1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
13 // If the trip count of a loop is computable, this pass also makes the following
15 // 1. The exit condition for the loop is canonicalized to compare the
16 // induction value against the exit value. This turns loops like:
17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 // 2. Any use outside of the loop of an expression derived from the indvar
19 // is changed to compute the derived value outside of the loop, eliminating
20 // the dependence on the exit value of the induction variable. If the only
21 // purpose of the loop is to compute the exit value of some derived
22 // expression, this transformation will make the loop dead.
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/iterator_range.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/LoopUtils.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
88 #define DEBUG_TYPE "indvars"
90 STATISTIC(NumWidened
, "Number of indvars widened");
91 STATISTIC(NumReplaced
, "Number of exit values replaced");
92 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt
, "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV
, "Number of congruent IVs eliminated");
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt
<bool> VerifyIndvars(
100 "verify-indvars", cl::Hidden
,
101 cl::desc("Verify the ScalarEvolution result after running indvars"));
103 enum ReplaceExitVal
{ NeverRepl
, OnlyCheapRepl
, AlwaysRepl
};
105 static cl::opt
<ReplaceExitVal
> ReplaceExitValue(
106 "replexitval", cl::Hidden
, cl::init(OnlyCheapRepl
),
107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108 cl::values(clEnumValN(NeverRepl
, "never", "never replace exit value"),
109 clEnumValN(OnlyCheapRepl
, "cheap",
110 "only replace exit value when the cost is cheap"),
111 clEnumValN(AlwaysRepl
, "always",
112 "always replace exit value whenever possible")));
114 static cl::opt
<bool> UsePostIncrementRanges(
115 "indvars-post-increment-ranges", cl::Hidden
,
116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
120 DisableLFTR("disable-lftr", cl::Hidden
, cl::init(false),
121 cl::desc("Disable Linear Function Test Replace optimization"));
127 class IndVarSimplify
{
131 const DataLayout
&DL
;
132 TargetLibraryInfo
*TLI
;
133 const TargetTransformInfo
*TTI
;
135 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
137 bool isValidRewrite(Value
*FromVal
, Value
*ToVal
);
139 bool handleFloatingPointIV(Loop
*L
, PHINode
*PH
);
140 bool rewriteNonIntegerIVs(Loop
*L
);
142 bool simplifyAndExtend(Loop
*L
, SCEVExpander
&Rewriter
, LoopInfo
*LI
);
144 bool canLoopBeDeleted(Loop
*L
, SmallVector
<RewritePhi
, 8> &RewritePhiSet
);
145 bool rewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
);
146 bool rewriteFirstIterationLoopExitValues(Loop
*L
);
147 bool hasHardUserWithinLoop(const Loop
*L
, const Instruction
*I
) const;
149 bool linearFunctionTestReplace(Loop
*L
, const SCEV
*BackedgeTakenCount
,
150 PHINode
*IndVar
, SCEVExpander
&Rewriter
);
152 bool sinkUnusedInvariants(Loop
*L
);
155 IndVarSimplify(LoopInfo
*LI
, ScalarEvolution
*SE
, DominatorTree
*DT
,
156 const DataLayout
&DL
, TargetLibraryInfo
*TLI
,
157 TargetTransformInfo
*TTI
)
158 : LI(LI
), SE(SE
), DT(DT
), DL(DL
), TLI(TLI
), TTI(TTI
) {}
163 } // end anonymous namespace
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR. Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value
*FromVal
, Value
*ToVal
) {
170 // If an SCEV expression subsumed multiple pointers, its expansion could
171 // reassociate the GEP changing the base pointer. This is illegal because the
172 // final address produced by a GEP chain must be inbounds relative to its
173 // underlying object. Otherwise basic alias analysis, among other things,
174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175 // producing an expression involving multiple pointers. Until then, we must
178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179 // because it understands lcssa phis while SCEV does not.
180 Value
*FromPtr
= FromVal
;
181 Value
*ToPtr
= ToVal
;
182 if (auto *GEP
= dyn_cast
<GEPOperator
>(FromVal
)) {
183 FromPtr
= GEP
->getPointerOperand();
185 if (auto *GEP
= dyn_cast
<GEPOperator
>(ToVal
)) {
186 ToPtr
= GEP
->getPointerOperand();
188 if (FromPtr
!= FromVal
|| ToPtr
!= ToVal
) {
189 // Quickly check the common case
190 if (FromPtr
== ToPtr
)
193 // SCEV may have rewritten an expression that produces the GEP's pointer
194 // operand. That's ok as long as the pointer operand has the same base
195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196 // base of a recurrence. This handles the case in which SCEV expansion
197 // converts a pointer type recurrence into a nonrecurrent pointer base
198 // indexed by an integer recurrence.
200 // If the GEP base pointer is a vector of pointers, abort.
201 if (!FromPtr
->getType()->isPointerTy() || !ToPtr
->getType()->isPointerTy())
204 const SCEV
*FromBase
= SE
->getPointerBase(SE
->getSCEV(FromPtr
));
205 const SCEV
*ToBase
= SE
->getPointerBase(SE
->getSCEV(ToPtr
));
206 if (FromBase
== ToBase
)
209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210 << " != " << *ToBase
<< "\n");
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks. A nullptr can be returned if no
221 /// viable location is found: it may happen if User is a PHI and Def only comes
222 /// to this PHI from unreachable blocks.
223 static Instruction
*getInsertPointForUses(Instruction
*User
, Value
*Def
,
224 DominatorTree
*DT
, LoopInfo
*LI
) {
225 PHINode
*PHI
= dyn_cast
<PHINode
>(User
);
229 Instruction
*InsertPt
= nullptr;
230 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
!= e
; ++i
) {
231 if (PHI
->getIncomingValue(i
) != Def
)
234 BasicBlock
*InsertBB
= PHI
->getIncomingBlock(i
);
236 if (!DT
->isReachableFromEntry(InsertBB
))
240 InsertPt
= InsertBB
->getTerminator();
243 InsertBB
= DT
->findNearestCommonDominator(InsertPt
->getParent(), InsertBB
);
244 InsertPt
= InsertBB
->getTerminator();
247 // If we have skipped all inputs, it means that Def only comes to Phi from
248 // unreachable blocks.
252 auto *DefI
= dyn_cast
<Instruction
>(Def
);
256 assert(DT
->dominates(DefI
, InsertPt
) && "def does not dominate all uses");
258 auto *L
= LI
->getLoopFor(DefI
->getParent());
259 assert(!L
|| L
->contains(LI
->getLoopFor(InsertPt
->getParent())));
261 for (auto *DTN
= (*DT
)[InsertPt
->getParent()]; DTN
; DTN
= DTN
->getIDom())
262 if (LI
->getLoopFor(DTN
->getBlock()) == L
)
263 return DTN
->getBlock()->getTerminator();
265 llvm_unreachable("DefI dominates InsertPt!");
268 //===----------------------------------------------------------------------===//
269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
270 //===----------------------------------------------------------------------===//
272 /// Convert APF to an integer, if possible.
273 static bool ConvertToSInt(const APFloat
&APF
, int64_t &IntVal
) {
274 bool isExact
= false;
275 // See if we can convert this to an int64_t
277 if (APF
.convertToInteger(makeMutableArrayRef(UIntVal
), 64, true,
278 APFloat::rmTowardZero
, &isExact
) != APFloat::opOK
||
285 /// If the loop has floating induction variable then insert corresponding
286 /// integer induction variable if possible.
288 /// for(double i = 0; i < 10000; ++i)
290 /// is converted into
291 /// for(int i = 0; i < 10000; ++i)
293 bool IndVarSimplify::handleFloatingPointIV(Loop
*L
, PHINode
*PN
) {
294 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
295 unsigned BackEdge
= IncomingEdge
^1;
297 // Check incoming value.
298 auto *InitValueVal
= dyn_cast
<ConstantFP
>(PN
->getIncomingValue(IncomingEdge
));
301 if (!InitValueVal
|| !ConvertToSInt(InitValueVal
->getValueAPF(), InitValue
))
304 // Check IV increment. Reject this PN if increment operation is not
305 // an add or increment value can not be represented by an integer.
306 auto *Incr
= dyn_cast
<BinaryOperator
>(PN
->getIncomingValue(BackEdge
));
307 if (Incr
== nullptr || Incr
->getOpcode() != Instruction::FAdd
) return false;
309 // If this is not an add of the PHI with a constantfp, or if the constant fp
310 // is not an integer, bail out.
311 ConstantFP
*IncValueVal
= dyn_cast
<ConstantFP
>(Incr
->getOperand(1));
313 if (IncValueVal
== nullptr || Incr
->getOperand(0) != PN
||
314 !ConvertToSInt(IncValueVal
->getValueAPF(), IncValue
))
317 // Check Incr uses. One user is PN and the other user is an exit condition
318 // used by the conditional terminator.
319 Value::user_iterator IncrUse
= Incr
->user_begin();
320 Instruction
*U1
= cast
<Instruction
>(*IncrUse
++);
321 if (IncrUse
== Incr
->user_end()) return false;
322 Instruction
*U2
= cast
<Instruction
>(*IncrUse
++);
323 if (IncrUse
!= Incr
->user_end()) return false;
325 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
326 // only used by a branch, we can't transform it.
327 FCmpInst
*Compare
= dyn_cast
<FCmpInst
>(U1
);
329 Compare
= dyn_cast
<FCmpInst
>(U2
);
330 if (!Compare
|| !Compare
->hasOneUse() ||
331 !isa
<BranchInst
>(Compare
->user_back()))
334 BranchInst
*TheBr
= cast
<BranchInst
>(Compare
->user_back());
336 // We need to verify that the branch actually controls the iteration count
337 // of the loop. If not, the new IV can overflow and no one will notice.
338 // The branch block must be in the loop and one of the successors must be out
340 assert(TheBr
->isConditional() && "Can't use fcmp if not conditional");
341 if (!L
->contains(TheBr
->getParent()) ||
342 (L
->contains(TheBr
->getSuccessor(0)) &&
343 L
->contains(TheBr
->getSuccessor(1))))
346 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
348 ConstantFP
*ExitValueVal
= dyn_cast
<ConstantFP
>(Compare
->getOperand(1));
350 if (ExitValueVal
== nullptr ||
351 !ConvertToSInt(ExitValueVal
->getValueAPF(), ExitValue
))
354 // Find new predicate for integer comparison.
355 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
356 switch (Compare
->getPredicate()) {
357 default: return false; // Unknown comparison.
358 case CmpInst::FCMP_OEQ
:
359 case CmpInst::FCMP_UEQ
: NewPred
= CmpInst::ICMP_EQ
; break;
360 case CmpInst::FCMP_ONE
:
361 case CmpInst::FCMP_UNE
: NewPred
= CmpInst::ICMP_NE
; break;
362 case CmpInst::FCMP_OGT
:
363 case CmpInst::FCMP_UGT
: NewPred
= CmpInst::ICMP_SGT
; break;
364 case CmpInst::FCMP_OGE
:
365 case CmpInst::FCMP_UGE
: NewPred
= CmpInst::ICMP_SGE
; break;
366 case CmpInst::FCMP_OLT
:
367 case CmpInst::FCMP_ULT
: NewPred
= CmpInst::ICMP_SLT
; break;
368 case CmpInst::FCMP_OLE
:
369 case CmpInst::FCMP_ULE
: NewPred
= CmpInst::ICMP_SLE
; break;
372 // We convert the floating point induction variable to a signed i32 value if
373 // we can. This is only safe if the comparison will not overflow in a way
374 // that won't be trapped by the integer equivalent operations. Check for this
376 // TODO: We could use i64 if it is native and the range requires it.
378 // The start/stride/exit values must all fit in signed i32.
379 if (!isInt
<32>(InitValue
) || !isInt
<32>(IncValue
) || !isInt
<32>(ExitValue
))
382 // If not actually striding (add x, 0.0), avoid touching the code.
386 // Positive and negative strides have different safety conditions.
388 // If we have a positive stride, we require the init to be less than the
390 if (InitValue
>= ExitValue
)
393 uint32_t Range
= uint32_t(ExitValue
-InitValue
);
394 // Check for infinite loop, either:
395 // while (i <= Exit) or until (i > Exit)
396 if (NewPred
== CmpInst::ICMP_SLE
|| NewPred
== CmpInst::ICMP_SGT
) {
397 if (++Range
== 0) return false; // Range overflows.
400 unsigned Leftover
= Range
% uint32_t(IncValue
);
402 // If this is an equality comparison, we require that the strided value
403 // exactly land on the exit value, otherwise the IV condition will wrap
404 // around and do things the fp IV wouldn't.
405 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
409 // If the stride would wrap around the i32 before exiting, we can't
411 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) < ExitValue
)
414 // If we have a negative stride, we require the init to be greater than the
416 if (InitValue
<= ExitValue
)
419 uint32_t Range
= uint32_t(InitValue
-ExitValue
);
420 // Check for infinite loop, either:
421 // while (i >= Exit) or until (i < Exit)
422 if (NewPred
== CmpInst::ICMP_SGE
|| NewPred
== CmpInst::ICMP_SLT
) {
423 if (++Range
== 0) return false; // Range overflows.
426 unsigned Leftover
= Range
% uint32_t(-IncValue
);
428 // If this is an equality comparison, we require that the strided value
429 // exactly land on the exit value, otherwise the IV condition will wrap
430 // around and do things the fp IV wouldn't.
431 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
435 // If the stride would wrap around the i32 before exiting, we can't
437 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) > ExitValue
)
441 IntegerType
*Int32Ty
= Type::getInt32Ty(PN
->getContext());
443 // Insert new integer induction variable.
444 PHINode
*NewPHI
= PHINode::Create(Int32Ty
, 2, PN
->getName()+".int", PN
);
445 NewPHI
->addIncoming(ConstantInt::get(Int32Ty
, InitValue
),
446 PN
->getIncomingBlock(IncomingEdge
));
449 BinaryOperator::CreateAdd(NewPHI
, ConstantInt::get(Int32Ty
, IncValue
),
450 Incr
->getName()+".int", Incr
);
451 NewPHI
->addIncoming(NewAdd
, PN
->getIncomingBlock(BackEdge
));
453 ICmpInst
*NewCompare
= new ICmpInst(TheBr
, NewPred
, NewAdd
,
454 ConstantInt::get(Int32Ty
, ExitValue
),
457 // In the following deletions, PN may become dead and may be deleted.
458 // Use a WeakTrackingVH to observe whether this happens.
459 WeakTrackingVH WeakPH
= PN
;
461 // Delete the old floating point exit comparison. The branch starts using the
463 NewCompare
->takeName(Compare
);
464 Compare
->replaceAllUsesWith(NewCompare
);
465 RecursivelyDeleteTriviallyDeadInstructions(Compare
, TLI
);
467 // Delete the old floating point increment.
468 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
469 RecursivelyDeleteTriviallyDeadInstructions(Incr
, TLI
);
471 // If the FP induction variable still has uses, this is because something else
472 // in the loop uses its value. In order to canonicalize the induction
473 // variable, we chose to eliminate the IV and rewrite it in terms of an
476 // We give preference to sitofp over uitofp because it is faster on most
479 Value
*Conv
= new SIToFPInst(NewPHI
, PN
->getType(), "indvar.conv",
480 &*PN
->getParent()->getFirstInsertionPt());
481 PN
->replaceAllUsesWith(Conv
);
482 RecursivelyDeleteTriviallyDeadInstructions(PN
, TLI
);
487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop
*L
) {
488 // First step. Check to see if there are any floating-point recurrences.
489 // If there are, change them into integer recurrences, permitting analysis by
490 // the SCEV routines.
491 BasicBlock
*Header
= L
->getHeader();
493 SmallVector
<WeakTrackingVH
, 8> PHIs
;
494 for (PHINode
&PN
: Header
->phis())
497 bool Changed
= false;
498 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
499 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(&*PHIs
[i
]))
500 Changed
|= handleFloatingPointIV(L
, PN
);
502 // If the loop previously had floating-point IV, ScalarEvolution
503 // may not have been able to compute a trip count. Now that we've done some
504 // re-writing, the trip count may be computable.
512 // Collect information about PHI nodes which can be transformed in
513 // rewriteLoopExitValues.
517 // Ith incoming value.
520 // Exit value after expansion.
523 // High Cost when expansion.
526 RewritePhi(PHINode
*P
, unsigned I
, Value
*V
, bool H
)
527 : PN(P
), Ith(I
), Val(V
), HighCost(H
) {}
530 } // end anonymous namespace
532 //===----------------------------------------------------------------------===//
533 // rewriteLoopExitValues - Optimize IV users outside the loop.
534 // As a side effect, reduces the amount of IV processing within the loop.
535 //===----------------------------------------------------------------------===//
537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop
*L
, const Instruction
*I
) const {
538 SmallPtrSet
<const Instruction
*, 8> Visited
;
539 SmallVector
<const Instruction
*, 8> WorkList
;
541 WorkList
.push_back(I
);
542 while (!WorkList
.empty()) {
543 const Instruction
*Curr
= WorkList
.pop_back_val();
544 // This use is outside the loop, nothing to do.
545 if (!L
->contains(Curr
))
547 // Do we assume it is a "hard" use which will not be eliminated easily?
548 if (Curr
->mayHaveSideEffects())
550 // Otherwise, add all its users to worklist.
551 for (auto U
: Curr
->users()) {
552 auto *UI
= cast
<Instruction
>(U
);
553 if (Visited
.insert(UI
).second
)
554 WorkList
.push_back(UI
);
560 /// Check to see if this loop has a computable loop-invariant execution count.
561 /// If so, this means that we can compute the final value of any expressions
562 /// that are recurrent in the loop, and substitute the exit values from the loop
563 /// into any instructions outside of the loop that use the final values of the
564 /// current expressions.
566 /// This is mostly redundant with the regular IndVarSimplify activities that
567 /// happen later, except that it's more powerful in some cases, because it's
568 /// able to brute-force evaluate arbitrary instructions as long as they have
569 /// constant operands at the beginning of the loop.
570 bool IndVarSimplify::rewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
) {
571 // Check a pre-condition.
572 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
573 "Indvars did not preserve LCSSA!");
575 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
576 L
->getUniqueExitBlocks(ExitBlocks
);
578 SmallVector
<RewritePhi
, 8> RewritePhiSet
;
579 // Find all values that are computed inside the loop, but used outside of it.
580 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
581 // the exit blocks of the loop to find them.
582 for (BasicBlock
*ExitBB
: ExitBlocks
) {
583 // If there are no PHI nodes in this exit block, then no values defined
584 // inside the loop are used on this path, skip it.
585 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
588 unsigned NumPreds
= PN
->getNumIncomingValues();
590 // Iterate over all of the PHI nodes.
591 BasicBlock::iterator BBI
= ExitBB
->begin();
592 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
594 continue; // dead use, don't replace it
596 if (!SE
->isSCEVable(PN
->getType()))
599 // It's necessary to tell ScalarEvolution about this explicitly so that
600 // it can walk the def-use list and forget all SCEVs, as it may not be
601 // watching the PHI itself. Once the new exit value is in place, there
602 // may not be a def-use connection between the loop and every instruction
603 // which got a SCEVAddRecExpr for that loop.
606 // Iterate over all of the values in all the PHI nodes.
607 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
608 // If the value being merged in is not integer or is not defined
609 // in the loop, skip it.
610 Value
*InVal
= PN
->getIncomingValue(i
);
611 if (!isa
<Instruction
>(InVal
))
614 // If this pred is for a subloop, not L itself, skip it.
615 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
616 continue; // The Block is in a subloop, skip it.
618 // Check that InVal is defined in the loop.
619 Instruction
*Inst
= cast
<Instruction
>(InVal
);
620 if (!L
->contains(Inst
))
623 // Okay, this instruction has a user outside of the current loop
624 // and varies predictably *inside* the loop. Evaluate the value it
625 // contains when the loop exits, if possible.
626 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
627 if (!SE
->isLoopInvariant(ExitValue
, L
) ||
628 !isSafeToExpand(ExitValue
, *SE
))
631 // Computing the value outside of the loop brings no benefit if it is
632 // definitely used inside the loop in a way which can not be optimized
634 if (!isa
<SCEVConstant
>(ExitValue
) && hasHardUserWithinLoop(L
, Inst
))
637 bool HighCost
= Rewriter
.isHighCostExpansion(ExitValue
, L
, Inst
);
638 Value
*ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), Inst
);
640 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
642 << " LoopVal = " << *Inst
<< "\n");
644 if (!isValidRewrite(Inst
, ExitVal
)) {
645 DeadInsts
.push_back(ExitVal
);
650 // If we reuse an instruction from a loop which is neither L nor one of
651 // its containing loops, we end up breaking LCSSA form for this loop by
652 // creating a new use of its instruction.
653 if (auto *ExitInsn
= dyn_cast
<Instruction
>(ExitVal
))
654 if (auto *EVL
= LI
->getLoopFor(ExitInsn
->getParent()))
656 assert(EVL
->contains(L
) && "LCSSA breach detected!");
659 // Collect all the candidate PHINodes to be rewritten.
660 RewritePhiSet
.emplace_back(PN
, i
, ExitVal
, HighCost
);
665 bool LoopCanBeDel
= canLoopBeDeleted(L
, RewritePhiSet
);
667 bool Changed
= false;
669 for (const RewritePhi
&Phi
: RewritePhiSet
) {
670 PHINode
*PN
= Phi
.PN
;
671 Value
*ExitVal
= Phi
.Val
;
673 // Only do the rewrite when the ExitValue can be expanded cheaply.
674 // If LoopCanBeDel is true, rewrite exit value aggressively.
675 if (ReplaceExitValue
== OnlyCheapRepl
&& !LoopCanBeDel
&& Phi
.HighCost
) {
676 DeadInsts
.push_back(ExitVal
);
682 Instruction
*Inst
= cast
<Instruction
>(PN
->getIncomingValue(Phi
.Ith
));
683 PN
->setIncomingValue(Phi
.Ith
, ExitVal
);
685 // If this instruction is dead now, delete it. Don't do it now to avoid
686 // invalidating iterators.
687 if (isInstructionTriviallyDead(Inst
, TLI
))
688 DeadInsts
.push_back(Inst
);
690 // Replace PN with ExitVal if that is legal and does not break LCSSA.
691 if (PN
->getNumIncomingValues() == 1 &&
692 LI
->replacementPreservesLCSSAForm(PN
, ExitVal
)) {
693 PN
->replaceAllUsesWith(ExitVal
);
694 PN
->eraseFromParent();
698 // The insertion point instruction may have been deleted; clear it out
699 // so that the rewriter doesn't trip over it later.
700 Rewriter
.clearInsertPoint();
704 //===---------------------------------------------------------------------===//
705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
706 // they will exit at the first iteration.
707 //===---------------------------------------------------------------------===//
709 /// Check to see if this loop has loop invariant conditions which lead to loop
710 /// exits. If so, we know that if the exit path is taken, it is at the first
711 /// loop iteration. This lets us predict exit values of PHI nodes that live in
713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop
*L
) {
714 // Verify the input to the pass is already in LCSSA form.
715 assert(L
->isLCSSAForm(*DT
));
717 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
718 L
->getUniqueExitBlocks(ExitBlocks
);
719 auto *LoopHeader
= L
->getHeader();
720 assert(LoopHeader
&& "Invalid loop");
722 bool MadeAnyChanges
= false;
723 for (auto *ExitBB
: ExitBlocks
) {
724 // If there are no more PHI nodes in this exit block, then no more
725 // values defined inside the loop are used on this path.
726 for (PHINode
&PN
: ExitBB
->phis()) {
727 for (unsigned IncomingValIdx
= 0, E
= PN
.getNumIncomingValues();
728 IncomingValIdx
!= E
; ++IncomingValIdx
) {
729 auto *IncomingBB
= PN
.getIncomingBlock(IncomingValIdx
);
731 // We currently only support loop exits from loop header. If the
732 // incoming block is not loop header, we need to recursively check
733 // all conditions starting from loop header are loop invariants.
734 // Additional support might be added in the future.
735 if (IncomingBB
!= LoopHeader
)
738 // Get condition that leads to the exit path.
739 auto *TermInst
= IncomingBB
->getTerminator();
741 Value
*Cond
= nullptr;
742 if (auto *BI
= dyn_cast
<BranchInst
>(TermInst
)) {
743 // Must be a conditional branch, otherwise the block
744 // should not be in the loop.
745 Cond
= BI
->getCondition();
746 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TermInst
))
747 Cond
= SI
->getCondition();
751 if (!L
->isLoopInvariant(Cond
))
754 auto *ExitVal
= dyn_cast
<PHINode
>(PN
.getIncomingValue(IncomingValIdx
));
756 // Only deal with PHIs.
760 // If ExitVal is a PHI on the loop header, then we know its
761 // value along this exit because the exit can only be taken
762 // on the first iteration.
763 auto *LoopPreheader
= L
->getLoopPreheader();
764 assert(LoopPreheader
&& "Invalid loop");
765 int PreheaderIdx
= ExitVal
->getBasicBlockIndex(LoopPreheader
);
766 if (PreheaderIdx
!= -1) {
767 assert(ExitVal
->getParent() == LoopHeader
&&
768 "ExitVal must be in loop header");
769 MadeAnyChanges
= true;
770 PN
.setIncomingValue(IncomingValIdx
,
771 ExitVal
->getIncomingValue(PreheaderIdx
));
776 return MadeAnyChanges
;
779 /// Check whether it is possible to delete the loop after rewriting exit
780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
782 bool IndVarSimplify::canLoopBeDeleted(
783 Loop
*L
, SmallVector
<RewritePhi
, 8> &RewritePhiSet
) {
784 BasicBlock
*Preheader
= L
->getLoopPreheader();
785 // If there is no preheader, the loop will not be deleted.
789 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
790 // We obviate multiple ExitingBlocks case for simplicity.
791 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
792 // after exit value rewriting, we can enhance the logic here.
793 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
794 L
->getExitingBlocks(ExitingBlocks
);
795 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
796 L
->getUniqueExitBlocks(ExitBlocks
);
797 if (ExitBlocks
.size() > 1 || ExitingBlocks
.size() > 1)
800 BasicBlock
*ExitBlock
= ExitBlocks
[0];
801 BasicBlock::iterator BI
= ExitBlock
->begin();
802 while (PHINode
*P
= dyn_cast
<PHINode
>(BI
)) {
803 Value
*Incoming
= P
->getIncomingValueForBlock(ExitingBlocks
[0]);
805 // If the Incoming value of P is found in RewritePhiSet, we know it
806 // could be rewritten to use a loop invariant value in transformation
807 // phase later. Skip it in the loop invariant check below.
809 for (const RewritePhi
&Phi
: RewritePhiSet
) {
810 unsigned i
= Phi
.Ith
;
811 if (Phi
.PN
== P
&& (Phi
.PN
)->getIncomingValue(i
) == Incoming
) {
818 if (!found
&& (I
= dyn_cast
<Instruction
>(Incoming
)))
819 if (!L
->hasLoopInvariantOperands(I
))
825 for (auto *BB
: L
->blocks())
826 if (llvm::any_of(*BB
, [](Instruction
&I
) {
827 return I
.mayHaveSideEffects();
834 //===----------------------------------------------------------------------===//
835 // IV Widening - Extend the width of an IV to cover its widest uses.
836 //===----------------------------------------------------------------------===//
840 // Collect information about induction variables that are used by sign/zero
841 // extend operations. This information is recorded by CollectExtend and provides
842 // the input to WidenIV.
844 PHINode
*NarrowIV
= nullptr;
846 // Widest integer type created [sz]ext
847 Type
*WidestNativeType
= nullptr;
849 // Was a sext user seen before a zext?
850 bool IsSigned
= false;
853 } // end anonymous namespace
855 /// Update information about the induction variable that is extended by this
856 /// sign or zero extend operation. This is used to determine the final width of
857 /// the IV before actually widening it.
858 static void visitIVCast(CastInst
*Cast
, WideIVInfo
&WI
, ScalarEvolution
*SE
,
859 const TargetTransformInfo
*TTI
) {
860 bool IsSigned
= Cast
->getOpcode() == Instruction::SExt
;
861 if (!IsSigned
&& Cast
->getOpcode() != Instruction::ZExt
)
864 Type
*Ty
= Cast
->getType();
865 uint64_t Width
= SE
->getTypeSizeInBits(Ty
);
866 if (!Cast
->getModule()->getDataLayout().isLegalInteger(Width
))
869 // Check that `Cast` actually extends the induction variable (we rely on this
870 // later). This takes care of cases where `Cast` is extending a truncation of
871 // the narrow induction variable, and thus can end up being narrower than the
872 // "narrow" induction variable.
873 uint64_t NarrowIVWidth
= SE
->getTypeSizeInBits(WI
.NarrowIV
->getType());
874 if (NarrowIVWidth
>= Width
)
877 // Cast is either an sext or zext up to this point.
878 // We should not widen an indvar if arithmetics on the wider indvar are more
879 // expensive than those on the narrower indvar. We check only the cost of ADD
880 // because at least an ADD is required to increment the induction variable. We
881 // could compute more comprehensively the cost of all instructions on the
882 // induction variable when necessary.
884 TTI
->getArithmeticInstrCost(Instruction::Add
, Ty
) >
885 TTI
->getArithmeticInstrCost(Instruction::Add
,
886 Cast
->getOperand(0)->getType())) {
890 if (!WI
.WidestNativeType
) {
891 WI
.WidestNativeType
= SE
->getEffectiveSCEVType(Ty
);
892 WI
.IsSigned
= IsSigned
;
896 // We extend the IV to satisfy the sign of its first user, arbitrarily.
897 if (WI
.IsSigned
!= IsSigned
)
900 if (Width
> SE
->getTypeSizeInBits(WI
.WidestNativeType
))
901 WI
.WidestNativeType
= SE
->getEffectiveSCEVType(Ty
);
906 /// Record a link in the Narrow IV def-use chain along with the WideIV that
907 /// computes the same value as the Narrow IV def. This avoids caching Use*
909 struct NarrowIVDefUse
{
910 Instruction
*NarrowDef
= nullptr;
911 Instruction
*NarrowUse
= nullptr;
912 Instruction
*WideDef
= nullptr;
914 // True if the narrow def is never negative. Tracking this information lets
915 // us use a sign extension instead of a zero extension or vice versa, when
916 // profitable and legal.
917 bool NeverNegative
= false;
919 NarrowIVDefUse(Instruction
*ND
, Instruction
*NU
, Instruction
*WD
,
921 : NarrowDef(ND
), NarrowUse(NU
), WideDef(WD
),
922 NeverNegative(NeverNegative
) {}
925 /// The goal of this transform is to remove sign and zero extends without
926 /// creating any new induction variables. To do this, it creates a new phi of
927 /// the wider type and redirects all users, either removing extends or inserting
928 /// truncs whenever we stop propagating the type.
940 // Does the module have any calls to the llvm.experimental.guard intrinsic
941 // at all? If not we can avoid scanning instructions looking for guards.
945 PHINode
*WidePhi
= nullptr;
946 Instruction
*WideInc
= nullptr;
947 const SCEV
*WideIncExpr
= nullptr;
948 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
;
950 SmallPtrSet
<Instruction
*,16> Widened
;
951 SmallVector
<NarrowIVDefUse
, 8> NarrowIVUsers
;
953 enum ExtendKind
{ ZeroExtended
, SignExtended
, Unknown
};
955 // A map tracking the kind of extension used to widen each narrow IV
956 // and narrow IV user.
957 // Key: pointer to a narrow IV or IV user.
958 // Value: the kind of extension used to widen this Instruction.
959 DenseMap
<AssertingVH
<Instruction
>, ExtendKind
> ExtendKindMap
;
961 using DefUserPair
= std::pair
<AssertingVH
<Value
>, AssertingVH
<Instruction
>>;
963 // A map with control-dependent ranges for post increment IV uses. The key is
964 // a pair of IV def and a use of this def denoting the context. The value is
965 // a ConstantRange representing possible values of the def at the given
967 DenseMap
<DefUserPair
, ConstantRange
> PostIncRangeInfos
;
969 Optional
<ConstantRange
> getPostIncRangeInfo(Value
*Def
,
971 DefUserPair
Key(Def
, UseI
);
972 auto It
= PostIncRangeInfos
.find(Key
);
973 return It
== PostIncRangeInfos
.end()
974 ? Optional
<ConstantRange
>(None
)
975 : Optional
<ConstantRange
>(It
->second
);
978 void calculatePostIncRanges(PHINode
*OrigPhi
);
979 void calculatePostIncRange(Instruction
*NarrowDef
, Instruction
*NarrowUser
);
981 void updatePostIncRangeInfo(Value
*Def
, Instruction
*UseI
, ConstantRange R
) {
982 DefUserPair
Key(Def
, UseI
);
983 auto It
= PostIncRangeInfos
.find(Key
);
984 if (It
== PostIncRangeInfos
.end())
985 PostIncRangeInfos
.insert({Key
, R
});
987 It
->second
= R
.intersectWith(It
->second
);
991 WidenIV(const WideIVInfo
&WI
, LoopInfo
*LInfo
, ScalarEvolution
*SEv
,
992 DominatorTree
*DTree
, SmallVectorImpl
<WeakTrackingVH
> &DI
,
994 : OrigPhi(WI
.NarrowIV
), WideType(WI
.WidestNativeType
), LI(LInfo
),
995 L(LI
->getLoopFor(OrigPhi
->getParent())), SE(SEv
), DT(DTree
),
996 HasGuards(HasGuards
), DeadInsts(DI
) {
997 assert(L
->getHeader() == OrigPhi
->getParent() && "Phi must be an IV");
998 ExtendKindMap
[OrigPhi
] = WI
.IsSigned
? SignExtended
: ZeroExtended
;
1001 PHINode
*createWideIV(SCEVExpander
&Rewriter
);
1004 Value
*createExtendInst(Value
*NarrowOper
, Type
*WideType
, bool IsSigned
,
1007 Instruction
*cloneIVUser(NarrowIVDefUse DU
, const SCEVAddRecExpr
*WideAR
);
1008 Instruction
*cloneArithmeticIVUser(NarrowIVDefUse DU
,
1009 const SCEVAddRecExpr
*WideAR
);
1010 Instruction
*cloneBitwiseIVUser(NarrowIVDefUse DU
);
1012 ExtendKind
getExtendKind(Instruction
*I
);
1014 using WidenedRecTy
= std::pair
<const SCEVAddRecExpr
*, ExtendKind
>;
1016 WidenedRecTy
getWideRecurrence(NarrowIVDefUse DU
);
1018 WidenedRecTy
getExtendedOperandRecurrence(NarrowIVDefUse DU
);
1020 const SCEV
*getSCEVByOpCode(const SCEV
*LHS
, const SCEV
*RHS
,
1021 unsigned OpCode
) const;
1023 Instruction
*widenIVUse(NarrowIVDefUse DU
, SCEVExpander
&Rewriter
);
1025 bool widenLoopCompare(NarrowIVDefUse DU
);
1026 bool widenWithVariantLoadUse(NarrowIVDefUse DU
);
1027 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU
);
1029 void pushNarrowIVUsers(Instruction
*NarrowDef
, Instruction
*WideDef
);
1032 } // end anonymous namespace
1034 /// Perform a quick domtree based check for loop invariance assuming that V is
1035 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1037 static bool isLoopInvariant(Value
*V
, const Loop
*L
, const DominatorTree
*DT
) {
1038 Instruction
*Inst
= dyn_cast
<Instruction
>(V
);
1042 return DT
->properlyDominates(Inst
->getParent(), L
->getHeader());
1045 Value
*WidenIV::createExtendInst(Value
*NarrowOper
, Type
*WideType
,
1046 bool IsSigned
, Instruction
*Use
) {
1047 // Set the debug location and conservative insertion point.
1048 IRBuilder
<> Builder(Use
);
1049 // Hoist the insertion point into loop preheaders as far as possible.
1050 for (const Loop
*L
= LI
->getLoopFor(Use
->getParent());
1051 L
&& L
->getLoopPreheader() && isLoopInvariant(NarrowOper
, L
, DT
);
1052 L
= L
->getParentLoop())
1053 Builder
.SetInsertPoint(L
->getLoopPreheader()->getTerminator());
1055 return IsSigned
? Builder
.CreateSExt(NarrowOper
, WideType
) :
1056 Builder
.CreateZExt(NarrowOper
, WideType
);
1059 /// Instantiate a wide operation to replace a narrow operation. This only needs
1060 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1061 /// 0 for any operation we decide not to clone.
1062 Instruction
*WidenIV::cloneIVUser(NarrowIVDefUse DU
,
1063 const SCEVAddRecExpr
*WideAR
) {
1064 unsigned Opcode
= DU
.NarrowUse
->getOpcode();
1068 case Instruction::Add
:
1069 case Instruction::Mul
:
1070 case Instruction::UDiv
:
1071 case Instruction::Sub
:
1072 return cloneArithmeticIVUser(DU
, WideAR
);
1074 case Instruction::And
:
1075 case Instruction::Or
:
1076 case Instruction::Xor
:
1077 case Instruction::Shl
:
1078 case Instruction::LShr
:
1079 case Instruction::AShr
:
1080 return cloneBitwiseIVUser(DU
);
1084 Instruction
*WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU
) {
1085 Instruction
*NarrowUse
= DU
.NarrowUse
;
1086 Instruction
*NarrowDef
= DU
.NarrowDef
;
1087 Instruction
*WideDef
= DU
.WideDef
;
1089 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse
<< "\n");
1091 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1092 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1093 // invariant and will be folded or hoisted. If it actually comes from a
1094 // widened IV, it should be removed during a future call to widenIVUse.
1095 bool IsSigned
= getExtendKind(NarrowDef
) == SignExtended
;
1096 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
)
1098 : createExtendInst(NarrowUse
->getOperand(0), WideType
,
1099 IsSigned
, NarrowUse
);
1100 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
)
1102 : createExtendInst(NarrowUse
->getOperand(1), WideType
,
1103 IsSigned
, NarrowUse
);
1105 auto *NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
1106 auto *WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(), LHS
, RHS
,
1107 NarrowBO
->getName());
1108 IRBuilder
<> Builder(NarrowUse
);
1109 Builder
.Insert(WideBO
);
1110 WideBO
->copyIRFlags(NarrowBO
);
1114 Instruction
*WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU
,
1115 const SCEVAddRecExpr
*WideAR
) {
1116 Instruction
*NarrowUse
= DU
.NarrowUse
;
1117 Instruction
*NarrowDef
= DU
.NarrowDef
;
1118 Instruction
*WideDef
= DU
.WideDef
;
1120 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse
<< "\n");
1122 unsigned IVOpIdx
= (NarrowUse
->getOperand(0) == NarrowDef
) ? 0 : 1;
1124 // We're trying to find X such that
1126 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1128 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1129 // and check using SCEV if any of them are correct.
1131 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1132 // correct solution to X.
1133 auto GuessNonIVOperand
= [&](bool SignExt
) {
1134 const SCEV
*WideLHS
;
1135 const SCEV
*WideRHS
;
1137 auto GetExtend
= [this, SignExt
](const SCEV
*S
, Type
*Ty
) {
1139 return SE
->getSignExtendExpr(S
, Ty
);
1140 return SE
->getZeroExtendExpr(S
, Ty
);
1144 WideLHS
= SE
->getSCEV(WideDef
);
1145 const SCEV
*NarrowRHS
= SE
->getSCEV(NarrowUse
->getOperand(1));
1146 WideRHS
= GetExtend(NarrowRHS
, WideType
);
1148 const SCEV
*NarrowLHS
= SE
->getSCEV(NarrowUse
->getOperand(0));
1149 WideLHS
= GetExtend(NarrowLHS
, WideType
);
1150 WideRHS
= SE
->getSCEV(WideDef
);
1153 // WideUse is "WideDef `op.wide` X" as described in the comment.
1154 const SCEV
*WideUse
= nullptr;
1156 switch (NarrowUse
->getOpcode()) {
1158 llvm_unreachable("No other possibility!");
1160 case Instruction::Add
:
1161 WideUse
= SE
->getAddExpr(WideLHS
, WideRHS
);
1164 case Instruction::Mul
:
1165 WideUse
= SE
->getMulExpr(WideLHS
, WideRHS
);
1168 case Instruction::UDiv
:
1169 WideUse
= SE
->getUDivExpr(WideLHS
, WideRHS
);
1172 case Instruction::Sub
:
1173 WideUse
= SE
->getMinusSCEV(WideLHS
, WideRHS
);
1177 return WideUse
== WideAR
;
1180 bool SignExtend
= getExtendKind(NarrowDef
) == SignExtended
;
1181 if (!GuessNonIVOperand(SignExtend
)) {
1182 SignExtend
= !SignExtend
;
1183 if (!GuessNonIVOperand(SignExtend
))
1187 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
)
1189 : createExtendInst(NarrowUse
->getOperand(0), WideType
,
1190 SignExtend
, NarrowUse
);
1191 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
)
1193 : createExtendInst(NarrowUse
->getOperand(1), WideType
,
1194 SignExtend
, NarrowUse
);
1196 auto *NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
1197 auto *WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(), LHS
, RHS
,
1198 NarrowBO
->getName());
1200 IRBuilder
<> Builder(NarrowUse
);
1201 Builder
.Insert(WideBO
);
1202 WideBO
->copyIRFlags(NarrowBO
);
1206 WidenIV::ExtendKind
WidenIV::getExtendKind(Instruction
*I
) {
1207 auto It
= ExtendKindMap
.find(I
);
1208 assert(It
!= ExtendKindMap
.end() && "Instruction not yet extended!");
1212 const SCEV
*WidenIV::getSCEVByOpCode(const SCEV
*LHS
, const SCEV
*RHS
,
1213 unsigned OpCode
) const {
1214 if (OpCode
== Instruction::Add
)
1215 return SE
->getAddExpr(LHS
, RHS
);
1216 if (OpCode
== Instruction::Sub
)
1217 return SE
->getMinusSCEV(LHS
, RHS
);
1218 if (OpCode
== Instruction::Mul
)
1219 return SE
->getMulExpr(LHS
, RHS
);
1221 llvm_unreachable("Unsupported opcode.");
1224 /// No-wrap operations can transfer sign extension of their result to their
1225 /// operands. Generate the SCEV value for the widened operation without
1226 /// actually modifying the IR yet. If the expression after extending the
1227 /// operands is an AddRec for this loop, return the AddRec and the kind of
1229 WidenIV::WidenedRecTy
WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU
) {
1230 // Handle the common case of add<nsw/nuw>
1231 const unsigned OpCode
= DU
.NarrowUse
->getOpcode();
1232 // Only Add/Sub/Mul instructions supported yet.
1233 if (OpCode
!= Instruction::Add
&& OpCode
!= Instruction::Sub
&&
1234 OpCode
!= Instruction::Mul
)
1235 return {nullptr, Unknown
};
1237 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1238 // if extending the other will lead to a recurrence.
1239 const unsigned ExtendOperIdx
=
1240 DU
.NarrowUse
->getOperand(0) == DU
.NarrowDef
? 1 : 0;
1241 assert(DU
.NarrowUse
->getOperand(1-ExtendOperIdx
) == DU
.NarrowDef
&& "bad DU");
1243 const SCEV
*ExtendOperExpr
= nullptr;
1244 const OverflowingBinaryOperator
*OBO
=
1245 cast
<OverflowingBinaryOperator
>(DU
.NarrowUse
);
1246 ExtendKind ExtKind
= getExtendKind(DU
.NarrowDef
);
1247 if (ExtKind
== SignExtended
&& OBO
->hasNoSignedWrap())
1248 ExtendOperExpr
= SE
->getSignExtendExpr(
1249 SE
->getSCEV(DU
.NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1250 else if(ExtKind
== ZeroExtended
&& OBO
->hasNoUnsignedWrap())
1251 ExtendOperExpr
= SE
->getZeroExtendExpr(
1252 SE
->getSCEV(DU
.NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1254 return {nullptr, Unknown
};
1256 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1257 // flags. This instruction may be guarded by control flow that the no-wrap
1258 // behavior depends on. Non-control-equivalent instructions can be mapped to
1259 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1260 // semantics to those operations.
1261 const SCEV
*lhs
= SE
->getSCEV(DU
.WideDef
);
1262 const SCEV
*rhs
= ExtendOperExpr
;
1264 // Let's swap operands to the initial order for the case of non-commutative
1265 // operations, like SUB. See PR21014.
1266 if (ExtendOperIdx
== 0)
1267 std::swap(lhs
, rhs
);
1268 const SCEVAddRecExpr
*AddRec
=
1269 dyn_cast
<SCEVAddRecExpr
>(getSCEVByOpCode(lhs
, rhs
, OpCode
));
1271 if (!AddRec
|| AddRec
->getLoop() != L
)
1272 return {nullptr, Unknown
};
1274 return {AddRec
, ExtKind
};
1277 /// Is this instruction potentially interesting for further simplification after
1278 /// widening it's type? In other words, can the extend be safely hoisted out of
1279 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1280 /// so, return the extended recurrence and the kind of extension used. Otherwise
1281 /// return {nullptr, Unknown}.
1282 WidenIV::WidenedRecTy
WidenIV::getWideRecurrence(NarrowIVDefUse DU
) {
1283 if (!SE
->isSCEVable(DU
.NarrowUse
->getType()))
1284 return {nullptr, Unknown
};
1286 const SCEV
*NarrowExpr
= SE
->getSCEV(DU
.NarrowUse
);
1287 if (SE
->getTypeSizeInBits(NarrowExpr
->getType()) >=
1288 SE
->getTypeSizeInBits(WideType
)) {
1289 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1290 // index. So don't follow this use.
1291 return {nullptr, Unknown
};
1294 const SCEV
*WideExpr
;
1296 if (DU
.NeverNegative
) {
1297 WideExpr
= SE
->getSignExtendExpr(NarrowExpr
, WideType
);
1298 if (isa
<SCEVAddRecExpr
>(WideExpr
))
1299 ExtKind
= SignExtended
;
1301 WideExpr
= SE
->getZeroExtendExpr(NarrowExpr
, WideType
);
1302 ExtKind
= ZeroExtended
;
1304 } else if (getExtendKind(DU
.NarrowDef
) == SignExtended
) {
1305 WideExpr
= SE
->getSignExtendExpr(NarrowExpr
, WideType
);
1306 ExtKind
= SignExtended
;
1308 WideExpr
= SE
->getZeroExtendExpr(NarrowExpr
, WideType
);
1309 ExtKind
= ZeroExtended
;
1311 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(WideExpr
);
1312 if (!AddRec
|| AddRec
->getLoop() != L
)
1313 return {nullptr, Unknown
};
1314 return {AddRec
, ExtKind
};
1317 /// This IV user cannot be widen. Replace this use of the original narrow IV
1318 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1319 static void truncateIVUse(NarrowIVDefUse DU
, DominatorTree
*DT
, LoopInfo
*LI
) {
1320 auto *InsertPt
= getInsertPointForUses(DU
.NarrowUse
, DU
.NarrowDef
, DT
, LI
);
1323 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU
.WideDef
<< " for user "
1324 << *DU
.NarrowUse
<< "\n");
1325 IRBuilder
<> Builder(InsertPt
);
1326 Value
*Trunc
= Builder
.CreateTrunc(DU
.WideDef
, DU
.NarrowDef
->getType());
1327 DU
.NarrowUse
->replaceUsesOfWith(DU
.NarrowDef
, Trunc
);
1330 /// If the narrow use is a compare instruction, then widen the compare
1331 // (and possibly the other operand). The extend operation is hoisted into the
1332 // loop preheader as far as possible.
1333 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU
) {
1334 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(DU
.NarrowUse
);
1338 // We can legally widen the comparison in the following two cases:
1340 // - The signedness of the IV extension and comparison match
1342 // - The narrow IV is always positive (and thus its sign extension is equal
1343 // to its zero extension). For instance, let's say we're zero extending
1344 // %narrow for the following use
1346 // icmp slt i32 %narrow, %val ... (A)
1348 // and %narrow is always positive. Then
1350 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1351 // == icmp slt i32 zext(%narrow), sext(%val)
1352 bool IsSigned
= getExtendKind(DU
.NarrowDef
) == SignExtended
;
1353 if (!(DU
.NeverNegative
|| IsSigned
== Cmp
->isSigned()))
1356 Value
*Op
= Cmp
->getOperand(Cmp
->getOperand(0) == DU
.NarrowDef
? 1 : 0);
1357 unsigned CastWidth
= SE
->getTypeSizeInBits(Op
->getType());
1358 unsigned IVWidth
= SE
->getTypeSizeInBits(WideType
);
1359 assert(CastWidth
<= IVWidth
&& "Unexpected width while widening compare.");
1361 // Widen the compare instruction.
1362 auto *InsertPt
= getInsertPointForUses(DU
.NarrowUse
, DU
.NarrowDef
, DT
, LI
);
1365 IRBuilder
<> Builder(InsertPt
);
1366 DU
.NarrowUse
->replaceUsesOfWith(DU
.NarrowDef
, DU
.WideDef
);
1368 // Widen the other operand of the compare, if necessary.
1369 if (CastWidth
< IVWidth
) {
1370 Value
*ExtOp
= createExtendInst(Op
, WideType
, Cmp
->isSigned(), Cmp
);
1371 DU
.NarrowUse
->replaceUsesOfWith(Op
, ExtOp
);
1376 /// If the narrow use is an instruction whose two operands are the defining
1377 /// instruction of DU and a load instruction, then we have the following:
1378 /// if the load is hoisted outside the loop, then we do not reach this function
1379 /// as scalar evolution analysis works fine in widenIVUse with variables
1380 /// hoisted outside the loop and efficient code is subsequently generated by
1381 /// not emitting truncate instructions. But when the load is not hoisted
1382 /// (whether due to limitation in alias analysis or due to a true legality),
1383 /// then scalar evolution can not proceed with loop variant values and
1384 /// inefficient code is generated. This function handles the non-hoisted load
1385 /// special case by making the optimization generate the same type of code for
1386 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1387 /// instruction). This special case is important especially when the induction
1388 /// variables are affecting addressing mode in code generation.
1389 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU
) {
1390 Instruction
*NarrowUse
= DU
.NarrowUse
;
1391 Instruction
*NarrowDef
= DU
.NarrowDef
;
1392 Instruction
*WideDef
= DU
.WideDef
;
1394 // Handle the common case of add<nsw/nuw>
1395 const unsigned OpCode
= NarrowUse
->getOpcode();
1396 // Only Add/Sub/Mul instructions are supported.
1397 if (OpCode
!= Instruction::Add
&& OpCode
!= Instruction::Sub
&&
1398 OpCode
!= Instruction::Mul
)
1401 // The operand that is not defined by NarrowDef of DU. Let's call it the
1403 unsigned ExtendOperIdx
= DU
.NarrowUse
->getOperand(0) == NarrowDef
? 1 : 0;
1404 assert(DU
.NarrowUse
->getOperand(1 - ExtendOperIdx
) == DU
.NarrowDef
&&
1407 const SCEV
*ExtendOperExpr
= nullptr;
1408 const OverflowingBinaryOperator
*OBO
=
1409 cast
<OverflowingBinaryOperator
>(NarrowUse
);
1410 ExtendKind ExtKind
= getExtendKind(NarrowDef
);
1411 if (ExtKind
== SignExtended
&& OBO
->hasNoSignedWrap())
1412 ExtendOperExpr
= SE
->getSignExtendExpr(
1413 SE
->getSCEV(NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1414 else if (ExtKind
== ZeroExtended
&& OBO
->hasNoUnsignedWrap())
1415 ExtendOperExpr
= SE
->getZeroExtendExpr(
1416 SE
->getSCEV(NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1420 // We are interested in the other operand being a load instruction.
1421 // But, we should look into relaxing this restriction later on.
1422 auto *I
= dyn_cast
<Instruction
>(NarrowUse
->getOperand(ExtendOperIdx
));
1423 if (I
&& I
->getOpcode() != Instruction::Load
)
1426 // Verifying that Defining operand is an AddRec
1427 const SCEV
*Op1
= SE
->getSCEV(WideDef
);
1428 const SCEVAddRecExpr
*AddRecOp1
= dyn_cast
<SCEVAddRecExpr
>(Op1
);
1429 if (!AddRecOp1
|| AddRecOp1
->getLoop() != L
)
1431 // Verifying that other operand is an Extend.
1432 if (ExtKind
== SignExtended
) {
1433 if (!isa
<SCEVSignExtendExpr
>(ExtendOperExpr
))
1436 if (!isa
<SCEVZeroExtendExpr
>(ExtendOperExpr
))
1440 if (ExtKind
== SignExtended
) {
1441 for (Use
&U
: NarrowUse
->uses()) {
1442 SExtInst
*User
= dyn_cast
<SExtInst
>(U
.getUser());
1443 if (!User
|| User
->getType() != WideType
)
1446 } else { // ExtKind == ZeroExtended
1447 for (Use
&U
: NarrowUse
->uses()) {
1448 ZExtInst
*User
= dyn_cast
<ZExtInst
>(U
.getUser());
1449 if (!User
|| User
->getType() != WideType
)
1457 /// Special Case for widening with variant Loads (see
1458 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1459 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU
) {
1460 Instruction
*NarrowUse
= DU
.NarrowUse
;
1461 Instruction
*NarrowDef
= DU
.NarrowDef
;
1462 Instruction
*WideDef
= DU
.WideDef
;
1464 ExtendKind ExtKind
= getExtendKind(NarrowDef
);
1466 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse
<< "\n");
1468 // Generating a widening use instruction.
1469 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
)
1471 : createExtendInst(NarrowUse
->getOperand(0), WideType
,
1472 ExtKind
, NarrowUse
);
1473 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
)
1475 : createExtendInst(NarrowUse
->getOperand(1), WideType
,
1476 ExtKind
, NarrowUse
);
1478 auto *NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
1479 auto *WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(), LHS
, RHS
,
1480 NarrowBO
->getName());
1481 IRBuilder
<> Builder(NarrowUse
);
1482 Builder
.Insert(WideBO
);
1483 WideBO
->copyIRFlags(NarrowBO
);
1485 if (ExtKind
== SignExtended
)
1486 ExtendKindMap
[NarrowUse
] = SignExtended
;
1488 ExtendKindMap
[NarrowUse
] = ZeroExtended
;
1491 if (ExtKind
== SignExtended
) {
1492 for (Use
&U
: NarrowUse
->uses()) {
1493 SExtInst
*User
= dyn_cast
<SExtInst
>(U
.getUser());
1494 if (User
&& User
->getType() == WideType
) {
1495 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User
<< " replaced by "
1496 << *WideBO
<< "\n");
1498 User
->replaceAllUsesWith(WideBO
);
1499 DeadInsts
.emplace_back(User
);
1502 } else { // ExtKind == ZeroExtended
1503 for (Use
&U
: NarrowUse
->uses()) {
1504 ZExtInst
*User
= dyn_cast
<ZExtInst
>(U
.getUser());
1505 if (User
&& User
->getType() == WideType
) {
1506 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User
<< " replaced by "
1507 << *WideBO
<< "\n");
1509 User
->replaceAllUsesWith(WideBO
);
1510 DeadInsts
.emplace_back(User
);
1516 /// Determine whether an individual user of the narrow IV can be widened. If so,
1517 /// return the wide clone of the user.
1518 Instruction
*WidenIV::widenIVUse(NarrowIVDefUse DU
, SCEVExpander
&Rewriter
) {
1519 assert(ExtendKindMap
.count(DU
.NarrowDef
) &&
1520 "Should already know the kind of extension used to widen NarrowDef");
1522 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1523 if (PHINode
*UsePhi
= dyn_cast
<PHINode
>(DU
.NarrowUse
)) {
1524 if (LI
->getLoopFor(UsePhi
->getParent()) != L
) {
1525 // For LCSSA phis, sink the truncate outside the loop.
1526 // After SimplifyCFG most loop exit targets have a single predecessor.
1527 // Otherwise fall back to a truncate within the loop.
1528 if (UsePhi
->getNumOperands() != 1)
1529 truncateIVUse(DU
, DT
, LI
);
1531 // Widening the PHI requires us to insert a trunc. The logical place
1532 // for this trunc is in the same BB as the PHI. This is not possible if
1533 // the BB is terminated by a catchswitch.
1534 if (isa
<CatchSwitchInst
>(UsePhi
->getParent()->getTerminator()))
1538 PHINode::Create(DU
.WideDef
->getType(), 1, UsePhi
->getName() + ".wide",
1540 WidePhi
->addIncoming(DU
.WideDef
, UsePhi
->getIncomingBlock(0));
1541 IRBuilder
<> Builder(&*WidePhi
->getParent()->getFirstInsertionPt());
1542 Value
*Trunc
= Builder
.CreateTrunc(WidePhi
, DU
.NarrowDef
->getType());
1543 UsePhi
->replaceAllUsesWith(Trunc
);
1544 DeadInsts
.emplace_back(UsePhi
);
1545 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
<< " to "
1546 << *WidePhi
<< "\n");
1552 // This narrow use can be widened by a sext if it's non-negative or its narrow
1553 // def was widended by a sext. Same for zext.
1554 auto canWidenBySExt
= [&]() {
1555 return DU
.NeverNegative
|| getExtendKind(DU
.NarrowDef
) == SignExtended
;
1557 auto canWidenByZExt
= [&]() {
1558 return DU
.NeverNegative
|| getExtendKind(DU
.NarrowDef
) == ZeroExtended
;
1561 // Our raison d'etre! Eliminate sign and zero extension.
1562 if ((isa
<SExtInst
>(DU
.NarrowUse
) && canWidenBySExt()) ||
1563 (isa
<ZExtInst
>(DU
.NarrowUse
) && canWidenByZExt())) {
1564 Value
*NewDef
= DU
.WideDef
;
1565 if (DU
.NarrowUse
->getType() != WideType
) {
1566 unsigned CastWidth
= SE
->getTypeSizeInBits(DU
.NarrowUse
->getType());
1567 unsigned IVWidth
= SE
->getTypeSizeInBits(WideType
);
1568 if (CastWidth
< IVWidth
) {
1569 // The cast isn't as wide as the IV, so insert a Trunc.
1570 IRBuilder
<> Builder(DU
.NarrowUse
);
1571 NewDef
= Builder
.CreateTrunc(DU
.WideDef
, DU
.NarrowUse
->getType());
1574 // A wider extend was hidden behind a narrower one. This may induce
1575 // another round of IV widening in which the intermediate IV becomes
1576 // dead. It should be very rare.
1577 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1578 << " not wide enough to subsume " << *DU
.NarrowUse
1580 DU
.NarrowUse
->replaceUsesOfWith(DU
.NarrowDef
, DU
.WideDef
);
1581 NewDef
= DU
.NarrowUse
;
1584 if (NewDef
!= DU
.NarrowUse
) {
1585 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU
.NarrowUse
1586 << " replaced by " << *DU
.WideDef
<< "\n");
1588 DU
.NarrowUse
->replaceAllUsesWith(NewDef
);
1589 DeadInsts
.emplace_back(DU
.NarrowUse
);
1591 // Now that the extend is gone, we want to expose it's uses for potential
1592 // further simplification. We don't need to directly inform SimplifyIVUsers
1593 // of the new users, because their parent IV will be processed later as a
1594 // new loop phi. If we preserved IVUsers analysis, we would also want to
1595 // push the uses of WideDef here.
1597 // No further widening is needed. The deceased [sz]ext had done it for us.
1601 // Does this user itself evaluate to a recurrence after widening?
1602 WidenedRecTy WideAddRec
= getExtendedOperandRecurrence(DU
);
1603 if (!WideAddRec
.first
)
1604 WideAddRec
= getWideRecurrence(DU
);
1606 assert((WideAddRec
.first
== nullptr) == (WideAddRec
.second
== Unknown
));
1607 if (!WideAddRec
.first
) {
1608 // If use is a loop condition, try to promote the condition instead of
1609 // truncating the IV first.
1610 if (widenLoopCompare(DU
))
1613 // We are here about to generate a truncate instruction that may hurt
1614 // performance because the scalar evolution expression computed earlier
1615 // in WideAddRec.first does not indicate a polynomial induction expression.
1616 // In that case, look at the operands of the use instruction to determine
1617 // if we can still widen the use instead of truncating its operand.
1618 if (widenWithVariantLoadUse(DU
)) {
1619 widenWithVariantLoadUseCodegen(DU
);
1623 // This user does not evaluate to a recurrence after widening, so don't
1624 // follow it. Instead insert a Trunc to kill off the original use,
1625 // eventually isolating the original narrow IV so it can be removed.
1626 truncateIVUse(DU
, DT
, LI
);
1629 // Assume block terminators cannot evaluate to a recurrence. We can't to
1630 // insert a Trunc after a terminator if there happens to be a critical edge.
1631 assert(DU
.NarrowUse
!= DU
.NarrowUse
->getParent()->getTerminator() &&
1632 "SCEV is not expected to evaluate a block terminator");
1634 // Reuse the IV increment that SCEVExpander created as long as it dominates
1636 Instruction
*WideUse
= nullptr;
1637 if (WideAddRec
.first
== WideIncExpr
&&
1638 Rewriter
.hoistIVInc(WideInc
, DU
.NarrowUse
))
1641 WideUse
= cloneIVUser(DU
, WideAddRec
.first
);
1645 // Evaluation of WideAddRec ensured that the narrow expression could be
1646 // extended outside the loop without overflow. This suggests that the wide use
1647 // evaluates to the same expression as the extended narrow use, but doesn't
1648 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1649 // where it fails, we simply throw away the newly created wide use.
1650 if (WideAddRec
.first
!= SE
->getSCEV(WideUse
)) {
1651 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
<< ": "
1652 << *SE
->getSCEV(WideUse
) << " != " << *WideAddRec
.first
1654 DeadInsts
.emplace_back(WideUse
);
1658 ExtendKindMap
[DU
.NarrowUse
] = WideAddRec
.second
;
1659 // Returning WideUse pushes it on the worklist.
1663 /// Add eligible users of NarrowDef to NarrowIVUsers.
1664 void WidenIV::pushNarrowIVUsers(Instruction
*NarrowDef
, Instruction
*WideDef
) {
1665 const SCEV
*NarrowSCEV
= SE
->getSCEV(NarrowDef
);
1666 bool NonNegativeDef
=
1667 SE
->isKnownPredicate(ICmpInst::ICMP_SGE
, NarrowSCEV
,
1668 SE
->getConstant(NarrowSCEV
->getType(), 0));
1669 for (User
*U
: NarrowDef
->users()) {
1670 Instruction
*NarrowUser
= cast
<Instruction
>(U
);
1672 // Handle data flow merges and bizarre phi cycles.
1673 if (!Widened
.insert(NarrowUser
).second
)
1676 bool NonNegativeUse
= false;
1677 if (!NonNegativeDef
) {
1678 // We might have a control-dependent range information for this context.
1679 if (auto RangeInfo
= getPostIncRangeInfo(NarrowDef
, NarrowUser
))
1680 NonNegativeUse
= RangeInfo
->getSignedMin().isNonNegative();
1683 NarrowIVUsers
.emplace_back(NarrowDef
, NarrowUser
, WideDef
,
1684 NonNegativeDef
|| NonNegativeUse
);
1688 /// Process a single induction variable. First use the SCEVExpander to create a
1689 /// wide induction variable that evaluates to the same recurrence as the
1690 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1691 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1692 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1694 /// It would be simpler to delete uses as they are processed, but we must avoid
1695 /// invalidating SCEV expressions.
1696 PHINode
*WidenIV::createWideIV(SCEVExpander
&Rewriter
) {
1697 // Is this phi an induction variable?
1698 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(OrigPhi
));
1702 // Widen the induction variable expression.
1703 const SCEV
*WideIVExpr
= getExtendKind(OrigPhi
) == SignExtended
1704 ? SE
->getSignExtendExpr(AddRec
, WideType
)
1705 : SE
->getZeroExtendExpr(AddRec
, WideType
);
1707 assert(SE
->getEffectiveSCEVType(WideIVExpr
->getType()) == WideType
&&
1708 "Expect the new IV expression to preserve its type");
1710 // Can the IV be extended outside the loop without overflow?
1711 AddRec
= dyn_cast
<SCEVAddRecExpr
>(WideIVExpr
);
1712 if (!AddRec
|| AddRec
->getLoop() != L
)
1715 // An AddRec must have loop-invariant operands. Since this AddRec is
1716 // materialized by a loop header phi, the expression cannot have any post-loop
1717 // operands, so they must dominate the loop header.
1719 SE
->properlyDominates(AddRec
->getStart(), L
->getHeader()) &&
1720 SE
->properlyDominates(AddRec
->getStepRecurrence(*SE
), L
->getHeader()) &&
1721 "Loop header phi recurrence inputs do not dominate the loop");
1723 // Iterate over IV uses (including transitive ones) looking for IV increments
1724 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1725 // the increment calculate control-dependent range information basing on
1726 // dominating conditions inside of the loop (e.g. a range check inside of the
1727 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1729 // Control-dependent range information is later used to prove that a narrow
1730 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1731 // this on demand because when pushNarrowIVUsers needs this information some
1732 // of the dominating conditions might be already widened.
1733 if (UsePostIncrementRanges
)
1734 calculatePostIncRanges(OrigPhi
);
1736 // The rewriter provides a value for the desired IV expression. This may
1737 // either find an existing phi or materialize a new one. Either way, we
1738 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1739 // of the phi-SCC dominates the loop entry.
1740 Instruction
*InsertPt
= &L
->getHeader()->front();
1741 WidePhi
= cast
<PHINode
>(Rewriter
.expandCodeFor(AddRec
, WideType
, InsertPt
));
1743 // Remembering the WideIV increment generated by SCEVExpander allows
1744 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1745 // employ a general reuse mechanism because the call above is the only call to
1746 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1747 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
1749 cast
<Instruction
>(WidePhi
->getIncomingValueForBlock(LatchBlock
));
1750 WideIncExpr
= SE
->getSCEV(WideInc
);
1751 // Propagate the debug location associated with the original loop increment
1752 // to the new (widened) increment.
1754 cast
<Instruction
>(OrigPhi
->getIncomingValueForBlock(LatchBlock
));
1755 WideInc
->setDebugLoc(OrigInc
->getDebugLoc());
1758 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi
<< "\n");
1761 // Traverse the def-use chain using a worklist starting at the original IV.
1762 assert(Widened
.empty() && NarrowIVUsers
.empty() && "expect initial state" );
1764 Widened
.insert(OrigPhi
);
1765 pushNarrowIVUsers(OrigPhi
, WidePhi
);
1767 while (!NarrowIVUsers
.empty()) {
1768 NarrowIVDefUse DU
= NarrowIVUsers
.pop_back_val();
1770 // Process a def-use edge. This may replace the use, so don't hold a
1771 // use_iterator across it.
1772 Instruction
*WideUse
= widenIVUse(DU
, Rewriter
);
1774 // Follow all def-use edges from the previous narrow use.
1776 pushNarrowIVUsers(DU
.NarrowUse
, WideUse
);
1778 // widenIVUse may have removed the def-use edge.
1779 if (DU
.NarrowDef
->use_empty())
1780 DeadInsts
.emplace_back(DU
.NarrowDef
);
1783 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1784 // evaluate the same recurrence, we can just copy the debug info over.
1785 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1786 llvm::findDbgValues(DbgValues
, OrigPhi
);
1787 auto *MDPhi
= MetadataAsValue::get(WidePhi
->getContext(),
1788 ValueAsMetadata::get(WidePhi
));
1789 for (auto &DbgValue
: DbgValues
)
1790 DbgValue
->setOperand(0, MDPhi
);
1794 /// Calculates control-dependent range for the given def at the given context
1795 /// by looking at dominating conditions inside of the loop
1796 void WidenIV::calculatePostIncRange(Instruction
*NarrowDef
,
1797 Instruction
*NarrowUser
) {
1798 using namespace llvm::PatternMatch
;
1800 Value
*NarrowDefLHS
;
1801 const APInt
*NarrowDefRHS
;
1802 if (!match(NarrowDef
, m_NSWAdd(m_Value(NarrowDefLHS
),
1803 m_APInt(NarrowDefRHS
))) ||
1804 !NarrowDefRHS
->isNonNegative())
1807 auto UpdateRangeFromCondition
= [&] (Value
*Condition
,
1809 CmpInst::Predicate Pred
;
1811 if (!match(Condition
, m_ICmp(Pred
, m_Specific(NarrowDefLHS
),
1815 CmpInst::Predicate P
=
1816 TrueDest
? Pred
: CmpInst::getInversePredicate(Pred
);
1818 auto CmpRHSRange
= SE
->getSignedRange(SE
->getSCEV(CmpRHS
));
1819 auto CmpConstrainedLHSRange
=
1820 ConstantRange::makeAllowedICmpRegion(P
, CmpRHSRange
);
1821 auto NarrowDefRange
=
1822 CmpConstrainedLHSRange
.addWithNoSignedWrap(*NarrowDefRHS
);
1824 updatePostIncRangeInfo(NarrowDef
, NarrowUser
, NarrowDefRange
);
1827 auto UpdateRangeFromGuards
= [&](Instruction
*Ctx
) {
1831 for (Instruction
&I
: make_range(Ctx
->getIterator().getReverse(),
1832 Ctx
->getParent()->rend())) {
1834 if (match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(C
))))
1835 UpdateRangeFromCondition(C
, /*TrueDest=*/true);
1839 UpdateRangeFromGuards(NarrowUser
);
1841 BasicBlock
*NarrowUserBB
= NarrowUser
->getParent();
1842 // If NarrowUserBB is statically unreachable asking dominator queries may
1843 // yield surprising results. (e.g. the block may not have a dom tree node)
1844 if (!DT
->isReachableFromEntry(NarrowUserBB
))
1847 for (auto *DTB
= (*DT
)[NarrowUserBB
]->getIDom();
1848 L
->contains(DTB
->getBlock());
1849 DTB
= DTB
->getIDom()) {
1850 auto *BB
= DTB
->getBlock();
1851 auto *TI
= BB
->getTerminator();
1852 UpdateRangeFromGuards(TI
);
1854 auto *BI
= dyn_cast
<BranchInst
>(TI
);
1855 if (!BI
|| !BI
->isConditional())
1858 auto *TrueSuccessor
= BI
->getSuccessor(0);
1859 auto *FalseSuccessor
= BI
->getSuccessor(1);
1861 auto DominatesNarrowUser
= [this, NarrowUser
] (BasicBlockEdge BBE
) {
1862 return BBE
.isSingleEdge() &&
1863 DT
->dominates(BBE
, NarrowUser
->getParent());
1866 if (DominatesNarrowUser(BasicBlockEdge(BB
, TrueSuccessor
)))
1867 UpdateRangeFromCondition(BI
->getCondition(), /*TrueDest=*/true);
1869 if (DominatesNarrowUser(BasicBlockEdge(BB
, FalseSuccessor
)))
1870 UpdateRangeFromCondition(BI
->getCondition(), /*TrueDest=*/false);
1874 /// Calculates PostIncRangeInfos map for the given IV
1875 void WidenIV::calculatePostIncRanges(PHINode
*OrigPhi
) {
1876 SmallPtrSet
<Instruction
*, 16> Visited
;
1877 SmallVector
<Instruction
*, 6> Worklist
;
1878 Worklist
.push_back(OrigPhi
);
1879 Visited
.insert(OrigPhi
);
1881 while (!Worklist
.empty()) {
1882 Instruction
*NarrowDef
= Worklist
.pop_back_val();
1884 for (Use
&U
: NarrowDef
->uses()) {
1885 auto *NarrowUser
= cast
<Instruction
>(U
.getUser());
1887 // Don't go looking outside the current loop.
1888 auto *NarrowUserLoop
= (*LI
)[NarrowUser
->getParent()];
1889 if (!NarrowUserLoop
|| !L
->contains(NarrowUserLoop
))
1892 if (!Visited
.insert(NarrowUser
).second
)
1895 Worklist
.push_back(NarrowUser
);
1897 calculatePostIncRange(NarrowDef
, NarrowUser
);
1902 //===----------------------------------------------------------------------===//
1903 // Live IV Reduction - Minimize IVs live across the loop.
1904 //===----------------------------------------------------------------------===//
1906 //===----------------------------------------------------------------------===//
1907 // Simplification of IV users based on SCEV evaluation.
1908 //===----------------------------------------------------------------------===//
1912 class IndVarSimplifyVisitor
: public IVVisitor
{
1913 ScalarEvolution
*SE
;
1914 const TargetTransformInfo
*TTI
;
1920 IndVarSimplifyVisitor(PHINode
*IV
, ScalarEvolution
*SCEV
,
1921 const TargetTransformInfo
*TTI
,
1922 const DominatorTree
*DTree
)
1923 : SE(SCEV
), TTI(TTI
), IVPhi(IV
) {
1925 WI
.NarrowIV
= IVPhi
;
1928 // Implement the interface used by simplifyUsersOfIV.
1929 void visitCast(CastInst
*Cast
) override
{ visitIVCast(Cast
, WI
, SE
, TTI
); }
1932 } // end anonymous namespace
1934 /// Iteratively perform simplification on a worklist of IV users. Each
1935 /// successive simplification may push more users which may themselves be
1936 /// candidates for simplification.
1938 /// Sign/Zero extend elimination is interleaved with IV simplification.
1939 bool IndVarSimplify::simplifyAndExtend(Loop
*L
,
1940 SCEVExpander
&Rewriter
,
1942 SmallVector
<WideIVInfo
, 8> WideIVs
;
1944 auto *GuardDecl
= L
->getBlocks()[0]->getModule()->getFunction(
1945 Intrinsic::getName(Intrinsic::experimental_guard
));
1946 bool HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
1948 SmallVector
<PHINode
*, 8> LoopPhis
;
1949 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
1950 LoopPhis
.push_back(cast
<PHINode
>(I
));
1952 // Each round of simplification iterates through the SimplifyIVUsers worklist
1953 // for all current phis, then determines whether any IVs can be
1954 // widened. Widening adds new phis to LoopPhis, inducing another round of
1955 // simplification on the wide IVs.
1956 bool Changed
= false;
1957 while (!LoopPhis
.empty()) {
1958 // Evaluate as many IV expressions as possible before widening any IVs. This
1959 // forces SCEV to set no-wrap flags before evaluating sign/zero
1960 // extension. The first time SCEV attempts to normalize sign/zero extension,
1961 // the result becomes final. So for the most predictable results, we delay
1962 // evaluation of sign/zero extend evaluation until needed, and avoid running
1963 // other SCEV based analysis prior to simplifyAndExtend.
1965 PHINode
*CurrIV
= LoopPhis
.pop_back_val();
1967 // Information about sign/zero extensions of CurrIV.
1968 IndVarSimplifyVisitor
Visitor(CurrIV
, SE
, TTI
, DT
);
1971 simplifyUsersOfIV(CurrIV
, SE
, DT
, LI
, DeadInsts
, Rewriter
, &Visitor
);
1973 if (Visitor
.WI
.WidestNativeType
) {
1974 WideIVs
.push_back(Visitor
.WI
);
1976 } while(!LoopPhis
.empty());
1978 for (; !WideIVs
.empty(); WideIVs
.pop_back()) {
1979 WidenIV
Widener(WideIVs
.back(), LI
, SE
, DT
, DeadInsts
, HasGuards
);
1980 if (PHINode
*WidePhi
= Widener
.createWideIV(Rewriter
)) {
1982 LoopPhis
.push_back(WidePhi
);
1989 //===----------------------------------------------------------------------===//
1990 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1991 //===----------------------------------------------------------------------===//
1993 /// Return true if this loop's backedge taken count expression can be safely and
1994 /// cheaply expanded into an instruction sequence that can be used by
1995 /// linearFunctionTestReplace.
1997 /// TODO: This fails for pointer-type loop counters with greater than one byte
1998 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1999 /// we could skip this check in the case that the LFTR loop counter (chosen by
2000 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
2001 /// the loop test to an inequality test by checking the target data's alignment
2002 /// of element types (given that the initial pointer value originates from or is
2003 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
2004 /// However, we don't yet have a strong motivation for converting loop tests
2005 /// into inequality tests.
2006 static bool canExpandBackedgeTakenCount(Loop
*L
, ScalarEvolution
*SE
,
2007 SCEVExpander
&Rewriter
) {
2008 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2009 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) ||
2010 BackedgeTakenCount
->isZero())
2013 if (!L
->getExitingBlock())
2016 // Can't rewrite non-branch yet.
2017 if (!isa
<BranchInst
>(L
->getExitingBlock()->getTerminator()))
2020 if (Rewriter
.isHighCostExpansion(BackedgeTakenCount
, L
))
2026 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2027 static PHINode
*getLoopPhiForCounter(Value
*IncV
, Loop
*L
, DominatorTree
*DT
) {
2028 Instruction
*IncI
= dyn_cast
<Instruction
>(IncV
);
2032 switch (IncI
->getOpcode()) {
2033 case Instruction::Add
:
2034 case Instruction::Sub
:
2036 case Instruction::GetElementPtr
:
2037 // An IV counter must preserve its type.
2038 if (IncI
->getNumOperands() == 2)
2045 PHINode
*Phi
= dyn_cast
<PHINode
>(IncI
->getOperand(0));
2046 if (Phi
&& Phi
->getParent() == L
->getHeader()) {
2047 if (isLoopInvariant(IncI
->getOperand(1), L
, DT
))
2051 if (IncI
->getOpcode() == Instruction::GetElementPtr
)
2054 // Allow add/sub to be commuted.
2055 Phi
= dyn_cast
<PHINode
>(IncI
->getOperand(1));
2056 if (Phi
&& Phi
->getParent() == L
->getHeader()) {
2057 if (isLoopInvariant(IncI
->getOperand(0), L
, DT
))
2063 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2064 static ICmpInst
*getLoopTest(Loop
*L
) {
2065 assert(L
->getExitingBlock() && "expected loop exit");
2067 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2068 // Don't bother with LFTR if the loop is not properly simplified.
2072 BranchInst
*BI
= dyn_cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
2073 assert(BI
&& "expected exit branch");
2075 return dyn_cast
<ICmpInst
>(BI
->getCondition());
2078 /// linearFunctionTestReplace policy. Return true unless we can show that the
2079 /// current exit test is already sufficiently canonical.
2080 static bool needsLFTR(Loop
*L
, DominatorTree
*DT
) {
2081 // Do LFTR to simplify the exit condition to an ICMP.
2082 ICmpInst
*Cond
= getLoopTest(L
);
2086 // Do LFTR to simplify the exit ICMP to EQ/NE
2087 ICmpInst::Predicate Pred
= Cond
->getPredicate();
2088 if (Pred
!= ICmpInst::ICMP_NE
&& Pred
!= ICmpInst::ICMP_EQ
)
2091 // Look for a loop invariant RHS
2092 Value
*LHS
= Cond
->getOperand(0);
2093 Value
*RHS
= Cond
->getOperand(1);
2094 if (!isLoopInvariant(RHS
, L
, DT
)) {
2095 if (!isLoopInvariant(LHS
, L
, DT
))
2097 std::swap(LHS
, RHS
);
2099 // Look for a simple IV counter LHS
2100 PHINode
*Phi
= dyn_cast
<PHINode
>(LHS
);
2102 Phi
= getLoopPhiForCounter(LHS
, L
, DT
);
2107 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2108 int Idx
= Phi
->getBasicBlockIndex(L
->getLoopLatch());
2112 // Do LFTR if the exit condition's IV is *not* a simple counter.
2113 Value
*IncV
= Phi
->getIncomingValue(Idx
);
2114 return Phi
!= getLoopPhiForCounter(IncV
, L
, DT
);
2117 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2118 /// down to checking that all operands are constant and listing instructions
2119 /// that may hide undef.
2120 static bool hasConcreteDefImpl(Value
*V
, SmallPtrSetImpl
<Value
*> &Visited
,
2122 if (isa
<Constant
>(V
))
2123 return !isa
<UndefValue
>(V
);
2128 // Conservatively handle non-constant non-instructions. For example, Arguments
2130 Instruction
*I
= dyn_cast
<Instruction
>(V
);
2134 // Load and return values may be undef.
2135 if(I
->mayReadFromMemory() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
))
2138 // Optimistically handle other instructions.
2139 for (Value
*Op
: I
->operands()) {
2140 if (!Visited
.insert(Op
).second
)
2142 if (!hasConcreteDefImpl(Op
, Visited
, Depth
+1))
2148 /// Return true if the given value is concrete. We must prove that undef can
2151 /// TODO: If we decide that this is a good approach to checking for undef, we
2152 /// may factor it into a common location.
2153 static bool hasConcreteDef(Value
*V
) {
2154 SmallPtrSet
<Value
*, 8> Visited
;
2156 return hasConcreteDefImpl(V
, Visited
, 0);
2159 /// Return true if this IV has any uses other than the (soon to be rewritten)
2161 static bool AlmostDeadIV(PHINode
*Phi
, BasicBlock
*LatchBlock
, Value
*Cond
) {
2162 int LatchIdx
= Phi
->getBasicBlockIndex(LatchBlock
);
2163 Value
*IncV
= Phi
->getIncomingValue(LatchIdx
);
2165 for (User
*U
: Phi
->users())
2166 if (U
!= Cond
&& U
!= IncV
) return false;
2168 for (User
*U
: IncV
->users())
2169 if (U
!= Cond
&& U
!= Phi
) return false;
2173 /// Find an affine IV in canonical form.
2175 /// BECount may be an i8* pointer type. The pointer difference is already
2176 /// valid count without scaling the address stride, so it remains a pointer
2177 /// expression as far as SCEV is concerned.
2179 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2181 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2183 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2184 /// This is difficult in general for SCEV because of potential overflow. But we
2185 /// could at least handle constant BECounts.
2186 static PHINode
*FindLoopCounter(Loop
*L
, const SCEV
*BECount
,
2187 ScalarEvolution
*SE
, DominatorTree
*DT
) {
2188 uint64_t BCWidth
= SE
->getTypeSizeInBits(BECount
->getType());
2191 cast
<BranchInst
>(L
->getExitingBlock()->getTerminator())->getCondition();
2193 // Loop over all of the PHI nodes, looking for a simple counter.
2194 PHINode
*BestPhi
= nullptr;
2195 const SCEV
*BestInit
= nullptr;
2196 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2197 assert(LatchBlock
&& "needsLFTR should guarantee a loop latch");
2198 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
2200 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
2201 PHINode
*Phi
= cast
<PHINode
>(I
);
2202 if (!SE
->isSCEVable(Phi
->getType()))
2205 // Avoid comparing an integer IV against a pointer Limit.
2206 if (BECount
->getType()->isPointerTy() && !Phi
->getType()->isPointerTy())
2209 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Phi
));
2210 if (!AR
|| AR
->getLoop() != L
|| !AR
->isAffine())
2213 // AR may be a pointer type, while BECount is an integer type.
2214 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2215 // AR may not be a narrower type, or we may never exit.
2216 uint64_t PhiWidth
= SE
->getTypeSizeInBits(AR
->getType());
2217 if (PhiWidth
< BCWidth
|| !DL
.isLegalInteger(PhiWidth
))
2220 const SCEV
*Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*SE
));
2221 if (!Step
|| !Step
->isOne())
2224 int LatchIdx
= Phi
->getBasicBlockIndex(LatchBlock
);
2225 Value
*IncV
= Phi
->getIncomingValue(LatchIdx
);
2226 if (getLoopPhiForCounter(IncV
, L
, DT
) != Phi
)
2229 // Avoid reusing a potentially undef value to compute other values that may
2230 // have originally had a concrete definition.
2231 if (!hasConcreteDef(Phi
)) {
2232 // We explicitly allow unknown phis as long as they are already used by
2233 // the loop test. In this case we assume that performing LFTR could not
2234 // increase the number of undef users.
2235 if (ICmpInst
*Cond
= getLoopTest(L
)) {
2236 if (Phi
!= getLoopPhiForCounter(Cond
->getOperand(0), L
, DT
) &&
2237 Phi
!= getLoopPhiForCounter(Cond
->getOperand(1), L
, DT
)) {
2242 const SCEV
*Init
= AR
->getStart();
2244 if (BestPhi
&& !AlmostDeadIV(BestPhi
, LatchBlock
, Cond
)) {
2245 // Don't force a live loop counter if another IV can be used.
2246 if (AlmostDeadIV(Phi
, LatchBlock
, Cond
))
2249 // Prefer to count-from-zero. This is a more "canonical" counter form. It
2250 // also prefers integer to pointer IVs.
2251 if (BestInit
->isZero() != Init
->isZero()) {
2252 if (BestInit
->isZero())
2255 // If two IVs both count from zero or both count from nonzero then the
2256 // narrower is likely a dead phi that has been widened. Use the wider phi
2257 // to allow the other to be eliminated.
2258 else if (PhiWidth
<= SE
->getTypeSizeInBits(BestPhi
->getType()))
2267 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2268 /// the new loop test.
2269 static Value
*genLoopLimit(PHINode
*IndVar
, const SCEV
*IVCount
, Loop
*L
,
2270 SCEVExpander
&Rewriter
, ScalarEvolution
*SE
) {
2271 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(IndVar
));
2272 assert(AR
&& AR
->getLoop() == L
&& AR
->isAffine() && "bad loop counter");
2273 const SCEV
*IVInit
= AR
->getStart();
2275 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2276 // finds a valid pointer IV. Sign extend BECount in order to materialize a
2277 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2278 // the existing GEPs whenever possible.
2279 if (IndVar
->getType()->isPointerTy() && !IVCount
->getType()->isPointerTy()) {
2280 // IVOffset will be the new GEP offset that is interpreted by GEP as a
2281 // signed value. IVCount on the other hand represents the loop trip count,
2282 // which is an unsigned value. FindLoopCounter only allows induction
2283 // variables that have a positive unit stride of one. This means we don't
2284 // have to handle the case of negative offsets (yet) and just need to zero
2286 Type
*OfsTy
= SE
->getEffectiveSCEVType(IVInit
->getType());
2287 const SCEV
*IVOffset
= SE
->getTruncateOrZeroExtend(IVCount
, OfsTy
);
2289 // Expand the code for the iteration count.
2290 assert(SE
->isLoopInvariant(IVOffset
, L
) &&
2291 "Computed iteration count is not loop invariant!");
2292 BranchInst
*BI
= cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
2293 Value
*GEPOffset
= Rewriter
.expandCodeFor(IVOffset
, OfsTy
, BI
);
2295 Value
*GEPBase
= IndVar
->getIncomingValueForBlock(L
->getLoopPreheader());
2296 assert(AR
->getStart() == SE
->getSCEV(GEPBase
) && "bad loop counter");
2297 // We could handle pointer IVs other than i8*, but we need to compensate for
2298 // gep index scaling. See canExpandBackedgeTakenCount comments.
2299 assert(SE
->getSizeOfExpr(IntegerType::getInt64Ty(IndVar
->getContext()),
2300 cast
<PointerType
>(GEPBase
->getType())
2301 ->getElementType())->isOne() &&
2302 "unit stride pointer IV must be i8*");
2304 IRBuilder
<> Builder(L
->getLoopPreheader()->getTerminator());
2305 return Builder
.CreateGEP(GEPBase
->getType()->getPointerElementType(),
2306 GEPBase
, GEPOffset
, "lftr.limit");
2308 // In any other case, convert both IVInit and IVCount to integers before
2309 // comparing. This may result in SCEV expansion of pointers, but in practice
2310 // SCEV will fold the pointer arithmetic away as such:
2311 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2313 // Valid Cases: (1) both integers is most common; (2) both may be pointers
2314 // for simple memset-style loops.
2316 // IVInit integer and IVCount pointer would only occur if a canonical IV
2317 // were generated on top of case #2, which is not expected.
2319 const SCEV
*IVLimit
= nullptr;
2320 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2321 // For non-zero Start, compute IVCount here.
2322 if (AR
->getStart()->isZero())
2325 assert(AR
->getStepRecurrence(*SE
)->isOne() && "only handles unit stride");
2326 const SCEV
*IVInit
= AR
->getStart();
2328 // For integer IVs, truncate the IV before computing IVInit + BECount.
2329 if (SE
->getTypeSizeInBits(IVInit
->getType())
2330 > SE
->getTypeSizeInBits(IVCount
->getType()))
2331 IVInit
= SE
->getTruncateExpr(IVInit
, IVCount
->getType());
2333 IVLimit
= SE
->getAddExpr(IVInit
, IVCount
);
2335 // Expand the code for the iteration count.
2336 BranchInst
*BI
= cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
2337 IRBuilder
<> Builder(BI
);
2338 assert(SE
->isLoopInvariant(IVLimit
, L
) &&
2339 "Computed iteration count is not loop invariant!");
2340 // Ensure that we generate the same type as IndVar, or a smaller integer
2341 // type. In the presence of null pointer values, we have an integer type
2342 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2343 Type
*LimitTy
= IVCount
->getType()->isPointerTy() ?
2344 IndVar
->getType() : IVCount
->getType();
2345 return Rewriter
.expandCodeFor(IVLimit
, LimitTy
, BI
);
2349 /// This method rewrites the exit condition of the loop to be a canonical !=
2350 /// comparison against the incremented loop induction variable. This pass is
2351 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2352 /// determine a loop-invariant trip count of the loop, which is actually a much
2353 /// broader range than just linear tests.
2354 bool IndVarSimplify::
2355 linearFunctionTestReplace(Loop
*L
, const SCEV
*BackedgeTakenCount
,
2356 PHINode
*IndVar
, SCEVExpander
&Rewriter
) {
2357 assert(canExpandBackedgeTakenCount(L
, SE
, Rewriter
) && "precondition");
2359 // Initialize CmpIndVar and IVCount to their preincremented values.
2360 Value
*CmpIndVar
= IndVar
;
2361 const SCEV
*IVCount
= BackedgeTakenCount
;
2363 assert(L
->getLoopLatch() && "Loop no longer in simplified form?");
2365 // If the exiting block is the same as the backedge block, we prefer to
2366 // compare against the post-incremented value, otherwise we must compare
2367 // against the preincremented value.
2368 if (L
->getExitingBlock() == L
->getLoopLatch()) {
2369 // Add one to the "backedge-taken" count to get the trip count.
2370 // This addition may overflow, which is valid as long as the comparison is
2371 // truncated to BackedgeTakenCount->getType().
2372 IVCount
= SE
->getAddExpr(BackedgeTakenCount
,
2373 SE
->getOne(BackedgeTakenCount
->getType()));
2374 // The BackedgeTaken expression contains the number of times that the
2375 // backedge branches to the loop header. This is one less than the
2376 // number of times the loop executes, so use the incremented indvar.
2377 CmpIndVar
= IndVar
->getIncomingValueForBlock(L
->getExitingBlock());
2380 Value
*ExitCnt
= genLoopLimit(IndVar
, IVCount
, L
, Rewriter
, SE
);
2381 assert(ExitCnt
->getType()->isPointerTy() ==
2382 IndVar
->getType()->isPointerTy() &&
2383 "genLoopLimit missed a cast");
2385 // Insert a new icmp_ne or icmp_eq instruction before the branch.
2386 BranchInst
*BI
= cast
<BranchInst
>(L
->getExitingBlock()->getTerminator());
2387 ICmpInst::Predicate P
;
2388 if (L
->contains(BI
->getSuccessor(0)))
2389 P
= ICmpInst::ICMP_NE
;
2391 P
= ICmpInst::ICMP_EQ
;
2393 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2394 << " LHS:" << *CmpIndVar
<< '\n'
2395 << " op:\t" << (P
== ICmpInst::ICMP_NE
? "!=" : "==")
2397 << " RHS:\t" << *ExitCnt
<< "\n"
2398 << " IVCount:\t" << *IVCount
<< "\n");
2400 IRBuilder
<> Builder(BI
);
2402 // The new loop exit condition should reuse the debug location of the
2403 // original loop exit condition.
2404 if (auto *Cond
= dyn_cast
<Instruction
>(BI
->getCondition()))
2405 Builder
.SetCurrentDebugLocation(Cond
->getDebugLoc());
2407 // LFTR can ignore IV overflow and truncate to the width of
2408 // BECount. This avoids materializing the add(zext(add)) expression.
2409 unsigned CmpIndVarSize
= SE
->getTypeSizeInBits(CmpIndVar
->getType());
2410 unsigned ExitCntSize
= SE
->getTypeSizeInBits(ExitCnt
->getType());
2411 if (CmpIndVarSize
> ExitCntSize
) {
2412 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(SE
->getSCEV(IndVar
));
2413 const SCEV
*ARStart
= AR
->getStart();
2414 const SCEV
*ARStep
= AR
->getStepRecurrence(*SE
);
2415 // For constant IVCount, avoid truncation.
2416 if (isa
<SCEVConstant
>(ARStart
) && isa
<SCEVConstant
>(IVCount
)) {
2417 const APInt
&Start
= cast
<SCEVConstant
>(ARStart
)->getAPInt();
2418 APInt Count
= cast
<SCEVConstant
>(IVCount
)->getAPInt();
2419 // Note that the post-inc value of BackedgeTakenCount may have overflowed
2420 // above such that IVCount is now zero.
2421 if (IVCount
!= BackedgeTakenCount
&& Count
== 0) {
2422 Count
= APInt::getMaxValue(Count
.getBitWidth()).zext(CmpIndVarSize
);
2426 Count
= Count
.zext(CmpIndVarSize
);
2428 if (cast
<SCEVConstant
>(ARStep
)->getValue()->isNegative())
2429 NewLimit
= Start
- Count
;
2431 NewLimit
= Start
+ Count
;
2432 ExitCnt
= ConstantInt::get(CmpIndVar
->getType(), NewLimit
);
2434 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt
<< "\n");
2436 // We try to extend trip count first. If that doesn't work we truncate IV.
2437 // Zext(trunc(IV)) == IV implies equivalence of the following two:
2438 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2439 // one of the two holds, extend the trip count, otherwise we truncate IV.
2440 bool Extended
= false;
2441 const SCEV
*IV
= SE
->getSCEV(CmpIndVar
);
2442 const SCEV
*ZExtTrunc
=
2443 SE
->getZeroExtendExpr(SE
->getTruncateExpr(SE
->getSCEV(CmpIndVar
),
2444 ExitCnt
->getType()),
2445 CmpIndVar
->getType());
2447 if (ZExtTrunc
== IV
) {
2449 ExitCnt
= Builder
.CreateZExt(ExitCnt
, IndVar
->getType(),
2452 const SCEV
*SExtTrunc
=
2453 SE
->getSignExtendExpr(SE
->getTruncateExpr(SE
->getSCEV(CmpIndVar
),
2454 ExitCnt
->getType()),
2455 CmpIndVar
->getType());
2456 if (SExtTrunc
== IV
) {
2458 ExitCnt
= Builder
.CreateSExt(ExitCnt
, IndVar
->getType(),
2464 CmpIndVar
= Builder
.CreateTrunc(CmpIndVar
, ExitCnt
->getType(),
2468 Value
*Cond
= Builder
.CreateICmp(P
, CmpIndVar
, ExitCnt
, "exitcond");
2469 Value
*OrigCond
= BI
->getCondition();
2470 // It's tempting to use replaceAllUsesWith here to fully replace the old
2471 // comparison, but that's not immediately safe, since users of the old
2472 // comparison may not be dominated by the new comparison. Instead, just
2473 // update the branch to use the new comparison; in the common case this
2474 // will make old comparison dead.
2475 BI
->setCondition(Cond
);
2476 DeadInsts
.push_back(OrigCond
);
2482 //===----------------------------------------------------------------------===//
2483 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2484 //===----------------------------------------------------------------------===//
2486 /// If there's a single exit block, sink any loop-invariant values that
2487 /// were defined in the preheader but not used inside the loop into the
2488 /// exit block to reduce register pressure in the loop.
2489 bool IndVarSimplify::sinkUnusedInvariants(Loop
*L
) {
2490 BasicBlock
*ExitBlock
= L
->getExitBlock();
2491 if (!ExitBlock
) return false;
2493 BasicBlock
*Preheader
= L
->getLoopPreheader();
2494 if (!Preheader
) return false;
2496 bool MadeAnyChanges
= false;
2497 BasicBlock::iterator InsertPt
= ExitBlock
->getFirstInsertionPt();
2498 BasicBlock::iterator
I(Preheader
->getTerminator());
2499 while (I
!= Preheader
->begin()) {
2501 // New instructions were inserted at the end of the preheader.
2502 if (isa
<PHINode
>(I
))
2505 // Don't move instructions which might have side effects, since the side
2506 // effects need to complete before instructions inside the loop. Also don't
2507 // move instructions which might read memory, since the loop may modify
2508 // memory. Note that it's okay if the instruction might have undefined
2509 // behavior: LoopSimplify guarantees that the preheader dominates the exit
2511 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory())
2514 // Skip debug info intrinsics.
2515 if (isa
<DbgInfoIntrinsic
>(I
))
2518 // Skip eh pad instructions.
2522 // Don't sink alloca: we never want to sink static alloca's out of the
2523 // entry block, and correctly sinking dynamic alloca's requires
2524 // checks for stacksave/stackrestore intrinsics.
2525 // FIXME: Refactor this check somehow?
2526 if (isa
<AllocaInst
>(I
))
2529 // Determine if there is a use in or before the loop (direct or
2531 bool UsedInLoop
= false;
2532 for (Use
&U
: I
->uses()) {
2533 Instruction
*User
= cast
<Instruction
>(U
.getUser());
2534 BasicBlock
*UseBB
= User
->getParent();
2535 if (PHINode
*P
= dyn_cast
<PHINode
>(User
)) {
2537 PHINode::getIncomingValueNumForOperand(U
.getOperandNo());
2538 UseBB
= P
->getIncomingBlock(i
);
2540 if (UseBB
== Preheader
|| L
->contains(UseBB
)) {
2546 // If there is, the def must remain in the preheader.
2550 // Otherwise, sink it to the exit block.
2551 Instruction
*ToMove
= &*I
;
2554 if (I
!= Preheader
->begin()) {
2555 // Skip debug info intrinsics.
2558 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= Preheader
->begin());
2560 if (isa
<DbgInfoIntrinsic
>(I
) && I
== Preheader
->begin())
2566 MadeAnyChanges
= true;
2567 ToMove
->moveBefore(*ExitBlock
, InsertPt
);
2569 InsertPt
= ToMove
->getIterator();
2572 return MadeAnyChanges
;
2575 //===----------------------------------------------------------------------===//
2576 // IndVarSimplify driver. Manage several subpasses of IV simplification.
2577 //===----------------------------------------------------------------------===//
2579 bool IndVarSimplify::run(Loop
*L
) {
2580 // We need (and expect!) the incoming loop to be in LCSSA.
2581 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
2582 "LCSSA required to run indvars!");
2583 bool Changed
= false;
2585 // If LoopSimplify form is not available, stay out of trouble. Some notes:
2586 // - LSR currently only supports LoopSimplify-form loops. Indvars'
2587 // canonicalization can be a pessimization without LSR to "clean up"
2589 // - We depend on having a preheader; in particular,
2590 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2591 // and we're in trouble if we can't find the induction variable even when
2592 // we've manually inserted one.
2593 // - LFTR relies on having a single backedge.
2594 if (!L
->isLoopSimplifyForm())
2597 // If there are any floating-point recurrences, attempt to
2598 // transform them to use integer recurrences.
2599 Changed
|= rewriteNonIntegerIVs(L
);
2601 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2603 // Create a rewriter object which we'll use to transform the code with.
2604 SCEVExpander
Rewriter(*SE
, DL
, "indvars");
2606 Rewriter
.setDebugType(DEBUG_TYPE
);
2609 // Eliminate redundant IV users.
2611 // Simplification works best when run before other consumers of SCEV. We
2612 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2613 // other expressions involving loop IVs have been evaluated. This helps SCEV
2614 // set no-wrap flags before normalizing sign/zero extension.
2615 Rewriter
.disableCanonicalMode();
2616 Changed
|= simplifyAndExtend(L
, Rewriter
, LI
);
2618 // Check to see if this loop has a computable loop-invariant execution count.
2619 // If so, this means that we can compute the final value of any expressions
2620 // that are recurrent in the loop, and substitute the exit values from the
2621 // loop into any instructions outside of the loop that use the final values of
2622 // the current expressions.
2624 if (ReplaceExitValue
!= NeverRepl
&&
2625 !isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2626 Changed
|= rewriteLoopExitValues(L
, Rewriter
);
2628 // Eliminate redundant IV cycles.
2629 NumElimIV
+= Rewriter
.replaceCongruentIVs(L
, DT
, DeadInsts
);
2631 // If we have a trip count expression, rewrite the loop's exit condition
2632 // using it. We can currently only handle loops with a single exit.
2633 if (!DisableLFTR
&& canExpandBackedgeTakenCount(L
, SE
, Rewriter
) &&
2635 PHINode
*IndVar
= FindLoopCounter(L
, BackedgeTakenCount
, SE
, DT
);
2637 // Check preconditions for proper SCEVExpander operation. SCEV does not
2638 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2639 // pass that uses the SCEVExpander must do it. This does not work well for
2640 // loop passes because SCEVExpander makes assumptions about all loops,
2641 // while LoopPassManager only forces the current loop to be simplified.
2643 // FIXME: SCEV expansion has no way to bail out, so the caller must
2644 // explicitly check any assumptions made by SCEV. Brittle.
2645 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(BackedgeTakenCount
);
2646 if (!AR
|| AR
->getLoop()->getLoopPreheader())
2647 Changed
|= linearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
2651 // Clear the rewriter cache, because values that are in the rewriter's cache
2652 // can be deleted in the loop below, causing the AssertingVH in the cache to
2656 // Now that we're done iterating through lists, clean up any instructions
2657 // which are now dead.
2658 while (!DeadInsts
.empty())
2659 if (Instruction
*Inst
=
2660 dyn_cast_or_null
<Instruction
>(DeadInsts
.pop_back_val()))
2661 Changed
|= RecursivelyDeleteTriviallyDeadInstructions(Inst
, TLI
);
2663 // The Rewriter may not be used from this point on.
2665 // Loop-invariant instructions in the preheader that aren't used in the
2666 // loop may be sunk below the loop to reduce register pressure.
2667 Changed
|= sinkUnusedInvariants(L
);
2669 // rewriteFirstIterationLoopExitValues does not rely on the computation of
2670 // trip count and therefore can further simplify exit values in addition to
2671 // rewriteLoopExitValues.
2672 Changed
|= rewriteFirstIterationLoopExitValues(L
);
2674 // Clean up dead instructions.
2675 Changed
|= DeleteDeadPHIs(L
->getHeader(), TLI
);
2677 // Check a post-condition.
2678 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
2679 "Indvars did not preserve LCSSA!");
2681 // Verify that LFTR, and any other change have not interfered with SCEV's
2682 // ability to compute trip count.
2684 if (VerifyIndvars
&& !isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
2686 const SCEV
*NewBECount
= SE
->getBackedgeTakenCount(L
);
2687 if (SE
->getTypeSizeInBits(BackedgeTakenCount
->getType()) <
2688 SE
->getTypeSizeInBits(NewBECount
->getType()))
2689 NewBECount
= SE
->getTruncateOrNoop(NewBECount
,
2690 BackedgeTakenCount
->getType());
2692 BackedgeTakenCount
= SE
->getTruncateOrNoop(BackedgeTakenCount
,
2693 NewBECount
->getType());
2694 assert(BackedgeTakenCount
== NewBECount
&& "indvars must preserve SCEV");
2701 PreservedAnalyses
IndVarSimplifyPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
2702 LoopStandardAnalysisResults
&AR
,
2704 Function
*F
= L
.getHeader()->getParent();
2705 const DataLayout
&DL
= F
->getParent()->getDataLayout();
2707 IndVarSimplify
IVS(&AR
.LI
, &AR
.SE
, &AR
.DT
, DL
, &AR
.TLI
, &AR
.TTI
);
2709 return PreservedAnalyses::all();
2711 auto PA
= getLoopPassPreservedAnalyses();
2712 PA
.preserveSet
<CFGAnalyses
>();
2718 struct IndVarSimplifyLegacyPass
: public LoopPass
{
2719 static char ID
; // Pass identification, replacement for typeid
2721 IndVarSimplifyLegacyPass() : LoopPass(ID
) {
2722 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2725 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
2729 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
2730 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
2731 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2732 auto *TLIP
= getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
2733 auto *TLI
= TLIP
? &TLIP
->getTLI() : nullptr;
2734 auto *TTIP
= getAnalysisIfAvailable
<TargetTransformInfoWrapperPass
>();
2735 auto *TTI
= TTIP
? &TTIP
->getTTI(*L
->getHeader()->getParent()) : nullptr;
2736 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
2738 IndVarSimplify
IVS(LI
, SE
, DT
, DL
, TLI
, TTI
);
2742 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2743 AU
.setPreservesCFG();
2744 getLoopAnalysisUsage(AU
);
2748 } // end anonymous namespace
2750 char IndVarSimplifyLegacyPass::ID
= 0;
2752 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass
, "indvars",
2753 "Induction Variable Simplification", false, false)
2754 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
2755 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass
, "indvars",
2756 "Induction Variable Simplification", false, false)
2758 Pass
*llvm::createIndVarSimplifyPass() {
2759 return new IndVarSimplifyLegacyPass();