1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===---------------------------------------------------------------------===//
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
19 //===---------------------------------------------------------------------===//
22 #include "PPCInstrBuilder.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachinePostDominators.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/Support/Debug.h"
34 #include "MCTargetDesc/PPCPredicates.h"
38 #define DEBUG_TYPE "ppc-mi-peepholes"
40 STATISTIC(RemoveTOCSave
, "Number of TOC saves removed");
41 STATISTIC(MultiTOCSaves
,
42 "Number of functions with multiple TOC saves that must be kept");
43 STATISTIC(NumTOCSavesInPrologue
, "Number of TOC saves placed in the prologue");
44 STATISTIC(NumEliminatedSExt
, "Number of eliminated sign-extensions");
45 STATISTIC(NumEliminatedZExt
, "Number of eliminated zero-extensions");
46 STATISTIC(NumOptADDLIs
, "Number of optimized ADD instruction fed by LI");
47 STATISTIC(NumConvertedToImmediateForm
,
48 "Number of instructions converted to their immediate form");
49 STATISTIC(NumFunctionsEnteredInMIPeephole
,
50 "Number of functions entered in PPC MI Peepholes");
51 STATISTIC(NumFixedPointIterations
,
52 "Number of fixed-point iterations converting reg-reg instructions "
54 STATISTIC(NumRotatesCollapsed
,
55 "Number of pairs of rotate left, clear left/right collapsed");
56 STATISTIC(NumEXTSWAndSLDICombined
,
57 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden
, cl::init(true),
61 cl::desc("Iterate to a fixed point when attempting to "
62 "convert reg-reg instructions to reg-imm"));
65 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden
, cl::init(true),
66 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
69 EnableSExtElimination("ppc-eliminate-signext",
70 cl::desc("enable elimination of sign-extensions"),
71 cl::init(false), cl::Hidden
);
74 EnableZExtElimination("ppc-eliminate-zeroext",
75 cl::desc("enable elimination of zero-extensions"),
76 cl::init(false), cl::Hidden
);
80 struct PPCMIPeephole
: public MachineFunctionPass
{
83 const PPCInstrInfo
*TII
;
85 MachineRegisterInfo
*MRI
;
87 PPCMIPeephole() : MachineFunctionPass(ID
) {
88 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
92 MachineDominatorTree
*MDT
;
93 MachinePostDominatorTree
*MPDT
;
94 MachineBlockFrequencyInfo
*MBFI
;
97 // Initialize class variables.
98 void initialize(MachineFunction
&MFParm
);
100 // Perform peepholes.
101 bool simplifyCode(void);
103 // Perform peepholes.
104 bool eliminateRedundantCompare(void);
105 bool eliminateRedundantTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
);
106 bool combineSEXTAndSHL(MachineInstr
&MI
, MachineInstr
*&ToErase
);
107 bool emitRLDICWhenLoweringJumpTables(MachineInstr
&MI
);
108 void UpdateTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
,
113 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
114 AU
.addRequired
<MachineDominatorTree
>();
115 AU
.addRequired
<MachinePostDominatorTree
>();
116 AU
.addRequired
<MachineBlockFrequencyInfo
>();
117 AU
.addPreserved
<MachineDominatorTree
>();
118 AU
.addPreserved
<MachinePostDominatorTree
>();
119 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
120 MachineFunctionPass::getAnalysisUsage(AU
);
123 // Main entry point for this pass.
124 bool runOnMachineFunction(MachineFunction
&MF
) override
{
125 if (skipFunction(MF
.getFunction()))
128 return simplifyCode();
132 // Initialize class variables.
133 void PPCMIPeephole::initialize(MachineFunction
&MFParm
) {
135 MRI
= &MF
->getRegInfo();
136 MDT
= &getAnalysis
<MachineDominatorTree
>();
137 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
138 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
139 EntryFreq
= MBFI
->getEntryFreq();
140 TII
= MF
->getSubtarget
<PPCSubtarget
>().getInstrInfo();
141 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
142 LLVM_DEBUG(MF
->dump());
145 static MachineInstr
*getVRegDefOrNull(MachineOperand
*Op
,
146 MachineRegisterInfo
*MRI
) {
147 assert(Op
&& "Invalid Operand!");
151 Register Reg
= Op
->getReg();
152 if (!Register::isVirtualRegister(Reg
))
155 return MRI
->getVRegDef(Reg
);
158 // This function returns number of known zero bits in output of MI
159 // starting from the most significant bit.
161 getKnownLeadingZeroCount(MachineInstr
*MI
, const PPCInstrInfo
*TII
) {
162 unsigned Opcode
= MI
->getOpcode();
163 if (Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
164 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
)
165 return MI
->getOperand(3).getImm();
167 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
168 MI
->getOperand(3).getImm() <= 63 - MI
->getOperand(2).getImm())
169 return MI
->getOperand(3).getImm();
171 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
172 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
173 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
174 MI
->getOperand(3).getImm() <= MI
->getOperand(4).getImm())
175 return 32 + MI
->getOperand(3).getImm();
177 if (Opcode
== PPC::ANDIo
) {
178 uint16_t Imm
= MI
->getOperand(2).getImm();
179 return 48 + countLeadingZeros(Imm
);
182 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
183 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
184 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
)
185 // The result ranges from 0 to 32.
188 if (Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
189 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
)
190 // The result ranges from 0 to 64.
193 if (Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
194 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
195 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
196 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
)
199 if (Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
200 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
201 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
202 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
)
205 if (TII
->isZeroExtended(*MI
))
211 // This function maintains a map for the pairs <TOC Save Instr, Keep>
212 // Each time a new TOC save is encountered, it checks if any of the existing
213 // ones are dominated by the new one. If so, it marks the existing one as
214 // redundant by setting it's entry in the map as false. It then adds the new
215 // instruction to the map with either true or false depending on if any
216 // existing instructions dominated the new one.
217 void PPCMIPeephole::UpdateTOCSaves(
218 std::map
<MachineInstr
*, bool> &TOCSaves
, MachineInstr
*MI
) {
219 assert(TII
->isTOCSaveMI(*MI
) && "Expecting a TOC save instruction here");
220 assert(MF
->getSubtarget
<PPCSubtarget
>().isELFv2ABI() &&
221 "TOC-save removal only supported on ELFv2");
222 PPCFunctionInfo
*FI
= MF
->getInfo
<PPCFunctionInfo
>();
224 MachineBasicBlock
*Entry
= &MF
->front();
225 uint64_t CurrBlockFreq
= MBFI
->getBlockFreq(MI
->getParent()).getFrequency();
227 // If the block in which the TOC save resides is in a block that
228 // post-dominates Entry, or a block that is hotter than entry (keep in mind
229 // that early MachineLICM has already run so the TOC save won't be hoisted)
230 // we can just do the save in the prologue.
231 if (CurrBlockFreq
> EntryFreq
|| MPDT
->dominates(MI
->getParent(), Entry
))
232 FI
->setMustSaveTOC(true);
234 // If we are saving the TOC in the prologue, all the TOC saves can be removed
236 if (FI
->mustSaveTOC()) {
237 for (auto &TOCSave
: TOCSaves
)
238 TOCSave
.second
= false;
239 // Add new instruction to map.
240 TOCSaves
[MI
] = false;
245 for (auto It
= TOCSaves
.begin(); It
!= TOCSaves
.end(); It
++ ) {
246 MachineInstr
*CurrInst
= It
->first
;
247 // If new instruction dominates an existing one, mark existing one as
249 if (It
->second
&& MDT
->dominates(MI
, CurrInst
))
251 // Check if the new instruction is redundant.
252 if (MDT
->dominates(CurrInst
, MI
)) {
257 // Add new instruction to map.
261 // Perform peephole optimizations.
262 bool PPCMIPeephole::simplifyCode(void) {
263 bool Simplified
= false;
264 MachineInstr
* ToErase
= nullptr;
265 std::map
<MachineInstr
*, bool> TOCSaves
;
266 const TargetRegisterInfo
*TRI
= &TII
->getRegisterInfo();
267 NumFunctionsEnteredInMIPeephole
++;
269 // Fixed-point conversion of reg/reg instructions fed by load-immediate
270 // into reg/imm instructions. FIXME: This is expensive, control it with
272 bool SomethingChanged
= false;
274 NumFixedPointIterations
++;
275 SomethingChanged
= false;
276 for (MachineBasicBlock
&MBB
: *MF
) {
277 for (MachineInstr
&MI
: MBB
) {
278 if (MI
.isDebugInstr())
281 if (TII
->convertToImmediateForm(MI
)) {
282 // We don't erase anything in case the def has other uses. Let DCE
283 // remove it if it can be removed.
284 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
285 LLVM_DEBUG(MI
.dump());
286 NumConvertedToImmediateForm
++;
287 SomethingChanged
= true;
293 } while (SomethingChanged
&& FixedPointRegToImm
);
296 for (MachineBasicBlock
&MBB
: *MF
) {
297 for (MachineInstr
&MI
: MBB
) {
299 // If the previous instruction was marked for elimination,
302 ToErase
->eraseFromParent();
306 // Ignore debug instructions.
307 if (MI
.isDebugInstr())
310 // Per-opcode peepholes.
311 switch (MI
.getOpcode()) {
317 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
318 if (MFI
.hasVarSizedObjects() ||
319 !MF
->getSubtarget
<PPCSubtarget
>().isELFv2ABI())
321 // When encountering a TOC save instruction, call UpdateTOCSaves
322 // to add it to the TOCSaves map and mark any existing TOC saves
323 // it dominates as redundant.
324 if (TII
->isTOCSaveMI(MI
))
325 UpdateTOCSaves(TOCSaves
, &MI
);
328 case PPC::XXPERMDI
: {
329 // Perform simplifications of 2x64 vector swaps and splats.
330 // A swap is identified by an immediate value of 2, and a splat
331 // is identified by an immediate value of 0 or 3.
332 int Immed
= MI
.getOperand(3).getImm();
336 // For each of these simplifications, we need the two source
337 // regs to match. Unfortunately, MachineCSE ignores COPY and
338 // SUBREG_TO_REG, so for example we can see
339 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
340 // We have to look through chains of COPY and SUBREG_TO_REG
341 // to find the real source values for comparison.
343 TRI
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
345 TRI
->lookThruCopyLike(MI
.getOperand(2).getReg(), MRI
);
347 if (TrueReg1
== TrueReg2
&& Register::isVirtualRegister(TrueReg1
)) {
348 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg1
);
349 unsigned DefOpc
= DefMI
? DefMI
->getOpcode() : 0;
351 // If this is a splat fed by a splatting load, the splat is
352 // redundant. Replace with a copy. This doesn't happen directly due
353 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
354 // a load of a double to a vector of 64-bit integers.
355 auto isConversionOfLoadAndSplat
= [=]() -> bool {
356 if (DefOpc
!= PPC::XVCVDPSXDS
&& DefOpc
!= PPC::XVCVDPUXDS
)
359 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
360 if (Register::isVirtualRegister(DefReg
)) {
361 MachineInstr
*LoadMI
= MRI
->getVRegDef(DefReg
);
362 if (LoadMI
&& LoadMI
->getOpcode() == PPC::LXVDSX
)
367 if (DefMI
&& (Immed
== 0 || Immed
== 3)) {
368 if (DefOpc
== PPC::LXVDSX
|| isConversionOfLoadAndSplat()) {
369 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
370 "to load-and-splat/copy: ");
371 LLVM_DEBUG(MI
.dump());
372 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
373 MI
.getOperand(0).getReg())
374 .add(MI
.getOperand(1));
380 // If this is a splat or a swap fed by another splat, we
381 // can replace it with a copy.
382 if (DefOpc
== PPC::XXPERMDI
) {
383 unsigned FeedImmed
= DefMI
->getOperand(3).getImm();
385 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
387 TRI
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
389 if ((FeedImmed
== 0 || FeedImmed
== 3) && FeedReg1
== FeedReg2
) {
390 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
392 LLVM_DEBUG(MI
.dump());
393 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
394 MI
.getOperand(0).getReg())
395 .add(MI
.getOperand(1));
400 // If this is a splat fed by a swap, we can simplify modify
401 // the splat to splat the other value from the swap's input
403 else if ((Immed
== 0 || Immed
== 3)
404 && FeedImmed
== 2 && FeedReg1
== FeedReg2
) {
405 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
406 LLVM_DEBUG(MI
.dump());
407 MI
.getOperand(1).setReg(DefMI
->getOperand(1).getReg());
408 MI
.getOperand(2).setReg(DefMI
->getOperand(2).getReg());
409 MI
.getOperand(3).setImm(3 - Immed
);
413 // If this is a swap fed by a swap, we can replace it
414 // with a copy from the first swap's input.
415 else if (Immed
== 2 && FeedImmed
== 2 && FeedReg1
== FeedReg2
) {
416 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
417 LLVM_DEBUG(MI
.dump());
418 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
419 MI
.getOperand(0).getReg())
420 .add(DefMI
->getOperand(1));
424 } else if ((Immed
== 0 || Immed
== 3) && DefOpc
== PPC::XXPERMDIs
&&
425 (DefMI
->getOperand(2).getImm() == 0 ||
426 DefMI
->getOperand(2).getImm() == 3)) {
427 // Splat fed by another splat - switch the output of the first
428 // and remove the second.
429 DefMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
432 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
433 LLVM_DEBUG(MI
.dump());
442 unsigned MyOpcode
= MI
.getOpcode();
443 unsigned OpNo
= MyOpcode
== PPC::XXSPLTW
? 1 : 2;
445 TRI
->lookThruCopyLike(MI
.getOperand(OpNo
).getReg(), MRI
);
446 if (!Register::isVirtualRegister(TrueReg
))
448 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
451 unsigned DefOpcode
= DefMI
->getOpcode();
452 auto isConvertOfSplat
= [=]() -> bool {
453 if (DefOpcode
!= PPC::XVCVSPSXWS
&& DefOpcode
!= PPC::XVCVSPUXWS
)
455 Register ConvReg
= DefMI
->getOperand(1).getReg();
456 if (!Register::isVirtualRegister(ConvReg
))
458 MachineInstr
*Splt
= MRI
->getVRegDef(ConvReg
);
459 return Splt
&& (Splt
->getOpcode() == PPC::LXVWSX
||
460 Splt
->getOpcode() == PPC::XXSPLTW
);
462 bool AlreadySplat
= (MyOpcode
== DefOpcode
) ||
463 (MyOpcode
== PPC::VSPLTB
&& DefOpcode
== PPC::VSPLTBs
) ||
464 (MyOpcode
== PPC::VSPLTH
&& DefOpcode
== PPC::VSPLTHs
) ||
465 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::XXSPLTWs
) ||
466 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::LXVWSX
) ||
467 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::MTVSRWS
)||
468 (MyOpcode
== PPC::XXSPLTW
&& isConvertOfSplat());
469 // If the instruction[s] that feed this splat have already splat
470 // the value, this splat is redundant.
472 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
473 LLVM_DEBUG(MI
.dump());
474 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
475 MI
.getOperand(0).getReg())
476 .add(MI
.getOperand(OpNo
));
480 // Splat fed by a shift. Usually when we align value to splat into
481 // vector element zero.
482 if (DefOpcode
== PPC::XXSLDWI
) {
483 Register ShiftRes
= DefMI
->getOperand(0).getReg();
484 Register ShiftOp1
= DefMI
->getOperand(1).getReg();
485 Register ShiftOp2
= DefMI
->getOperand(2).getReg();
486 unsigned ShiftImm
= DefMI
->getOperand(3).getImm();
487 unsigned SplatImm
= MI
.getOperand(2).getImm();
488 if (ShiftOp1
== ShiftOp2
) {
489 unsigned NewElem
= (SplatImm
+ ShiftImm
) & 0x3;
490 if (MRI
->hasOneNonDBGUse(ShiftRes
)) {
491 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
492 LLVM_DEBUG(DefMI
->dump());
496 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
497 << " to " << NewElem
<< " in instruction: ");
498 LLVM_DEBUG(MI
.dump());
499 MI
.getOperand(1).setReg(ShiftOp1
);
500 MI
.getOperand(2).setImm(NewElem
);
505 case PPC::XVCVDPSP
: {
506 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
508 TRI
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
509 if (!Register::isVirtualRegister(TrueReg
))
511 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
513 // This can occur when building a vector of single precision or integer
515 if (DefMI
&& DefMI
->getOpcode() == PPC::XXPERMDI
) {
517 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
519 TRI
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
520 if (!Register::isVirtualRegister(DefsReg1
) ||
521 !Register::isVirtualRegister(DefsReg2
))
523 MachineInstr
*P1
= MRI
->getVRegDef(DefsReg1
);
524 MachineInstr
*P2
= MRI
->getVRegDef(DefsReg2
);
529 // Remove the passed FRSP instruction if it only feeds this MI and
530 // set any uses of that FRSP (in this MI) to the source of the FRSP.
531 auto removeFRSPIfPossible
= [&](MachineInstr
*RoundInstr
) {
532 if (RoundInstr
->getOpcode() == PPC::FRSP
&&
533 MRI
->hasOneNonDBGUse(RoundInstr
->getOperand(0).getReg())) {
535 Register ConvReg1
= RoundInstr
->getOperand(1).getReg();
536 Register FRSPDefines
= RoundInstr
->getOperand(0).getReg();
537 MachineInstr
&Use
= *(MRI
->use_instr_begin(FRSPDefines
));
538 for (int i
= 0, e
= Use
.getNumOperands(); i
< e
; ++i
)
539 if (Use
.getOperand(i
).isReg() &&
540 Use
.getOperand(i
).getReg() == FRSPDefines
)
541 Use
.getOperand(i
).setReg(ConvReg1
);
542 LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
543 LLVM_DEBUG(RoundInstr
->dump());
544 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
545 LLVM_DEBUG(MI
.dump());
546 LLVM_DEBUG(dbgs() << "Through instruction:\n");
547 LLVM_DEBUG(DefMI
->dump());
548 RoundInstr
->eraseFromParent();
552 // If the input to XVCVDPSP is a vector that was built (even
553 // partially) out of FRSP's, the FRSP(s) can safely be removed
554 // since this instruction performs the same operation.
556 removeFRSPIfPossible(P1
);
557 removeFRSPIfPossible(P2
);
560 removeFRSPIfPossible(P1
);
566 case PPC::EXTSH8_32_64
: {
567 if (!EnableSExtElimination
) break;
568 Register NarrowReg
= MI
.getOperand(1).getReg();
569 if (!Register::isVirtualRegister(NarrowReg
))
572 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
573 // If we've used a zero-extending load that we will sign-extend,
574 // just do a sign-extending load.
575 if (SrcMI
->getOpcode() == PPC::LHZ
||
576 SrcMI
->getOpcode() == PPC::LHZX
) {
577 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
579 auto is64Bit
= [] (unsigned Opcode
) {
580 return Opcode
== PPC::EXTSH8
;
582 auto isXForm
= [] (unsigned Opcode
) {
583 return Opcode
== PPC::LHZX
;
585 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
587 if (isXForm
) return PPC::LHAX8
;
588 else return PPC::LHA8
;
590 if (isXForm
) return PPC::LHAX
;
591 else return PPC::LHA
;
593 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
594 isXForm(SrcMI
->getOpcode()));
595 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
596 LLVM_DEBUG(SrcMI
->dump());
597 LLVM_DEBUG(dbgs() << "and sign-extension\n");
598 LLVM_DEBUG(MI
.dump());
599 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
600 SrcMI
->setDesc(TII
->get(Opc
));
601 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
610 case PPC::EXTSW_32_64
: {
611 if (!EnableSExtElimination
) break;
612 Register NarrowReg
= MI
.getOperand(1).getReg();
613 if (!Register::isVirtualRegister(NarrowReg
))
616 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
617 // If we've used a zero-extending load that we will sign-extend,
618 // just do a sign-extending load.
619 if (SrcMI
->getOpcode() == PPC::LWZ
||
620 SrcMI
->getOpcode() == PPC::LWZX
) {
621 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
623 auto is64Bit
= [] (unsigned Opcode
) {
624 return Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSW_32_64
;
626 auto isXForm
= [] (unsigned Opcode
) {
627 return Opcode
== PPC::LWZX
;
629 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
631 if (isXForm
) return PPC::LWAX
;
632 else return PPC::LWA
;
634 if (isXForm
) return PPC::LWAX_32
;
635 else return PPC::LWA_32
;
637 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
638 isXForm(SrcMI
->getOpcode()));
639 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
640 LLVM_DEBUG(SrcMI
->dump());
641 LLVM_DEBUG(dbgs() << "and sign-extension\n");
642 LLVM_DEBUG(MI
.dump());
643 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
644 SrcMI
->setDesc(TII
->get(Opc
));
645 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
649 } else if (MI
.getOpcode() == PPC::EXTSW_32_64
&&
650 TII
->isSignExtended(*SrcMI
)) {
651 // We can eliminate EXTSW if the input is known to be already
653 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
655 MF
->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass
);
656 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::IMPLICIT_DEF
),
658 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::INSERT_SUBREG
),
659 MI
.getOperand(0).getReg())
662 .addImm(PPC::sub_32
);
670 // We can eliminate RLDICL (e.g. for zero-extension)
671 // if all bits to clear are already zero in the input.
672 // This code assume following code sequence for zero-extension.
673 // %6 = COPY %5:sub_32; (optional)
674 // %8 = IMPLICIT_DEF;
675 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
676 if (!EnableZExtElimination
) break;
678 if (MI
.getOperand(2).getImm() != 0)
681 Register SrcReg
= MI
.getOperand(1).getReg();
682 if (!Register::isVirtualRegister(SrcReg
))
685 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
686 if (!(SrcMI
&& SrcMI
->getOpcode() == PPC::INSERT_SUBREG
&&
687 SrcMI
->getOperand(0).isReg() && SrcMI
->getOperand(1).isReg()))
690 MachineInstr
*ImpDefMI
, *SubRegMI
;
691 ImpDefMI
= MRI
->getVRegDef(SrcMI
->getOperand(1).getReg());
692 SubRegMI
= MRI
->getVRegDef(SrcMI
->getOperand(2).getReg());
693 if (ImpDefMI
->getOpcode() != PPC::IMPLICIT_DEF
) break;
696 if (SubRegMI
->getOpcode() == PPC::COPY
) {
697 Register CopyReg
= SubRegMI
->getOperand(1).getReg();
698 if (Register::isVirtualRegister(CopyReg
))
699 SrcMI
= MRI
->getVRegDef(CopyReg
);
702 unsigned KnownZeroCount
= getKnownLeadingZeroCount(SrcMI
, TII
);
703 if (MI
.getOperand(3).getImm() <= KnownZeroCount
) {
704 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
705 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
706 MI
.getOperand(0).getReg())
715 // TODO: Any instruction that has an immediate form fed only by a PHI
716 // whose operands are all load immediate can be folded away. We currently
717 // do this for ADD instructions, but should expand it to arithmetic and
718 // binary instructions with immediate forms in the future.
721 auto isSingleUsePHI
= [&](MachineOperand
*PhiOp
) {
722 assert(PhiOp
&& "Invalid Operand!");
723 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
725 return DefPhiMI
&& (DefPhiMI
->getOpcode() == PPC::PHI
) &&
726 MRI
->hasOneNonDBGUse(DefPhiMI
->getOperand(0).getReg());
729 auto dominatesAllSingleUseLIs
= [&](MachineOperand
*DominatorOp
,
730 MachineOperand
*PhiOp
) {
731 assert(PhiOp
&& "Invalid Operand!");
732 assert(DominatorOp
&& "Invalid Operand!");
733 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
734 MachineInstr
*DefDomMI
= getVRegDefOrNull(DominatorOp
, MRI
);
736 // Note: the vregs only show up at odd indices position of PHI Node,
737 // the even indices position save the BB info.
738 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
740 getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
742 (LiMI
->getOpcode() != PPC::LI
&& LiMI
->getOpcode() != PPC::LI8
)
743 || !MRI
->hasOneNonDBGUse(LiMI
->getOperand(0).getReg()) ||
744 !MDT
->dominates(DefDomMI
, LiMI
))
751 MachineOperand Op1
= MI
.getOperand(1);
752 MachineOperand Op2
= MI
.getOperand(2);
753 if (isSingleUsePHI(&Op2
) && dominatesAllSingleUseLIs(&Op1
, &Op2
))
755 else if (!isSingleUsePHI(&Op1
) || !dominatesAllSingleUseLIs(&Op2
, &Op1
))
756 break; // We don't have an ADD fed by LI's that can be transformed
758 // Now we know that Op1 is the PHI node and Op2 is the dominator
759 Register DominatorReg
= Op2
.getReg();
761 const TargetRegisterClass
*TRC
= MI
.getOpcode() == PPC::ADD8
762 ? &PPC::G8RC_and_G8RC_NOX0RegClass
763 : &PPC::GPRC_and_GPRC_NOR0RegClass
;
764 MRI
->setRegClass(DominatorReg
, TRC
);
766 // replace LIs with ADDIs
767 MachineInstr
*DefPhiMI
= getVRegDefOrNull(&Op1
, MRI
);
768 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
769 MachineInstr
*LiMI
= getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
770 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
771 LLVM_DEBUG(LiMI
->dump());
773 // There could be repeated registers in the PHI, e.g: %1 =
774 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
775 // already replaced the def instruction, skip.
776 if (LiMI
->getOpcode() == PPC::ADDI
|| LiMI
->getOpcode() == PPC::ADDI8
)
779 assert((LiMI
->getOpcode() == PPC::LI
||
780 LiMI
->getOpcode() == PPC::LI8
) &&
782 auto LiImm
= LiMI
->getOperand(1).getImm(); // save the imm of LI
783 LiMI
->RemoveOperand(1); // remove the imm of LI
784 LiMI
->setDesc(TII
->get(LiMI
->getOpcode() == PPC::LI
? PPC::ADDI
786 MachineInstrBuilder(*LiMI
->getParent()->getParent(), *LiMI
)
787 .addReg(DominatorReg
)
788 .addImm(LiImm
); // restore the imm of LI
789 LLVM_DEBUG(LiMI
->dump());
792 // Replace ADD with COPY
793 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
794 LLVM_DEBUG(MI
.dump());
795 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
796 MI
.getOperand(0).getReg())
804 Simplified
|= emitRLDICWhenLoweringJumpTables(MI
) ||
805 combineSEXTAndSHL(MI
, ToErase
);
811 // If the last instruction was marked for elimination,
814 ToErase
->eraseFromParent();
819 // Eliminate all the TOC save instructions which are redundant.
820 Simplified
|= eliminateRedundantTOCSaves(TOCSaves
);
821 PPCFunctionInfo
*FI
= MF
->getInfo
<PPCFunctionInfo
>();
822 if (FI
->mustSaveTOC())
823 NumTOCSavesInPrologue
++;
825 // We try to eliminate redundant compare instruction.
826 Simplified
|= eliminateRedundantCompare();
831 // helper functions for eliminateRedundantCompare
832 static bool isEqOrNe(MachineInstr
*BI
) {
833 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
834 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
835 return (PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
);
838 static bool isSupportedCmpOp(unsigned opCode
) {
839 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
840 opCode
== PPC::CMPLW
|| opCode
== PPC::CMPW
||
841 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
||
842 opCode
== PPC::CMPLWI
|| opCode
== PPC::CMPWI
);
845 static bool is64bitCmpOp(unsigned opCode
) {
846 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
847 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
);
850 static bool isSignedCmpOp(unsigned opCode
) {
851 return (opCode
== PPC::CMPD
|| opCode
== PPC::CMPW
||
852 opCode
== PPC::CMPDI
|| opCode
== PPC::CMPWI
);
855 static unsigned getSignedCmpOpCode(unsigned opCode
) {
856 if (opCode
== PPC::CMPLD
) return PPC::CMPD
;
857 if (opCode
== PPC::CMPLW
) return PPC::CMPW
;
858 if (opCode
== PPC::CMPLDI
) return PPC::CMPDI
;
859 if (opCode
== PPC::CMPLWI
) return PPC::CMPWI
;
863 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
864 // (LT x) to (LE x-1)
865 static unsigned getPredicateToDecImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
866 uint64_t Imm
= CMPI
->getOperand(2).getImm();
867 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
868 if ((!SignedCmp
&& Imm
== 0) || (SignedCmp
&& Imm
== 0x8000))
871 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
872 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
873 unsigned PredHint
= PPC::getPredicateHint(Pred
);
874 if (PredCond
== PPC::PRED_GE
)
875 return PPC::getPredicate(PPC::PRED_GT
, PredHint
);
876 if (PredCond
== PPC::PRED_LT
)
877 return PPC::getPredicate(PPC::PRED_LE
, PredHint
);
882 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
883 // (LE x) to (LT x+1)
884 static unsigned getPredicateToIncImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
885 uint64_t Imm
= CMPI
->getOperand(2).getImm();
886 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
887 if ((!SignedCmp
&& Imm
== 0xFFFF) || (SignedCmp
&& Imm
== 0x7FFF))
890 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
891 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
892 unsigned PredHint
= PPC::getPredicateHint(Pred
);
893 if (PredCond
== PPC::PRED_GT
)
894 return PPC::getPredicate(PPC::PRED_GE
, PredHint
);
895 if (PredCond
== PPC::PRED_LE
)
896 return PPC::getPredicate(PPC::PRED_LT
, PredHint
);
901 // This takes a Phi node and returns a register value for the specified BB.
902 static unsigned getIncomingRegForBlock(MachineInstr
*Phi
,
903 MachineBasicBlock
*MBB
) {
904 for (unsigned I
= 2, E
= Phi
->getNumOperands() + 1; I
!= E
; I
+= 2) {
905 MachineOperand
&MO
= Phi
->getOperand(I
);
906 if (MO
.getMBB() == MBB
)
907 return Phi
->getOperand(I
-1).getReg();
909 llvm_unreachable("invalid src basic block for this Phi node\n");
913 // This function tracks the source of the register through register copy.
914 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
915 // assuming that the control comes from BB1 into BB2.
916 static unsigned getSrcVReg(unsigned Reg
, MachineBasicBlock
*BB1
,
917 MachineBasicBlock
*BB2
, MachineRegisterInfo
*MRI
) {
918 unsigned SrcReg
= Reg
;
920 unsigned NextReg
= SrcReg
;
921 MachineInstr
*Inst
= MRI
->getVRegDef(SrcReg
);
922 if (BB1
&& Inst
->getOpcode() == PPC::PHI
&& Inst
->getParent() == BB2
) {
923 NextReg
= getIncomingRegForBlock(Inst
, BB1
);
924 // We track through PHI only once to avoid infinite loop.
927 else if (Inst
->isFullCopy())
928 NextReg
= Inst
->getOperand(1).getReg();
929 if (NextReg
== SrcReg
|| !Register::isVirtualRegister(NextReg
))
936 static bool eligibleForCompareElimination(MachineBasicBlock
&MBB
,
937 MachineBasicBlock
*&PredMBB
,
938 MachineBasicBlock
*&MBBtoMoveCmp
,
939 MachineRegisterInfo
*MRI
) {
941 auto isEligibleBB
= [&](MachineBasicBlock
&BB
) {
942 auto BII
= BB
.getFirstInstrTerminator();
943 // We optimize BBs ending with a conditional branch.
944 // We check only for BCC here, not BCCLR, because BCCLR
945 // will be formed only later in the pipeline.
946 if (BB
.succ_size() == 2 &&
947 BII
!= BB
.instr_end() &&
948 (*BII
).getOpcode() == PPC::BCC
&&
949 (*BII
).getOperand(1).isReg()) {
950 // We optimize only if the condition code is used only by one BCC.
951 Register CndReg
= (*BII
).getOperand(1).getReg();
952 if (!Register::isVirtualRegister(CndReg
) || !MRI
->hasOneNonDBGUse(CndReg
))
955 MachineInstr
*CMPI
= MRI
->getVRegDef(CndReg
);
956 // We assume compare and branch are in the same BB for ease of analysis.
957 if (CMPI
->getParent() != &BB
)
960 // We skip this BB if a physical register is used in comparison.
961 for (MachineOperand
&MO
: CMPI
->operands())
962 if (MO
.isReg() && !Register::isVirtualRegister(MO
.getReg()))
970 // If this BB has more than one successor, we can create a new BB and
971 // move the compare instruction in the new BB.
972 // So far, we do not move compare instruction to a BB having multiple
973 // successors to avoid potentially increasing code size.
974 auto isEligibleForMoveCmp
= [](MachineBasicBlock
&BB
) {
975 return BB
.succ_size() == 1;
978 if (!isEligibleBB(MBB
))
981 unsigned NumPredBBs
= MBB
.pred_size();
982 if (NumPredBBs
== 1) {
983 MachineBasicBlock
*TmpMBB
= *MBB
.pred_begin();
984 if (isEligibleBB(*TmpMBB
)) {
986 MBBtoMoveCmp
= nullptr;
990 else if (NumPredBBs
== 2) {
991 // We check for partially redundant case.
992 // So far, we support cases with only two predecessors
993 // to avoid increasing the number of instructions.
994 MachineBasicBlock::pred_iterator PI
= MBB
.pred_begin();
995 MachineBasicBlock
*Pred1MBB
= *PI
;
996 MachineBasicBlock
*Pred2MBB
= *(PI
+1);
998 if (isEligibleBB(*Pred1MBB
) && isEligibleForMoveCmp(*Pred2MBB
)) {
999 // We assume Pred1MBB is the BB containing the compare to be merged and
1000 // Pred2MBB is the BB to which we will append a compare instruction.
1001 // Hence we can proceed as is.
1003 else if (isEligibleBB(*Pred2MBB
) && isEligibleForMoveCmp(*Pred1MBB
)) {
1004 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1005 std::swap(Pred1MBB
, Pred2MBB
);
1009 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1010 // We cannot move the compare instruction if operands are not available
1011 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1012 MachineInstr
*BI
= &*MBB
.getFirstInstrTerminator();
1013 MachineInstr
*CMPI
= MRI
->getVRegDef(BI
->getOperand(1).getReg());
1014 for (int I
= 1; I
<= 2; I
++)
1015 if (CMPI
->getOperand(I
).isReg()) {
1016 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI
->getOperand(I
).getReg());
1017 if (Inst
->getParent() == &MBB
&& Inst
->getOpcode() != PPC::PHI
)
1022 MBBtoMoveCmp
= Pred2MBB
;
1029 // This function will iterate over the input map containing a pair of TOC save
1030 // instruction and a flag. The flag will be set to false if the TOC save is
1031 // proven redundant. This function will erase from the basic block all the TOC
1032 // saves marked as redundant.
1033 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1034 std::map
<MachineInstr
*, bool> &TOCSaves
) {
1035 bool Simplified
= false;
1037 for (auto TOCSave
: TOCSaves
) {
1038 if (!TOCSave
.second
) {
1039 TOCSave
.first
->eraseFromParent();
1053 // If multiple conditional branches are executed based on the (essentially)
1054 // same comparison, we merge compare instructions into one and make multiple
1055 // conditional branches on this comparison.
1057 // if (a == 0) { ... }
1058 // else if (a < 0) { ... }
1059 // can be executed by one compare and two conditional branches instead of
1060 // two pairs of a compare and a conditional branch.
1062 // This method merges two compare instructions in two MBBs and modifies the
1063 // compare and conditional branch instructions if needed.
1064 // For the above example, the input for this pass looks like:
1069 // So, before merging two compares, we need to modify these instructions as
1070 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1072 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1075 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1076 bool Simplified
= false;
1078 for (MachineBasicBlock
&MBB2
: *MF
) {
1079 MachineBasicBlock
*MBB1
= nullptr, *MBBtoMoveCmp
= nullptr;
1081 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1082 // as an optimization target if
1083 // - both MBBs end with a conditional branch,
1084 // - MBB1 is the only predecessor of MBB2, and
1085 // - compare does not take a physical register as a operand in both MBBs.
1086 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1088 // As partially redundant case, we additionally handle if MBB2 has one
1089 // additional predecessor, which has only one successor (MBB2).
1090 // In this case, we move the compare instruction originally in MBB2 into
1091 // MBBtoMoveCmp. This partially redundant case is typically appear by
1092 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1094 // Overview of CFG of related basic blocks
1095 // Fully redundant case Partially redundant case
1096 // -------- ---------------- --------
1097 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1098 // -------- ---------------- --------
1099 // | \ (w/ 1 succ) \ | \
1102 // -------- --------
1103 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1104 // -------- and 2 succ) -------- and 2 succ)
1108 if (!eligibleForCompareElimination(MBB2
, MBB1
, MBBtoMoveCmp
, MRI
))
1111 MachineInstr
*BI1
= &*MBB1
->getFirstInstrTerminator();
1112 MachineInstr
*CMPI1
= MRI
->getVRegDef(BI1
->getOperand(1).getReg());
1114 MachineInstr
*BI2
= &*MBB2
.getFirstInstrTerminator();
1115 MachineInstr
*CMPI2
= MRI
->getVRegDef(BI2
->getOperand(1).getReg());
1116 bool IsPartiallyRedundant
= (MBBtoMoveCmp
!= nullptr);
1118 // We cannot optimize an unsupported compare opcode or
1119 // a mix of 32-bit and 64-bit comaprisons
1120 if (!isSupportedCmpOp(CMPI1
->getOpcode()) ||
1121 !isSupportedCmpOp(CMPI2
->getOpcode()) ||
1122 is64bitCmpOp(CMPI1
->getOpcode()) != is64bitCmpOp(CMPI2
->getOpcode()))
1125 unsigned NewOpCode
= 0;
1126 unsigned NewPredicate1
= 0, NewPredicate2
= 0;
1127 int16_t Imm1
= 0, NewImm1
= 0, Imm2
= 0, NewImm2
= 0;
1128 bool SwapOperands
= false;
1130 if (CMPI1
->getOpcode() != CMPI2
->getOpcode()) {
1131 // Typically, unsigned comparison is used for equality check, but
1132 // we replace it with a signed comparison if the comparison
1133 // to be merged is a signed comparison.
1134 // In other cases of opcode mismatch, we cannot optimize this.
1136 // We cannot change opcode when comparing against an immediate
1137 // if the most significant bit of the immediate is one
1138 // due to the difference in sign extension.
1139 auto CmpAgainstImmWithSignBit
= [](MachineInstr
*I
) {
1140 if (!I
->getOperand(2).isImm())
1142 int16_t Imm
= (int16_t)I
->getOperand(2).getImm();
1146 if (isEqOrNe(BI2
) && !CmpAgainstImmWithSignBit(CMPI2
) &&
1147 CMPI1
->getOpcode() == getSignedCmpOpCode(CMPI2
->getOpcode()))
1148 NewOpCode
= CMPI1
->getOpcode();
1149 else if (isEqOrNe(BI1
) && !CmpAgainstImmWithSignBit(CMPI1
) &&
1150 getSignedCmpOpCode(CMPI1
->getOpcode()) == CMPI2
->getOpcode())
1151 NewOpCode
= CMPI2
->getOpcode();
1155 if (CMPI1
->getOperand(2).isReg() && CMPI2
->getOperand(2).isReg()) {
1156 // In case of comparisons between two registers, these two registers
1157 // must be same to merge two comparisons.
1158 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1159 nullptr, nullptr, MRI
);
1160 unsigned Cmp1Operand2
= getSrcVReg(CMPI1
->getOperand(2).getReg(),
1161 nullptr, nullptr, MRI
);
1162 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1164 unsigned Cmp2Operand2
= getSrcVReg(CMPI2
->getOperand(2).getReg(),
1167 if (Cmp1Operand1
== Cmp2Operand1
&& Cmp1Operand2
== Cmp2Operand2
) {
1168 // Same pair of registers in the same order; ready to merge as is.
1170 else if (Cmp1Operand1
== Cmp2Operand2
&& Cmp1Operand2
== Cmp2Operand1
) {
1171 // Same pair of registers in different order.
1172 // We reverse the predicate to merge compare instructions.
1173 PPC::Predicate Pred
= (PPC::Predicate
)BI2
->getOperand(0).getImm();
1174 NewPredicate2
= (unsigned)PPC::getSwappedPredicate(Pred
);
1175 // In case of partial redundancy, we need to swap operands
1176 // in another compare instruction.
1177 SwapOperands
= true;
1181 else if (CMPI1
->getOperand(2).isImm() && CMPI2
->getOperand(2).isImm()) {
1182 // In case of comparisons between a register and an immediate,
1183 // the operand register must be same for two compare instructions.
1184 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1185 nullptr, nullptr, MRI
);
1186 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1188 if (Cmp1Operand1
!= Cmp2Operand1
)
1191 NewImm1
= Imm1
= (int16_t)CMPI1
->getOperand(2).getImm();
1192 NewImm2
= Imm2
= (int16_t)CMPI2
->getOperand(2).getImm();
1194 // If immediate are not same, we try to adjust by changing predicate;
1195 // e.g. GT imm means GE (imm+1).
1196 if (Imm1
!= Imm2
&& (!isEqOrNe(BI2
) || !isEqOrNe(BI1
))) {
1197 int Diff
= Imm1
- Imm2
;
1198 if (Diff
< -2 || Diff
> 2)
1201 unsigned PredToInc1
= getPredicateToIncImm(BI1
, CMPI1
);
1202 unsigned PredToDec1
= getPredicateToDecImm(BI1
, CMPI1
);
1203 unsigned PredToInc2
= getPredicateToIncImm(BI2
, CMPI2
);
1204 unsigned PredToDec2
= getPredicateToDecImm(BI2
, CMPI2
);
1206 if (PredToInc2
&& PredToDec1
) {
1207 NewPredicate2
= PredToInc2
;
1208 NewPredicate1
= PredToDec1
;
1213 else if (Diff
== 1) {
1216 NewPredicate2
= PredToInc2
;
1218 else if (PredToDec1
) {
1220 NewPredicate1
= PredToDec1
;
1223 else if (Diff
== -1) {
1226 NewPredicate2
= PredToDec2
;
1228 else if (PredToInc1
) {
1230 NewPredicate1
= PredToInc1
;
1233 else if (Diff
== -2) {
1234 if (PredToDec2
&& PredToInc1
) {
1235 NewPredicate2
= PredToDec2
;
1236 NewPredicate1
= PredToInc1
;
1243 // We cannot merge two compares if the immediates are not same.
1244 if (NewImm2
!= NewImm1
)
1248 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1249 LLVM_DEBUG(CMPI1
->dump());
1250 LLVM_DEBUG(BI1
->dump());
1251 LLVM_DEBUG(CMPI2
->dump());
1252 LLVM_DEBUG(BI2
->dump());
1254 // We adjust opcode, predicates and immediate as we determined above.
1255 if (NewOpCode
!= 0 && NewOpCode
!= CMPI1
->getOpcode()) {
1256 CMPI1
->setDesc(TII
->get(NewOpCode
));
1258 if (NewPredicate1
) {
1259 BI1
->getOperand(0).setImm(NewPredicate1
);
1261 if (NewPredicate2
) {
1262 BI2
->getOperand(0).setImm(NewPredicate2
);
1264 if (NewImm1
!= Imm1
) {
1265 CMPI1
->getOperand(2).setImm(NewImm1
);
1268 if (IsPartiallyRedundant
) {
1269 // We touch up the compare instruction in MBB2 and move it to
1270 // a previous BB to handle partially redundant case.
1272 Register Op1
= CMPI2
->getOperand(1).getReg();
1273 Register Op2
= CMPI2
->getOperand(2).getReg();
1274 CMPI2
->getOperand(1).setReg(Op2
);
1275 CMPI2
->getOperand(2).setReg(Op1
);
1277 if (NewImm2
!= Imm2
)
1278 CMPI2
->getOperand(2).setImm(NewImm2
);
1280 for (int I
= 1; I
<= 2; I
++) {
1281 if (CMPI2
->getOperand(I
).isReg()) {
1282 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI2
->getOperand(I
).getReg());
1283 if (Inst
->getParent() != &MBB2
)
1286 assert(Inst
->getOpcode() == PPC::PHI
&&
1287 "We cannot support if an operand comes from this BB.");
1288 unsigned SrcReg
= getIncomingRegForBlock(Inst
, MBBtoMoveCmp
);
1289 CMPI2
->getOperand(I
).setReg(SrcReg
);
1292 auto I
= MachineBasicBlock::iterator(MBBtoMoveCmp
->getFirstTerminator());
1293 MBBtoMoveCmp
->splice(I
, &MBB2
, MachineBasicBlock::iterator(CMPI2
));
1295 DebugLoc DL
= CMPI2
->getDebugLoc();
1296 Register NewVReg
= MRI
->createVirtualRegister(&PPC::CRRCRegClass
);
1297 BuildMI(MBB2
, MBB2
.begin(), DL
,
1298 TII
->get(PPC::PHI
), NewVReg
)
1299 .addReg(BI1
->getOperand(1).getReg()).addMBB(MBB1
)
1300 .addReg(BI2
->getOperand(1).getReg()).addMBB(MBBtoMoveCmp
);
1301 BI2
->getOperand(1).setReg(NewVReg
);
1304 // We finally eliminate compare instruction in MBB2.
1305 BI2
->getOperand(1).setReg(BI1
->getOperand(1).getReg());
1306 CMPI2
->eraseFromParent();
1308 BI2
->getOperand(1).setIsKill(true);
1309 BI1
->getOperand(1).setIsKill(false);
1311 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1312 LLVM_DEBUG(CMPI1
->dump());
1313 LLVM_DEBUG(BI1
->dump());
1314 LLVM_DEBUG(BI2
->dump());
1315 if (IsPartiallyRedundant
) {
1316 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1317 << printMBBReference(*MBBtoMoveCmp
)
1318 << " to handle partial redundancy.\n");
1319 LLVM_DEBUG(CMPI2
->dump());
1328 // We miss the opportunity to emit an RLDIC when lowering jump tables
1329 // since ISEL sees only a single basic block. When selecting, the clear
1330 // and shift left will be in different blocks.
1331 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr
&MI
) {
1332 if (MI
.getOpcode() != PPC::RLDICR
)
1335 Register SrcReg
= MI
.getOperand(1).getReg();
1336 if (!Register::isVirtualRegister(SrcReg
))
1339 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
1340 if (SrcMI
->getOpcode() != PPC::RLDICL
)
1343 MachineOperand MOpSHSrc
= SrcMI
->getOperand(2);
1344 MachineOperand MOpMBSrc
= SrcMI
->getOperand(3);
1345 MachineOperand MOpSHMI
= MI
.getOperand(2);
1346 MachineOperand MOpMEMI
= MI
.getOperand(3);
1347 if (!(MOpSHSrc
.isImm() && MOpMBSrc
.isImm() && MOpSHMI
.isImm() &&
1351 uint64_t SHSrc
= MOpSHSrc
.getImm();
1352 uint64_t MBSrc
= MOpMBSrc
.getImm();
1353 uint64_t SHMI
= MOpSHMI
.getImm();
1354 uint64_t MEMI
= MOpMEMI
.getImm();
1355 uint64_t NewSH
= SHSrc
+ SHMI
;
1356 uint64_t NewMB
= MBSrc
- SHMI
;
1357 if (NewMB
> 63 || NewSH
> 63)
1360 // The bits cleared with RLDICL are [0, MBSrc).
1361 // The bits cleared with RLDICR are (MEMI, 63].
1362 // After the sequence, the bits cleared are:
1363 // [0, MBSrc-SHMI) and (MEMI, 63).
1365 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1366 if ((63 - NewSH
) != MEMI
)
1369 LLVM_DEBUG(dbgs() << "Converting pair: ");
1370 LLVM_DEBUG(SrcMI
->dump());
1371 LLVM_DEBUG(MI
.dump());
1373 MI
.setDesc(TII
->get(PPC::RLDIC
));
1374 MI
.getOperand(1).setReg(SrcMI
->getOperand(1).getReg());
1375 MI
.getOperand(2).setImm(NewSH
);
1376 MI
.getOperand(3).setImm(NewMB
);
1378 LLVM_DEBUG(dbgs() << "To: ");
1379 LLVM_DEBUG(MI
.dump());
1380 NumRotatesCollapsed
++;
1384 // For case in LLVM IR
1386 // %iconv = sext i32 %index to i64
1387 // br i1 undef label %true, label %false
1389 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1391 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1392 // different BBs when conducting instruction selection. We can do a peephole
1393 // optimization to combine these two instructions into extswsli after
1394 // instruction selection.
1395 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr
&MI
,
1396 MachineInstr
*&ToErase
) {
1397 if (MI
.getOpcode() != PPC::RLDICR
)
1400 if (!MF
->getSubtarget
<PPCSubtarget
>().isISA3_0())
1403 assert(MI
.getNumOperands() == 4 && "RLDICR should have 4 operands");
1405 MachineOperand MOpSHMI
= MI
.getOperand(2);
1406 MachineOperand MOpMEMI
= MI
.getOperand(3);
1407 if (!(MOpSHMI
.isImm() && MOpMEMI
.isImm()))
1410 uint64_t SHMI
= MOpSHMI
.getImm();
1411 uint64_t MEMI
= MOpMEMI
.getImm();
1412 if (SHMI
+ MEMI
!= 63)
1415 Register SrcReg
= MI
.getOperand(1).getReg();
1416 if (!Register::isVirtualRegister(SrcReg
))
1419 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
1420 if (SrcMI
->getOpcode() != PPC::EXTSW
&&
1421 SrcMI
->getOpcode() != PPC::EXTSW_32_64
)
1424 // If the register defined by extsw has more than one use, combination is not
1426 if (!MRI
->hasOneNonDBGUse(SrcReg
))
1429 assert(SrcMI
->getNumOperands() == 2 && "EXTSW should have 2 operands");
1430 assert(SrcMI
->getOperand(1).isReg() &&
1431 "EXTSW's second operand should be a register");
1432 if (!Register::isVirtualRegister(SrcMI
->getOperand(1).getReg()))
1435 LLVM_DEBUG(dbgs() << "Combining pair: ");
1436 LLVM_DEBUG(SrcMI
->dump());
1437 LLVM_DEBUG(MI
.dump());
1439 MachineInstr
*NewInstr
=
1440 BuildMI(*MI
.getParent(), &MI
, MI
.getDebugLoc(),
1441 SrcMI
->getOpcode() == PPC::EXTSW
? TII
->get(PPC::EXTSWSLI
)
1442 : TII
->get(PPC::EXTSWSLI_32_64
),
1443 MI
.getOperand(0).getReg())
1444 .add(SrcMI
->getOperand(1))
1448 LLVM_DEBUG(dbgs() << "TO: ");
1449 LLVM_DEBUG(NewInstr
->dump());
1450 ++NumEXTSWAndSLDICombined
;
1452 // SrcMI, which is extsw, is of no use now, erase it.
1453 SrcMI
->eraseFromParent();
1457 } // end default namespace
1459 INITIALIZE_PASS_BEGIN(PPCMIPeephole
, DEBUG_TYPE
,
1460 "PowerPC MI Peephole Optimization", false, false)
1461 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
1462 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
1463 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
1464 INITIALIZE_PASS_END(PPCMIPeephole
, DEBUG_TYPE
,
1465 "PowerPC MI Peephole Optimization", false, false)
1467 char PPCMIPeephole::ID
= 0;
1469 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }