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
109 clEnumValN(OnlyCheapRepl, "cheap",
110 "only replace exit value when the cost is cheap"),
111 clEnumValN(AlwaysRepl, "always",
112 "always replace exit value whenever possible")));
114 static cl::opt<bool> UsePostIncrementRanges(
115 "indvars-post-increment-ranges", cl::Hidden,
116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
117 cl::init(true));
119 static cl::opt<bool>
120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
121 cl::desc("Disable Linear Function Test Replace optimization"));
123 namespace {
125 struct RewritePhi;
127 class IndVarSimplify {
128 LoopInfo *LI;
129 ScalarEvolution *SE;
130 DominatorTree *DT;
131 const DataLayout &DL;
132 TargetLibraryInfo *TLI;
133 const TargetTransformInfo *TTI;
135 SmallVector<WeakTrackingVH, 16> DeadInsts;
137 bool isValidRewrite(Value *FromVal, Value *ToVal);
139 bool handleFloatingPointIV(Loop *L, PHINode *PH);
140 bool rewriteNonIntegerIVs(Loop *L);
142 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
144 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
145 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
146 bool rewriteFirstIterationLoopExitValues(Loop *L);
147 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150 PHINode *IndVar, SCEVExpander &Rewriter);
152 bool sinkUnusedInvariants(Loop *L);
154 public:
155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156 const DataLayout &DL, TargetLibraryInfo *TLI,
157 TargetTransformInfo *TTI)
158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
160 bool run(Loop *L);
163 } // end anonymous namespace
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR. Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170 // If an SCEV expression subsumed multiple pointers, its expansion could
171 // reassociate the GEP changing the base pointer. This is illegal because the
172 // final address produced by a GEP chain must be inbounds relative to its
173 // underlying object. Otherwise basic alias analysis, among other things,
174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175 // producing an expression involving multiple pointers. Until then, we must
176 // bail out here.
178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179 // because it understands lcssa phis while SCEV does not.
180 Value *FromPtr = FromVal;
181 Value *ToPtr = ToVal;
182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183 FromPtr = GEP->getPointerOperand();
185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186 ToPtr = GEP->getPointerOperand();
188 if (FromPtr != FromVal || ToPtr != ToVal) {
189 // Quickly check the common case
190 if (FromPtr == ToPtr)
191 return true;
193 // SCEV may have rewritten an expression that produces the GEP's pointer
194 // operand. That's ok as long as the pointer operand has the same base
195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196 // base of a recurrence. This handles the case in which SCEV expansion
197 // converts a pointer type recurrence into a nonrecurrent pointer base
198 // indexed by an integer recurrence.
200 // If the GEP base pointer is a vector of pointers, abort.
201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202 return false;
204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206 if (FromBase == ToBase)
207 return true;
209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210 << " != " << *ToBase << "\n");
212 return false;
214 return true;
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks. A nullptr can be returned if no
221 /// viable location is found: it may happen if User is a PHI and Def only comes
222 /// to this PHI from unreachable blocks.
223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224 DominatorTree *DT, LoopInfo *LI) {
225 PHINode *PHI = dyn_cast<PHINode>(User);
226 if (!PHI)
227 return User;
229 Instruction *InsertPt = nullptr;
230 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231 if (PHI->getIncomingValue(i) != Def)
232 continue;
234 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
236 if (!DT->isReachableFromEntry(InsertBB))
237 continue;
239 if (!InsertPt) {
240 InsertPt = InsertBB->getTerminator();
241 continue;
243 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
244 InsertPt = InsertBB->getTerminator();
247 // If we have skipped all inputs, it means that Def only comes to Phi from
248 // unreachable blocks.
249 if (!InsertPt)
250 return nullptr;
252 auto *DefI = dyn_cast<Instruction>(Def);
253 if (!DefI)
254 return InsertPt;
256 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
258 auto *L = LI->getLoopFor(DefI->getParent());
259 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
261 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
262 if (LI->getLoopFor(DTN->getBlock()) == L)
263 return DTN->getBlock()->getTerminator();
265 llvm_unreachable("DefI dominates InsertPt!");
268 //===----------------------------------------------------------------------===//
269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
270 //===----------------------------------------------------------------------===//
272 /// Convert APF to an integer, if possible.
273 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
274 bool isExact = false;
275 // See if we can convert this to an int64_t
276 uint64_t UIntVal;
277 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
278 APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
279 !isExact)
280 return false;
281 IntVal = UIntVal;
282 return true;
285 /// If the loop has floating induction variable then insert corresponding
286 /// integer induction variable if possible.
287 /// For example,
288 /// for(double i = 0; i < 10000; ++i)
289 /// bar(i)
290 /// is converted into
291 /// for(int i = 0; i < 10000; ++i)
292 /// bar((double)i);
293 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
294 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
295 unsigned BackEdge = IncomingEdge^1;
297 // Check incoming value.
298 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
300 int64_t InitValue;
301 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
302 return false;
304 // Check IV increment. Reject this PN if increment operation is not
305 // an add or increment value can not be represented by an integer.
306 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
307 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
309 // If this is not an add of the PHI with a constantfp, or if the constant fp
310 // is not an integer, bail out.
311 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
312 int64_t IncValue;
313 if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
314 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
315 return false;
317 // Check Incr uses. One user is PN and the other user is an exit condition
318 // used by the conditional terminator.
319 Value::user_iterator IncrUse = Incr->user_begin();
320 Instruction *U1 = cast<Instruction>(*IncrUse++);
321 if (IncrUse == Incr->user_end()) return false;
322 Instruction *U2 = cast<Instruction>(*IncrUse++);
323 if (IncrUse != Incr->user_end()) return false;
325 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
326 // only used by a branch, we can't transform it.
327 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
328 if (!Compare)
329 Compare = dyn_cast<FCmpInst>(U2);
330 if (!Compare || !Compare->hasOneUse() ||
331 !isa<BranchInst>(Compare->user_back()))
332 return false;
334 BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
336 // We need to verify that the branch actually controls the iteration count
337 // of the loop. If not, the new IV can overflow and no one will notice.
338 // The branch block must be in the loop and one of the successors must be out
339 // of the loop.
340 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
341 if (!L->contains(TheBr->getParent()) ||
342 (L->contains(TheBr->getSuccessor(0)) &&
343 L->contains(TheBr->getSuccessor(1))))
344 return false;
346 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
347 // transform it.
348 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
349 int64_t ExitValue;
350 if (ExitValueVal == nullptr ||
351 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
352 return false;
354 // Find new predicate for integer comparison.
355 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
356 switch (Compare->getPredicate()) {
357 default: return false; // Unknown comparison.
358 case CmpInst::FCMP_OEQ:
359 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
360 case CmpInst::FCMP_ONE:
361 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
362 case CmpInst::FCMP_OGT:
363 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
364 case CmpInst::FCMP_OGE:
365 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
366 case CmpInst::FCMP_OLT:
367 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
368 case CmpInst::FCMP_OLE:
369 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
372 // We convert the floating point induction variable to a signed i32 value if
373 // we can. This is only safe if the comparison will not overflow in a way
374 // that won't be trapped by the integer equivalent operations. Check for this
375 // now.
376 // TODO: We could use i64 if it is native and the range requires it.
378 // The start/stride/exit values must all fit in signed i32.
379 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
380 return false;
382 // If not actually striding (add x, 0.0), avoid touching the code.
383 if (IncValue == 0)
384 return false;
386 // Positive and negative strides have different safety conditions.
387 if (IncValue > 0) {
388 // If we have a positive stride, we require the init to be less than the
389 // exit value.
390 if (InitValue >= ExitValue)
391 return false;
393 uint32_t Range = uint32_t(ExitValue-InitValue);
394 // Check for infinite loop, either:
395 // while (i <= Exit) or until (i > Exit)
396 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
397 if (++Range == 0) return false; // Range overflows.
400 unsigned Leftover = Range % uint32_t(IncValue);
402 // If this is an equality comparison, we require that the strided value
403 // exactly land on the exit value, otherwise the IV condition will wrap
404 // around and do things the fp IV wouldn't.
405 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
406 Leftover != 0)
407 return false;
409 // If the stride would wrap around the i32 before exiting, we can't
410 // transform the IV.
411 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
412 return false;
413 } else {
414 // If we have a negative stride, we require the init to be greater than the
415 // exit value.
416 if (InitValue <= ExitValue)
417 return false;
419 uint32_t Range = uint32_t(InitValue-ExitValue);
420 // Check for infinite loop, either:
421 // while (i >= Exit) or until (i < Exit)
422 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
423 if (++Range == 0) return false; // Range overflows.
426 unsigned Leftover = Range % uint32_t(-IncValue);
428 // If this is an equality comparison, we require that the strided value
429 // exactly land on the exit value, otherwise the IV condition will wrap
430 // around and do things the fp IV wouldn't.
431 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
432 Leftover != 0)
433 return false;
435 // If the stride would wrap around the i32 before exiting, we can't
436 // transform the IV.
437 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
438 return false;
441 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
443 // Insert new integer induction variable.
444 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
445 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
446 PN->getIncomingBlock(IncomingEdge));
448 Value *NewAdd =
449 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
450 Incr->getName()+".int", Incr);
451 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
453 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
454 ConstantInt::get(Int32Ty, ExitValue),
455 Compare->getName());
457 // In the following deletions, PN may become dead and may be deleted.
458 // Use a WeakTrackingVH to observe whether this happens.
459 WeakTrackingVH WeakPH = PN;
461 // Delete the old floating point exit comparison. The branch starts using the
462 // new comparison.
463 NewCompare->takeName(Compare);
464 Compare->replaceAllUsesWith(NewCompare);
465 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
467 // Delete the old floating point increment.
468 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
469 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
471 // If the FP induction variable still has uses, this is because something else
472 // in the loop uses its value. In order to canonicalize the induction
473 // variable, we chose to eliminate the IV and rewrite it in terms of an
474 // int->fp cast.
476 // We give preference to sitofp over uitofp because it is faster on most
477 // platforms.
478 if (WeakPH) {
479 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
480 &*PN->getParent()->getFirstInsertionPt());
481 PN->replaceAllUsesWith(Conv);
482 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
484 return true;
487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
488 // First step. Check to see if there are any floating-point recurrences.
489 // If there are, change them into integer recurrences, permitting analysis by
490 // the SCEV routines.
491 BasicBlock *Header = L->getHeader();
493 SmallVector<WeakTrackingVH, 8> PHIs;
494 for (PHINode &PN : Header->phis())
495 PHIs.push_back(&PN);
497 bool Changed = false;
498 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
499 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
500 Changed |= handleFloatingPointIV(L, PN);
502 // If the loop previously had floating-point IV, ScalarEvolution
503 // may not have been able to compute a trip count. Now that we've done some
504 // re-writing, the trip count may be computable.
505 if (Changed)
506 SE->forgetLoop(L);
507 return Changed;
510 namespace {
512 // Collect information about PHI nodes which can be transformed in
513 // rewriteLoopExitValues.
514 struct RewritePhi {
515 PHINode *PN;
517 // Ith incoming value.
518 unsigned Ith;
520 // Exit value after expansion.
521 Value *Val;
523 // High Cost when expansion.
524 bool HighCost;
526 RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
527 : PN(P), Ith(I), Val(V), HighCost(H) {}
530 } // end anonymous namespace
532 //===----------------------------------------------------------------------===//
533 // rewriteLoopExitValues - Optimize IV users outside the loop.
534 // As a side effect, reduces the amount of IV processing within the loop.
535 //===----------------------------------------------------------------------===//
537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
538 SmallPtrSet<const Instruction *, 8> Visited;
539 SmallVector<const Instruction *, 8> WorkList;
540 Visited.insert(I);
541 WorkList.push_back(I);
542 while (!WorkList.empty()) {
543 const Instruction *Curr = WorkList.pop_back_val();
544 // This use is outside the loop, nothing to do.
545 if (!L->contains(Curr))
546 continue;
547 // Do we assume it is a "hard" use which will not be eliminated easily?
548 if (Curr->mayHaveSideEffects())
549 return true;
550 // Otherwise, add all its users to worklist.
551 for (auto U : Curr->users()) {
552 auto *UI = cast<Instruction>(U);
553 if (Visited.insert(UI).second)
554 WorkList.push_back(UI);
557 return false;
560 /// Check to see if this loop has a computable loop-invariant execution count.
561 /// If so, this means that we can compute the final value of any expressions
562 /// that are recurrent in the loop, and substitute the exit values from the loop
563 /// into any instructions outside of the loop that use the final values of the
564 /// current expressions.
566 /// This is mostly redundant with the regular IndVarSimplify activities that
567 /// happen later, except that it's more powerful in some cases, because it's
568 /// able to brute-force evaluate arbitrary instructions as long as they have
569 /// constant operands at the beginning of the loop.
570 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
571 // Check a pre-condition.
572 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
573 "Indvars did not preserve LCSSA!");
575 SmallVector<BasicBlock*, 8> ExitBlocks;
576 L->getUniqueExitBlocks(ExitBlocks);
578 SmallVector<RewritePhi, 8> RewritePhiSet;
579 // Find all values that are computed inside the loop, but used outside of it.
580 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
581 // the exit blocks of the loop to find them.
582 for (BasicBlock *ExitBB : ExitBlocks) {
583 // If there are no PHI nodes in this exit block, then no values defined
584 // inside the loop are used on this path, skip it.
585 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
586 if (!PN) continue;
588 unsigned NumPreds = PN->getNumIncomingValues();
590 // Iterate over all of the PHI nodes.
591 BasicBlock::iterator BBI = ExitBB->begin();
592 while ((PN = dyn_cast<PHINode>(BBI++))) {
593 if (PN->use_empty())
594 continue; // dead use, don't replace it
596 if (!SE->isSCEVable(PN->getType()))
597 continue;
599 // It's necessary to tell ScalarEvolution about this explicitly so that
600 // it can walk the def-use list and forget all SCEVs, as it may not be
601 // watching the PHI itself. Once the new exit value is in place, there
602 // may not be a def-use connection between the loop and every instruction
603 // which got a SCEVAddRecExpr for that loop.
604 SE->forgetValue(PN);
606 // Iterate over all of the values in all the PHI nodes.
607 for (unsigned i = 0; i != NumPreds; ++i) {
608 // If the value being merged in is not integer or is not defined
609 // in the loop, skip it.
610 Value *InVal = PN->getIncomingValue(i);
611 if (!isa<Instruction>(InVal))
612 continue;
614 // If this pred is for a subloop, not L itself, skip it.
615 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
616 continue; // The Block is in a subloop, skip it.
618 // Check that InVal is defined in the loop.
619 Instruction *Inst = cast<Instruction>(InVal);
620 if (!L->contains(Inst))
621 continue;
623 // Okay, this instruction has a user outside of the current loop
624 // and varies predictably *inside* the loop. Evaluate the value it
625 // contains when the loop exits, if possible.
626 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
627 if (!SE->isLoopInvariant(ExitValue, L) ||
628 !isSafeToExpand(ExitValue, *SE))
629 continue;
631 // Computing the value outside of the loop brings no benefit if it is
632 // definitely used inside the loop in a way which can not be optimized
633 // away.
634 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
635 continue;
637 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
638 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
640 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
641 << '\n'
642 << " LoopVal = " << *Inst << "\n");
644 if (!isValidRewrite(Inst, ExitVal)) {
645 DeadInsts.push_back(ExitVal);
646 continue;
649 #ifndef NDEBUG
650 // If we reuse an instruction from a loop which is neither L nor one of
651 // its containing loops, we end up breaking LCSSA form for this loop by
652 // creating a new use of its instruction.
653 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
654 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
655 if (EVL != L)
656 assert(EVL->contains(L) && "LCSSA breach detected!");
657 #endif
659 // Collect all the candidate PHINodes to be rewritten.
660 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
665 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
667 bool Changed = false;
668 // Transformation.
669 for (const RewritePhi &Phi : RewritePhiSet) {
670 PHINode *PN = Phi.PN;
671 Value *ExitVal = Phi.Val;
673 // Only do the rewrite when the ExitValue can be expanded cheaply.
674 // If LoopCanBeDel is true, rewrite exit value aggressively.
675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
676 DeadInsts.push_back(ExitVal);
677 continue;
680 Changed = true;
681 ++NumReplaced;
682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
683 PN->setIncomingValue(Phi.Ith, ExitVal);
685 // If this instruction is dead now, delete it. Don't do it now to avoid
686 // invalidating iterators.
687 if (isInstructionTriviallyDead(Inst, TLI))
688 DeadInsts.push_back(Inst);
690 // Replace PN with ExitVal if that is legal and does not break LCSSA.
691 if (PN->getNumIncomingValues() == 1 &&
692 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
693 PN->replaceAllUsesWith(ExitVal);
694 PN->eraseFromParent();
698 // The insertion point instruction may have been deleted; clear it out
699 // so that the rewriter doesn't trip over it later.
700 Rewriter.clearInsertPoint();
701 return Changed;
704 //===---------------------------------------------------------------------===//
705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
706 // they will exit at the first iteration.
707 //===---------------------------------------------------------------------===//
709 /// Check to see if this loop has loop invariant conditions which lead to loop
710 /// exits. If so, we know that if the exit path is taken, it is at the first
711 /// loop iteration. This lets us predict exit values of PHI nodes that live in
712 /// loop header.
713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
714 // Verify the input to the pass is already in LCSSA form.
715 assert(L->isLCSSAForm(*DT));
717 SmallVector<BasicBlock *, 8> ExitBlocks;
718 L->getUniqueExitBlocks(ExitBlocks);
719 auto *LoopHeader = L->getHeader();
720 assert(LoopHeader && "Invalid loop");
722 bool MadeAnyChanges = false;
723 for (auto *ExitBB : ExitBlocks) {
724 // If there are no more PHI nodes in this exit block, then no more
725 // values defined inside the loop are used on this path.
726 for (PHINode &PN : ExitBB->phis()) {
727 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
728 IncomingValIdx != E; ++IncomingValIdx) {
729 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
731 // We currently only support loop exits from loop header. If the
732 // incoming block is not loop header, we need to recursively check
733 // all conditions starting from loop header are loop invariants.
734 // Additional support might be added in the future.
735 if (IncomingBB != LoopHeader)
736 continue;
738 // Get condition that leads to the exit path.
739 auto *TermInst = IncomingBB->getTerminator();
741 Value *Cond = nullptr;
742 if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
743 // Must be a conditional branch, otherwise the block
744 // should not be in the loop.
745 Cond = BI->getCondition();
746 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
747 Cond = SI->getCondition();
748 else
749 continue;
751 if (!L->isLoopInvariant(Cond))
752 continue;
754 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
756 // Only deal with PHIs.
757 if (!ExitVal)
758 continue;
760 // If ExitVal is a PHI on the loop header, then we know its
761 // value along this exit because the exit can only be taken
762 // on the first iteration.
763 auto *LoopPreheader = L->getLoopPreheader();
764 assert(LoopPreheader && "Invalid loop");
765 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
766 if (PreheaderIdx != -1) {
767 assert(ExitVal->getParent() == LoopHeader &&
768 "ExitVal must be in loop header");
769 MadeAnyChanges = true;
770 PN.setIncomingValue(IncomingValIdx,
771 ExitVal->getIncomingValue(PreheaderIdx));
776 return MadeAnyChanges;
779 /// Check whether it is possible to delete the loop after rewriting exit
780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
781 /// aggressively.
782 bool IndVarSimplify::canLoopBeDeleted(
783 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
784 BasicBlock *Preheader = L->getLoopPreheader();
785 // If there is no preheader, the loop will not be deleted.
786 if (!Preheader)
787 return false;
789 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
790 // We obviate multiple ExitingBlocks case for simplicity.
791 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
792 // after exit value rewriting, we can enhance the logic here.
793 SmallVector<BasicBlock *, 4> ExitingBlocks;
794 L->getExitingBlocks(ExitingBlocks);
795 SmallVector<BasicBlock *, 8> ExitBlocks;
796 L->getUniqueExitBlocks(ExitBlocks);
797 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
798 return false;
800 BasicBlock *ExitBlock = ExitBlocks[0];
801 BasicBlock::iterator BI = ExitBlock->begin();
802 while (PHINode *P = dyn_cast<PHINode>(BI)) {
803 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
805 // If the Incoming value of P is found in RewritePhiSet, we know it
806 // could be rewritten to use a loop invariant value in transformation
807 // phase later. Skip it in the loop invariant check below.
808 bool found = false;
809 for (const RewritePhi &Phi : RewritePhiSet) {
810 unsigned i = Phi.Ith;
811 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
812 found = true;
813 break;
817 Instruction *I;
818 if (!found && (I = dyn_cast<Instruction>(Incoming)))
819 if (!L->hasLoopInvariantOperands(I))
820 return false;
822 ++BI;
825 for (auto *BB : L->blocks())
826 if (llvm::any_of(*BB, [](Instruction &I) {
827 return I.mayHaveSideEffects();
829 return false;
831 return true;
834 //===----------------------------------------------------------------------===//
835 // IV Widening - Extend the width of an IV to cover its widest uses.
836 //===----------------------------------------------------------------------===//
838 namespace {
840 // Collect information about induction variables that are used by sign/zero
841 // extend operations. This information is recorded by CollectExtend and provides
842 // the input to WidenIV.
843 struct WideIVInfo {
844 PHINode *NarrowIV = nullptr;
846 // Widest integer type created [sz]ext
847 Type *WidestNativeType = nullptr;
849 // Was a sext user seen before a zext?
850 bool IsSigned = false;
853 } // end anonymous namespace
855 /// Update information about the induction variable that is extended by this
856 /// sign or zero extend operation. This is used to determine the final width of
857 /// the IV before actually widening it.
858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
859 const TargetTransformInfo *TTI) {
860 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
861 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
862 return;
864 Type *Ty = Cast->getType();
865 uint64_t Width = SE->getTypeSizeInBits(Ty);
866 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
867 return;
869 // Check that `Cast` actually extends the induction variable (we rely on this
870 // later). This takes care of cases where `Cast` is extending a truncation of
871 // the narrow induction variable, and thus can end up being narrower than the
872 // "narrow" induction variable.
873 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
874 if (NarrowIVWidth >= Width)
875 return;
877 // Cast is either an sext or zext up to this point.
878 // We should not widen an indvar if arithmetics on the wider indvar are more
879 // expensive than those on the narrower indvar. We check only the cost of ADD
880 // because at least an ADD is required to increment the induction variable. We
881 // could compute more comprehensively the cost of all instructions on the
882 // induction variable when necessary.
883 if (TTI &&
884 TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
885 TTI->getArithmeticInstrCost(Instruction::Add,
886 Cast->getOperand(0)->getType())) {
887 return;
890 if (!WI.WidestNativeType) {
891 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
892 WI.IsSigned = IsSigned;
893 return;
896 // We extend the IV to satisfy the sign of its first user, arbitrarily.
897 if (WI.IsSigned != IsSigned)
898 return;
900 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
901 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
904 namespace {
906 /// Record a link in the Narrow IV def-use chain along with the WideIV that
907 /// computes the same value as the Narrow IV def. This avoids caching Use*
908 /// pointers.
909 struct NarrowIVDefUse {
910 Instruction *NarrowDef = nullptr;
911 Instruction *NarrowUse = nullptr;
912 Instruction *WideDef = nullptr;
914 // True if the narrow def is never negative. Tracking this information lets
915 // us use a sign extension instead of a zero extension or vice versa, when
916 // profitable and legal.
917 bool NeverNegative = false;
919 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
920 bool NeverNegative)
921 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
922 NeverNegative(NeverNegative) {}
925 /// The goal of this transform is to remove sign and zero extends without
926 /// creating any new induction variables. To do this, it creates a new phi of
927 /// the wider type and redirects all users, either removing extends or inserting
928 /// truncs whenever we stop propagating the type.
929 class WidenIV {
930 // Parameters
931 PHINode *OrigPhi;
932 Type *WideType;
934 // Context
935 LoopInfo *LI;
936 Loop *L;
937 ScalarEvolution *SE;
938 DominatorTree *DT;
940 // Does the module have any calls to the llvm.experimental.guard intrinsic
941 // at all? If not we can avoid scanning instructions looking for guards.
942 bool HasGuards;
944 // Result
945 PHINode *WidePhi = nullptr;
946 Instruction *WideInc = nullptr;
947 const SCEV *WideIncExpr = nullptr;
948 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
950 SmallPtrSet<Instruction *,16> Widened;
951 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
953 enum ExtendKind { ZeroExtended, SignExtended, Unknown };
955 // A map tracking the kind of extension used to widen each narrow IV
956 // and narrow IV user.
957 // Key: pointer to a narrow IV or IV user.
958 // Value: the kind of extension used to widen this Instruction.
959 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
961 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
963 // A map with control-dependent ranges for post increment IV uses. The key is
964 // a pair of IV def and a use of this def denoting the context. The value is
965 // a ConstantRange representing possible values of the def at the given
966 // context.
967 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
969 Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
970 Instruction *UseI) {
971 DefUserPair Key(Def, UseI);
972 auto It = PostIncRangeInfos.find(Key);
973 return It == PostIncRangeInfos.end()
974 ? Optional<ConstantRange>(None)
975 : Optional<ConstantRange>(It->second);
978 void calculatePostIncRanges(PHINode *OrigPhi);
979 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
981 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
982 DefUserPair Key(Def, UseI);
983 auto It = PostIncRangeInfos.find(Key);
984 if (It == PostIncRangeInfos.end())
985 PostIncRangeInfos.insert({Key, R});
986 else
987 It->second = R.intersectWith(It->second);
990 public:
991 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
992 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
993 bool HasGuards)
994 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
995 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
996 HasGuards(HasGuards), DeadInsts(DI) {
997 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
998 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1001 PHINode *createWideIV(SCEVExpander &Rewriter);
1003 protected:
1004 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1005 Instruction *Use);
1007 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1008 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1009 const SCEVAddRecExpr *WideAR);
1010 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1012 ExtendKind getExtendKind(Instruction *I);
1014 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1016 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1018 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1020 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1021 unsigned OpCode) const;
1023 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1025 bool widenLoopCompare(NarrowIVDefUse DU);
1026 bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1027 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1029 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1032 } // end anonymous namespace
1034 /// Perform a quick domtree based check for loop invariance assuming that V is
1035 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1036 /// purpose.
1037 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1038 Instruction *Inst = dyn_cast<Instruction>(V);
1039 if (!Inst)
1040 return true;
1042 return DT->properlyDominates(Inst->getParent(), L->getHeader());
1045 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1046 bool IsSigned, Instruction *Use) {
1047 // Set the debug location and conservative insertion point.
1048 IRBuilder<> Builder(Use);
1049 // Hoist the insertion point into loop preheaders as far as possible.
1050 for (const Loop *L = LI->getLoopFor(Use->getParent());
1051 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1052 L = L->getParentLoop())
1053 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1055 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1056 Builder.CreateZExt(NarrowOper, WideType);
1059 /// Instantiate a wide operation to replace a narrow operation. This only needs
1060 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1061 /// 0 for any operation we decide not to clone.
1062 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1063 const SCEVAddRecExpr *WideAR) {
1064 unsigned Opcode = DU.NarrowUse->getOpcode();
1065 switch (Opcode) {
1066 default:
1067 return nullptr;
1068 case Instruction::Add:
1069 case Instruction::Mul:
1070 case Instruction::UDiv:
1071 case Instruction::Sub:
1072 return cloneArithmeticIVUser(DU, WideAR);
1074 case Instruction::And:
1075 case Instruction::Or:
1076 case Instruction::Xor:
1077 case Instruction::Shl:
1078 case Instruction::LShr:
1079 case Instruction::AShr:
1080 return cloneBitwiseIVUser(DU);
1084 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1085 Instruction *NarrowUse = DU.NarrowUse;
1086 Instruction *NarrowDef = DU.NarrowDef;
1087 Instruction *WideDef = DU.WideDef;
1089 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1091 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1092 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1093 // invariant and will be folded or hoisted. If it actually comes from a
1094 // widened IV, it should be removed during a future call to widenIVUse.
1095 bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1096 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1097 ? WideDef
1098 : createExtendInst(NarrowUse->getOperand(0), WideType,
1099 IsSigned, NarrowUse);
1100 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1101 ? WideDef
1102 : createExtendInst(NarrowUse->getOperand(1), WideType,
1103 IsSigned, NarrowUse);
1105 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1106 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1107 NarrowBO->getName());
1108 IRBuilder<> Builder(NarrowUse);
1109 Builder.Insert(WideBO);
1110 WideBO->copyIRFlags(NarrowBO);
1111 return WideBO;
1114 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1115 const SCEVAddRecExpr *WideAR) {
1116 Instruction *NarrowUse = DU.NarrowUse;
1117 Instruction *NarrowDef = DU.NarrowDef;
1118 Instruction *WideDef = DU.WideDef;
1120 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1122 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1124 // We're trying to find X such that
1126 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1128 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1129 // and check using SCEV if any of them are correct.
1131 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1132 // correct solution to X.
1133 auto GuessNonIVOperand = [&](bool SignExt) {
1134 const SCEV *WideLHS;
1135 const SCEV *WideRHS;
1137 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1138 if (SignExt)
1139 return SE->getSignExtendExpr(S, Ty);
1140 return SE->getZeroExtendExpr(S, Ty);
1143 if (IVOpIdx == 0) {
1144 WideLHS = SE->getSCEV(WideDef);
1145 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1146 WideRHS = GetExtend(NarrowRHS, WideType);
1147 } else {
1148 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1149 WideLHS = GetExtend(NarrowLHS, WideType);
1150 WideRHS = SE->getSCEV(WideDef);
1153 // WideUse is "WideDef `op.wide` X" as described in the comment.
1154 const SCEV *WideUse = nullptr;
1156 switch (NarrowUse->getOpcode()) {
1157 default:
1158 llvm_unreachable("No other possibility!");
1160 case Instruction::Add:
1161 WideUse = SE->getAddExpr(WideLHS, WideRHS);
1162 break;
1164 case Instruction::Mul:
1165 WideUse = SE->getMulExpr(WideLHS, WideRHS);
1166 break;
1168 case Instruction::UDiv:
1169 WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1170 break;
1172 case Instruction::Sub:
1173 WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1174 break;
1177 return WideUse == WideAR;
1180 bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1181 if (!GuessNonIVOperand(SignExtend)) {
1182 SignExtend = !SignExtend;
1183 if (!GuessNonIVOperand(SignExtend))
1184 return nullptr;
1187 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1188 ? WideDef
1189 : createExtendInst(NarrowUse->getOperand(0), WideType,
1190 SignExtend, NarrowUse);
1191 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1192 ? WideDef
1193 : createExtendInst(NarrowUse->getOperand(1), WideType,
1194 SignExtend, NarrowUse);
1196 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1197 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1198 NarrowBO->getName());
1200 IRBuilder<> Builder(NarrowUse);
1201 Builder.Insert(WideBO);
1202 WideBO->copyIRFlags(NarrowBO);
1203 return WideBO;
1206 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1207 auto It = ExtendKindMap.find(I);
1208 assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1209 return It->second;
1212 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1213 unsigned OpCode) const {
1214 if (OpCode == Instruction::Add)
1215 return SE->getAddExpr(LHS, RHS);
1216 if (OpCode == Instruction::Sub)
1217 return SE->getMinusSCEV(LHS, RHS);
1218 if (OpCode == Instruction::Mul)
1219 return SE->getMulExpr(LHS, RHS);
1221 llvm_unreachable("Unsupported opcode.");
1224 /// No-wrap operations can transfer sign extension of their result to their
1225 /// operands. Generate the SCEV value for the widened operation without
1226 /// actually modifying the IR yet. If the expression after extending the
1227 /// operands is an AddRec for this loop, return the AddRec and the kind of
1228 /// extension used.
1229 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1230 // Handle the common case of add<nsw/nuw>
1231 const unsigned OpCode = DU.NarrowUse->getOpcode();
1232 // Only Add/Sub/Mul instructions supported yet.
1233 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1234 OpCode != Instruction::Mul)
1235 return {nullptr, Unknown};
1237 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1238 // if extending the other will lead to a recurrence.
1239 const unsigned ExtendOperIdx =
1240 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1241 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1243 const SCEV *ExtendOperExpr = nullptr;
1244 const OverflowingBinaryOperator *OBO =
1245 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1246 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1247 if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1248 ExtendOperExpr = SE->getSignExtendExpr(
1249 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1250 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1251 ExtendOperExpr = SE->getZeroExtendExpr(
1252 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1253 else
1254 return {nullptr, Unknown};
1256 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1257 // flags. This instruction may be guarded by control flow that the no-wrap
1258 // behavior depends on. Non-control-equivalent instructions can be mapped to
1259 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1260 // semantics to those operations.
1261 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1262 const SCEV *rhs = ExtendOperExpr;
1264 // Let's swap operands to the initial order for the case of non-commutative
1265 // operations, like SUB. See PR21014.
1266 if (ExtendOperIdx == 0)
1267 std::swap(lhs, rhs);
1268 const SCEVAddRecExpr *AddRec =
1269 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1271 if (!AddRec || AddRec->getLoop() != L)
1272 return {nullptr, Unknown};
1274 return {AddRec, ExtKind};
1277 /// Is this instruction potentially interesting for further simplification after
1278 /// widening it's type? In other words, can the extend be safely hoisted out of
1279 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1280 /// so, return the extended recurrence and the kind of extension used. Otherwise
1281 /// return {nullptr, Unknown}.
1282 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1283 if (!SE->isSCEVable(DU.NarrowUse->getType()))
1284 return {nullptr, Unknown};
1286 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1287 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1288 SE->getTypeSizeInBits(WideType)) {
1289 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1290 // index. So don't follow this use.
1291 return {nullptr, Unknown};
1294 const SCEV *WideExpr;
1295 ExtendKind ExtKind;
1296 if (DU.NeverNegative) {
1297 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1298 if (isa<SCEVAddRecExpr>(WideExpr))
1299 ExtKind = SignExtended;
1300 else {
1301 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1302 ExtKind = ZeroExtended;
1304 } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1305 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1306 ExtKind = SignExtended;
1307 } else {
1308 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1309 ExtKind = ZeroExtended;
1311 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1312 if (!AddRec || AddRec->getLoop() != L)
1313 return {nullptr, Unknown};
1314 return {AddRec, ExtKind};
1317 /// This IV user cannot be widen. Replace this use of the original narrow IV
1318 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1319 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1320 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1321 if (!InsertPt)
1322 return;
1323 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1324 << *DU.NarrowUse << "\n");
1325 IRBuilder<> Builder(InsertPt);
1326 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1327 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1330 /// If the narrow use is a compare instruction, then widen the compare
1331 // (and possibly the other operand). The extend operation is hoisted into the
1332 // loop preheader as far as possible.
1333 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1334 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1335 if (!Cmp)
1336 return false;
1338 // We can legally widen the comparison in the following two cases:
1340 // - The signedness of the IV extension and comparison match
1342 // - The narrow IV is always positive (and thus its sign extension is equal
1343 // to its zero extension). For instance, let's say we're zero extending
1344 // %narrow for the following use
1346 // icmp slt i32 %narrow, %val ... (A)
1348 // and %narrow is always positive. Then
1350 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1351 // == icmp slt i32 zext(%narrow), sext(%val)
1352 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1353 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1354 return false;
1356 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1357 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1358 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1359 assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1361 // Widen the compare instruction.
1362 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1363 if (!InsertPt)
1364 return false;
1365 IRBuilder<> Builder(InsertPt);
1366 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1368 // Widen the other operand of the compare, if necessary.
1369 if (CastWidth < IVWidth) {
1370 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1371 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1373 return true;
1376 /// If the narrow use is an instruction whose two operands are the defining
1377 /// instruction of DU and a load instruction, then we have the following:
1378 /// if the load is hoisted outside the loop, then we do not reach this function
1379 /// as scalar evolution analysis works fine in widenIVUse with variables
1380 /// hoisted outside the loop and efficient code is subsequently generated by
1381 /// not emitting truncate instructions. But when the load is not hoisted
1382 /// (whether due to limitation in alias analysis or due to a true legality),
1383 /// then scalar evolution can not proceed with loop variant values and
1384 /// inefficient code is generated. This function handles the non-hoisted load
1385 /// special case by making the optimization generate the same type of code for
1386 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1387 /// instruction). This special case is important especially when the induction
1388 /// variables are affecting addressing mode in code generation.
1389 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1390 Instruction *NarrowUse = DU.NarrowUse;
1391 Instruction *NarrowDef = DU.NarrowDef;
1392 Instruction *WideDef = DU.WideDef;
1394 // Handle the common case of add<nsw/nuw>
1395 const unsigned OpCode = NarrowUse->getOpcode();
1396 // Only Add/Sub/Mul instructions are supported.
1397 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1398 OpCode != Instruction::Mul)
1399 return false;
1401 // The operand that is not defined by NarrowDef of DU. Let's call it the
1402 // other operand.
1403 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1404 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1405 "bad DU");
1407 const SCEV *ExtendOperExpr = nullptr;
1408 const OverflowingBinaryOperator *OBO =
1409 cast<OverflowingBinaryOperator>(NarrowUse);
1410 ExtendKind ExtKind = getExtendKind(NarrowDef);
1411 if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1412 ExtendOperExpr = SE->getSignExtendExpr(
1413 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1414 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1415 ExtendOperExpr = SE->getZeroExtendExpr(
1416 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1417 else
1418 return false;
1420 // We are interested in the other operand being a load instruction.
1421 // But, we should look into relaxing this restriction later on.
1422 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1423 if (I && I->getOpcode() != Instruction::Load)
1424 return false;
1426 // Verifying that Defining operand is an AddRec
1427 const SCEV *Op1 = SE->getSCEV(WideDef);
1428 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1429 if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1430 return false;
1431 // Verifying that other operand is an Extend.
1432 if (ExtKind == SignExtended) {
1433 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1434 return false;
1435 } else {
1436 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1437 return false;
1440 if (ExtKind == SignExtended) {
1441 for (Use &U : NarrowUse->uses()) {
1442 SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1443 if (!User || User->getType() != WideType)
1444 return false;
1446 } else { // ExtKind == ZeroExtended
1447 for (Use &U : NarrowUse->uses()) {
1448 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1449 if (!User || User->getType() != WideType)
1450 return false;
1454 return true;
1457 /// Special Case for widening with variant Loads (see
1458 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1459 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1460 Instruction *NarrowUse = DU.NarrowUse;
1461 Instruction *NarrowDef = DU.NarrowDef;
1462 Instruction *WideDef = DU.WideDef;
1464 ExtendKind ExtKind = getExtendKind(NarrowDef);
1466 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1468 // Generating a widening use instruction.
1469 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1470 ? WideDef
1471 : createExtendInst(NarrowUse->getOperand(0), WideType,
1472 ExtKind, NarrowUse);
1473 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1474 ? WideDef
1475 : createExtendInst(NarrowUse->getOperand(1), WideType,
1476 ExtKind, NarrowUse);
1478 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1479 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1480 NarrowBO->getName());
1481 IRBuilder<> Builder(NarrowUse);
1482 Builder.Insert(WideBO);
1483 WideBO->copyIRFlags(NarrowBO);
1485 if (ExtKind == SignExtended)
1486 ExtendKindMap[NarrowUse] = SignExtended;
1487 else
1488 ExtendKindMap[NarrowUse] = ZeroExtended;
1490 // Update the Use.
1491 if (ExtKind == SignExtended) {
1492 for (Use &U : NarrowUse->uses()) {
1493 SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1494 if (User && User->getType() == WideType) {
1495 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1496 << *WideBO << "\n");
1497 ++NumElimExt;
1498 User->replaceAllUsesWith(WideBO);
1499 DeadInsts.emplace_back(User);
1502 } else { // ExtKind == ZeroExtended
1503 for (Use &U : NarrowUse->uses()) {
1504 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1505 if (User && User->getType() == WideType) {
1506 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1507 << *WideBO << "\n");
1508 ++NumElimExt;
1509 User->replaceAllUsesWith(WideBO);
1510 DeadInsts.emplace_back(User);
1516 /// Determine whether an individual user of the narrow IV can be widened. If so,
1517 /// return the wide clone of the user.
1518 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1519 assert(ExtendKindMap.count(DU.NarrowDef) &&
1520 "Should already know the kind of extension used to widen NarrowDef");
1522 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1523 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1524 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1525 // For LCSSA phis, sink the truncate outside the loop.
1526 // After SimplifyCFG most loop exit targets have a single predecessor.
1527 // Otherwise fall back to a truncate within the loop.
1528 if (UsePhi->getNumOperands() != 1)
1529 truncateIVUse(DU, DT, LI);
1530 else {
1531 // Widening the PHI requires us to insert a trunc. The logical place
1532 // for this trunc is in the same BB as the PHI. This is not possible if
1533 // the BB is terminated by a catchswitch.
1534 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1535 return nullptr;
1537 PHINode *WidePhi =
1538 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1539 UsePhi);
1540 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1541 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1542 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1543 UsePhi->replaceAllUsesWith(Trunc);
1544 DeadInsts.emplace_back(UsePhi);
1545 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1546 << *WidePhi << "\n");
1548 return nullptr;
1552 // This narrow use can be widened by a sext if it's non-negative or its narrow
1553 // def was widended by a sext. Same for zext.
1554 auto canWidenBySExt = [&]() {
1555 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1557 auto canWidenByZExt = [&]() {
1558 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1561 // Our raison d'etre! Eliminate sign and zero extension.
1562 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1563 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1564 Value *NewDef = DU.WideDef;
1565 if (DU.NarrowUse->getType() != WideType) {
1566 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1567 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1568 if (CastWidth < IVWidth) {
1569 // The cast isn't as wide as the IV, so insert a Trunc.
1570 IRBuilder<> Builder(DU.NarrowUse);
1571 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1573 else {
1574 // A wider extend was hidden behind a narrower one. This may induce
1575 // another round of IV widening in which the intermediate IV becomes
1576 // dead. It should be very rare.
1577 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1578 << " not wide enough to subsume " << *DU.NarrowUse
1579 << "\n");
1580 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1581 NewDef = DU.NarrowUse;
1584 if (NewDef != DU.NarrowUse) {
1585 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1586 << " replaced by " << *DU.WideDef << "\n");
1587 ++NumElimExt;
1588 DU.NarrowUse->replaceAllUsesWith(NewDef);
1589 DeadInsts.emplace_back(DU.NarrowUse);
1591 // Now that the extend is gone, we want to expose it's uses for potential
1592 // further simplification. We don't need to directly inform SimplifyIVUsers
1593 // of the new users, because their parent IV will be processed later as a
1594 // new loop phi. If we preserved IVUsers analysis, we would also want to
1595 // push the uses of WideDef here.
1597 // No further widening is needed. The deceased [sz]ext had done it for us.
1598 return nullptr;
1601 // Does this user itself evaluate to a recurrence after widening?
1602 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1603 if (!WideAddRec.first)
1604 WideAddRec = getWideRecurrence(DU);
1606 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1607 if (!WideAddRec.first) {
1608 // If use is a loop condition, try to promote the condition instead of
1609 // truncating the IV first.
1610 if (widenLoopCompare(DU))
1611 return nullptr;
1613 // We are here about to generate a truncate instruction that may hurt
1614 // performance because the scalar evolution expression computed earlier
1615 // in WideAddRec.first does not indicate a polynomial induction expression.
1616 // In that case, look at the operands of the use instruction to determine
1617 // if we can still widen the use instead of truncating its operand.
1618 if (widenWithVariantLoadUse(DU)) {
1619 widenWithVariantLoadUseCodegen(DU);
1620 return nullptr;
1623 // This user does not evaluate to a recurrence after widening, so don't
1624 // follow it. Instead insert a Trunc to kill off the original use,
1625 // eventually isolating the original narrow IV so it can be removed.
1626 truncateIVUse(DU, DT, LI);
1627 return nullptr;
1629 // Assume block terminators cannot evaluate to a recurrence. We can't to
1630 // insert a Trunc after a terminator if there happens to be a critical edge.
1631 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1632 "SCEV is not expected to evaluate a block terminator");
1634 // Reuse the IV increment that SCEVExpander created as long as it dominates
1635 // NarrowUse.
1636 Instruction *WideUse = nullptr;
1637 if (WideAddRec.first == WideIncExpr &&
1638 Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1639 WideUse = WideInc;
1640 else {
1641 WideUse = cloneIVUser(DU, WideAddRec.first);
1642 if (!WideUse)
1643 return nullptr;
1645 // Evaluation of WideAddRec ensured that the narrow expression could be
1646 // extended outside the loop without overflow. This suggests that the wide use
1647 // evaluates to the same expression as the extended narrow use, but doesn't
1648 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1649 // where it fails, we simply throw away the newly created wide use.
1650 if (WideAddRec.first != SE->getSCEV(WideUse)) {
1651 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1652 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1653 << "\n");
1654 DeadInsts.emplace_back(WideUse);
1655 return nullptr;
1658 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1659 // Returning WideUse pushes it on the worklist.
1660 return WideUse;
1663 /// Add eligible users of NarrowDef to NarrowIVUsers.
1664 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1665 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1666 bool NonNegativeDef =
1667 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1668 SE->getConstant(NarrowSCEV->getType(), 0));
1669 for (User *U : NarrowDef->users()) {
1670 Instruction *NarrowUser = cast<Instruction>(U);
1672 // Handle data flow merges and bizarre phi cycles.
1673 if (!Widened.insert(NarrowUser).second)
1674 continue;
1676 bool NonNegativeUse = false;
1677 if (!NonNegativeDef) {
1678 // We might have a control-dependent range information for this context.
1679 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1680 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1683 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1684 NonNegativeDef || NonNegativeUse);
1688 /// Process a single induction variable. First use the SCEVExpander to create a
1689 /// wide induction variable that evaluates to the same recurrence as the
1690 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1691 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1692 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1694 /// It would be simpler to delete uses as they are processed, but we must avoid
1695 /// invalidating SCEV expressions.
1696 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1697 // Is this phi an induction variable?
1698 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1699 if (!AddRec)
1700 return nullptr;
1702 // Widen the induction variable expression.
1703 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1704 ? SE->getSignExtendExpr(AddRec, WideType)
1705 : SE->getZeroExtendExpr(AddRec, WideType);
1707 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1708 "Expect the new IV expression to preserve its type");
1710 // Can the IV be extended outside the loop without overflow?
1711 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1712 if (!AddRec || AddRec->getLoop() != L)
1713 return nullptr;
1715 // An AddRec must have loop-invariant operands. Since this AddRec is
1716 // materialized by a loop header phi, the expression cannot have any post-loop
1717 // operands, so they must dominate the loop header.
1718 assert(
1719 SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1720 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1721 "Loop header phi recurrence inputs do not dominate the loop");
1723 // Iterate over IV uses (including transitive ones) looking for IV increments
1724 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1725 // the increment calculate control-dependent range information basing on
1726 // dominating conditions inside of the loop (e.g. a range check inside of the
1727 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1729 // Control-dependent range information is later used to prove that a narrow
1730 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1731 // this on demand because when pushNarrowIVUsers needs this information some
1732 // of the dominating conditions might be already widened.
1733 if (UsePostIncrementRanges)
1734 calculatePostIncRanges(OrigPhi);
1736 // The rewriter provides a value for the desired IV expression. This may
1737 // either find an existing phi or materialize a new one. Either way, we
1738 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1739 // of the phi-SCC dominates the loop entry.
1740 Instruction *InsertPt = &L->getHeader()->front();
1741 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1743 // Remembering the WideIV increment generated by SCEVExpander allows
1744 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1745 // employ a general reuse mechanism because the call above is the only call to
1746 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1747 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1748 WideInc =
1749 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1750 WideIncExpr = SE->getSCEV(WideInc);
1751 // Propagate the debug location associated with the original loop increment
1752 // to the new (widened) increment.
1753 auto *OrigInc =
1754 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1755 WideInc->setDebugLoc(OrigInc->getDebugLoc());
1758 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1759 ++NumWidened;
1761 // Traverse the def-use chain using a worklist starting at the original IV.
1762 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1764 Widened.insert(OrigPhi);
1765 pushNarrowIVUsers(OrigPhi, WidePhi);
1767 while (!NarrowIVUsers.empty()) {
1768 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1770 // Process a def-use edge. This may replace the use, so don't hold a
1771 // use_iterator across it.
1772 Instruction *WideUse = widenIVUse(DU, Rewriter);
1774 // Follow all def-use edges from the previous narrow use.
1775 if (WideUse)
1776 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1778 // widenIVUse may have removed the def-use edge.
1779 if (DU.NarrowDef->use_empty())
1780 DeadInsts.emplace_back(DU.NarrowDef);
1783 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1784 // evaluate the same recurrence, we can just copy the debug info over.
1785 SmallVector<DbgValueInst *, 1> DbgValues;
1786 llvm::findDbgValues(DbgValues, OrigPhi);
1787 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1788 ValueAsMetadata::get(WidePhi));
1789 for (auto &DbgValue : DbgValues)
1790 DbgValue->setOperand(0, MDPhi);
1791 return WidePhi;
1794 /// Calculates control-dependent range for the given def at the given context
1795 /// by looking at dominating conditions inside of the loop
1796 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1797 Instruction *NarrowUser) {
1798 using namespace llvm::PatternMatch;
1800 Value *NarrowDefLHS;
1801 const APInt *NarrowDefRHS;
1802 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1803 m_APInt(NarrowDefRHS))) ||
1804 !NarrowDefRHS->isNonNegative())
1805 return;
1807 auto UpdateRangeFromCondition = [&] (Value *Condition,
1808 bool TrueDest) {
1809 CmpInst::Predicate Pred;
1810 Value *CmpRHS;
1811 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1812 m_Value(CmpRHS))))
1813 return;
1815 CmpInst::Predicate P =
1816 TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1818 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1819 auto CmpConstrainedLHSRange =
1820 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1821 auto NarrowDefRange =
1822 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1824 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1827 auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1828 if (!HasGuards)
1829 return;
1831 for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1832 Ctx->getParent()->rend())) {
1833 Value *C = nullptr;
1834 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1835 UpdateRangeFromCondition(C, /*TrueDest=*/true);
1839 UpdateRangeFromGuards(NarrowUser);
1841 BasicBlock *NarrowUserBB = NarrowUser->getParent();
1842 // If NarrowUserBB is statically unreachable asking dominator queries may
1843 // yield surprising results. (e.g. the block may not have a dom tree node)
1844 if (!DT->isReachableFromEntry(NarrowUserBB))
1845 return;
1847 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1848 L->contains(DTB->getBlock());
1849 DTB = DTB->getIDom()) {
1850 auto *BB = DTB->getBlock();
1851 auto *TI = BB->getTerminator();
1852 UpdateRangeFromGuards(TI);
1854 auto *BI = dyn_cast<BranchInst>(TI);
1855 if (!BI || !BI->isConditional())
1856 continue;
1858 auto *TrueSuccessor = BI->getSuccessor(0);
1859 auto *FalseSuccessor = BI->getSuccessor(1);
1861 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1862 return BBE.isSingleEdge() &&
1863 DT->dominates(BBE, NarrowUser->getParent());
1866 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1867 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1869 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1870 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1874 /// Calculates PostIncRangeInfos map for the given IV
1875 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1876 SmallPtrSet<Instruction *, 16> Visited;
1877 SmallVector<Instruction *, 6> Worklist;
1878 Worklist.push_back(OrigPhi);
1879 Visited.insert(OrigPhi);
1881 while (!Worklist.empty()) {
1882 Instruction *NarrowDef = Worklist.pop_back_val();
1884 for (Use &U : NarrowDef->uses()) {
1885 auto *NarrowUser = cast<Instruction>(U.getUser());
1887 // Don't go looking outside the current loop.
1888 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1889 if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1890 continue;
1892 if (!Visited.insert(NarrowUser).second)
1893 continue;
1895 Worklist.push_back(NarrowUser);
1897 calculatePostIncRange(NarrowDef, NarrowUser);
1902 //===----------------------------------------------------------------------===//
1903 // Live IV Reduction - Minimize IVs live across the loop.
1904 //===----------------------------------------------------------------------===//
1906 //===----------------------------------------------------------------------===//
1907 // Simplification of IV users based on SCEV evaluation.
1908 //===----------------------------------------------------------------------===//
1910 namespace {
1912 class IndVarSimplifyVisitor : public IVVisitor {
1913 ScalarEvolution *SE;
1914 const TargetTransformInfo *TTI;
1915 PHINode *IVPhi;
1917 public:
1918 WideIVInfo WI;
1920 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1921 const TargetTransformInfo *TTI,
1922 const DominatorTree *DTree)
1923 : SE(SCEV), TTI(TTI), IVPhi(IV) {
1924 DT = DTree;
1925 WI.NarrowIV = IVPhi;
1928 // Implement the interface used by simplifyUsersOfIV.
1929 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1932 } // end anonymous namespace
1934 /// Iteratively perform simplification on a worklist of IV users. Each
1935 /// successive simplification may push more users which may themselves be
1936 /// candidates for simplification.
1938 /// Sign/Zero extend elimination is interleaved with IV simplification.
1939 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1940 SCEVExpander &Rewriter,
1941 LoopInfo *LI) {
1942 SmallVector<WideIVInfo, 8> WideIVs;
1944 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1945 Intrinsic::getName(Intrinsic::experimental_guard));
1946 bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1948 SmallVector<PHINode*, 8> LoopPhis;
1949 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1950 LoopPhis.push_back(cast<PHINode>(I));
1952 // Each round of simplification iterates through the SimplifyIVUsers worklist
1953 // for all current phis, then determines whether any IVs can be
1954 // widened. Widening adds new phis to LoopPhis, inducing another round of
1955 // simplification on the wide IVs.
1956 bool Changed = false;
1957 while (!LoopPhis.empty()) {
1958 // Evaluate as many IV expressions as possible before widening any IVs. This
1959 // forces SCEV to set no-wrap flags before evaluating sign/zero
1960 // extension. The first time SCEV attempts to normalize sign/zero extension,
1961 // the result becomes final. So for the most predictable results, we delay
1962 // evaluation of sign/zero extend evaluation until needed, and avoid running
1963 // other SCEV based analysis prior to simplifyAndExtend.
1964 do {
1965 PHINode *CurrIV = LoopPhis.pop_back_val();
1967 // Information about sign/zero extensions of CurrIV.
1968 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1970 Changed |=
1971 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1973 if (Visitor.WI.WidestNativeType) {
1974 WideIVs.push_back(Visitor.WI);
1976 } while(!LoopPhis.empty());
1978 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1979 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1980 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1981 Changed = true;
1982 LoopPhis.push_back(WidePhi);
1986 return Changed;
1989 //===----------------------------------------------------------------------===//
1990 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1991 //===----------------------------------------------------------------------===//
1993 /// Return true if this loop's backedge taken count expression can be safely and
1994 /// cheaply expanded into an instruction sequence that can be used by
1995 /// linearFunctionTestReplace.
1997 /// TODO: This fails for pointer-type loop counters with greater than one byte
1998 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1999 /// we could skip this check in the case that the LFTR loop counter (chosen by
2000 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
2001 /// the loop test to an inequality test by checking the target data's alignment
2002 /// of element types (given that the initial pointer value originates from or is
2003 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
2004 /// However, we don't yet have a strong motivation for converting loop tests
2005 /// into inequality tests.
2006 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
2007 SCEVExpander &Rewriter) {
2008 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2009 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
2010 BackedgeTakenCount->isZero())
2011 return false;
2013 if (!L->getExitingBlock())
2014 return false;
2016 // Can't rewrite non-branch yet.
2017 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2018 return false;
2020 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2021 return false;
2023 return true;
2026 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2027 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2028 Instruction *IncI = dyn_cast<Instruction>(IncV);
2029 if (!IncI)
2030 return nullptr;
2032 switch (IncI->getOpcode()) {
2033 case Instruction::Add:
2034 case Instruction::Sub:
2035 break;
2036 case Instruction::GetElementPtr:
2037 // An IV counter must preserve its type.
2038 if (IncI->getNumOperands() == 2)
2039 break;
2040 LLVM_FALLTHROUGH;
2041 default:
2042 return nullptr;
2045 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2046 if (Phi && Phi->getParent() == L->getHeader()) {
2047 if (isLoopInvariant(IncI->getOperand(1), L, DT))
2048 return Phi;
2049 return nullptr;
2051 if (IncI->getOpcode() == Instruction::GetElementPtr)
2052 return nullptr;
2054 // Allow add/sub to be commuted.
2055 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2056 if (Phi && Phi->getParent() == L->getHeader()) {
2057 if (isLoopInvariant(IncI->getOperand(0), L, DT))
2058 return Phi;
2060 return nullptr;
2063 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2064 static ICmpInst *getLoopTest(Loop *L) {
2065 assert(L->getExitingBlock() && "expected loop exit");
2067 BasicBlock *LatchBlock = L->getLoopLatch();
2068 // Don't bother with LFTR if the loop is not properly simplified.
2069 if (!LatchBlock)
2070 return nullptr;
2072 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2073 assert(BI && "expected exit branch");
2075 return dyn_cast<ICmpInst>(BI->getCondition());
2078 /// linearFunctionTestReplace policy. Return true unless we can show that the
2079 /// current exit test is already sufficiently canonical.
2080 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2081 // Do LFTR to simplify the exit condition to an ICMP.
2082 ICmpInst *Cond = getLoopTest(L);
2083 if (!Cond)
2084 return true;
2086 // Do LFTR to simplify the exit ICMP to EQ/NE
2087 ICmpInst::Predicate Pred = Cond->getPredicate();
2088 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2089 return true;
2091 // Look for a loop invariant RHS
2092 Value *LHS = Cond->getOperand(0);
2093 Value *RHS = Cond->getOperand(1);
2094 if (!isLoopInvariant(RHS, L, DT)) {
2095 if (!isLoopInvariant(LHS, L, DT))
2096 return true;
2097 std::swap(LHS, RHS);
2099 // Look for a simple IV counter LHS
2100 PHINode *Phi = dyn_cast<PHINode>(LHS);
2101 if (!Phi)
2102 Phi = getLoopPhiForCounter(LHS, L, DT);
2104 if (!Phi)
2105 return true;
2107 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2108 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2109 if (Idx < 0)
2110 return true;
2112 // Do LFTR if the exit condition's IV is *not* a simple counter.
2113 Value *IncV = Phi->getIncomingValue(Idx);
2114 return Phi != getLoopPhiForCounter(IncV, L, DT);
2117 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2118 /// down to checking that all operands are constant and listing instructions
2119 /// that may hide undef.
2120 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2121 unsigned Depth) {
2122 if (isa<Constant>(V))
2123 return !isa<UndefValue>(V);
2125 if (Depth >= 6)
2126 return false;
2128 // Conservatively handle non-constant non-instructions. For example, Arguments
2129 // may be undef.
2130 Instruction *I = dyn_cast<Instruction>(V);
2131 if (!I)
2132 return false;
2134 // Load and return values may be undef.
2135 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2136 return false;
2138 // Optimistically handle other instructions.
2139 for (Value *Op : I->operands()) {
2140 if (!Visited.insert(Op).second)
2141 continue;
2142 if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2143 return false;
2145 return true;
2148 /// Return true if the given value is concrete. We must prove that undef can
2149 /// never reach it.
2151 /// TODO: If we decide that this is a good approach to checking for undef, we
2152 /// may factor it into a common location.
2153 static bool hasConcreteDef(Value *V) {
2154 SmallPtrSet<Value*, 8> Visited;
2155 Visited.insert(V);
2156 return hasConcreteDefImpl(V, Visited, 0);
2159 /// Return true if this IV has any uses other than the (soon to be rewritten)
2160 /// loop exit test.
2161 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2162 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2163 Value *IncV = Phi->getIncomingValue(LatchIdx);
2165 for (User *U : Phi->users())
2166 if (U != Cond && U != IncV) return false;
2168 for (User *U : IncV->users())
2169 if (U != Cond && U != Phi) return false;
2170 return true;
2173 /// Find an affine IV in canonical form.
2175 /// BECount may be an i8* pointer type. The pointer difference is already
2176 /// valid count without scaling the address stride, so it remains a pointer
2177 /// expression as far as SCEV is concerned.
2179 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2181 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2183 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2184 /// This is difficult in general for SCEV because of potential overflow. But we
2185 /// could at least handle constant BECounts.
2186 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2187 ScalarEvolution *SE, DominatorTree *DT) {
2188 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2190 Value *Cond =
2191 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2193 // Loop over all of the PHI nodes, looking for a simple counter.
2194 PHINode *BestPhi = nullptr;
2195 const SCEV *BestInit = nullptr;
2196 BasicBlock *LatchBlock = L->getLoopLatch();
2197 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2198 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2200 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2201 PHINode *Phi = cast<PHINode>(I);
2202 if (!SE->isSCEVable(Phi->getType()))
2203 continue;
2205 // Avoid comparing an integer IV against a pointer Limit.
2206 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2207 continue;
2209 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2210 if (!AR || AR->getLoop() != L || !AR->isAffine())
2211 continue;
2213 // AR may be a pointer type, while BECount is an integer type.
2214 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2215 // AR may not be a narrower type, or we may never exit.
2216 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2217 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2218 continue;
2220 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2221 if (!Step || !Step->isOne())
2222 continue;
2224 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2225 Value *IncV = Phi->getIncomingValue(LatchIdx);
2226 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2227 continue;
2229 // Avoid reusing a potentially undef value to compute other values that may
2230 // have originally had a concrete definition.
2231 if (!hasConcreteDef(Phi)) {
2232 // We explicitly allow unknown phis as long as they are already used by
2233 // the loop test. In this case we assume that performing LFTR could not
2234 // increase the number of undef users.
2235 if (ICmpInst *Cond = getLoopTest(L)) {
2236 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2237 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2238 continue;
2242 const SCEV *Init = AR->getStart();
2244 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2245 // Don't force a live loop counter if another IV can be used.
2246 if (AlmostDeadIV(Phi, LatchBlock, Cond))
2247 continue;
2249 // Prefer to count-from-zero. This is a more "canonical" counter form. It
2250 // also prefers integer to pointer IVs.
2251 if (BestInit->isZero() != Init->isZero()) {
2252 if (BestInit->isZero())
2253 continue;
2255 // If two IVs both count from zero or both count from nonzero then the
2256 // narrower is likely a dead phi that has been widened. Use the wider phi
2257 // to allow the other to be eliminated.
2258 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2259 continue;
2261 BestPhi = Phi;
2262 BestInit = Init;
2264 return BestPhi;
2267 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2268 /// the new loop test.
2269 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2270 SCEVExpander &Rewriter, ScalarEvolution *SE) {
2271 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2272 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2273 const SCEV *IVInit = AR->getStart();
2275 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2276 // finds a valid pointer IV. Sign extend BECount in order to materialize a
2277 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2278 // the existing GEPs whenever possible.
2279 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2280 // IVOffset will be the new GEP offset that is interpreted by GEP as a
2281 // signed value. IVCount on the other hand represents the loop trip count,
2282 // which is an unsigned value. FindLoopCounter only allows induction
2283 // variables that have a positive unit stride of one. This means we don't
2284 // have to handle the case of negative offsets (yet) and just need to zero
2285 // extend IVCount.
2286 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2287 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2289 // Expand the code for the iteration count.
2290 assert(SE->isLoopInvariant(IVOffset, L) &&
2291 "Computed iteration count is not loop invariant!");
2292 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2293 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2295 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2296 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2297 // We could handle pointer IVs other than i8*, but we need to compensate for
2298 // gep index scaling. See canExpandBackedgeTakenCount comments.
2299 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2300 cast<PointerType>(GEPBase->getType())
2301 ->getElementType())->isOne() &&
2302 "unit stride pointer IV must be i8*");
2304 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2305 return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(),
2306 GEPBase, GEPOffset, "lftr.limit");
2307 } else {
2308 // In any other case, convert both IVInit and IVCount to integers before
2309 // comparing. This may result in SCEV expansion of pointers, but in practice
2310 // SCEV will fold the pointer arithmetic away as such:
2311 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2313 // Valid Cases: (1) both integers is most common; (2) both may be pointers
2314 // for simple memset-style loops.
2316 // IVInit integer and IVCount pointer would only occur if a canonical IV
2317 // were generated on top of case #2, which is not expected.
2319 const SCEV *IVLimit = nullptr;
2320 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2321 // For non-zero Start, compute IVCount here.
2322 if (AR->getStart()->isZero())
2323 IVLimit = IVCount;
2324 else {
2325 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2326 const SCEV *IVInit = AR->getStart();
2328 // For integer IVs, truncate the IV before computing IVInit + BECount.
2329 if (SE->getTypeSizeInBits(IVInit->getType())
2330 > SE->getTypeSizeInBits(IVCount->getType()))
2331 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2333 IVLimit = SE->getAddExpr(IVInit, IVCount);
2335 // Expand the code for the iteration count.
2336 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2337 IRBuilder<> Builder(BI);
2338 assert(SE->isLoopInvariant(IVLimit, L) &&
2339 "Computed iteration count is not loop invariant!");
2340 // Ensure that we generate the same type as IndVar, or a smaller integer
2341 // type. In the presence of null pointer values, we have an integer type
2342 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2343 Type *LimitTy = IVCount->getType()->isPointerTy() ?
2344 IndVar->getType() : IVCount->getType();
2345 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2349 /// This method rewrites the exit condition of the loop to be a canonical !=
2350 /// comparison against the incremented loop induction variable. This pass is
2351 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2352 /// determine a loop-invariant trip count of the loop, which is actually a much
2353 /// broader range than just linear tests.
2354 bool IndVarSimplify::
2355 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2356 PHINode *IndVar, SCEVExpander &Rewriter) {
2357 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2359 // Initialize CmpIndVar and IVCount to their preincremented values.
2360 Value *CmpIndVar = IndVar;
2361 const SCEV *IVCount = BackedgeTakenCount;
2363 assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2365 // If the exiting block is the same as the backedge block, we prefer to
2366 // compare against the post-incremented value, otherwise we must compare
2367 // against the preincremented value.
2368 if (L->getExitingBlock() == L->getLoopLatch()) {
2369 // Add one to the "backedge-taken" count to get the trip count.
2370 // This addition may overflow, which is valid as long as the comparison is
2371 // truncated to BackedgeTakenCount->getType().
2372 IVCount = SE->getAddExpr(BackedgeTakenCount,
2373 SE->getOne(BackedgeTakenCount->getType()));
2374 // The BackedgeTaken expression contains the number of times that the
2375 // backedge branches to the loop header. This is one less than the
2376 // number of times the loop executes, so use the incremented indvar.
2377 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2380 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2381 assert(ExitCnt->getType()->isPointerTy() ==
2382 IndVar->getType()->isPointerTy() &&
2383 "genLoopLimit missed a cast");
2385 // Insert a new icmp_ne or icmp_eq instruction before the branch.
2386 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2387 ICmpInst::Predicate P;
2388 if (L->contains(BI->getSuccessor(0)))
2389 P = ICmpInst::ICMP_NE;
2390 else
2391 P = ICmpInst::ICMP_EQ;
2393 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2394 << " LHS:" << *CmpIndVar << '\n'
2395 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2396 << "\n"
2397 << " RHS:\t" << *ExitCnt << "\n"
2398 << " IVCount:\t" << *IVCount << "\n");
2400 IRBuilder<> Builder(BI);
2402 // The new loop exit condition should reuse the debug location of the
2403 // original loop exit condition.
2404 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2405 Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2407 // LFTR can ignore IV overflow and truncate to the width of
2408 // BECount. This avoids materializing the add(zext(add)) expression.
2409 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2410 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2411 if (CmpIndVarSize > ExitCntSize) {
2412 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2413 const SCEV *ARStart = AR->getStart();
2414 const SCEV *ARStep = AR->getStepRecurrence(*SE);
2415 // For constant IVCount, avoid truncation.
2416 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2417 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2418 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2419 // Note that the post-inc value of BackedgeTakenCount may have overflowed
2420 // above such that IVCount is now zero.
2421 if (IVCount != BackedgeTakenCount && Count == 0) {
2422 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2423 ++Count;
2425 else
2426 Count = Count.zext(CmpIndVarSize);
2427 APInt NewLimit;
2428 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2429 NewLimit = Start - Count;
2430 else
2431 NewLimit = Start + Count;
2432 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2434 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
2435 } else {
2436 // We try to extend trip count first. If that doesn't work we truncate IV.
2437 // Zext(trunc(IV)) == IV implies equivalence of the following two:
2438 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2439 // one of the two holds, extend the trip count, otherwise we truncate IV.
2440 bool Extended = false;
2441 const SCEV *IV = SE->getSCEV(CmpIndVar);
2442 const SCEV *ZExtTrunc =
2443 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2444 ExitCnt->getType()),
2445 CmpIndVar->getType());
2447 if (ZExtTrunc == IV) {
2448 Extended = true;
2449 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2450 "wide.trip.count");
2451 } else {
2452 const SCEV *SExtTrunc =
2453 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2454 ExitCnt->getType()),
2455 CmpIndVar->getType());
2456 if (SExtTrunc == IV) {
2457 Extended = true;
2458 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2459 "wide.trip.count");
2463 if (!Extended)
2464 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2465 "lftr.wideiv");
2468 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2469 Value *OrigCond = BI->getCondition();
2470 // It's tempting to use replaceAllUsesWith here to fully replace the old
2471 // comparison, but that's not immediately safe, since users of the old
2472 // comparison may not be dominated by the new comparison. Instead, just
2473 // update the branch to use the new comparison; in the common case this
2474 // will make old comparison dead.
2475 BI->setCondition(Cond);
2476 DeadInsts.push_back(OrigCond);
2478 ++NumLFTR;
2479 return true;
2482 //===----------------------------------------------------------------------===//
2483 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2484 //===----------------------------------------------------------------------===//
2486 /// If there's a single exit block, sink any loop-invariant values that
2487 /// were defined in the preheader but not used inside the loop into the
2488 /// exit block to reduce register pressure in the loop.
2489 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2490 BasicBlock *ExitBlock = L->getExitBlock();
2491 if (!ExitBlock) return false;
2493 BasicBlock *Preheader = L->getLoopPreheader();
2494 if (!Preheader) return false;
2496 bool MadeAnyChanges = false;
2497 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2498 BasicBlock::iterator I(Preheader->getTerminator());
2499 while (I != Preheader->begin()) {
2500 --I;
2501 // New instructions were inserted at the end of the preheader.
2502 if (isa<PHINode>(I))
2503 break;
2505 // Don't move instructions which might have side effects, since the side
2506 // effects need to complete before instructions inside the loop. Also don't
2507 // move instructions which might read memory, since the loop may modify
2508 // memory. Note that it's okay if the instruction might have undefined
2509 // behavior: LoopSimplify guarantees that the preheader dominates the exit
2510 // block.
2511 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2512 continue;
2514 // Skip debug info intrinsics.
2515 if (isa<DbgInfoIntrinsic>(I))
2516 continue;
2518 // Skip eh pad instructions.
2519 if (I->isEHPad())
2520 continue;
2522 // Don't sink alloca: we never want to sink static alloca's out of the
2523 // entry block, and correctly sinking dynamic alloca's requires
2524 // checks for stacksave/stackrestore intrinsics.
2525 // FIXME: Refactor this check somehow?
2526 if (isa<AllocaInst>(I))
2527 continue;
2529 // Determine if there is a use in or before the loop (direct or
2530 // otherwise).
2531 bool UsedInLoop = false;
2532 for (Use &U : I->uses()) {
2533 Instruction *User = cast<Instruction>(U.getUser());
2534 BasicBlock *UseBB = User->getParent();
2535 if (PHINode *P = dyn_cast<PHINode>(User)) {
2536 unsigned i =
2537 PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2538 UseBB = P->getIncomingBlock(i);
2540 if (UseBB == Preheader || L->contains(UseBB)) {
2541 UsedInLoop = true;
2542 break;
2546 // If there is, the def must remain in the preheader.
2547 if (UsedInLoop)
2548 continue;
2550 // Otherwise, sink it to the exit block.
2551 Instruction *ToMove = &*I;
2552 bool Done = false;
2554 if (I != Preheader->begin()) {
2555 // Skip debug info intrinsics.
2556 do {
2557 --I;
2558 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2560 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2561 Done = true;
2562 } else {
2563 Done = true;
2566 MadeAnyChanges = true;
2567 ToMove->moveBefore(*ExitBlock, InsertPt);
2568 if (Done) break;
2569 InsertPt = ToMove->getIterator();
2572 return MadeAnyChanges;
2575 //===----------------------------------------------------------------------===//
2576 // IndVarSimplify driver. Manage several subpasses of IV simplification.
2577 //===----------------------------------------------------------------------===//
2579 bool IndVarSimplify::run(Loop *L) {
2580 // We need (and expect!) the incoming loop to be in LCSSA.
2581 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2582 "LCSSA required to run indvars!");
2583 bool Changed = false;
2585 // If LoopSimplify form is not available, stay out of trouble. Some notes:
2586 // - LSR currently only supports LoopSimplify-form loops. Indvars'
2587 // canonicalization can be a pessimization without LSR to "clean up"
2588 // afterwards.
2589 // - We depend on having a preheader; in particular,
2590 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2591 // and we're in trouble if we can't find the induction variable even when
2592 // we've manually inserted one.
2593 // - LFTR relies on having a single backedge.
2594 if (!L->isLoopSimplifyForm())
2595 return false;
2597 // If there are any floating-point recurrences, attempt to
2598 // transform them to use integer recurrences.
2599 Changed |= rewriteNonIntegerIVs(L);
2601 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2603 // Create a rewriter object which we'll use to transform the code with.
2604 SCEVExpander Rewriter(*SE, DL, "indvars");
2605 #ifndef NDEBUG
2606 Rewriter.setDebugType(DEBUG_TYPE);
2607 #endif
2609 // Eliminate redundant IV users.
2611 // Simplification works best when run before other consumers of SCEV. We
2612 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2613 // other expressions involving loop IVs have been evaluated. This helps SCEV
2614 // set no-wrap flags before normalizing sign/zero extension.
2615 Rewriter.disableCanonicalMode();
2616 Changed |= simplifyAndExtend(L, Rewriter, LI);
2618 // Check to see if this loop has a computable loop-invariant execution count.
2619 // If so, this means that we can compute the final value of any expressions
2620 // that are recurrent in the loop, and substitute the exit values from the
2621 // loop into any instructions outside of the loop that use the final values of
2622 // the current expressions.
2624 if (ReplaceExitValue != NeverRepl &&
2625 !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2626 Changed |= rewriteLoopExitValues(L, Rewriter);
2628 // Eliminate redundant IV cycles.
2629 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2631 // If we have a trip count expression, rewrite the loop's exit condition
2632 // using it. We can currently only handle loops with a single exit.
2633 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2634 needsLFTR(L, DT)) {
2635 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2636 if (IndVar) {
2637 // Check preconditions for proper SCEVExpander operation. SCEV does not
2638 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2639 // pass that uses the SCEVExpander must do it. This does not work well for
2640 // loop passes because SCEVExpander makes assumptions about all loops,
2641 // while LoopPassManager only forces the current loop to be simplified.
2643 // FIXME: SCEV expansion has no way to bail out, so the caller must
2644 // explicitly check any assumptions made by SCEV. Brittle.
2645 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2646 if (!AR || AR->getLoop()->getLoopPreheader())
2647 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2648 Rewriter);
2651 // Clear the rewriter cache, because values that are in the rewriter's cache
2652 // can be deleted in the loop below, causing the AssertingVH in the cache to
2653 // trigger.
2654 Rewriter.clear();
2656 // Now that we're done iterating through lists, clean up any instructions
2657 // which are now dead.
2658 while (!DeadInsts.empty())
2659 if (Instruction *Inst =
2660 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2661 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2663 // The Rewriter may not be used from this point on.
2665 // Loop-invariant instructions in the preheader that aren't used in the
2666 // loop may be sunk below the loop to reduce register pressure.
2667 Changed |= sinkUnusedInvariants(L);
2669 // rewriteFirstIterationLoopExitValues does not rely on the computation of
2670 // trip count and therefore can further simplify exit values in addition to
2671 // rewriteLoopExitValues.
2672 Changed |= rewriteFirstIterationLoopExitValues(L);
2674 // Clean up dead instructions.
2675 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2677 // Check a post-condition.
2678 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2679 "Indvars did not preserve LCSSA!");
2681 // Verify that LFTR, and any other change have not interfered with SCEV's
2682 // ability to compute trip count.
2683 #ifndef NDEBUG
2684 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2685 SE->forgetLoop(L);
2686 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2687 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2688 SE->getTypeSizeInBits(NewBECount->getType()))
2689 NewBECount = SE->getTruncateOrNoop(NewBECount,
2690 BackedgeTakenCount->getType());
2691 else
2692 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2693 NewBECount->getType());
2694 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2696 #endif
2698 return Changed;
2701 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2702 LoopStandardAnalysisResults &AR,
2703 LPMUpdater &) {
2704 Function *F = L.getHeader()->getParent();
2705 const DataLayout &DL = F->getParent()->getDataLayout();
2707 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2708 if (!IVS.run(&L))
2709 return PreservedAnalyses::all();
2711 auto PA = getLoopPassPreservedAnalyses();
2712 PA.preserveSet<CFGAnalyses>();
2713 return PA;
2716 namespace {
2718 struct IndVarSimplifyLegacyPass : public LoopPass {
2719 static char ID; // Pass identification, replacement for typeid
2721 IndVarSimplifyLegacyPass() : LoopPass(ID) {
2722 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2725 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2726 if (skipLoop(L))
2727 return false;
2729 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2730 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2731 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2732 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2733 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2734 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2735 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2736 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2738 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2739 return IVS.run(L);
2742 void getAnalysisUsage(AnalysisUsage &AU) const override {
2743 AU.setPreservesCFG();
2744 getLoopAnalysisUsage(AU);
2748 } // end anonymous namespace
2750 char IndVarSimplifyLegacyPass::ID = 0;
2752 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2753 "Induction Variable Simplification", false, false)
2754 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2755 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2756 "Induction Variable Simplification", false, false)
2758 Pass *llvm::createIndVarSimplifyPass() {
2759 return new IndVarSimplifyLegacyPass();