[yaml2obj][obj2yaml] - Do not create a symbol table by default.
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
blob62904dc2380abe7372b4fad4e3ba08d4e00c0938
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #ifdef EXPENSIVE_CHECKS
43 #include "llvm/IR/Dominators.h"
44 #endif
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <new>
55 #include <vector>
57 #define DEBUG_TYPE "isel"
59 using namespace llvm;
61 namespace llvm {
63 class R600InstrInfo;
65 } // end namespace llvm
67 //===----------------------------------------------------------------------===//
68 // Instruction Selector Implementation
69 //===----------------------------------------------------------------------===//
71 namespace {
73 static bool isNullConstantOrUndef(SDValue V) {
74 if (V.isUndef())
75 return true;
77 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
78 return Const != nullptr && Const->isNullValue();
81 static bool getConstantValue(SDValue N, uint32_t &Out) {
82 // This is only used for packed vectors, where ussing 0 for undef should
83 // always be good.
84 if (N.isUndef()) {
85 Out = 0;
86 return true;
89 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
90 Out = C->getAPIntValue().getSExtValue();
91 return true;
94 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
95 Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
96 return true;
99 return false;
102 // TODO: Handle undef as zero
103 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
104 bool Negate = false) {
105 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
106 uint32_t LHSVal, RHSVal;
107 if (getConstantValue(N->getOperand(0), LHSVal) &&
108 getConstantValue(N->getOperand(1), RHSVal)) {
109 SDLoc SL(N);
110 uint32_t K = Negate ?
111 (-LHSVal & 0xffff) | (-RHSVal << 16) :
112 (LHSVal & 0xffff) | (RHSVal << 16);
113 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
114 DAG.getTargetConstant(K, SL, MVT::i32));
117 return nullptr;
120 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
121 return packConstantV2I16(N, DAG, true);
124 /// AMDGPU specific code to select AMDGPU machine instructions for
125 /// SelectionDAG operations.
126 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
127 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
128 // make the right decision when generating code for different targets.
129 const GCNSubtarget *Subtarget;
130 bool EnableLateStructurizeCFG;
132 public:
133 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
134 CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
135 : SelectionDAGISel(*TM, OptLevel) {
136 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
138 ~AMDGPUDAGToDAGISel() override = default;
140 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 AU.addRequired<AMDGPUArgumentUsageInfo>();
142 AU.addRequired<LegacyDivergenceAnalysis>();
143 #ifdef EXPENSIVE_CHECKS
144 AU.addRequired<DominatorTreeWrapperPass>();
145 AU.addRequired<LoopInfoWrapperPass>();
146 #endif
147 SelectionDAGISel::getAnalysisUsage(AU);
150 bool matchLoadD16FromBuildVector(SDNode *N) const;
152 bool runOnMachineFunction(MachineFunction &MF) override;
153 void PreprocessISelDAG() override;
154 void Select(SDNode *N) override;
155 StringRef getPassName() const override;
156 void PostprocessISelDAG() override;
158 protected:
159 void SelectBuildVector(SDNode *N, unsigned RegClassID);
161 private:
162 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
163 bool isNoNanSrc(SDValue N) const;
164 bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
165 bool isNegInlineImmediate(const SDNode *N) const {
166 return isInlineImmediate(N, true);
169 bool isVGPRImm(const SDNode *N) const;
170 bool isUniformLoad(const SDNode *N) const;
171 bool isUniformBr(const SDNode *N) const;
173 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
175 SDNode *glueCopyToM0LDSInit(SDNode *N) const;
176 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
178 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
179 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
180 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
181 bool isDSOffsetLegal(SDValue Base, unsigned Offset,
182 unsigned OffsetBits) const;
183 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
184 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
185 SDValue &Offset1) const;
186 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
187 SDValue &SOffset, SDValue &Offset, SDValue &Offen,
188 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
189 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
190 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
191 SDValue &SOffset, SDValue &Offset, SDValue &GLC,
192 SDValue &SLC, SDValue &TFE, SDValue &DLC,
193 SDValue &SWZ) const;
194 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
195 SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
196 SDValue &SLC) const;
197 bool SelectMUBUFScratchOffen(SDNode *Parent,
198 SDValue Addr, SDValue &RSrc, SDValue &VAddr,
199 SDValue &SOffset, SDValue &ImmOffset) const;
200 bool SelectMUBUFScratchOffset(SDNode *Parent,
201 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
202 SDValue &Offset) const;
204 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
205 SDValue &Offset, SDValue &GLC, SDValue &SLC,
206 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
207 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
208 SDValue &Offset, SDValue &SLC) const;
209 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
210 SDValue &Offset) const;
212 template <bool IsSigned>
213 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
214 SDValue &Offset, SDValue &SLC) const;
215 bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
216 SDValue &Offset, SDValue &SLC) const;
217 bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
218 SDValue &Offset, SDValue &SLC) const;
220 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
221 bool &Imm) const;
222 SDValue Expand32BitAddress(SDValue Addr) const;
223 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
224 bool &Imm) const;
225 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
226 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
227 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
228 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
229 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
230 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
232 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
233 bool SelectVOP3Mods_f32(SDValue In, SDValue &Src, SDValue &SrcMods) const;
234 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
235 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
236 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
237 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
238 SDValue &Clamp, SDValue &Omod) const;
239 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
240 SDValue &Clamp, SDValue &Omod) const;
242 bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods,
243 SDValue &Clamp,
244 SDValue &Omod) const;
246 bool SelectVOP3OMods(SDValue In, SDValue &Src,
247 SDValue &Clamp, SDValue &Omod) const;
249 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
250 bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
251 SDValue &Clamp) const;
253 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
254 bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
255 SDValue &Clamp) const;
257 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
258 bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
259 SDValue &Clamp) const;
260 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
261 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
263 SDValue getHi16Elt(SDValue In) const;
265 void SelectADD_SUB_I64(SDNode *N);
266 void SelectAddcSubb(SDNode *N);
267 void SelectUADDO_USUBO(SDNode *N);
268 void SelectDIV_SCALE(SDNode *N);
269 void SelectDIV_FMAS(SDNode *N);
270 void SelectMAD_64_32(SDNode *N);
271 void SelectFMA_W_CHAIN(SDNode *N);
272 void SelectFMUL_W_CHAIN(SDNode *N);
274 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
275 uint32_t Offset, uint32_t Width);
276 void SelectS_BFEFromShifts(SDNode *N);
277 void SelectS_BFE(SDNode *N);
278 bool isCBranchSCC(const SDNode *N) const;
279 void SelectBRCOND(SDNode *N);
280 void SelectFMAD_FMA(SDNode *N);
281 void SelectATOMIC_CMP_SWAP(SDNode *N);
282 void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
283 void SelectDS_GWS(SDNode *N, unsigned IntrID);
284 void SelectINTRINSIC_W_CHAIN(SDNode *N);
285 void SelectINTRINSIC_WO_CHAIN(SDNode *N);
286 void SelectINTRINSIC_VOID(SDNode *N);
288 protected:
289 // Include the pieces autogenerated from the target description.
290 #include "AMDGPUGenDAGISel.inc"
293 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
294 const R600Subtarget *Subtarget;
296 bool isConstantLoad(const MemSDNode *N, int cbID) const;
297 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
298 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
299 SDValue& Offset);
300 public:
301 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
302 AMDGPUDAGToDAGISel(TM, OptLevel) {}
304 void Select(SDNode *N) override;
306 bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
307 SDValue &Offset) override;
308 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
309 SDValue &Offset) override;
311 bool runOnMachineFunction(MachineFunction &MF) override;
313 void PreprocessISelDAG() override {}
315 protected:
316 // Include the pieces autogenerated from the target description.
317 #include "R600GenDAGISel.inc"
320 static SDValue stripBitcast(SDValue Val) {
321 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
324 // Figure out if this is really an extract of the high 16-bits of a dword.
325 static bool isExtractHiElt(SDValue In, SDValue &Out) {
326 In = stripBitcast(In);
327 if (In.getOpcode() != ISD::TRUNCATE)
328 return false;
330 SDValue Srl = In.getOperand(0);
331 if (Srl.getOpcode() == ISD::SRL) {
332 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
333 if (ShiftAmt->getZExtValue() == 16) {
334 Out = stripBitcast(Srl.getOperand(0));
335 return true;
340 return false;
343 // Look through operations that obscure just looking at the low 16-bits of the
344 // same register.
345 static SDValue stripExtractLoElt(SDValue In) {
346 if (In.getOpcode() == ISD::TRUNCATE) {
347 SDValue Src = In.getOperand(0);
348 if (Src.getValueType().getSizeInBits() == 32)
349 return stripBitcast(Src);
352 return In;
355 } // end anonymous namespace
357 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
358 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
359 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
360 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
361 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
362 #ifdef EXPENSIVE_CHECKS
363 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
364 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
365 #endif
366 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
367 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
369 /// This pass converts a legalized DAG into a AMDGPU-specific
370 // DAG, ready for instruction scheduling.
371 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
372 CodeGenOpt::Level OptLevel) {
373 return new AMDGPUDAGToDAGISel(TM, OptLevel);
376 /// This pass converts a legalized DAG into a R600-specific
377 // DAG, ready for instruction scheduling.
378 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
379 CodeGenOpt::Level OptLevel) {
380 return new R600DAGToDAGISel(TM, OptLevel);
383 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
384 #ifdef EXPENSIVE_CHECKS
385 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
386 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
387 for (auto &L : LI->getLoopsInPreorder()) {
388 assert(L->isLCSSAForm(DT));
390 #endif
391 Subtarget = &MF.getSubtarget<GCNSubtarget>();
392 return SelectionDAGISel::runOnMachineFunction(MF);
395 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
396 assert(Subtarget->d16PreservesUnusedBits());
397 MVT VT = N->getValueType(0).getSimpleVT();
398 if (VT != MVT::v2i16 && VT != MVT::v2f16)
399 return false;
401 SDValue Lo = N->getOperand(0);
402 SDValue Hi = N->getOperand(1);
404 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
406 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
407 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
408 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
410 // Need to check for possible indirect dependencies on the other half of the
411 // vector to avoid introducing a cycle.
412 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
413 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
415 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
416 SDValue Ops[] = {
417 LdHi->getChain(), LdHi->getBasePtr(), TiedIn
420 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
421 if (LdHi->getMemoryVT() == MVT::i8) {
422 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
423 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
424 } else {
425 assert(LdHi->getMemoryVT() == MVT::i16);
428 SDValue NewLoadHi =
429 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
430 Ops, LdHi->getMemoryVT(),
431 LdHi->getMemOperand());
433 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
434 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
435 return true;
438 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
439 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
440 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
441 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
442 if (LdLo && Lo.hasOneUse()) {
443 SDValue TiedIn = getHi16Elt(Hi);
444 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
445 return false;
447 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
448 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
449 if (LdLo->getMemoryVT() == MVT::i8) {
450 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
451 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
452 } else {
453 assert(LdLo->getMemoryVT() == MVT::i16);
456 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
458 SDValue Ops[] = {
459 LdLo->getChain(), LdLo->getBasePtr(), TiedIn
462 SDValue NewLoadLo =
463 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
464 Ops, LdLo->getMemoryVT(),
465 LdLo->getMemOperand());
467 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
468 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
469 return true;
472 return false;
475 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
476 if (!Subtarget->d16PreservesUnusedBits())
477 return;
479 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
481 bool MadeChange = false;
482 while (Position != CurDAG->allnodes_begin()) {
483 SDNode *N = &*--Position;
484 if (N->use_empty())
485 continue;
487 switch (N->getOpcode()) {
488 case ISD::BUILD_VECTOR:
489 MadeChange |= matchLoadD16FromBuildVector(N);
490 break;
491 default:
492 break;
496 if (MadeChange) {
497 CurDAG->RemoveDeadNodes();
498 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
499 CurDAG->dump(););
503 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
504 if (TM.Options.NoNaNsFPMath)
505 return true;
507 // TODO: Move into isKnownNeverNaN
508 if (N->getFlags().isDefined())
509 return N->getFlags().hasNoNaNs();
511 return CurDAG->isKnownNeverNaN(N);
514 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
515 bool Negated) const {
516 if (N->isUndef())
517 return true;
519 const SIInstrInfo *TII = Subtarget->getInstrInfo();
520 if (Negated) {
521 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
522 return TII->isInlineConstant(-C->getAPIntValue());
524 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
525 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
527 } else {
528 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
529 return TII->isInlineConstant(C->getAPIntValue());
531 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
532 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
535 return false;
538 /// Determine the register class for \p OpNo
539 /// \returns The register class of the virtual register that will be used for
540 /// the given operand number \OpNo or NULL if the register class cannot be
541 /// determined.
542 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
543 unsigned OpNo) const {
544 if (!N->isMachineOpcode()) {
545 if (N->getOpcode() == ISD::CopyToReg) {
546 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
547 if (Register::isVirtualRegister(Reg)) {
548 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
549 return MRI.getRegClass(Reg);
552 const SIRegisterInfo *TRI
553 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
554 return TRI->getPhysRegClass(Reg);
557 return nullptr;
560 switch (N->getMachineOpcode()) {
561 default: {
562 const MCInstrDesc &Desc =
563 Subtarget->getInstrInfo()->get(N->getMachineOpcode());
564 unsigned OpIdx = Desc.getNumDefs() + OpNo;
565 if (OpIdx >= Desc.getNumOperands())
566 return nullptr;
567 int RegClass = Desc.OpInfo[OpIdx].RegClass;
568 if (RegClass == -1)
569 return nullptr;
571 return Subtarget->getRegisterInfo()->getRegClass(RegClass);
573 case AMDGPU::REG_SEQUENCE: {
574 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
575 const TargetRegisterClass *SuperRC =
576 Subtarget->getRegisterInfo()->getRegClass(RCID);
578 SDValue SubRegOp = N->getOperand(OpNo + 1);
579 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
580 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
581 SubRegIdx);
586 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
587 const SITargetLowering& Lowering =
588 *static_cast<const SITargetLowering*>(getTargetLowering());
590 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
592 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N),
593 Val);
595 SDValue Glue = M0.getValue(1);
597 SmallVector <SDValue, 8> Ops;
598 Ops.push_back(M0); // Replace the chain.
599 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
600 Ops.push_back(N->getOperand(i));
602 Ops.push_back(Glue);
603 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
606 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
607 unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
608 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
609 if (Subtarget->ldsRequiresM0Init())
610 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
611 } else if (AS == AMDGPUAS::REGION_ADDRESS) {
612 MachineFunction &MF = CurDAG->getMachineFunction();
613 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
614 return
615 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
617 return N;
620 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
621 EVT VT) const {
622 SDNode *Lo = CurDAG->getMachineNode(
623 AMDGPU::S_MOV_B32, DL, MVT::i32,
624 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
625 SDNode *Hi =
626 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
627 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
628 const SDValue Ops[] = {
629 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
630 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
631 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
633 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
636 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
637 switch (NumVectorElts) {
638 case 1:
639 return AMDGPU::SReg_32RegClassID;
640 case 2:
641 return AMDGPU::SReg_64RegClassID;
642 case 3:
643 return AMDGPU::SGPR_96RegClassID;
644 case 4:
645 return AMDGPU::SGPR_128RegClassID;
646 case 5:
647 return AMDGPU::SGPR_160RegClassID;
648 case 8:
649 return AMDGPU::SReg_256RegClassID;
650 case 16:
651 return AMDGPU::SReg_512RegClassID;
652 case 32:
653 return AMDGPU::SReg_1024RegClassID;
656 llvm_unreachable("invalid vector size");
659 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
660 EVT VT = N->getValueType(0);
661 unsigned NumVectorElts = VT.getVectorNumElements();
662 EVT EltVT = VT.getVectorElementType();
663 SDLoc DL(N);
664 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
666 if (NumVectorElts == 1) {
667 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
668 RegClass);
669 return;
672 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
673 "supported yet");
674 // 32 = Max Num Vector Elements
675 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
676 // 1 = Vector Register Class
677 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
679 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
680 bool IsRegSeq = true;
681 unsigned NOps = N->getNumOperands();
682 for (unsigned i = 0; i < NOps; i++) {
683 // XXX: Why is this here?
684 if (isa<RegisterSDNode>(N->getOperand(i))) {
685 IsRegSeq = false;
686 break;
688 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
689 RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
690 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
692 if (NOps != NumVectorElts) {
693 // Fill in the missing undef elements if this was a scalar_to_vector.
694 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
695 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
696 DL, EltVT);
697 for (unsigned i = NOps; i < NumVectorElts; ++i) {
698 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
699 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
700 RegSeqArgs[1 + (2 * i) + 1] =
701 CurDAG->getTargetConstant(Sub, DL, MVT::i32);
705 if (!IsRegSeq)
706 SelectCode(N);
707 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
710 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
711 unsigned int Opc = N->getOpcode();
712 if (N->isMachineOpcode()) {
713 N->setNodeId(-1);
714 return; // Already selected.
717 // isa<MemSDNode> almost works but is slightly too permissive for some DS
718 // intrinsics.
719 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
720 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
721 Opc == ISD::ATOMIC_LOAD_FADD ||
722 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
723 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
724 N = glueCopyToM0LDSInit(N);
725 SelectCode(N);
726 return;
729 switch (Opc) {
730 default:
731 break;
732 // We are selecting i64 ADD here instead of custom lower it during
733 // DAG legalization, so we can fold some i64 ADDs used for address
734 // calculation into the LOAD and STORE instructions.
735 case ISD::ADDC:
736 case ISD::ADDE:
737 case ISD::SUBC:
738 case ISD::SUBE: {
739 if (N->getValueType(0) != MVT::i64)
740 break;
742 SelectADD_SUB_I64(N);
743 return;
745 case ISD::ADDCARRY:
746 case ISD::SUBCARRY:
747 if (N->getValueType(0) != MVT::i32)
748 break;
750 SelectAddcSubb(N);
751 return;
752 case ISD::UADDO:
753 case ISD::USUBO: {
754 SelectUADDO_USUBO(N);
755 return;
757 case AMDGPUISD::FMUL_W_CHAIN: {
758 SelectFMUL_W_CHAIN(N);
759 return;
761 case AMDGPUISD::FMA_W_CHAIN: {
762 SelectFMA_W_CHAIN(N);
763 return;
766 case ISD::SCALAR_TO_VECTOR:
767 case ISD::BUILD_VECTOR: {
768 EVT VT = N->getValueType(0);
769 unsigned NumVectorElts = VT.getVectorNumElements();
770 if (VT.getScalarSizeInBits() == 16) {
771 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
772 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
773 ReplaceNode(N, Packed);
774 return;
778 break;
781 assert(VT.getVectorElementType().bitsEq(MVT::i32));
782 unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
783 SelectBuildVector(N, RegClassID);
784 return;
786 case ISD::BUILD_PAIR: {
787 SDValue RC, SubReg0, SubReg1;
788 SDLoc DL(N);
789 if (N->getValueType(0) == MVT::i128) {
790 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
791 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
792 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
793 } else if (N->getValueType(0) == MVT::i64) {
794 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
795 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
796 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
797 } else {
798 llvm_unreachable("Unhandled value type for BUILD_PAIR");
800 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
801 N->getOperand(1), SubReg1 };
802 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
803 N->getValueType(0), Ops));
804 return;
807 case ISD::Constant:
808 case ISD::ConstantFP: {
809 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
810 break;
812 uint64_t Imm;
813 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
814 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
815 else {
816 ConstantSDNode *C = cast<ConstantSDNode>(N);
817 Imm = C->getZExtValue();
820 SDLoc DL(N);
821 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
822 return;
824 case AMDGPUISD::BFE_I32:
825 case AMDGPUISD::BFE_U32: {
826 // There is a scalar version available, but unlike the vector version which
827 // has a separate operand for the offset and width, the scalar version packs
828 // the width and offset into a single operand. Try to move to the scalar
829 // version if the offsets are constant, so that we can try to keep extended
830 // loads of kernel arguments in SGPRs.
832 // TODO: Technically we could try to pattern match scalar bitshifts of
833 // dynamic values, but it's probably not useful.
834 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
835 if (!Offset)
836 break;
838 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
839 if (!Width)
840 break;
842 bool Signed = Opc == AMDGPUISD::BFE_I32;
844 uint32_t OffsetVal = Offset->getZExtValue();
845 uint32_t WidthVal = Width->getZExtValue();
847 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
848 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
849 return;
851 case AMDGPUISD::DIV_SCALE: {
852 SelectDIV_SCALE(N);
853 return;
855 case AMDGPUISD::DIV_FMAS: {
856 SelectDIV_FMAS(N);
857 return;
859 case AMDGPUISD::MAD_I64_I32:
860 case AMDGPUISD::MAD_U64_U32: {
861 SelectMAD_64_32(N);
862 return;
864 case ISD::CopyToReg: {
865 const SITargetLowering& Lowering =
866 *static_cast<const SITargetLowering*>(getTargetLowering());
867 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
868 break;
870 case ISD::AND:
871 case ISD::SRL:
872 case ISD::SRA:
873 case ISD::SIGN_EXTEND_INREG:
874 if (N->getValueType(0) != MVT::i32)
875 break;
877 SelectS_BFE(N);
878 return;
879 case ISD::BRCOND:
880 SelectBRCOND(N);
881 return;
882 case ISD::FMAD:
883 case ISD::FMA:
884 SelectFMAD_FMA(N);
885 return;
886 case AMDGPUISD::ATOMIC_CMP_SWAP:
887 SelectATOMIC_CMP_SWAP(N);
888 return;
889 case AMDGPUISD::CVT_PKRTZ_F16_F32:
890 case AMDGPUISD::CVT_PKNORM_I16_F32:
891 case AMDGPUISD::CVT_PKNORM_U16_F32:
892 case AMDGPUISD::CVT_PK_U16_U32:
893 case AMDGPUISD::CVT_PK_I16_I32: {
894 // Hack around using a legal type if f16 is illegal.
895 if (N->getValueType(0) == MVT::i32) {
896 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
897 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
898 { N->getOperand(0), N->getOperand(1) });
899 SelectCode(N);
900 return;
903 break;
905 case ISD::INTRINSIC_W_CHAIN: {
906 SelectINTRINSIC_W_CHAIN(N);
907 return;
909 case ISD::INTRINSIC_WO_CHAIN: {
910 SelectINTRINSIC_WO_CHAIN(N);
911 return;
913 case ISD::INTRINSIC_VOID: {
914 SelectINTRINSIC_VOID(N);
915 return;
919 SelectCode(N);
922 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
923 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
924 const Instruction *Term = BB->getTerminator();
925 return Term->getMetadata("amdgpu.uniform") ||
926 Term->getMetadata("structurizecfg.uniform");
929 StringRef AMDGPUDAGToDAGISel::getPassName() const {
930 return "AMDGPU DAG->DAG Pattern Instruction Selection";
933 //===----------------------------------------------------------------------===//
934 // Complex Patterns
935 //===----------------------------------------------------------------------===//
937 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
938 SDValue &Offset) {
939 return false;
942 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
943 SDValue &Offset) {
944 ConstantSDNode *C;
945 SDLoc DL(Addr);
947 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
948 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
949 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
950 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
951 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
952 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
953 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
954 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
955 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
956 Base = Addr.getOperand(0);
957 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
958 } else {
959 Base = Addr;
960 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
963 return true;
966 // FIXME: Should only handle addcarry/subcarry
967 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
968 SDLoc DL(N);
969 SDValue LHS = N->getOperand(0);
970 SDValue RHS = N->getOperand(1);
972 unsigned Opcode = N->getOpcode();
973 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
974 bool ProduceCarry =
975 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
976 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
978 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
979 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
981 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
982 DL, MVT::i32, LHS, Sub0);
983 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
984 DL, MVT::i32, LHS, Sub1);
986 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
987 DL, MVT::i32, RHS, Sub0);
988 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
989 DL, MVT::i32, RHS, Sub1);
991 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
993 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
994 unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
996 SDNode *AddLo;
997 if (!ConsumeCarry) {
998 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
999 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1000 } else {
1001 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1002 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1004 SDValue AddHiArgs[] = {
1005 SDValue(Hi0, 0),
1006 SDValue(Hi1, 0),
1007 SDValue(AddLo, 1)
1009 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1011 SDValue RegSequenceArgs[] = {
1012 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1013 SDValue(AddLo,0),
1014 Sub0,
1015 SDValue(AddHi,0),
1016 Sub1,
1018 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1019 MVT::i64, RegSequenceArgs);
1021 if (ProduceCarry) {
1022 // Replace the carry-use
1023 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1026 // Replace the remaining uses.
1027 ReplaceNode(N, RegSequence);
1030 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1031 SDLoc DL(N);
1032 SDValue LHS = N->getOperand(0);
1033 SDValue RHS = N->getOperand(1);
1034 SDValue CI = N->getOperand(2);
1036 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1037 : AMDGPU::V_SUBB_U32_e64;
1038 CurDAG->SelectNodeTo(
1039 N, Opc, N->getVTList(),
1040 {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1043 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1044 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1045 // carry out despite the _i32 name. These were renamed in VI to _U32.
1046 // FIXME: We should probably rename the opcodes here.
1047 unsigned Opc = N->getOpcode() == ISD::UADDO ?
1048 AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1050 CurDAG->SelectNodeTo(
1051 N, Opc, N->getVTList(),
1052 {N->getOperand(0), N->getOperand(1),
1053 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1056 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1057 SDLoc SL(N);
1058 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1059 SDValue Ops[10];
1061 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1062 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1063 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1064 Ops[8] = N->getOperand(0);
1065 Ops[9] = N->getOperand(4);
1067 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1070 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1071 SDLoc SL(N);
1072 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
1073 SDValue Ops[8];
1075 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1076 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1077 Ops[6] = N->getOperand(0);
1078 Ops[7] = N->getOperand(3);
1080 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1083 // We need to handle this here because tablegen doesn't support matching
1084 // instructions with multiple outputs.
1085 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1086 SDLoc SL(N);
1087 EVT VT = N->getValueType(0);
1089 assert(VT == MVT::f32 || VT == MVT::f64);
1091 unsigned Opc
1092 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1094 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1095 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1098 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) {
1099 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1100 const SIRegisterInfo *TRI = ST->getRegisterInfo();
1102 SDLoc SL(N);
1103 EVT VT = N->getValueType(0);
1105 assert(VT == MVT::f32 || VT == MVT::f64);
1107 unsigned Opc
1108 = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32;
1110 SDValue CarryIn = N->getOperand(3);
1111 // V_DIV_FMAS implicitly reads VCC.
1112 SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL,
1113 TRI->getVCC(), CarryIn, SDValue());
1115 SDValue Ops[10];
1117 SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1118 SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]);
1119 SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]);
1121 Ops[8] = VCC;
1122 Ops[9] = VCC.getValue(1);
1124 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1127 // We need to handle this here because tablegen doesn't support matching
1128 // instructions with multiple outputs.
1129 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1130 SDLoc SL(N);
1131 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1132 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1134 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1135 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1136 Clamp };
1137 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1140 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1141 unsigned OffsetBits) const {
1142 if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1143 (OffsetBits == 8 && !isUInt<8>(Offset)))
1144 return false;
1146 if (Subtarget->hasUsableDSOffset() ||
1147 Subtarget->unsafeDSOffsetFoldingEnabled())
1148 return true;
1150 // On Southern Islands instruction with a negative base value and an offset
1151 // don't seem to work.
1152 return CurDAG->SignBitIsZero(Base);
1155 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1156 SDValue &Offset) const {
1157 SDLoc DL(Addr);
1158 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1159 SDValue N0 = Addr.getOperand(0);
1160 SDValue N1 = Addr.getOperand(1);
1161 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1162 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1163 // (add n0, c0)
1164 Base = N0;
1165 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1166 return true;
1168 } else if (Addr.getOpcode() == ISD::SUB) {
1169 // sub C, x -> add (sub 0, x), C
1170 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1171 int64_t ByteOffset = C->getSExtValue();
1172 if (isUInt<16>(ByteOffset)) {
1173 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1175 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1176 // the known bits in isDSOffsetLegal. We need to emit the selected node
1177 // here, so this is thrown away.
1178 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1179 Zero, Addr.getOperand(1));
1181 if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1182 SmallVector<SDValue, 3> Opnds;
1183 Opnds.push_back(Zero);
1184 Opnds.push_back(Addr.getOperand(1));
1186 // FIXME: Select to VOP3 version for with-carry.
1187 unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1188 if (Subtarget->hasAddNoCarry()) {
1189 SubOp = AMDGPU::V_SUB_U32_e64;
1190 Opnds.push_back(
1191 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1194 MachineSDNode *MachineSub =
1195 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1197 Base = SDValue(MachineSub, 0);
1198 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1199 return true;
1203 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1204 // If we have a constant address, prefer to put the constant into the
1205 // offset. This can save moves to load the constant address since multiple
1206 // operations can share the zero base address register, and enables merging
1207 // into read2 / write2 instructions.
1209 SDLoc DL(Addr);
1211 if (isUInt<16>(CAddr->getZExtValue())) {
1212 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1213 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1214 DL, MVT::i32, Zero);
1215 Base = SDValue(MovZero, 0);
1216 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1217 return true;
1221 // default case
1222 Base = Addr;
1223 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1224 return true;
1227 // TODO: If offset is too big, put low 16-bit into offset.
1228 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1229 SDValue &Offset0,
1230 SDValue &Offset1) const {
1231 SDLoc DL(Addr);
1233 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1234 SDValue N0 = Addr.getOperand(0);
1235 SDValue N1 = Addr.getOperand(1);
1236 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1237 unsigned DWordOffset0 = C1->getZExtValue() / 4;
1238 unsigned DWordOffset1 = DWordOffset0 + 1;
1239 // (add n0, c0)
1240 if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1241 Base = N0;
1242 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1243 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1244 return true;
1246 } else if (Addr.getOpcode() == ISD::SUB) {
1247 // sub C, x -> add (sub 0, x), C
1248 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1249 unsigned DWordOffset0 = C->getZExtValue() / 4;
1250 unsigned DWordOffset1 = DWordOffset0 + 1;
1252 if (isUInt<8>(DWordOffset0)) {
1253 SDLoc DL(Addr);
1254 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1256 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1257 // the known bits in isDSOffsetLegal. We need to emit the selected node
1258 // here, so this is thrown away.
1259 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1260 Zero, Addr.getOperand(1));
1262 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1263 SmallVector<SDValue, 3> Opnds;
1264 Opnds.push_back(Zero);
1265 Opnds.push_back(Addr.getOperand(1));
1266 unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1267 if (Subtarget->hasAddNoCarry()) {
1268 SubOp = AMDGPU::V_SUB_U32_e64;
1269 Opnds.push_back(
1270 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1273 MachineSDNode *MachineSub
1274 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1276 Base = SDValue(MachineSub, 0);
1277 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1278 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1279 return true;
1283 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1284 unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1285 unsigned DWordOffset1 = DWordOffset0 + 1;
1286 assert(4 * DWordOffset0 == CAddr->getZExtValue());
1288 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1289 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1290 MachineSDNode *MovZero
1291 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1292 DL, MVT::i32, Zero);
1293 Base = SDValue(MovZero, 0);
1294 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1295 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1296 return true;
1300 // default case
1302 Base = Addr;
1303 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1304 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1305 return true;
1308 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1309 SDValue &VAddr, SDValue &SOffset,
1310 SDValue &Offset, SDValue &Offen,
1311 SDValue &Idxen, SDValue &Addr64,
1312 SDValue &GLC, SDValue &SLC,
1313 SDValue &TFE, SDValue &DLC,
1314 SDValue &SWZ) const {
1315 // Subtarget prefers to use flat instruction
1316 if (Subtarget->useFlatForGlobal())
1317 return false;
1319 SDLoc DL(Addr);
1321 if (!GLC.getNode())
1322 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1323 if (!SLC.getNode())
1324 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1325 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1326 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1327 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1329 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1330 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1331 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1332 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1334 ConstantSDNode *C1 = nullptr;
1335 SDValue N0 = Addr;
1336 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1337 C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1338 if (isUInt<32>(C1->getZExtValue()))
1339 N0 = Addr.getOperand(0);
1340 else
1341 C1 = nullptr;
1344 if (N0.getOpcode() == ISD::ADD) {
1345 // (add N2, N3) -> addr64, or
1346 // (add (add N2, N3), C1) -> addr64
1347 SDValue N2 = N0.getOperand(0);
1348 SDValue N3 = N0.getOperand(1);
1349 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1351 if (N2->isDivergent()) {
1352 if (N3->isDivergent()) {
1353 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1354 // addr64, and construct the resource from a 0 address.
1355 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1356 VAddr = N0;
1357 } else {
1358 // N2 is divergent, N3 is not.
1359 Ptr = N3;
1360 VAddr = N2;
1362 } else {
1363 // N2 is not divergent.
1364 Ptr = N2;
1365 VAddr = N3;
1367 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1368 } else if (N0->isDivergent()) {
1369 // N0 is divergent. Use it as the addr64, and construct the resource from a
1370 // 0 address.
1371 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1372 VAddr = N0;
1373 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1374 } else {
1375 // N0 -> offset, or
1376 // (N0 + C1) -> offset
1377 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1378 Ptr = N0;
1381 if (!C1) {
1382 // No offset.
1383 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1384 return true;
1387 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1388 // Legal offset for instruction.
1389 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1390 return true;
1393 // Illegal offset, store it in soffset.
1394 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1395 SOffset =
1396 SDValue(CurDAG->getMachineNode(
1397 AMDGPU::S_MOV_B32, DL, MVT::i32,
1398 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1400 return true;
1403 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1404 SDValue &VAddr, SDValue &SOffset,
1405 SDValue &Offset, SDValue &GLC,
1406 SDValue &SLC, SDValue &TFE,
1407 SDValue &DLC, SDValue &SWZ) const {
1408 SDValue Ptr, Offen, Idxen, Addr64;
1410 // addr64 bit was removed for volcanic islands.
1411 if (!Subtarget->hasAddr64())
1412 return false;
1414 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1415 GLC, SLC, TFE, DLC, SWZ))
1416 return false;
1418 ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1419 if (C->getSExtValue()) {
1420 SDLoc DL(Addr);
1422 const SITargetLowering& Lowering =
1423 *static_cast<const SITargetLowering*>(getTargetLowering());
1425 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1426 return true;
1429 return false;
1432 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1433 SDValue &VAddr, SDValue &SOffset,
1434 SDValue &Offset,
1435 SDValue &SLC) const {
1436 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1437 SDValue GLC, TFE, DLC, SWZ;
1439 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1442 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1443 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1444 return PSV && PSV->isStack();
1447 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1448 const MachineFunction &MF = CurDAG->getMachineFunction();
1449 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1451 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1452 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1453 FI->getValueType(0));
1455 // If we can resolve this to a frame index access, this will be relative to
1456 // either the stack or frame pointer SGPR.
1457 return std::make_pair(
1458 TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1461 // If we don't know this private access is a local stack object, it needs to
1462 // be relative to the entry point's scratch wave offset register.
1463 return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
1464 MVT::i32));
1467 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1468 SDValue Addr, SDValue &Rsrc,
1469 SDValue &VAddr, SDValue &SOffset,
1470 SDValue &ImmOffset) const {
1472 SDLoc DL(Addr);
1473 MachineFunction &MF = CurDAG->getMachineFunction();
1474 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1476 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1478 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1479 unsigned Imm = CAddr->getZExtValue();
1481 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1482 MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1483 DL, MVT::i32, HighBits);
1484 VAddr = SDValue(MovHighBits, 0);
1486 // In a call sequence, stores to the argument stack area are relative to the
1487 // stack pointer.
1488 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1489 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1490 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1492 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1493 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1494 return true;
1497 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1498 // (add n0, c1)
1500 SDValue N0 = Addr.getOperand(0);
1501 SDValue N1 = Addr.getOperand(1);
1503 // Offsets in vaddr must be positive if range checking is enabled.
1505 // The total computation of vaddr + soffset + offset must not overflow. If
1506 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1507 // overflowing.
1509 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1510 // always perform a range check. If a negative vaddr base index was used,
1511 // this would fail the range check. The overall address computation would
1512 // compute a valid address, but this doesn't happen due to the range
1513 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1515 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1516 // MUBUF vaddr, but not on older subtargets which can only do this if the
1517 // sign bit is known 0.
1518 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1519 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1520 (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1521 CurDAG->SignBitIsZero(N0))) {
1522 std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1523 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1524 return true;
1528 // (node)
1529 std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1530 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1531 return true;
1534 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1535 SDValue Addr,
1536 SDValue &SRsrc,
1537 SDValue &SOffset,
1538 SDValue &Offset) const {
1539 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1540 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1541 return false;
1543 SDLoc DL(Addr);
1544 MachineFunction &MF = CurDAG->getMachineFunction();
1545 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1547 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1549 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1550 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1551 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1553 // FIXME: Get from MachinePointerInfo? We should only be using the frame
1554 // offset if we know this is in a call sequence.
1555 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1557 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1558 return true;
1561 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1562 SDValue &SOffset, SDValue &Offset,
1563 SDValue &GLC, SDValue &SLC,
1564 SDValue &TFE, SDValue &DLC,
1565 SDValue &SWZ) const {
1566 SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1567 const SIInstrInfo *TII =
1568 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1570 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1571 GLC, SLC, TFE, DLC, SWZ))
1572 return false;
1574 if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1575 !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1576 !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1577 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1578 APInt::getAllOnesValue(32).getZExtValue(); // Size
1579 SDLoc DL(Addr);
1581 const SITargetLowering& Lowering =
1582 *static_cast<const SITargetLowering*>(getTargetLowering());
1584 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1585 return true;
1587 return false;
1590 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1591 SDValue &Soffset, SDValue &Offset
1592 ) const {
1593 SDValue GLC, SLC, TFE, DLC, SWZ;
1595 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1597 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1598 SDValue &Soffset, SDValue &Offset,
1599 SDValue &SLC) const {
1600 SDValue GLC, TFE, DLC, SWZ;
1602 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1605 // Find a load or store from corresponding pattern root.
1606 // Roots may be build_vector, bitconvert or their combinations.
1607 static MemSDNode* findMemSDNode(SDNode *N) {
1608 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1609 if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1610 return MN;
1611 assert(isa<BuildVectorSDNode>(N));
1612 for (SDValue V : N->op_values())
1613 if (MemSDNode *MN =
1614 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1615 return MN;
1616 llvm_unreachable("cannot find MemSDNode in the pattern!");
1619 template <bool IsSigned>
1620 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1621 SDValue Addr,
1622 SDValue &VAddr,
1623 SDValue &Offset,
1624 SDValue &SLC) const {
1625 int64_t OffsetVal = 0;
1627 if (Subtarget->hasFlatInstOffsets() &&
1628 (!Subtarget->hasFlatSegmentOffsetBug() ||
1629 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
1630 CurDAG->isBaseWithConstantOffset(Addr)) {
1631 SDValue N0 = Addr.getOperand(0);
1632 SDValue N1 = Addr.getOperand(1);
1633 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1635 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1636 if (TII->isLegalFLATOffset(COffsetVal, findMemSDNode(N)->getAddressSpace(),
1637 IsSigned)) {
1638 Addr = N0;
1639 OffsetVal = COffsetVal;
1643 VAddr = Addr;
1644 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1645 SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1646 return true;
1649 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1650 SDValue Addr,
1651 SDValue &VAddr,
1652 SDValue &Offset,
1653 SDValue &SLC) const {
1654 return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1657 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1658 SDValue Addr,
1659 SDValue &VAddr,
1660 SDValue &Offset,
1661 SDValue &SLC) const {
1662 return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1665 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1666 SDValue &Offset, bool &Imm) const {
1668 // FIXME: Handle non-constant offsets.
1669 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1670 if (!C)
1671 return false;
1673 SDLoc SL(ByteOffsetNode);
1674 GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1675 int64_t ByteOffset = C->getSExtValue();
1676 int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1678 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) {
1679 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1680 Imm = true;
1681 return true;
1684 if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset))
1685 return false;
1687 if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) {
1688 // 32-bit Immediates are supported on Sea Islands.
1689 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1690 } else {
1691 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1692 Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32,
1693 C32Bit), 0);
1695 Imm = false;
1696 return true;
1699 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1700 if (Addr.getValueType() != MVT::i32)
1701 return Addr;
1703 // Zero-extend a 32-bit address.
1704 SDLoc SL(Addr);
1706 const MachineFunction &MF = CurDAG->getMachineFunction();
1707 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1708 unsigned AddrHiVal = Info->get32BitAddressHighBits();
1709 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1711 const SDValue Ops[] = {
1712 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1713 Addr,
1714 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1715 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1717 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1720 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1721 Ops), 0);
1724 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1725 SDValue &Offset, bool &Imm) const {
1726 SDLoc SL(Addr);
1728 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1729 // wraparound, because s_load instructions perform the addition in 64 bits.
1730 if ((Addr.getValueType() != MVT::i32 ||
1731 Addr->getFlags().hasNoUnsignedWrap()) &&
1732 CurDAG->isBaseWithConstantOffset(Addr)) {
1733 SDValue N0 = Addr.getOperand(0);
1734 SDValue N1 = Addr.getOperand(1);
1736 if (SelectSMRDOffset(N1, Offset, Imm)) {
1737 SBase = Expand32BitAddress(N0);
1738 return true;
1741 SBase = Expand32BitAddress(Addr);
1742 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1743 Imm = true;
1744 return true;
1747 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1748 SDValue &Offset) const {
1749 bool Imm;
1750 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1753 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1754 SDValue &Offset) const {
1756 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1757 return false;
1759 bool Imm;
1760 if (!SelectSMRD(Addr, SBase, Offset, Imm))
1761 return false;
1763 return !Imm && isa<ConstantSDNode>(Offset);
1766 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1767 SDValue &Offset) const {
1768 bool Imm;
1769 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1770 !isa<ConstantSDNode>(Offset);
1773 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1774 SDValue &Offset) const {
1775 bool Imm;
1776 return SelectSMRDOffset(Addr, Offset, Imm) && Imm;
1779 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1780 SDValue &Offset) const {
1781 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1782 return false;
1784 bool Imm;
1785 if (!SelectSMRDOffset(Addr, Offset, Imm))
1786 return false;
1788 return !Imm && isa<ConstantSDNode>(Offset);
1791 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1792 SDValue &Base,
1793 SDValue &Offset) const {
1794 SDLoc DL(Index);
1796 if (CurDAG->isBaseWithConstantOffset(Index)) {
1797 SDValue N0 = Index.getOperand(0);
1798 SDValue N1 = Index.getOperand(1);
1799 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1801 // (add n0, c0)
1802 // Don't peel off the offset (c0) if doing so could possibly lead
1803 // the base (n0) to be negative.
1804 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1805 Base = N0;
1806 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1807 return true;
1811 if (isa<ConstantSDNode>(Index))
1812 return false;
1814 Base = Index;
1815 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1816 return true;
1819 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1820 SDValue Val, uint32_t Offset,
1821 uint32_t Width) {
1822 // Transformation function, pack the offset and width of a BFE into
1823 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1824 // source, bits [5:0] contain the offset and bits [22:16] the width.
1825 uint32_t PackedVal = Offset | (Width << 16);
1826 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1828 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1831 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1832 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1833 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1834 // Predicate: 0 < b <= c < 32
1836 const SDValue &Shl = N->getOperand(0);
1837 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1838 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1840 if (B && C) {
1841 uint32_t BVal = B->getZExtValue();
1842 uint32_t CVal = C->getZExtValue();
1844 if (0 < BVal && BVal <= CVal && CVal < 32) {
1845 bool Signed = N->getOpcode() == ISD::SRA;
1846 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1848 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1849 32 - CVal));
1850 return;
1853 SelectCode(N);
1856 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1857 switch (N->getOpcode()) {
1858 case ISD::AND:
1859 if (N->getOperand(0).getOpcode() == ISD::SRL) {
1860 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1861 // Predicate: isMask(mask)
1862 const SDValue &Srl = N->getOperand(0);
1863 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1864 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1866 if (Shift && Mask) {
1867 uint32_t ShiftVal = Shift->getZExtValue();
1868 uint32_t MaskVal = Mask->getZExtValue();
1870 if (isMask_32(MaskVal)) {
1871 uint32_t WidthVal = countPopulation(MaskVal);
1873 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1874 Srl.getOperand(0), ShiftVal, WidthVal));
1875 return;
1879 break;
1880 case ISD::SRL:
1881 if (N->getOperand(0).getOpcode() == ISD::AND) {
1882 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1883 // Predicate: isMask(mask >> b)
1884 const SDValue &And = N->getOperand(0);
1885 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1886 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
1888 if (Shift && Mask) {
1889 uint32_t ShiftVal = Shift->getZExtValue();
1890 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
1892 if (isMask_32(MaskVal)) {
1893 uint32_t WidthVal = countPopulation(MaskVal);
1895 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1896 And.getOperand(0), ShiftVal, WidthVal));
1897 return;
1900 } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
1901 SelectS_BFEFromShifts(N);
1902 return;
1904 break;
1905 case ISD::SRA:
1906 if (N->getOperand(0).getOpcode() == ISD::SHL) {
1907 SelectS_BFEFromShifts(N);
1908 return;
1910 break;
1912 case ISD::SIGN_EXTEND_INREG: {
1913 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
1914 SDValue Src = N->getOperand(0);
1915 if (Src.getOpcode() != ISD::SRL)
1916 break;
1918 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1919 if (!Amt)
1920 break;
1922 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1923 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
1924 Amt->getZExtValue(), Width));
1925 return;
1929 SelectCode(N);
1932 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
1933 assert(N->getOpcode() == ISD::BRCOND);
1934 if (!N->hasOneUse())
1935 return false;
1937 SDValue Cond = N->getOperand(1);
1938 if (Cond.getOpcode() == ISD::CopyToReg)
1939 Cond = Cond.getOperand(2);
1941 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
1942 return false;
1944 MVT VT = Cond.getOperand(0).getSimpleValueType();
1945 if (VT == MVT::i32)
1946 return true;
1948 if (VT == MVT::i64) {
1949 auto ST = static_cast<const GCNSubtarget *>(Subtarget);
1951 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
1952 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
1955 return false;
1958 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
1959 SDValue Cond = N->getOperand(1);
1961 if (Cond.isUndef()) {
1962 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
1963 N->getOperand(2), N->getOperand(0));
1964 return;
1967 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1968 const SIRegisterInfo *TRI = ST->getRegisterInfo();
1970 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
1971 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
1972 unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC();
1973 SDLoc SL(N);
1975 if (!UseSCCBr) {
1976 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
1977 // analyzed what generates the vcc value, so we do not know whether vcc
1978 // bits for disabled lanes are 0. Thus we need to mask out bits for
1979 // disabled lanes.
1981 // For the case that we select S_CBRANCH_SCC1 and it gets
1982 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
1983 // SIInstrInfo::moveToVALU which inserts the S_AND).
1985 // We could add an analysis of what generates the vcc value here and omit
1986 // the S_AND when is unnecessary. But it would be better to add a separate
1987 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
1988 // catches both cases.
1989 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
1990 : AMDGPU::S_AND_B64,
1991 SL, MVT::i1,
1992 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
1993 : AMDGPU::EXEC,
1994 MVT::i1),
1995 Cond),
1999 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2000 CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2001 N->getOperand(2), // Basic Block
2002 VCC.getValue(0));
2005 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2006 MVT VT = N->getSimpleValueType(0);
2007 bool IsFMA = N->getOpcode() == ISD::FMA;
2008 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2009 !Subtarget->hasFmaMixInsts()) ||
2010 ((IsFMA && Subtarget->hasMadMixInsts()) ||
2011 (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2012 SelectCode(N);
2013 return;
2016 SDValue Src0 = N->getOperand(0);
2017 SDValue Src1 = N->getOperand(1);
2018 SDValue Src2 = N->getOperand(2);
2019 unsigned Src0Mods, Src1Mods, Src2Mods;
2021 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2022 // using the conversion from f16.
2023 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2024 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2025 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2027 assert((IsFMA || !Subtarget->hasFP32Denormals()) &&
2028 "fmad selected with denormals enabled");
2029 // TODO: We can select this with f32 denormals enabled if all the sources are
2030 // converted from f16 (in which case fmad isn't legal).
2032 if (Sel0 || Sel1 || Sel2) {
2033 // For dummy operands.
2034 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2035 SDValue Ops[] = {
2036 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2037 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2038 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2039 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2040 Zero, Zero
2043 CurDAG->SelectNodeTo(N,
2044 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2045 MVT::f32, Ops);
2046 } else {
2047 SelectCode(N);
2051 // This is here because there isn't a way to use the generated sub0_sub1 as the
2052 // subreg index to EXTRACT_SUBREG in tablegen.
2053 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2054 MemSDNode *Mem = cast<MemSDNode>(N);
2055 unsigned AS = Mem->getAddressSpace();
2056 if (AS == AMDGPUAS::FLAT_ADDRESS) {
2057 SelectCode(N);
2058 return;
2061 MVT VT = N->getSimpleValueType(0);
2062 bool Is32 = (VT == MVT::i32);
2063 SDLoc SL(N);
2065 MachineSDNode *CmpSwap = nullptr;
2066 if (Subtarget->hasAddr64()) {
2067 SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2069 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2070 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2071 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2072 SDValue CmpVal = Mem->getOperand(2);
2074 // XXX - Do we care about glue operands?
2076 SDValue Ops[] = {
2077 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2080 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2084 if (!CmpSwap) {
2085 SDValue SRsrc, SOffset, Offset, SLC;
2086 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2087 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2088 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2090 SDValue CmpVal = Mem->getOperand(2);
2091 SDValue Ops[] = {
2092 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2095 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2099 if (!CmpSwap) {
2100 SelectCode(N);
2101 return;
2104 MachineMemOperand *MMO = Mem->getMemOperand();
2105 CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2107 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2108 SDValue Extract
2109 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2111 ReplaceUses(SDValue(N, 0), Extract);
2112 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2113 CurDAG->RemoveDeadNode(N);
2116 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2117 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2118 // be copied to an SGPR with readfirstlane.
2119 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2120 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2122 SDValue Chain = N->getOperand(0);
2123 SDValue Ptr = N->getOperand(2);
2124 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2125 MachineMemOperand *MMO = M->getMemOperand();
2126 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2128 SDValue Offset;
2129 if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2130 SDValue PtrBase = Ptr.getOperand(0);
2131 SDValue PtrOffset = Ptr.getOperand(1);
2133 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2134 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2135 N = glueCopyToM0(N, PtrBase);
2136 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2140 if (!Offset) {
2141 N = glueCopyToM0(N, Ptr);
2142 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2145 SDValue Ops[] = {
2146 Offset,
2147 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2148 Chain,
2149 N->getOperand(N->getNumOperands() - 1) // New glue
2152 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2153 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2156 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2157 switch (IntrID) {
2158 case Intrinsic::amdgcn_ds_gws_init:
2159 return AMDGPU::DS_GWS_INIT;
2160 case Intrinsic::amdgcn_ds_gws_barrier:
2161 return AMDGPU::DS_GWS_BARRIER;
2162 case Intrinsic::amdgcn_ds_gws_sema_v:
2163 return AMDGPU::DS_GWS_SEMA_V;
2164 case Intrinsic::amdgcn_ds_gws_sema_br:
2165 return AMDGPU::DS_GWS_SEMA_BR;
2166 case Intrinsic::amdgcn_ds_gws_sema_p:
2167 return AMDGPU::DS_GWS_SEMA_P;
2168 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2169 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2170 default:
2171 llvm_unreachable("not a gws intrinsic");
2175 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2176 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2177 !Subtarget->hasGWSSemaReleaseAll()) {
2178 // Let this error.
2179 SelectCode(N);
2180 return;
2183 // Chain, intrinsic ID, vsrc, offset
2184 const bool HasVSrc = N->getNumOperands() == 4;
2185 assert(HasVSrc || N->getNumOperands() == 3);
2187 SDLoc SL(N);
2188 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2189 int ImmOffset = 0;
2190 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2191 MachineMemOperand *MMO = M->getMemOperand();
2193 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2194 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2196 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2197 // offset field) % 64. Some versions of the programming guide omit the m0
2198 // part, or claim it's from offset 0.
2199 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2200 // If we have a constant offset, try to use the 0 in m0 as the base.
2201 // TODO: Look into changing the default m0 initialization value. If the
2202 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2203 // the immediate offset.
2204 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2205 ImmOffset = ConstOffset->getZExtValue();
2206 } else {
2207 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2208 ImmOffset = BaseOffset.getConstantOperandVal(1);
2209 BaseOffset = BaseOffset.getOperand(0);
2212 // Prefer to do the shift in an SGPR since it should be possible to use m0
2213 // as the result directly. If it's already an SGPR, it will be eliminated
2214 // later.
2215 SDNode *SGPROffset
2216 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2217 BaseOffset);
2218 // Shift to offset in m0
2219 SDNode *M0Base
2220 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2221 SDValue(SGPROffset, 0),
2222 CurDAG->getTargetConstant(16, SL, MVT::i32));
2223 glueCopyToM0(N, SDValue(M0Base, 0));
2226 SDValue Chain = N->getOperand(0);
2227 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2229 // TODO: Can this just be removed from the instruction?
2230 SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2232 const unsigned Opc = gwsIntrinToOpcode(IntrID);
2233 SmallVector<SDValue, 5> Ops;
2234 if (HasVSrc)
2235 Ops.push_back(N->getOperand(2));
2236 Ops.push_back(OffsetField);
2237 Ops.push_back(GDS);
2238 Ops.push_back(Chain);
2240 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2241 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2244 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2245 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2246 switch (IntrID) {
2247 case Intrinsic::amdgcn_ds_append:
2248 case Intrinsic::amdgcn_ds_consume: {
2249 if (N->getValueType(0) != MVT::i32)
2250 break;
2251 SelectDSAppendConsume(N, IntrID);
2252 return;
2256 SelectCode(N);
2259 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2260 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2261 unsigned Opcode;
2262 switch (IntrID) {
2263 case Intrinsic::amdgcn_wqm:
2264 Opcode = AMDGPU::WQM;
2265 break;
2266 case Intrinsic::amdgcn_softwqm:
2267 Opcode = AMDGPU::SOFT_WQM;
2268 break;
2269 case Intrinsic::amdgcn_wwm:
2270 Opcode = AMDGPU::WWM;
2271 break;
2272 default:
2273 SelectCode(N);
2274 return;
2277 SDValue Src = N->getOperand(1);
2278 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2281 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2282 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2283 switch (IntrID) {
2284 case Intrinsic::amdgcn_ds_gws_init:
2285 case Intrinsic::amdgcn_ds_gws_barrier:
2286 case Intrinsic::amdgcn_ds_gws_sema_v:
2287 case Intrinsic::amdgcn_ds_gws_sema_br:
2288 case Intrinsic::amdgcn_ds_gws_sema_p:
2289 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2290 SelectDS_GWS(N, IntrID);
2291 return;
2292 default:
2293 break;
2296 SelectCode(N);
2299 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2300 unsigned &Mods) const {
2301 Mods = 0;
2302 Src = In;
2304 if (Src.getOpcode() == ISD::FNEG) {
2305 Mods |= SISrcMods::NEG;
2306 Src = Src.getOperand(0);
2309 if (Src.getOpcode() == ISD::FABS) {
2310 Mods |= SISrcMods::ABS;
2311 Src = Src.getOperand(0);
2314 return true;
2317 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2318 SDValue &SrcMods) const {
2319 unsigned Mods;
2320 if (SelectVOP3ModsImpl(In, Src, Mods)) {
2321 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2322 return true;
2325 return false;
2328 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2329 SDValue &SrcMods) const {
2330 SelectVOP3Mods(In, Src, SrcMods);
2331 return isNoNanSrc(Src);
2334 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_f32(SDValue In, SDValue &Src,
2335 SDValue &SrcMods) const {
2336 if (In.getValueType() == MVT::f32)
2337 return SelectVOP3Mods(In, Src, SrcMods);
2338 Src = In;
2339 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);;
2340 return true;
2343 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2344 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2345 return false;
2347 Src = In;
2348 return true;
2351 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2352 SDValue &SrcMods, SDValue &Clamp,
2353 SDValue &Omod) const {
2354 SDLoc DL(In);
2355 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2356 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2358 return SelectVOP3Mods(In, Src, SrcMods);
2361 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src,
2362 SDValue &SrcMods,
2363 SDValue &Clamp,
2364 SDValue &Omod) const {
2365 Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2366 return SelectVOP3Mods(In, Src, SrcMods);
2369 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2370 SDValue &Clamp, SDValue &Omod) const {
2371 Src = In;
2373 SDLoc DL(In);
2374 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2375 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2377 return true;
2380 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2381 SDValue &SrcMods) const {
2382 unsigned Mods = 0;
2383 Src = In;
2385 if (Src.getOpcode() == ISD::FNEG) {
2386 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2387 Src = Src.getOperand(0);
2390 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2391 unsigned VecMods = Mods;
2393 SDValue Lo = stripBitcast(Src.getOperand(0));
2394 SDValue Hi = stripBitcast(Src.getOperand(1));
2396 if (Lo.getOpcode() == ISD::FNEG) {
2397 Lo = stripBitcast(Lo.getOperand(0));
2398 Mods ^= SISrcMods::NEG;
2401 if (Hi.getOpcode() == ISD::FNEG) {
2402 Hi = stripBitcast(Hi.getOperand(0));
2403 Mods ^= SISrcMods::NEG_HI;
2406 if (isExtractHiElt(Lo, Lo))
2407 Mods |= SISrcMods::OP_SEL_0;
2409 if (isExtractHiElt(Hi, Hi))
2410 Mods |= SISrcMods::OP_SEL_1;
2412 Lo = stripExtractLoElt(Lo);
2413 Hi = stripExtractLoElt(Hi);
2415 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2416 // Really a scalar input. Just select from the low half of the register to
2417 // avoid packing.
2419 Src = Lo;
2420 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2421 return true;
2424 Mods = VecMods;
2427 // Packed instructions do not have abs modifiers.
2428 Mods |= SISrcMods::OP_SEL_1;
2430 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2431 return true;
2434 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src,
2435 SDValue &SrcMods,
2436 SDValue &Clamp) const {
2437 SDLoc SL(In);
2439 // FIXME: Handle clamp and op_sel
2440 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2442 return SelectVOP3PMods(In, Src, SrcMods);
2445 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2446 SDValue &SrcMods) const {
2447 Src = In;
2448 // FIXME: Handle op_sel
2449 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2450 return true;
2453 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
2454 SDValue &SrcMods,
2455 SDValue &Clamp) const {
2456 SDLoc SL(In);
2458 // FIXME: Handle clamp
2459 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2461 return SelectVOP3OpSel(In, Src, SrcMods);
2464 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2465 SDValue &SrcMods) const {
2466 // FIXME: Handle op_sel
2467 return SelectVOP3Mods(In, Src, SrcMods);
2470 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
2471 SDValue &SrcMods,
2472 SDValue &Clamp) const {
2473 SDLoc SL(In);
2475 // FIXME: Handle clamp
2476 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2478 return SelectVOP3OpSelMods(In, Src, SrcMods);
2481 // The return value is not whether the match is possible (which it always is),
2482 // but whether or not it a conversion is really used.
2483 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2484 unsigned &Mods) const {
2485 Mods = 0;
2486 SelectVOP3ModsImpl(In, Src, Mods);
2488 if (Src.getOpcode() == ISD::FP_EXTEND) {
2489 Src = Src.getOperand(0);
2490 assert(Src.getValueType() == MVT::f16);
2491 Src = stripBitcast(Src);
2493 // Be careful about folding modifiers if we already have an abs. fneg is
2494 // applied last, so we don't want to apply an earlier fneg.
2495 if ((Mods & SISrcMods::ABS) == 0) {
2496 unsigned ModsTmp;
2497 SelectVOP3ModsImpl(Src, Src, ModsTmp);
2499 if ((ModsTmp & SISrcMods::NEG) != 0)
2500 Mods ^= SISrcMods::NEG;
2502 if ((ModsTmp & SISrcMods::ABS) != 0)
2503 Mods |= SISrcMods::ABS;
2506 // op_sel/op_sel_hi decide the source type and source.
2507 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2508 // If the sources's op_sel is set, it picks the high half of the source
2509 // register.
2511 Mods |= SISrcMods::OP_SEL_1;
2512 if (isExtractHiElt(Src, Src)) {
2513 Mods |= SISrcMods::OP_SEL_0;
2515 // TODO: Should we try to look for neg/abs here?
2518 return true;
2521 return false;
2524 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2525 SDValue &SrcMods) const {
2526 unsigned Mods = 0;
2527 SelectVOP3PMadMixModsImpl(In, Src, Mods);
2528 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2529 return true;
2532 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2533 if (In.isUndef())
2534 return CurDAG->getUNDEF(MVT::i32);
2536 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2537 SDLoc SL(In);
2538 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2541 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2542 SDLoc SL(In);
2543 return CurDAG->getConstant(
2544 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2547 SDValue Src;
2548 if (isExtractHiElt(In, Src))
2549 return Src;
2551 return SDValue();
2554 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2555 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2557 const SIRegisterInfo *SIRI =
2558 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2559 const SIInstrInfo * SII =
2560 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2562 unsigned Limit = 0;
2563 bool AllUsesAcceptSReg = true;
2564 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2565 Limit < 10 && U != E; ++U, ++Limit) {
2566 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2568 // If the register class is unknown, it could be an unknown
2569 // register class that needs to be an SGPR, e.g. an inline asm
2570 // constraint
2571 if (!RC || SIRI->isSGPRClass(RC))
2572 return false;
2574 if (RC != &AMDGPU::VS_32RegClass) {
2575 AllUsesAcceptSReg = false;
2576 SDNode * User = *U;
2577 if (User->isMachineOpcode()) {
2578 unsigned Opc = User->getMachineOpcode();
2579 MCInstrDesc Desc = SII->get(Opc);
2580 if (Desc.isCommutable()) {
2581 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2582 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2583 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2584 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2585 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2586 if (CommutedRC == &AMDGPU::VS_32RegClass)
2587 AllUsesAcceptSReg = true;
2591 // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2592 // commuting current user. This means have at least one use
2593 // that strictly require VGPR. Thus, we will not attempt to commute
2594 // other user instructions.
2595 if (!AllUsesAcceptSReg)
2596 break;
2599 return !AllUsesAcceptSReg && (Limit < 10);
2602 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2603 auto Ld = cast<LoadSDNode>(N);
2605 return Ld->getAlignment() >= 4 &&
2609 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2610 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2613 !N->isDivergent()
2617 Subtarget->getScalarizeGlobalBehavior() &&
2618 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2619 !Ld->isVolatile() &&
2620 !N->isDivergent() &&
2621 static_cast<const SITargetLowering *>(
2622 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2627 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2628 const AMDGPUTargetLowering& Lowering =
2629 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2630 bool IsModified = false;
2631 do {
2632 IsModified = false;
2634 // Go over all selected nodes and try to fold them a bit more
2635 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2636 while (Position != CurDAG->allnodes_end()) {
2637 SDNode *Node = &*Position++;
2638 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2639 if (!MachineNode)
2640 continue;
2642 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2643 if (ResNode != Node) {
2644 if (ResNode)
2645 ReplaceUses(Node, ResNode);
2646 IsModified = true;
2649 CurDAG->RemoveDeadNodes();
2650 } while (IsModified);
2653 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2654 Subtarget = &MF.getSubtarget<R600Subtarget>();
2655 return SelectionDAGISel::runOnMachineFunction(MF);
2658 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2659 if (!N->readMem())
2660 return false;
2661 if (CbId == -1)
2662 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2663 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2665 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2668 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2669 SDValue& IntPtr) {
2670 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2671 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2672 true);
2673 return true;
2675 return false;
2678 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2679 SDValue& BaseReg, SDValue &Offset) {
2680 if (!isa<ConstantSDNode>(Addr)) {
2681 BaseReg = Addr;
2682 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2683 return true;
2685 return false;
2688 void R600DAGToDAGISel::Select(SDNode *N) {
2689 unsigned int Opc = N->getOpcode();
2690 if (N->isMachineOpcode()) {
2691 N->setNodeId(-1);
2692 return; // Already selected.
2695 switch (Opc) {
2696 default: break;
2697 case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2698 case ISD::SCALAR_TO_VECTOR:
2699 case ISD::BUILD_VECTOR: {
2700 EVT VT = N->getValueType(0);
2701 unsigned NumVectorElts = VT.getVectorNumElements();
2702 unsigned RegClassID;
2703 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2704 // that adds a 128 bits reg copy when going through TwoAddressInstructions
2705 // pass. We want to avoid 128 bits copies as much as possible because they
2706 // can't be bundled by our scheduler.
2707 switch(NumVectorElts) {
2708 case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2709 case 4:
2710 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2711 RegClassID = R600::R600_Reg128VerticalRegClassID;
2712 else
2713 RegClassID = R600::R600_Reg128RegClassID;
2714 break;
2715 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2717 SelectBuildVector(N, RegClassID);
2718 return;
2722 SelectCode(N);
2725 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2726 SDValue &Offset) {
2727 ConstantSDNode *C;
2728 SDLoc DL(Addr);
2730 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2731 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2732 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2733 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2734 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2735 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2736 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2737 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2738 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2739 Base = Addr.getOperand(0);
2740 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2741 } else {
2742 Base = Addr;
2743 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2746 return true;
2749 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2750 SDValue &Offset) {
2751 ConstantSDNode *IMMOffset;
2753 if (Addr.getOpcode() == ISD::ADD
2754 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2755 && isInt<16>(IMMOffset->getZExtValue())) {
2757 Base = Addr.getOperand(0);
2758 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2759 MVT::i32);
2760 return true;
2761 // If the pointer address is constant, we can move it to the offset field.
2762 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2763 && isInt<16>(IMMOffset->getZExtValue())) {
2764 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2765 SDLoc(CurDAG->getEntryNode()),
2766 R600::ZERO, MVT::i32);
2767 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2768 MVT::i32);
2769 return true;
2772 // Default case, no offset
2773 Base = Addr;
2774 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2775 return true;