1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a pass that removes irreducible control flow.
11 /// Irreducible control flow means multiple-entry loops, which this pass
12 /// transforms to have a single entry.
14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but
15 /// it linearizes control flow, turning diamonds into two triangles, which is
16 /// both unnecessary and undesirable for WebAssembly.
18 /// The big picture: We recursively process each "region", defined as a group
19 /// of blocks with a single entry and no branches back to that entry. A region
20 /// may be the entire function body, or the inner part of a loop, i.e., the
21 /// loop's body without branches back to the loop entry. In each region we fix
22 /// up multi-entry loops by adding a new block that can dispatch to each of the
23 /// loop entries, based on the value of a label "helper" variable, and we
24 /// replace direct branches to the entries with assignments to the label
25 /// variable and a branch to the dispatch block. Then the dispatch block is the
26 /// single entry in the loop containing the previous multiple entries. After
27 /// ensuring all the loops in a region are reducible, we recurse into them. The
28 /// total time complexity of this pass is:
30 /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
31 /// NumLoops * NumLoops)
33 /// This pass is similar to what the Relooper [1] does. Both identify looping
34 /// code that requires multiple entries, and resolve it in a similar way (in
35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
36 /// also that like the Relooper, we implement a "minimal" intervention: we only
37 /// use the "label" helper for the blocks we absolutely must and no others. We
38 /// also prioritize code size and do not duplicate code in order to resolve
39 /// irreducibility. The graph algorithms for finding loops and entries and so
40 /// forth are also similar to the Relooper. The main differences between this
41 /// pass and the Relooper are:
43 /// * We just care about irreducibility, so we just look at loops.
44 /// * The Relooper emits structured control flow (with ifs etc.), while we
47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
48 /// Proceedings of the ACM international conference companion on Object oriented
49 /// programming systems languages and applications companion (SPLASH '11). ACM,
50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
51 /// http://doi.acm.org/10.1145/2048147.2048224
53 //===----------------------------------------------------------------------===//
55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
56 #include "WebAssembly.h"
57 #include "WebAssemblySubtarget.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
61 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
65 using BlockVector
= SmallVector
<MachineBasicBlock
*, 4>;
66 using BlockSet
= SmallPtrSet
<MachineBasicBlock
*, 4>;
68 // Calculates reachability in a region. Ignores branches to blocks outside of
69 // the region, and ignores branches to the region entry (for the case where
70 // the region is the inner part of a loop).
71 class ReachabilityGraph
{
73 ReachabilityGraph(MachineBasicBlock
*Entry
, const BlockSet
&Blocks
)
74 : Entry(Entry
), Blocks(Blocks
) {
76 // The region must have a single entry.
77 for (auto *MBB
: Blocks
) {
79 for (auto *Pred
: MBB
->predecessors()) {
80 assert(inRegion(Pred
));
88 bool canReach(MachineBasicBlock
*From
, MachineBasicBlock
*To
) const {
89 assert(inRegion(From
) && inRegion(To
));
90 auto I
= Reachable
.find(From
);
91 if (I
== Reachable
.end())
93 return I
->second
.count(To
);
96 // "Loopers" are blocks that are in a loop. We detect these by finding blocks
97 // that can reach themselves.
98 const BlockSet
&getLoopers() const { return Loopers
; }
100 // Get all blocks that are loop entries.
101 const BlockSet
&getLoopEntries() const { return LoopEntries
; }
103 // Get all blocks that enter a particular loop from outside.
104 const BlockSet
&getLoopEnterers(MachineBasicBlock
*LoopEntry
) const {
105 assert(inRegion(LoopEntry
));
106 auto I
= LoopEnterers
.find(LoopEntry
);
107 assert(I
!= LoopEnterers
.end());
112 MachineBasicBlock
*Entry
;
113 const BlockSet
&Blocks
;
115 BlockSet Loopers
, LoopEntries
;
116 DenseMap
<MachineBasicBlock
*, BlockSet
> LoopEnterers
;
118 bool inRegion(MachineBasicBlock
*MBB
) const { return Blocks
.count(MBB
); }
120 // Maps a block to all the other blocks it can reach.
121 DenseMap
<MachineBasicBlock
*, BlockSet
> Reachable
;
124 // Reachability computation work list. Contains pairs of recent additions
125 // (A, B) where we just added a link A => B.
126 using BlockPair
= std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>;
127 SmallVector
<BlockPair
, 4> WorkList
;
129 // Add all relevant direct branches.
130 for (auto *MBB
: Blocks
) {
131 for (auto *Succ
: MBB
->successors()) {
132 if (Succ
!= Entry
&& inRegion(Succ
)) {
133 Reachable
[MBB
].insert(Succ
);
134 WorkList
.emplace_back(MBB
, Succ
);
139 while (!WorkList
.empty()) {
140 MachineBasicBlock
*MBB
, *Succ
;
141 std::tie(MBB
, Succ
) = WorkList
.pop_back_val();
142 assert(inRegion(MBB
) && Succ
!= Entry
&& inRegion(Succ
));
144 // We recently added MBB => Succ, and that means we may have enabled
145 // Pred => MBB => Succ.
146 for (auto *Pred
: MBB
->predecessors()) {
147 if (Reachable
[Pred
].insert(Succ
).second
) {
148 WorkList
.emplace_back(Pred
, Succ
);
154 // Blocks that can return to themselves are in a loop.
155 for (auto *MBB
: Blocks
) {
156 if (canReach(MBB
, MBB
)) {
160 assert(!Loopers
.count(Entry
));
162 // Find the loop entries - loopers reachable from blocks not in that loop -
163 // and those outside blocks that reach them, the "loop enterers".
164 for (auto *Looper
: Loopers
) {
165 for (auto *Pred
: Looper
->predecessors()) {
166 // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
167 // otherwise, it is a block that enters into the loop.
168 if (!canReach(Looper
, Pred
)) {
169 LoopEntries
.insert(Looper
);
170 LoopEnterers
[Looper
].insert(Pred
);
177 // Finds the blocks in a single-entry loop, given the loop entry and the
178 // list of blocks that enter the loop.
181 LoopBlocks(MachineBasicBlock
*Entry
, const BlockSet
&Enterers
)
182 : Entry(Entry
), Enterers(Enterers
) {
186 BlockSet
&getBlocks() { return Blocks
; }
189 MachineBasicBlock
*Entry
;
190 const BlockSet
&Enterers
;
195 // Going backwards from the loop entry, if we ignore the blocks entering
196 // from outside, we will traverse all the blocks in the loop.
197 BlockVector WorkList
;
198 BlockSet AddedToWorkList
;
199 Blocks
.insert(Entry
);
200 for (auto *Pred
: Entry
->predecessors()) {
201 if (!Enterers
.count(Pred
)) {
202 WorkList
.push_back(Pred
);
203 AddedToWorkList
.insert(Pred
);
207 while (!WorkList
.empty()) {
208 auto *MBB
= WorkList
.pop_back_val();
209 assert(!Enterers
.count(MBB
));
210 if (Blocks
.insert(MBB
).second
) {
211 for (auto *Pred
: MBB
->predecessors()) {
212 if (!AddedToWorkList
.count(Pred
)) {
213 WorkList
.push_back(Pred
);
214 AddedToWorkList
.insert(Pred
);
222 class WebAssemblyFixIrreducibleControlFlow final
: public MachineFunctionPass
{
223 StringRef
getPassName() const override
{
224 return "WebAssembly Fix Irreducible Control Flow";
227 bool runOnMachineFunction(MachineFunction
&MF
) override
;
229 bool processRegion(MachineBasicBlock
*Entry
, BlockSet
&Blocks
,
230 MachineFunction
&MF
);
232 void makeSingleEntryLoop(BlockSet
&Entries
, BlockSet
&Blocks
,
233 MachineFunction
&MF
, const ReachabilityGraph
&Graph
);
236 static char ID
; // Pass identification, replacement for typeid
237 WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID
) {}
240 bool WebAssemblyFixIrreducibleControlFlow::processRegion(
241 MachineBasicBlock
*Entry
, BlockSet
&Blocks
, MachineFunction
&MF
) {
242 bool Changed
= false;
244 // Remove irreducibility before processing child loops, which may take
245 // multiple iterations.
247 ReachabilityGraph
Graph(Entry
, Blocks
);
249 bool FoundIrreducibility
= false;
251 for (auto *LoopEntry
: Graph
.getLoopEntries()) {
252 // Find mutual entries - all entries which can reach this one, and
253 // are reached by it (that always includes LoopEntry itself). All mutual
254 // entries must be in the same loop, so if we have more than one, then we
255 // have irreducible control flow.
257 // Note that irreducibility may involve inner loops, e.g. imagine A
258 // starts one loop, and it has B inside it which starts an inner loop.
259 // If we add a branch from all the way on the outside to B, then in a
260 // sense B is no longer an "inner" loop, semantically speaking. We will
261 // fix that irreducibility by adding a block that dispatches to either
262 // either A or B, so B will no longer be an inner loop in our output.
263 // (A fancier approach might try to keep it as such.)
265 // Note that we still need to recurse into inner loops later, to handle
266 // the case where the irreducibility is entirely nested - we would not
267 // be able to identify that at this point, since the enclosing loop is
268 // a group of blocks all of whom can reach each other. (We'll see the
269 // irreducibility after removing branches to the top of that enclosing
271 BlockSet MutualLoopEntries
;
272 MutualLoopEntries
.insert(LoopEntry
);
273 for (auto *OtherLoopEntry
: Graph
.getLoopEntries()) {
274 if (OtherLoopEntry
!= LoopEntry
&&
275 Graph
.canReach(LoopEntry
, OtherLoopEntry
) &&
276 Graph
.canReach(OtherLoopEntry
, LoopEntry
)) {
277 MutualLoopEntries
.insert(OtherLoopEntry
);
281 if (MutualLoopEntries
.size() > 1) {
282 makeSingleEntryLoop(MutualLoopEntries
, Blocks
, MF
, Graph
);
283 FoundIrreducibility
= true;
288 // Only go on to actually process the inner loops when we are done
289 // removing irreducible control flow and changing the graph. Modifying
290 // the graph as we go is possible, and that might let us avoid looking at
291 // the already-fixed loops again if we are careful, but all that is
292 // complex and bug-prone. Since irreducible loops are rare, just starting
293 // another iteration is best.
294 if (FoundIrreducibility
) {
298 for (auto *LoopEntry
: Graph
.getLoopEntries()) {
299 LoopBlocks
InnerBlocks(LoopEntry
, Graph
.getLoopEnterers(LoopEntry
));
300 // Each of these calls to processRegion may change the graph, but are
301 // guaranteed not to interfere with each other. The only changes we make
302 // to the graph are to add blocks on the way to a loop entry. As the
303 // loops are disjoint, that means we may only alter branches that exit
304 // another loop, which are ignored when recursing into that other loop
306 if (processRegion(LoopEntry
, InnerBlocks
.getBlocks(), MF
)) {
315 // Given a set of entries to a single loop, create a single entry for that
316 // loop by creating a dispatch block for them, routing control flow using
317 // a helper variable. Also updates Blocks with any new blocks created, so
318 // that we properly track all the blocks in the region. But this does not update
319 // ReachabilityGraph; this will be updated in the caller of this function as
321 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
322 BlockSet
&Entries
, BlockSet
&Blocks
, MachineFunction
&MF
,
323 const ReachabilityGraph
&Graph
) {
324 assert(Entries
.size() >= 2);
326 // Sort the entries to ensure a deterministic build.
327 BlockVector
SortedEntries(Entries
.begin(), Entries
.end());
328 llvm::sort(SortedEntries
,
329 [&](const MachineBasicBlock
*A
, const MachineBasicBlock
*B
) {
330 auto ANum
= A
->getNumber();
331 auto BNum
= B
->getNumber();
336 for (auto Block
: SortedEntries
)
337 assert(Block
->getNumber() != -1);
338 if (SortedEntries
.size() > 1) {
339 for (auto I
= SortedEntries
.begin(), E
= SortedEntries
.end() - 1; I
!= E
;
341 auto ANum
= (*I
)->getNumber();
342 auto BNum
= (*(std::next(I
)))->getNumber();
343 assert(ANum
!= BNum
);
348 // Create a dispatch block which will contain a jump table to the entries.
349 MachineBasicBlock
*Dispatch
= MF
.CreateMachineBasicBlock();
350 MF
.insert(MF
.end(), Dispatch
);
351 Blocks
.insert(Dispatch
);
353 // Add the jump table.
354 const auto &TII
= *MF
.getSubtarget
<WebAssemblySubtarget
>().getInstrInfo();
355 MachineInstrBuilder MIB
=
356 BuildMI(Dispatch
, DebugLoc(), TII
.get(WebAssembly::BR_TABLE_I32
));
358 // Add the register which will be used to tell the jump table which block to
360 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
361 Register Reg
= MRI
.createVirtualRegister(&WebAssembly::I32RegClass
);
364 // Compute the indices in the superheader, one for each bad block, and
365 // add them as successors.
366 DenseMap
<MachineBasicBlock
*, unsigned> Indices
;
367 for (auto *Entry
: SortedEntries
) {
368 auto Pair
= Indices
.insert(std::make_pair(Entry
, 0));
371 unsigned Index
= MIB
.getInstr()->getNumExplicitOperands() - 1;
372 Pair
.first
->second
= Index
;
375 Dispatch
->addSuccessor(Entry
);
378 // Rewrite the problematic successors for every block that wants to reach
379 // the bad blocks. For simplicity, we just introduce a new block for every
380 // edge we need to rewrite. (Fancier things are possible.)
382 BlockVector AllPreds
;
383 for (auto *Entry
: SortedEntries
) {
384 for (auto *Pred
: Entry
->predecessors()) {
385 if (Pred
!= Dispatch
) {
386 AllPreds
.push_back(Pred
);
391 // This set stores predecessors within this loop.
392 DenseSet
<MachineBasicBlock
*> InLoop
;
393 for (auto *Pred
: AllPreds
) {
394 for (auto *Entry
: Pred
->successors()) {
395 if (!Entries
.count(Entry
))
397 if (Graph
.canReach(Entry
, Pred
)) {
404 // Record if each entry has a layout predecessor. This map stores
405 // <<Predecessor is within the loop?, loop entry>, layout predecessor>
406 std::map
<std::pair
<bool, MachineBasicBlock
*>, MachineBasicBlock
*>
408 for (auto *Pred
: AllPreds
)
409 for (auto *Entry
: Pred
->successors())
410 if (Entries
.count(Entry
) && Pred
->isLayoutSuccessor(Entry
))
411 EntryToLayoutPred
[std::make_pair(InLoop
.count(Pred
), Entry
)] = Pred
;
413 // We need to create at most two routing blocks per entry: one for
414 // predecessors outside the loop and one for predecessors inside the loop.
416 // <<Predecessor is within the loop?, loop entry>, routing block>
417 std::map
<std::pair
<bool, MachineBasicBlock
*>, MachineBasicBlock
*> Map
;
418 for (auto *Pred
: AllPreds
) {
419 bool PredInLoop
= InLoop
.count(Pred
);
420 for (auto *Entry
: Pred
->successors()) {
421 if (!Entries
.count(Entry
) ||
422 Map
.count(std::make_pair(InLoop
.count(Pred
), Entry
)))
424 // If there exists a layout predecessor of this entry and this predecessor
425 // is not that, we rather create a routing block after that layout
426 // predecessor to save a branch.
427 if (EntryToLayoutPred
.count(std::make_pair(PredInLoop
, Entry
)) &&
428 EntryToLayoutPred
[std::make_pair(PredInLoop
, Entry
)] != Pred
)
431 // This is a successor we need to rewrite.
432 MachineBasicBlock
*Routing
= MF
.CreateMachineBasicBlock();
433 MF
.insert(Pred
->isLayoutSuccessor(Entry
)
434 ? MachineFunction::iterator(Entry
)
437 Blocks
.insert(Routing
);
439 // Set the jump table's register of the index of the block we wish to
440 // jump to, and jump to the jump table.
441 BuildMI(Routing
, DebugLoc(), TII
.get(WebAssembly::CONST_I32
), Reg
)
442 .addImm(Indices
[Entry
]);
443 BuildMI(Routing
, DebugLoc(), TII
.get(WebAssembly::BR
)).addMBB(Dispatch
);
444 Routing
->addSuccessor(Dispatch
);
445 Map
[std::make_pair(PredInLoop
, Entry
)] = Routing
;
449 for (auto *Pred
: AllPreds
) {
450 bool PredInLoop
= InLoop
.count(Pred
);
451 // Remap the terminator operands and the successor list.
452 for (MachineInstr
&Term
: Pred
->terminators())
453 for (auto &Op
: Term
.explicit_uses())
454 if (Op
.isMBB() && Indices
.count(Op
.getMBB()))
455 Op
.setMBB(Map
[std::make_pair(PredInLoop
, Op
.getMBB())]);
457 for (auto *Succ
: Pred
->successors()) {
458 if (!Entries
.count(Succ
))
460 auto *Routing
= Map
[std::make_pair(PredInLoop
, Succ
)];
461 Pred
->replaceSuccessor(Succ
, Routing
);
465 // Create a fake default label, because br_table requires one.
466 MIB
.addMBB(MIB
.getInstr()
467 ->getOperand(MIB
.getInstr()->getNumExplicitOperands() - 1)
471 } // end anonymous namespace
473 char WebAssemblyFixIrreducibleControlFlow::ID
= 0;
474 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow
, DEBUG_TYPE
,
475 "Removes irreducible control flow", false, false)
477 FunctionPass
*llvm::createWebAssemblyFixIrreducibleControlFlow() {
478 return new WebAssemblyFixIrreducibleControlFlow();
481 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
482 MachineFunction
&MF
) {
483 LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
484 "********** Function: "
485 << MF
.getName() << '\n');
487 // Start the recursive process on the entire function body.
489 for (auto &MBB
: MF
) {
490 AllBlocks
.insert(&MBB
);
493 if (LLVM_UNLIKELY(processRegion(&*MF
.begin(), AllBlocks
, MF
))) {
494 // We rewrote part of the function; recompute relevant things.
495 MF
.getRegInfo().invalidateLiveness();