1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interface for lazy computation of value constraint
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/ValueLattice.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/raw_ostream.h"
41 using namespace PatternMatch
;
43 #define DEBUG_TYPE "lazy-value-info"
45 // This is the number of worklist items we will process to try to discover an
46 // answer for a given value.
47 static const unsigned MaxProcessedPerValue
= 500;
49 char LazyValueInfoWrapperPass::ID
= 0;
50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass
, "lazy-value-info",
51 "Lazy Value Information Analysis", false, true)
52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass
, "lazy-value-info",
55 "Lazy Value Information Analysis", false, true)
58 FunctionPass
*createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
61 AnalysisKey
LazyValueAnalysis::Key
;
63 /// Returns true if this lattice value represents at most one possible value.
64 /// This is as precise as any lattice value can get while still representing
66 static bool hasSingleValue(const ValueLatticeElement
&Val
) {
67 if (Val
.isConstantRange() &&
68 Val
.getConstantRange().isSingleElement())
69 // Integer constants are single element ranges
72 // Non integer constants
77 /// Combine two sets of facts about the same value into a single set of
78 /// facts. Note that this method is not suitable for merging facts along
79 /// different paths in a CFG; that's what the mergeIn function is for. This
80 /// is for merging facts gathered about the same value at the same location
81 /// through two independent means.
83 /// * This method does not promise to return the most precise possible lattice
84 /// value implied by A and B. It is allowed to return any lattice element
85 /// which is at least as strong as *either* A or B (unless our facts
86 /// conflict, see below).
87 /// * Due to unreachable code, the intersection of two lattice values could be
88 /// contradictory. If this happens, we return some valid lattice value so as
89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
90 /// we do not make this guarantee. TODO: This would be a useful enhancement.
91 static ValueLatticeElement
intersect(const ValueLatticeElement
&A
,
92 const ValueLatticeElement
&B
) {
93 // Undefined is the strongest state. It means the value is known to be along
94 // an unreachable path.
100 // If we gave up for one, but got a useable fact from the other, use it.
101 if (A
.isOverdefined())
103 if (B
.isOverdefined())
106 // Can't get any more precise than constants.
107 if (hasSingleValue(A
))
109 if (hasSingleValue(B
))
112 // Could be either constant range or not constant here.
113 if (!A
.isConstantRange() || !B
.isConstantRange()) {
114 // TODO: Arbitrary choice, could be improved
118 // Intersect two constant ranges
119 ConstantRange Range
=
120 A
.getConstantRange().intersectWith(B
.getConstantRange());
121 // Note: An empty range is implicitly converted to overdefined internally.
122 // TODO: We could instead use Undefined here since we've proven a conflict
123 // and thus know this path must be unreachable.
124 return ValueLatticeElement::getRange(std::move(Range
));
127 //===----------------------------------------------------------------------===//
128 // LazyValueInfoCache Decl
129 //===----------------------------------------------------------------------===//
132 /// A callback value handle updates the cache when values are erased.
133 class LazyValueInfoCache
;
134 struct LVIValueHandle final
: public CallbackVH
{
135 // Needs to access getValPtr(), which is protected.
136 friend struct DenseMapInfo
<LVIValueHandle
>;
138 LazyValueInfoCache
*Parent
;
140 LVIValueHandle(Value
*V
, LazyValueInfoCache
*P
)
141 : CallbackVH(V
), Parent(P
) { }
143 void deleted() override
;
144 void allUsesReplacedWith(Value
*V
) override
{
148 } // end anonymous namespace
151 /// This is the cache kept by LazyValueInfo which
152 /// maintains information about queries across the clients' queries.
153 class LazyValueInfoCache
{
154 /// This is all of the cached block information for exactly one Value*.
155 /// The entries are sorted by the BasicBlock* of the
156 /// entries, allowing us to do a lookup with a binary search.
157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
159 struct ValueCacheEntryTy
{
160 ValueCacheEntryTy(Value
*V
, LazyValueInfoCache
*P
) : Handle(V
, P
) {}
161 LVIValueHandle Handle
;
162 SmallDenseMap
<PoisoningVH
<BasicBlock
>, ValueLatticeElement
, 4> BlockVals
;
165 /// This tracks, on a per-block basis, the set of values that are
166 /// over-defined at the end of that block.
167 typedef DenseMap
<PoisoningVH
<BasicBlock
>, SmallPtrSet
<Value
*, 4>>
169 /// Keep track of all blocks that we have ever seen, so we
170 /// don't spend time removing unused blocks from our caches.
171 DenseSet
<PoisoningVH
<BasicBlock
> > SeenBlocks
;
173 /// This is all of the cached information for all values,
174 /// mapped from Value* to key information.
175 DenseMap
<Value
*, std::unique_ptr
<ValueCacheEntryTy
>> ValueCache
;
176 OverDefinedCacheTy OverDefinedCache
;
180 void insertResult(Value
*Val
, BasicBlock
*BB
,
181 const ValueLatticeElement
&Result
) {
182 SeenBlocks
.insert(BB
);
184 // Insert over-defined values into their own cache to reduce memory
186 if (Result
.isOverdefined())
187 OverDefinedCache
[BB
].insert(Val
);
189 auto It
= ValueCache
.find_as(Val
);
190 if (It
== ValueCache
.end()) {
191 ValueCache
[Val
] = make_unique
<ValueCacheEntryTy
>(Val
, this);
192 It
= ValueCache
.find_as(Val
);
193 assert(It
!= ValueCache
.end() && "Val was just added to the map!");
195 It
->second
->BlockVals
[BB
] = Result
;
199 bool isOverdefined(Value
*V
, BasicBlock
*BB
) const {
200 auto ODI
= OverDefinedCache
.find(BB
);
202 if (ODI
== OverDefinedCache
.end())
205 return ODI
->second
.count(V
);
208 bool hasCachedValueInfo(Value
*V
, BasicBlock
*BB
) const {
209 if (isOverdefined(V
, BB
))
212 auto I
= ValueCache
.find_as(V
);
213 if (I
== ValueCache
.end())
216 return I
->second
->BlockVals
.count(BB
);
219 ValueLatticeElement
getCachedValueInfo(Value
*V
, BasicBlock
*BB
) const {
220 if (isOverdefined(V
, BB
))
221 return ValueLatticeElement::getOverdefined();
223 auto I
= ValueCache
.find_as(V
);
224 if (I
== ValueCache
.end())
225 return ValueLatticeElement();
226 auto BBI
= I
->second
->BlockVals
.find(BB
);
227 if (BBI
== I
->second
->BlockVals
.end())
228 return ValueLatticeElement();
232 /// clear - Empty the cache.
236 OverDefinedCache
.clear();
239 /// Inform the cache that a given value has been deleted.
240 void eraseValue(Value
*V
);
242 /// This is part of the update interface to inform the cache
243 /// that a block has been deleted.
244 void eraseBlock(BasicBlock
*BB
);
246 /// Updates the cache to remove any influence an overdefined value in
247 /// OldSucc might have (unless also overdefined in NewSucc). This just
248 /// flushes elements from the cache and does not add any.
249 void threadEdgeImpl(BasicBlock
*OldSucc
,BasicBlock
*NewSucc
);
251 friend struct LVIValueHandle
;
255 void LazyValueInfoCache::eraseValue(Value
*V
) {
256 for (auto I
= OverDefinedCache
.begin(), E
= OverDefinedCache
.end(); I
!= E
;) {
257 // Copy and increment the iterator immediately so we can erase behind
260 SmallPtrSetImpl
<Value
*> &ValueSet
= Iter
->second
;
262 if (ValueSet
.empty())
263 OverDefinedCache
.erase(Iter
);
269 void LVIValueHandle::deleted() {
270 // This erasure deallocates *this, so it MUST happen after we're done
271 // using any and all members of *this.
272 Parent
->eraseValue(*this);
275 void LazyValueInfoCache::eraseBlock(BasicBlock
*BB
) {
276 // Shortcut if we have never seen this block.
277 DenseSet
<PoisoningVH
<BasicBlock
> >::iterator I
= SeenBlocks
.find(BB
);
278 if (I
== SeenBlocks
.end())
282 auto ODI
= OverDefinedCache
.find(BB
);
283 if (ODI
!= OverDefinedCache
.end())
284 OverDefinedCache
.erase(ODI
);
286 for (auto &I
: ValueCache
)
287 I
.second
->BlockVals
.erase(BB
);
290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock
*OldSucc
,
291 BasicBlock
*NewSucc
) {
292 // When an edge in the graph has been threaded, values that we could not
293 // determine a value for before (i.e. were marked overdefined) may be
294 // possible to solve now. We do NOT try to proactively update these values.
295 // Instead, we clear their entries from the cache, and allow lazy updating to
296 // recompute them when needed.
298 // The updating process is fairly simple: we need to drop cached info
299 // for all values that were marked overdefined in OldSucc, and for those same
300 // values in any successor of OldSucc (except NewSucc) in which they were
301 // also marked overdefined.
302 std::vector
<BasicBlock
*> worklist
;
303 worklist
.push_back(OldSucc
);
305 auto I
= OverDefinedCache
.find(OldSucc
);
306 if (I
== OverDefinedCache
.end())
307 return; // Nothing to process here.
308 SmallVector
<Value
*, 4> ValsToClear(I
->second
.begin(), I
->second
.end());
310 // Use a worklist to perform a depth-first search of OldSucc's successors.
311 // NOTE: We do not need a visited list since any blocks we have already
312 // visited will have had their overdefined markers cleared already, and we
313 // thus won't loop to their successors.
314 while (!worklist
.empty()) {
315 BasicBlock
*ToUpdate
= worklist
.back();
318 // Skip blocks only accessible through NewSucc.
319 if (ToUpdate
== NewSucc
) continue;
321 // If a value was marked overdefined in OldSucc, and is here too...
322 auto OI
= OverDefinedCache
.find(ToUpdate
);
323 if (OI
== OverDefinedCache
.end())
325 SmallPtrSetImpl
<Value
*> &ValueSet
= OI
->second
;
327 bool changed
= false;
328 for (Value
*V
: ValsToClear
) {
329 if (!ValueSet
.erase(V
))
332 // If we removed anything, then we potentially need to update
333 // blocks successors too.
336 if (ValueSet
.empty()) {
337 OverDefinedCache
.erase(OI
);
342 if (!changed
) continue;
344 worklist
.insert(worklist
.end(), succ_begin(ToUpdate
), succ_end(ToUpdate
));
350 /// An assembly annotator class to print LazyValueCache information in
352 class LazyValueInfoImpl
;
353 class LazyValueInfoAnnotatedWriter
: public AssemblyAnnotationWriter
{
354 LazyValueInfoImpl
*LVIImpl
;
355 // While analyzing which blocks we can solve values for, we need the dominator
356 // information. Since this is an optional parameter in LVI, we require this
357 // DomTreeAnalysis pass in the printer pass, and pass the dominator
358 // tree to the LazyValueInfoAnnotatedWriter.
362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl
*L
, DominatorTree
&DTree
)
363 : LVIImpl(L
), DT(DTree
) {}
365 virtual void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
366 formatted_raw_ostream
&OS
);
368 virtual void emitInstructionAnnot(const Instruction
*I
,
369 formatted_raw_ostream
&OS
);
373 // The actual implementation of the lazy analysis and update. Note that the
374 // inheritance from LazyValueInfoCache is intended to be temporary while
375 // splitting the code and then transitioning to a has-a relationship.
376 class LazyValueInfoImpl
{
378 /// Cached results from previous queries
379 LazyValueInfoCache TheCache
;
381 /// This stack holds the state of the value solver during a query.
382 /// It basically emulates the callstack of the naive
383 /// recursive value lookup process.
384 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> BlockValueStack
;
386 /// Keeps track of which block-value pairs are in BlockValueStack.
387 DenseSet
<std::pair
<BasicBlock
*, Value
*> > BlockValueSet
;
389 /// Push BV onto BlockValueStack unless it's already in there.
390 /// Returns true on success.
391 bool pushBlockValue(const std::pair
<BasicBlock
*, Value
*> &BV
) {
392 if (!BlockValueSet
.insert(BV
).second
)
393 return false; // It's already in the stack.
395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV
.second
<< " in "
396 << BV
.first
->getName() << "\n");
397 BlockValueStack
.push_back(BV
);
401 AssumptionCache
*AC
; ///< A pointer to the cache of @llvm.assume calls.
402 const DataLayout
&DL
; ///< A mandatory DataLayout
403 DominatorTree
*DT
; ///< An optional DT pointer.
404 DominatorTree
*DisabledDT
; ///< Stores DT if it's disabled.
406 ValueLatticeElement
getBlockValue(Value
*Val
, BasicBlock
*BB
);
407 bool getEdgeValue(Value
*V
, BasicBlock
*F
, BasicBlock
*T
,
408 ValueLatticeElement
&Result
, Instruction
*CxtI
= nullptr);
409 bool hasBlockValue(Value
*Val
, BasicBlock
*BB
);
411 // These methods process one work item and may add more. A false value
412 // returned means that the work item was not completely processed and must
413 // be revisited after going through the new items.
414 bool solveBlockValue(Value
*Val
, BasicBlock
*BB
);
415 bool solveBlockValueImpl(ValueLatticeElement
&Res
, Value
*Val
,
417 bool solveBlockValueNonLocal(ValueLatticeElement
&BBLV
, Value
*Val
,
419 bool solveBlockValuePHINode(ValueLatticeElement
&BBLV
, PHINode
*PN
,
421 bool solveBlockValueSelect(ValueLatticeElement
&BBLV
, SelectInst
*S
,
423 Optional
<ConstantRange
> getRangeForOperand(unsigned Op
, Instruction
*I
,
425 bool solveBlockValueBinaryOpImpl(
426 ValueLatticeElement
&BBLV
, Instruction
*I
, BasicBlock
*BB
,
427 std::function
<ConstantRange(const ConstantRange
&,
428 const ConstantRange
&)> OpFn
);
429 bool solveBlockValueBinaryOp(ValueLatticeElement
&BBLV
, BinaryOperator
*BBI
,
431 bool solveBlockValueCast(ValueLatticeElement
&BBLV
, CastInst
*CI
,
433 bool solveBlockValueOverflowIntrinsic(
434 ValueLatticeElement
&BBLV
, WithOverflowInst
*WO
, BasicBlock
*BB
);
435 bool solveBlockValueIntrinsic(ValueLatticeElement
&BBLV
, IntrinsicInst
*II
,
437 void intersectAssumeOrGuardBlockValueConstantRange(Value
*Val
,
438 ValueLatticeElement
&BBLV
,
444 /// This is the query interface to determine the lattice
445 /// value for the specified Value* at the end of the specified block.
446 ValueLatticeElement
getValueInBlock(Value
*V
, BasicBlock
*BB
,
447 Instruction
*CxtI
= nullptr);
449 /// This is the query interface to determine the lattice
450 /// value for the specified Value* at the specified instruction (generally
451 /// from an assume intrinsic).
452 ValueLatticeElement
getValueAt(Value
*V
, Instruction
*CxtI
);
454 /// This is the query interface to determine the lattice
455 /// value for the specified Value* that is true on the specified edge.
456 ValueLatticeElement
getValueOnEdge(Value
*V
, BasicBlock
*FromBB
,
458 Instruction
*CxtI
= nullptr);
460 /// Complete flush all previously computed values
465 /// Printing the LazyValueInfo Analysis.
466 void printLVI(Function
&F
, DominatorTree
&DTree
, raw_ostream
&OS
) {
467 LazyValueInfoAnnotatedWriter
Writer(this, DTree
);
468 F
.print(OS
, &Writer
);
471 /// This is part of the update interface to inform the cache
472 /// that a block has been deleted.
473 void eraseBlock(BasicBlock
*BB
) {
474 TheCache
.eraseBlock(BB
);
477 /// Disables use of the DominatorTree within LVI.
480 assert(!DisabledDT
&& "Both DT and DisabledDT are not nullptr!");
481 std::swap(DT
, DisabledDT
);
485 /// Enables use of the DominatorTree within LVI. Does nothing if the class
486 /// instance was initialized without a DT pointer.
489 assert(!DT
&& "Both DT and DisabledDT are not nullptr!");
490 std::swap(DT
, DisabledDT
);
494 /// This is the update interface to inform the cache that an edge from
495 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
496 void threadEdge(BasicBlock
*PredBB
,BasicBlock
*OldSucc
,BasicBlock
*NewSucc
);
498 LazyValueInfoImpl(AssumptionCache
*AC
, const DataLayout
&DL
,
499 DominatorTree
*DT
= nullptr)
500 : AC(AC
), DL(DL
), DT(DT
), DisabledDT(nullptr) {}
502 } // end anonymous namespace
505 void LazyValueInfoImpl::solve() {
506 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> StartingStack(
507 BlockValueStack
.begin(), BlockValueStack
.end());
509 unsigned processedCount
= 0;
510 while (!BlockValueStack
.empty()) {
512 // Abort if we have to process too many values to get a result for this one.
513 // Because of the design of the overdefined cache currently being per-block
514 // to avoid naming-related issues (IE it wants to try to give different
515 // results for the same name in different blocks), overdefined results don't
516 // get cached globally, which in turn means we will often try to rediscover
517 // the same overdefined result again and again. Once something like
518 // PredicateInfo is used in LVI or CVP, we should be able to make the
519 // overdefined cache global, and remove this throttle.
520 if (processedCount
> MaxProcessedPerValue
) {
522 dbgs() << "Giving up on stack because we are getting too deep\n");
523 // Fill in the original values
524 while (!StartingStack
.empty()) {
525 std::pair
<BasicBlock
*, Value
*> &e
= StartingStack
.back();
526 TheCache
.insertResult(e
.second
, e
.first
,
527 ValueLatticeElement::getOverdefined());
528 StartingStack
.pop_back();
530 BlockValueSet
.clear();
531 BlockValueStack
.clear();
534 std::pair
<BasicBlock
*, Value
*> e
= BlockValueStack
.back();
535 assert(BlockValueSet
.count(e
) && "Stack value should be in BlockValueSet!");
537 if (solveBlockValue(e
.second
, e
.first
)) {
538 // The work item was completely processed.
539 assert(BlockValueStack
.back() == e
&& "Nothing should have been pushed!");
540 assert(TheCache
.hasCachedValueInfo(e
.second
, e
.first
) &&
541 "Result should be in cache!");
544 dbgs() << "POP " << *e
.second
<< " in " << e
.first
->getName() << " = "
545 << TheCache
.getCachedValueInfo(e
.second
, e
.first
) << "\n");
547 BlockValueStack
.pop_back();
548 BlockValueSet
.erase(e
);
550 // More work needs to be done before revisiting.
551 assert(BlockValueStack
.back() != e
&& "Stack should have been pushed!");
556 bool LazyValueInfoImpl::hasBlockValue(Value
*Val
, BasicBlock
*BB
) {
557 // If already a constant, there is nothing to compute.
558 if (isa
<Constant
>(Val
))
561 return TheCache
.hasCachedValueInfo(Val
, BB
);
564 ValueLatticeElement
LazyValueInfoImpl::getBlockValue(Value
*Val
,
566 // If already a constant, there is nothing to compute.
567 if (Constant
*VC
= dyn_cast
<Constant
>(Val
))
568 return ValueLatticeElement::get(VC
);
570 return TheCache
.getCachedValueInfo(Val
, BB
);
573 static ValueLatticeElement
getFromRangeMetadata(Instruction
*BBI
) {
574 switch (BBI
->getOpcode()) {
576 case Instruction::Load
:
577 case Instruction::Call
:
578 case Instruction::Invoke
:
579 if (MDNode
*Ranges
= BBI
->getMetadata(LLVMContext::MD_range
))
580 if (isa
<IntegerType
>(BBI
->getType())) {
581 return ValueLatticeElement::getRange(
582 getConstantRangeFromMetadata(*Ranges
));
586 // Nothing known - will be intersected with other facts
587 return ValueLatticeElement::getOverdefined();
590 bool LazyValueInfoImpl::solveBlockValue(Value
*Val
, BasicBlock
*BB
) {
591 if (isa
<Constant
>(Val
))
594 if (TheCache
.hasCachedValueInfo(Val
, BB
)) {
595 // If we have a cached value, use that.
596 LLVM_DEBUG(dbgs() << " reuse BB '" << BB
->getName() << "' val="
597 << TheCache
.getCachedValueInfo(Val
, BB
) << '\n');
599 // Since we're reusing a cached value, we don't need to update the
600 // OverDefinedCache. The cache will have been properly updated whenever the
601 // cached value was inserted.
605 // Hold off inserting this value into the Cache in case we have to return
606 // false and come back later.
607 ValueLatticeElement Res
;
608 if (!solveBlockValueImpl(Res
, Val
, BB
))
609 // Work pushed, will revisit
612 TheCache
.insertResult(Val
, BB
, Res
);
616 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement
&Res
,
617 Value
*Val
, BasicBlock
*BB
) {
619 Instruction
*BBI
= dyn_cast
<Instruction
>(Val
);
620 if (!BBI
|| BBI
->getParent() != BB
)
621 return solveBlockValueNonLocal(Res
, Val
, BB
);
623 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
))
624 return solveBlockValuePHINode(Res
, PN
, BB
);
626 if (auto *SI
= dyn_cast
<SelectInst
>(BBI
))
627 return solveBlockValueSelect(Res
, SI
, BB
);
629 // If this value is a nonnull pointer, record it's range and bailout. Note
630 // that for all other pointer typed values, we terminate the search at the
631 // definition. We could easily extend this to look through geps, bitcasts,
632 // and the like to prove non-nullness, but it's not clear that's worth it
633 // compile time wise. The context-insensitive value walk done inside
634 // isKnownNonZero gets most of the profitable cases at much less expense.
635 // This does mean that we have a sensitivity to where the defining
636 // instruction is placed, even if it could legally be hoisted much higher.
637 // That is unfortunate.
638 PointerType
*PT
= dyn_cast
<PointerType
>(BBI
->getType());
639 if (PT
&& isKnownNonZero(BBI
, DL
)) {
640 Res
= ValueLatticeElement::getNot(ConstantPointerNull::get(PT
));
643 if (BBI
->getType()->isIntegerTy()) {
644 if (auto *CI
= dyn_cast
<CastInst
>(BBI
))
645 return solveBlockValueCast(Res
, CI
, BB
);
647 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(BBI
))
648 return solveBlockValueBinaryOp(Res
, BO
, BB
);
650 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(BBI
))
651 if (auto *WO
= dyn_cast
<WithOverflowInst
>(EVI
->getAggregateOperand()))
652 if (EVI
->getNumIndices() == 1 && *EVI
->idx_begin() == 0)
653 return solveBlockValueOverflowIntrinsic(Res
, WO
, BB
);
655 if (auto *II
= dyn_cast
<IntrinsicInst
>(BBI
))
656 return solveBlockValueIntrinsic(Res
, II
, BB
);
659 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
660 << "' - unknown inst def found.\n");
661 Res
= getFromRangeMetadata(BBI
);
665 static bool InstructionDereferencesPointer(Instruction
*I
, Value
*Ptr
) {
666 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
667 return L
->getPointerAddressSpace() == 0 &&
668 GetUnderlyingObject(L
->getPointerOperand(),
669 L
->getModule()->getDataLayout()) == Ptr
;
671 if (StoreInst
*S
= dyn_cast
<StoreInst
>(I
)) {
672 return S
->getPointerAddressSpace() == 0 &&
673 GetUnderlyingObject(S
->getPointerOperand(),
674 S
->getModule()->getDataLayout()) == Ptr
;
676 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
)) {
677 if (MI
->isVolatile()) return false;
679 // FIXME: check whether it has a valuerange that excludes zero?
680 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MI
->getLength());
681 if (!Len
|| Len
->isZero()) return false;
683 if (MI
->getDestAddressSpace() == 0)
684 if (GetUnderlyingObject(MI
->getRawDest(),
685 MI
->getModule()->getDataLayout()) == Ptr
)
687 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
))
688 if (MTI
->getSourceAddressSpace() == 0)
689 if (GetUnderlyingObject(MTI
->getRawSource(),
690 MTI
->getModule()->getDataLayout()) == Ptr
)
696 /// Return true if the allocation associated with Val is ever dereferenced
697 /// within the given basic block. This establishes the fact Val is not null,
698 /// but does not imply that the memory at Val is dereferenceable. (Val may
699 /// point off the end of the dereferenceable part of the object.)
700 static bool isObjectDereferencedInBlock(Value
*Val
, BasicBlock
*BB
) {
701 assert(Val
->getType()->isPointerTy());
703 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
704 Value
*UnderlyingVal
= GetUnderlyingObject(Val
, DL
);
705 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
706 // inside InstructionDereferencesPointer either.
707 if (UnderlyingVal
== GetUnderlyingObject(UnderlyingVal
, DL
, 1))
708 for (Instruction
&I
: *BB
)
709 if (InstructionDereferencesPointer(&I
, UnderlyingVal
))
714 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement
&BBLV
,
715 Value
*Val
, BasicBlock
*BB
) {
716 ValueLatticeElement Result
; // Start Undefined.
718 // If this is the entry block, we must be asking about an argument. The
719 // value is overdefined.
720 if (BB
== &BB
->getParent()->getEntryBlock()) {
721 assert(isa
<Argument
>(Val
) && "Unknown live-in to the entry block");
722 // Before giving up, see if we can prove the pointer non-null local to
723 // this particular block.
724 PointerType
*PTy
= dyn_cast
<PointerType
>(Val
->getType());
726 (isKnownNonZero(Val
, DL
) ||
727 (isObjectDereferencedInBlock(Val
, BB
) &&
728 !NullPointerIsDefined(BB
->getParent(), PTy
->getAddressSpace())))) {
729 Result
= ValueLatticeElement::getNot(ConstantPointerNull::get(PTy
));
731 Result
= ValueLatticeElement::getOverdefined();
737 // Loop over all of our predecessors, merging what we know from them into
738 // result. If we encounter an unexplored predecessor, we eagerly explore it
739 // in a depth first manner. In practice, this has the effect of discovering
740 // paths we can't analyze eagerly without spending compile times analyzing
741 // other paths. This heuristic benefits from the fact that predecessors are
742 // frequently arranged such that dominating ones come first and we quickly
743 // find a path to function entry. TODO: We should consider explicitly
744 // canonicalizing to make this true rather than relying on this happy
746 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
747 ValueLatticeElement EdgeResult
;
748 if (!getEdgeValue(Val
, *PI
, BB
, EdgeResult
))
749 // Explore that input, then return here
752 Result
.mergeIn(EdgeResult
, DL
);
754 // If we hit overdefined, exit early. The BlockVals entry is already set
756 if (Result
.isOverdefined()) {
757 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
758 << "' - overdefined because of pred (non local).\n");
759 // Before giving up, see if we can prove the pointer non-null local to
760 // this particular block.
761 PointerType
*PTy
= dyn_cast
<PointerType
>(Val
->getType());
762 if (PTy
&& isObjectDereferencedInBlock(Val
, BB
) &&
763 !NullPointerIsDefined(BB
->getParent(), PTy
->getAddressSpace())) {
764 Result
= ValueLatticeElement::getNot(ConstantPointerNull::get(PTy
));
772 // Return the merged value, which is more precise than 'overdefined'.
773 assert(!Result
.isOverdefined());
778 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement
&BBLV
,
779 PHINode
*PN
, BasicBlock
*BB
) {
780 ValueLatticeElement Result
; // Start Undefined.
782 // Loop over all of our predecessors, merging what we know from them into
783 // result. See the comment about the chosen traversal order in
784 // solveBlockValueNonLocal; the same reasoning applies here.
785 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
786 BasicBlock
*PhiBB
= PN
->getIncomingBlock(i
);
787 Value
*PhiVal
= PN
->getIncomingValue(i
);
788 ValueLatticeElement EdgeResult
;
789 // Note that we can provide PN as the context value to getEdgeValue, even
790 // though the results will be cached, because PN is the value being used as
791 // the cache key in the caller.
792 if (!getEdgeValue(PhiVal
, PhiBB
, BB
, EdgeResult
, PN
))
793 // Explore that input, then return here
796 Result
.mergeIn(EdgeResult
, DL
);
798 // If we hit overdefined, exit early. The BlockVals entry is already set
800 if (Result
.isOverdefined()) {
801 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
802 << "' - overdefined because of pred (local).\n");
809 // Return the merged value, which is more precise than 'overdefined'.
810 assert(!Result
.isOverdefined() && "Possible PHI in entry block?");
815 static ValueLatticeElement
getValueFromCondition(Value
*Val
, Value
*Cond
,
816 bool isTrueDest
= true);
818 // If we can determine a constraint on the value given conditions assumed by
819 // the program, intersect those constraints with BBLV
820 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
821 Value
*Val
, ValueLatticeElement
&BBLV
, Instruction
*BBI
) {
822 BBI
= BBI
? BBI
: dyn_cast
<Instruction
>(Val
);
826 for (auto &AssumeVH
: AC
->assumptionsFor(Val
)) {
829 auto *I
= cast
<CallInst
>(AssumeVH
);
830 if (!isValidAssumeForContext(I
, BBI
, DT
))
833 BBLV
= intersect(BBLV
, getValueFromCondition(Val
, I
->getArgOperand(0)));
836 // If guards are not used in the module, don't spend time looking for them
837 auto *GuardDecl
= BBI
->getModule()->getFunction(
838 Intrinsic::getName(Intrinsic::experimental_guard
));
839 if (!GuardDecl
|| GuardDecl
->use_empty())
842 if (BBI
->getIterator() == BBI
->getParent()->begin())
844 for (Instruction
&I
: make_range(std::next(BBI
->getIterator().getReverse()),
845 BBI
->getParent()->rend())) {
846 Value
*Cond
= nullptr;
847 if (match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(Cond
))))
848 BBLV
= intersect(BBLV
, getValueFromCondition(Val
, Cond
));
852 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement
&BBLV
,
853 SelectInst
*SI
, BasicBlock
*BB
) {
855 // Recurse on our inputs if needed
856 if (!hasBlockValue(SI
->getTrueValue(), BB
)) {
857 if (pushBlockValue(std::make_pair(BB
, SI
->getTrueValue())))
859 BBLV
= ValueLatticeElement::getOverdefined();
862 ValueLatticeElement TrueVal
= getBlockValue(SI
->getTrueValue(), BB
);
863 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
864 // extra slots in the table if we can.
865 if (TrueVal
.isOverdefined()) {
866 BBLV
= ValueLatticeElement::getOverdefined();
870 if (!hasBlockValue(SI
->getFalseValue(), BB
)) {
871 if (pushBlockValue(std::make_pair(BB
, SI
->getFalseValue())))
873 BBLV
= ValueLatticeElement::getOverdefined();
876 ValueLatticeElement FalseVal
= getBlockValue(SI
->getFalseValue(), BB
);
877 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
878 // extra slots in the table if we can.
879 if (FalseVal
.isOverdefined()) {
880 BBLV
= ValueLatticeElement::getOverdefined();
884 if (TrueVal
.isConstantRange() && FalseVal
.isConstantRange()) {
885 const ConstantRange
&TrueCR
= TrueVal
.getConstantRange();
886 const ConstantRange
&FalseCR
= FalseVal
.getConstantRange();
887 Value
*LHS
= nullptr;
888 Value
*RHS
= nullptr;
889 SelectPatternResult SPR
= matchSelectPattern(SI
, LHS
, RHS
);
890 // Is this a min specifically of our two inputs? (Avoid the risk of
891 // ValueTracking getting smarter looking back past our immediate inputs.)
892 if (SelectPatternResult::isMinOrMax(SPR
.Flavor
) &&
893 LHS
== SI
->getTrueValue() && RHS
== SI
->getFalseValue()) {
894 ConstantRange ResultCR
= [&]() {
895 switch (SPR
.Flavor
) {
897 llvm_unreachable("unexpected minmax type!");
898 case SPF_SMIN
: /// Signed minimum
899 return TrueCR
.smin(FalseCR
);
900 case SPF_UMIN
: /// Unsigned minimum
901 return TrueCR
.umin(FalseCR
);
902 case SPF_SMAX
: /// Signed maximum
903 return TrueCR
.smax(FalseCR
);
904 case SPF_UMAX
: /// Unsigned maximum
905 return TrueCR
.umax(FalseCR
);
908 BBLV
= ValueLatticeElement::getRange(ResultCR
);
912 if (SPR
.Flavor
== SPF_ABS
) {
913 if (LHS
== SI
->getTrueValue()) {
914 BBLV
= ValueLatticeElement::getRange(TrueCR
.abs());
917 if (LHS
== SI
->getFalseValue()) {
918 BBLV
= ValueLatticeElement::getRange(FalseCR
.abs());
923 if (SPR
.Flavor
== SPF_NABS
) {
924 ConstantRange
Zero(APInt::getNullValue(TrueCR
.getBitWidth()));
925 if (LHS
== SI
->getTrueValue()) {
926 BBLV
= ValueLatticeElement::getRange(Zero
.sub(TrueCR
.abs()));
929 if (LHS
== SI
->getFalseValue()) {
930 BBLV
= ValueLatticeElement::getRange(Zero
.sub(FalseCR
.abs()));
936 // Can we constrain the facts about the true and false values by using the
937 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
938 // TODO: We could potentially refine an overdefined true value above.
939 Value
*Cond
= SI
->getCondition();
940 TrueVal
= intersect(TrueVal
,
941 getValueFromCondition(SI
->getTrueValue(), Cond
, true));
942 FalseVal
= intersect(FalseVal
,
943 getValueFromCondition(SI
->getFalseValue(), Cond
, false));
945 // Handle clamp idioms such as:
946 // %24 = constantrange<0, 17>
947 // %39 = icmp eq i32 %24, 0
948 // %40 = add i32 %24, -1
949 // %siv.next = select i1 %39, i32 16, i32 %40
950 // %siv.next = constantrange<0, 17> not <-1, 17>
951 // In general, this can handle any clamp idiom which tests the edge
952 // condition via an equality or inequality.
953 if (auto *ICI
= dyn_cast
<ICmpInst
>(Cond
)) {
954 ICmpInst::Predicate Pred
= ICI
->getPredicate();
955 Value
*A
= ICI
->getOperand(0);
956 if (ConstantInt
*CIBase
= dyn_cast
<ConstantInt
>(ICI
->getOperand(1))) {
957 auto addConstants
= [](ConstantInt
*A
, ConstantInt
*B
) {
958 assert(A
->getType() == B
->getType());
959 return ConstantInt::get(A
->getType(), A
->getValue() + B
->getValue());
961 // See if either input is A + C2, subject to the constraint from the
962 // condition that A != C when that input is used. We can assume that
963 // that input doesn't include C + C2.
964 ConstantInt
*CIAdded
;
967 case ICmpInst::ICMP_EQ
:
968 if (match(SI
->getFalseValue(), m_Add(m_Specific(A
),
969 m_ConstantInt(CIAdded
)))) {
970 auto ResNot
= addConstants(CIBase
, CIAdded
);
971 FalseVal
= intersect(FalseVal
,
972 ValueLatticeElement::getNot(ResNot
));
975 case ICmpInst::ICMP_NE
:
976 if (match(SI
->getTrueValue(), m_Add(m_Specific(A
),
977 m_ConstantInt(CIAdded
)))) {
978 auto ResNot
= addConstants(CIBase
, CIAdded
);
979 TrueVal
= intersect(TrueVal
,
980 ValueLatticeElement::getNot(ResNot
));
987 ValueLatticeElement Result
; // Start Undefined.
988 Result
.mergeIn(TrueVal
, DL
);
989 Result
.mergeIn(FalseVal
, DL
);
994 Optional
<ConstantRange
> LazyValueInfoImpl::getRangeForOperand(unsigned Op
,
997 if (!hasBlockValue(I
->getOperand(Op
), BB
))
998 if (pushBlockValue(std::make_pair(BB
, I
->getOperand(Op
))))
1001 const unsigned OperandBitWidth
=
1002 DL
.getTypeSizeInBits(I
->getOperand(Op
)->getType());
1003 ConstantRange Range
= ConstantRange::getFull(OperandBitWidth
);
1004 if (hasBlockValue(I
->getOperand(Op
), BB
)) {
1005 ValueLatticeElement Val
= getBlockValue(I
->getOperand(Op
), BB
);
1006 intersectAssumeOrGuardBlockValueConstantRange(I
->getOperand(Op
), Val
, I
);
1007 if (Val
.isConstantRange())
1008 Range
= Val
.getConstantRange();
1013 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement
&BBLV
,
1016 if (!CI
->getOperand(0)->getType()->isSized()) {
1017 // Without knowing how wide the input is, we can't analyze it in any useful
1019 BBLV
= ValueLatticeElement::getOverdefined();
1023 // Filter out casts we don't know how to reason about before attempting to
1024 // recurse on our operand. This can cut a long search short if we know we're
1025 // not going to be able to get any useful information anways.
1026 switch (CI
->getOpcode()) {
1027 case Instruction::Trunc
:
1028 case Instruction::SExt
:
1029 case Instruction::ZExt
:
1030 case Instruction::BitCast
:
1033 // Unhandled instructions are overdefined.
1034 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
1035 << "' - overdefined (unknown cast).\n");
1036 BBLV
= ValueLatticeElement::getOverdefined();
1040 // Figure out the range of the LHS. If that fails, we still apply the
1041 // transfer rule on the full set since we may be able to locally infer
1042 // interesting facts.
1043 Optional
<ConstantRange
> LHSRes
= getRangeForOperand(0, CI
, BB
);
1044 if (!LHSRes
.hasValue())
1045 // More work to do before applying this transfer rule.
1047 ConstantRange LHSRange
= LHSRes
.getValue();
1049 const unsigned ResultBitWidth
= CI
->getType()->getIntegerBitWidth();
1051 // NOTE: We're currently limited by the set of operations that ConstantRange
1052 // can evaluate symbolically. Enhancing that set will allows us to analyze
1053 // more definitions.
1054 BBLV
= ValueLatticeElement::getRange(LHSRange
.castOp(CI
->getOpcode(),
1059 bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
1060 ValueLatticeElement
&BBLV
, Instruction
*I
, BasicBlock
*BB
,
1061 std::function
<ConstantRange(const ConstantRange
&,
1062 const ConstantRange
&)> OpFn
) {
1063 // Figure out the ranges of the operands. If that fails, use a
1064 // conservative range, but apply the transfer rule anyways. This
1065 // lets us pick up facts from expressions like "and i32 (call i32
1067 Optional
<ConstantRange
> LHSRes
= getRangeForOperand(0, I
, BB
);
1068 Optional
<ConstantRange
> RHSRes
= getRangeForOperand(1, I
, BB
);
1069 if (!LHSRes
.hasValue() || !RHSRes
.hasValue())
1070 // More work to do before applying this transfer rule.
1073 ConstantRange LHSRange
= LHSRes
.getValue();
1074 ConstantRange RHSRange
= RHSRes
.getValue();
1075 BBLV
= ValueLatticeElement::getRange(OpFn(LHSRange
, RHSRange
));
1079 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement
&BBLV
,
1083 assert(BO
->getOperand(0)->getType()->isSized() &&
1084 "all operands to binary operators are sized");
1085 if (BO
->getOpcode() == Instruction::Xor
) {
1086 // Xor is the only operation not supported by ConstantRange::binaryOp().
1087 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
1088 << "' - overdefined (unknown binary operator).\n");
1089 BBLV
= ValueLatticeElement::getOverdefined();
1093 return solveBlockValueBinaryOpImpl(BBLV
, BO
, BB
,
1094 [BO
](const ConstantRange
&CR1
, const ConstantRange
&CR2
) {
1095 return CR1
.binaryOp(BO
->getOpcode(), CR2
);
1099 bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(
1100 ValueLatticeElement
&BBLV
, WithOverflowInst
*WO
, BasicBlock
*BB
) {
1101 return solveBlockValueBinaryOpImpl(BBLV
, WO
, BB
,
1102 [WO
](const ConstantRange
&CR1
, const ConstantRange
&CR2
) {
1103 return CR1
.binaryOp(WO
->getBinaryOp(), CR2
);
1107 bool LazyValueInfoImpl::solveBlockValueIntrinsic(
1108 ValueLatticeElement
&BBLV
, IntrinsicInst
*II
, BasicBlock
*BB
) {
1109 switch (II
->getIntrinsicID()) {
1110 case Intrinsic::uadd_sat
:
1111 return solveBlockValueBinaryOpImpl(BBLV
, II
, BB
,
1112 [](const ConstantRange
&CR1
, const ConstantRange
&CR2
) {
1113 return CR1
.uadd_sat(CR2
);
1115 case Intrinsic::usub_sat
:
1116 return solveBlockValueBinaryOpImpl(BBLV
, II
, BB
,
1117 [](const ConstantRange
&CR1
, const ConstantRange
&CR2
) {
1118 return CR1
.usub_sat(CR2
);
1120 case Intrinsic::sadd_sat
:
1121 return solveBlockValueBinaryOpImpl(BBLV
, II
, BB
,
1122 [](const ConstantRange
&CR1
, const ConstantRange
&CR2
) {
1123 return CR1
.sadd_sat(CR2
);
1125 case Intrinsic::ssub_sat
:
1126 return solveBlockValueBinaryOpImpl(BBLV
, II
, BB
,
1127 [](const ConstantRange
&CR1
, const ConstantRange
&CR2
) {
1128 return CR1
.ssub_sat(CR2
);
1131 LLVM_DEBUG(dbgs() << " compute BB '" << BB
->getName()
1132 << "' - overdefined (unknown intrinsic).\n");
1133 BBLV
= ValueLatticeElement::getOverdefined();
1138 static ValueLatticeElement
getValueFromICmpCondition(Value
*Val
, ICmpInst
*ICI
,
1140 Value
*LHS
= ICI
->getOperand(0);
1141 Value
*RHS
= ICI
->getOperand(1);
1142 CmpInst::Predicate Predicate
= ICI
->getPredicate();
1144 if (isa
<Constant
>(RHS
)) {
1145 if (ICI
->isEquality() && LHS
== Val
) {
1146 // We know that V has the RHS constant if this is a true SETEQ or
1148 if (isTrueDest
== (Predicate
== ICmpInst::ICMP_EQ
))
1149 return ValueLatticeElement::get(cast
<Constant
>(RHS
));
1151 return ValueLatticeElement::getNot(cast
<Constant
>(RHS
));
1155 if (!Val
->getType()->isIntegerTy())
1156 return ValueLatticeElement::getOverdefined();
1158 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1159 // range of Val guaranteed by the condition. Recognize comparisons in the from
1161 // icmp <pred> Val, ...
1162 // icmp <pred> (add Val, Offset), ...
1163 // The latter is the range checking idiom that InstCombine produces. Subtract
1164 // the offset from the allowed range for RHS in this case.
1166 // Val or (add Val, Offset) can be on either hand of the comparison
1167 if (LHS
!= Val
&& !match(LHS
, m_Add(m_Specific(Val
), m_ConstantInt()))) {
1168 std::swap(LHS
, RHS
);
1169 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1172 ConstantInt
*Offset
= nullptr;
1174 match(LHS
, m_Add(m_Specific(Val
), m_ConstantInt(Offset
)));
1176 if (LHS
== Val
|| Offset
) {
1177 // Calculate the range of values that are allowed by the comparison
1178 ConstantRange
RHSRange(RHS
->getType()->getIntegerBitWidth(),
1179 /*isFullSet=*/true);
1180 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
))
1181 RHSRange
= ConstantRange(CI
->getValue());
1182 else if (Instruction
*I
= dyn_cast
<Instruction
>(RHS
))
1183 if (auto *Ranges
= I
->getMetadata(LLVMContext::MD_range
))
1184 RHSRange
= getConstantRangeFromMetadata(*Ranges
);
1186 // If we're interested in the false dest, invert the condition
1187 CmpInst::Predicate Pred
=
1188 isTrueDest
? Predicate
: CmpInst::getInversePredicate(Predicate
);
1189 ConstantRange TrueValues
=
1190 ConstantRange::makeAllowedICmpRegion(Pred
, RHSRange
);
1192 if (Offset
) // Apply the offset from above.
1193 TrueValues
= TrueValues
.subtract(Offset
->getValue());
1195 return ValueLatticeElement::getRange(std::move(TrueValues
));
1198 return ValueLatticeElement::getOverdefined();
1201 // Handle conditions of the form
1202 // extractvalue(op.with.overflow(%x, C), 1).
1203 static ValueLatticeElement
getValueFromOverflowCondition(
1204 Value
*Val
, WithOverflowInst
*WO
, bool IsTrueDest
) {
1205 // TODO: This only works with a constant RHS for now. We could also compute
1206 // the range of the RHS, but this doesn't fit into the current structure of
1207 // the edge value calculation.
1209 if (WO
->getLHS() != Val
|| !match(WO
->getRHS(), m_APInt(C
)))
1210 return ValueLatticeElement::getOverdefined();
1212 // Calculate the possible values of %x for which no overflow occurs.
1213 ConstantRange NWR
= ConstantRange::makeExactNoWrapRegion(
1214 WO
->getBinaryOp(), *C
, WO
->getNoWrapKind());
1216 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1217 // constrained to it's inverse (all values that might cause overflow).
1219 NWR
= NWR
.inverse();
1220 return ValueLatticeElement::getRange(NWR
);
1223 static ValueLatticeElement
1224 getValueFromCondition(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1225 DenseMap
<Value
*, ValueLatticeElement
> &Visited
);
1227 static ValueLatticeElement
1228 getValueFromConditionImpl(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1229 DenseMap
<Value
*, ValueLatticeElement
> &Visited
) {
1230 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Cond
))
1231 return getValueFromICmpCondition(Val
, ICI
, isTrueDest
);
1233 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Cond
))
1234 if (auto *WO
= dyn_cast
<WithOverflowInst
>(EVI
->getAggregateOperand()))
1235 if (EVI
->getNumIndices() == 1 && *EVI
->idx_begin() == 1)
1236 return getValueFromOverflowCondition(Val
, WO
, isTrueDest
);
1238 // Handle conditions in the form of (cond1 && cond2), we know that on the
1239 // true dest path both of the conditions hold. Similarly for conditions of
1240 // the form (cond1 || cond2), we know that on the false dest path neither
1242 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
);
1243 if (!BO
|| (isTrueDest
&& BO
->getOpcode() != BinaryOperator::And
) ||
1244 (!isTrueDest
&& BO
->getOpcode() != BinaryOperator::Or
))
1245 return ValueLatticeElement::getOverdefined();
1247 // Prevent infinite recursion if Cond references itself as in this example:
1248 // Cond: "%tmp4 = and i1 %tmp4, undef"
1249 // BL: "%tmp4 = and i1 %tmp4, undef"
1251 Value
*BL
= BO
->getOperand(0);
1252 Value
*BR
= BO
->getOperand(1);
1253 if (BL
== Cond
|| BR
== Cond
)
1254 return ValueLatticeElement::getOverdefined();
1256 return intersect(getValueFromCondition(Val
, BL
, isTrueDest
, Visited
),
1257 getValueFromCondition(Val
, BR
, isTrueDest
, Visited
));
1260 static ValueLatticeElement
1261 getValueFromCondition(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1262 DenseMap
<Value
*, ValueLatticeElement
> &Visited
) {
1263 auto I
= Visited
.find(Cond
);
1264 if (I
!= Visited
.end())
1267 auto Result
= getValueFromConditionImpl(Val
, Cond
, isTrueDest
, Visited
);
1268 Visited
[Cond
] = Result
;
1272 ValueLatticeElement
getValueFromCondition(Value
*Val
, Value
*Cond
,
1274 assert(Cond
&& "precondition");
1275 DenseMap
<Value
*, ValueLatticeElement
> Visited
;
1276 return getValueFromCondition(Val
, Cond
, isTrueDest
, Visited
);
1279 // Return true if Usr has Op as an operand, otherwise false.
1280 static bool usesOperand(User
*Usr
, Value
*Op
) {
1281 return find(Usr
->operands(), Op
) != Usr
->op_end();
1284 // Return true if the instruction type of Val is supported by
1285 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1286 // before calling constantFoldUser() to find out if it's even worth attempting
1288 static bool isOperationFoldable(User
*Usr
) {
1289 return isa
<CastInst
>(Usr
) || isa
<BinaryOperator
>(Usr
);
1292 // Check if Usr can be simplified to an integer constant when the value of one
1293 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1294 // lattice value range with a single element or otherwise return an overdefined
1296 static ValueLatticeElement
constantFoldUser(User
*Usr
, Value
*Op
,
1297 const APInt
&OpConstVal
,
1298 const DataLayout
&DL
) {
1299 assert(isOperationFoldable(Usr
) && "Precondition");
1300 Constant
* OpConst
= Constant::getIntegerValue(Op
->getType(), OpConstVal
);
1301 // Check if Usr can be simplified to a constant.
1302 if (auto *CI
= dyn_cast
<CastInst
>(Usr
)) {
1303 assert(CI
->getOperand(0) == Op
&& "Operand 0 isn't Op");
1304 if (auto *C
= dyn_cast_or_null
<ConstantInt
>(
1305 SimplifyCastInst(CI
->getOpcode(), OpConst
,
1306 CI
->getDestTy(), DL
))) {
1307 return ValueLatticeElement::getRange(ConstantRange(C
->getValue()));
1309 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(Usr
)) {
1310 bool Op0Match
= BO
->getOperand(0) == Op
;
1311 bool Op1Match
= BO
->getOperand(1) == Op
;
1312 assert((Op0Match
|| Op1Match
) &&
1313 "Operand 0 nor Operand 1 isn't a match");
1314 Value
*LHS
= Op0Match
? OpConst
: BO
->getOperand(0);
1315 Value
*RHS
= Op1Match
? OpConst
: BO
->getOperand(1);
1316 if (auto *C
= dyn_cast_or_null
<ConstantInt
>(
1317 SimplifyBinOp(BO
->getOpcode(), LHS
, RHS
, DL
))) {
1318 return ValueLatticeElement::getRange(ConstantRange(C
->getValue()));
1321 return ValueLatticeElement::getOverdefined();
1324 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1325 /// Val is not constrained on the edge. Result is unspecified if return value
1327 static bool getEdgeValueLocal(Value
*Val
, BasicBlock
*BBFrom
,
1328 BasicBlock
*BBTo
, ValueLatticeElement
&Result
) {
1329 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1330 // know that v != 0.
1331 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BBFrom
->getTerminator())) {
1332 // If this is a conditional branch and only one successor goes to BBTo, then
1333 // we may be able to infer something from the condition.
1334 if (BI
->isConditional() &&
1335 BI
->getSuccessor(0) != BI
->getSuccessor(1)) {
1336 bool isTrueDest
= BI
->getSuccessor(0) == BBTo
;
1337 assert(BI
->getSuccessor(!isTrueDest
) == BBTo
&&
1338 "BBTo isn't a successor of BBFrom");
1339 Value
*Condition
= BI
->getCondition();
1341 // If V is the condition of the branch itself, then we know exactly what
1343 if (Condition
== Val
) {
1344 Result
= ValueLatticeElement::get(ConstantInt::get(
1345 Type::getInt1Ty(Val
->getContext()), isTrueDest
));
1349 // If the condition of the branch is an equality comparison, we may be
1350 // able to infer the value.
1351 Result
= getValueFromCondition(Val
, Condition
, isTrueDest
);
1352 if (!Result
.isOverdefined())
1355 if (User
*Usr
= dyn_cast
<User
>(Val
)) {
1356 assert(Result
.isOverdefined() && "Result isn't overdefined");
1357 // Check with isOperationFoldable() first to avoid linearly iterating
1358 // over the operands unnecessarily which can be expensive for
1359 // instructions with many operands.
1360 if (isa
<IntegerType
>(Usr
->getType()) && isOperationFoldable(Usr
)) {
1361 const DataLayout
&DL
= BBTo
->getModule()->getDataLayout();
1362 if (usesOperand(Usr
, Condition
)) {
1363 // If Val has Condition as an operand and Val can be folded into a
1364 // constant with either Condition == true or Condition == false,
1365 // propagate the constant.
1367 // ; %Val is true on the edge to %then.
1368 // %Val = and i1 %Condition, true.
1369 // br %Condition, label %then, label %else
1370 APInt
ConditionVal(1, isTrueDest
? 1 : 0);
1371 Result
= constantFoldUser(Usr
, Condition
, ConditionVal
, DL
);
1373 // If one of Val's operand has an inferred value, we may be able to
1374 // infer the value of Val.
1376 // ; %Val is 94 on the edge to %then.
1377 // %Val = add i8 %Op, 1
1378 // %Condition = icmp eq i8 %Op, 93
1379 // br i1 %Condition, label %then, label %else
1380 for (unsigned i
= 0; i
< Usr
->getNumOperands(); ++i
) {
1381 Value
*Op
= Usr
->getOperand(i
);
1382 ValueLatticeElement OpLatticeVal
=
1383 getValueFromCondition(Op
, Condition
, isTrueDest
);
1384 if (Optional
<APInt
> OpConst
= OpLatticeVal
.asConstantInteger()) {
1385 Result
= constantFoldUser(Usr
, Op
, OpConst
.getValue(), DL
);
1392 if (!Result
.isOverdefined())
1397 // If the edge was formed by a switch on the value, then we may know exactly
1399 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BBFrom
->getTerminator())) {
1400 Value
*Condition
= SI
->getCondition();
1401 if (!isa
<IntegerType
>(Val
->getType()))
1403 bool ValUsesConditionAndMayBeFoldable
= false;
1404 if (Condition
!= Val
) {
1405 // Check if Val has Condition as an operand.
1406 if (User
*Usr
= dyn_cast
<User
>(Val
))
1407 ValUsesConditionAndMayBeFoldable
= isOperationFoldable(Usr
) &&
1408 usesOperand(Usr
, Condition
);
1409 if (!ValUsesConditionAndMayBeFoldable
)
1412 assert((Condition
== Val
|| ValUsesConditionAndMayBeFoldable
) &&
1413 "Condition != Val nor Val doesn't use Condition");
1415 bool DefaultCase
= SI
->getDefaultDest() == BBTo
;
1416 unsigned BitWidth
= Val
->getType()->getIntegerBitWidth();
1417 ConstantRange
EdgesVals(BitWidth
, DefaultCase
/*isFullSet*/);
1419 for (auto Case
: SI
->cases()) {
1420 APInt CaseValue
= Case
.getCaseValue()->getValue();
1421 ConstantRange
EdgeVal(CaseValue
);
1422 if (ValUsesConditionAndMayBeFoldable
) {
1423 User
*Usr
= cast
<User
>(Val
);
1424 const DataLayout
&DL
= BBTo
->getModule()->getDataLayout();
1425 ValueLatticeElement EdgeLatticeVal
=
1426 constantFoldUser(Usr
, Condition
, CaseValue
, DL
);
1427 if (EdgeLatticeVal
.isOverdefined())
1429 EdgeVal
= EdgeLatticeVal
.getConstantRange();
1432 // It is possible that the default destination is the destination of
1433 // some cases. We cannot perform difference for those cases.
1434 // We know Condition != CaseValue in BBTo. In some cases we can use
1435 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1436 // only do this when f is identity (i.e. Val == Condition), but we
1437 // should be able to do this for any injective f.
1438 if (Case
.getCaseSuccessor() != BBTo
&& Condition
== Val
)
1439 EdgesVals
= EdgesVals
.difference(EdgeVal
);
1440 } else if (Case
.getCaseSuccessor() == BBTo
)
1441 EdgesVals
= EdgesVals
.unionWith(EdgeVal
);
1443 Result
= ValueLatticeElement::getRange(std::move(EdgesVals
));
1449 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1450 /// the basic block if the edge does not constrain Val.
1451 bool LazyValueInfoImpl::getEdgeValue(Value
*Val
, BasicBlock
*BBFrom
,
1453 ValueLatticeElement
&Result
,
1454 Instruction
*CxtI
) {
1455 // If already a constant, there is nothing to compute.
1456 if (Constant
*VC
= dyn_cast
<Constant
>(Val
)) {
1457 Result
= ValueLatticeElement::get(VC
);
1461 ValueLatticeElement LocalResult
;
1462 if (!getEdgeValueLocal(Val
, BBFrom
, BBTo
, LocalResult
))
1463 // If we couldn't constrain the value on the edge, LocalResult doesn't
1464 // provide any information.
1465 LocalResult
= ValueLatticeElement::getOverdefined();
1467 if (hasSingleValue(LocalResult
)) {
1468 // Can't get any more precise here
1469 Result
= LocalResult
;
1473 if (!hasBlockValue(Val
, BBFrom
)) {
1474 if (pushBlockValue(std::make_pair(BBFrom
, Val
)))
1476 // No new information.
1477 Result
= LocalResult
;
1481 // Try to intersect ranges of the BB and the constraint on the edge.
1482 ValueLatticeElement InBlock
= getBlockValue(Val
, BBFrom
);
1483 intersectAssumeOrGuardBlockValueConstantRange(Val
, InBlock
,
1484 BBFrom
->getTerminator());
1485 // We can use the context instruction (generically the ultimate instruction
1486 // the calling pass is trying to simplify) here, even though the result of
1487 // this function is generally cached when called from the solve* functions
1488 // (and that cached result might be used with queries using a different
1489 // context instruction), because when this function is called from the solve*
1490 // functions, the context instruction is not provided. When called from
1491 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1492 // but then the result is not cached.
1493 intersectAssumeOrGuardBlockValueConstantRange(Val
, InBlock
, CxtI
);
1495 Result
= intersect(LocalResult
, InBlock
);
1499 ValueLatticeElement
LazyValueInfoImpl::getValueInBlock(Value
*V
, BasicBlock
*BB
,
1500 Instruction
*CxtI
) {
1501 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V
<< " at '"
1502 << BB
->getName() << "'\n");
1504 assert(BlockValueStack
.empty() && BlockValueSet
.empty());
1505 if (!hasBlockValue(V
, BB
)) {
1506 pushBlockValue(std::make_pair(BB
, V
));
1509 ValueLatticeElement Result
= getBlockValue(V
, BB
);
1510 intersectAssumeOrGuardBlockValueConstantRange(V
, Result
, CxtI
);
1512 LLVM_DEBUG(dbgs() << " Result = " << Result
<< "\n");
1516 ValueLatticeElement
LazyValueInfoImpl::getValueAt(Value
*V
, Instruction
*CxtI
) {
1517 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V
<< " at '" << CxtI
->getName()
1520 if (auto *C
= dyn_cast
<Constant
>(V
))
1521 return ValueLatticeElement::get(C
);
1523 ValueLatticeElement Result
= ValueLatticeElement::getOverdefined();
1524 if (auto *I
= dyn_cast
<Instruction
>(V
))
1525 Result
= getFromRangeMetadata(I
);
1526 intersectAssumeOrGuardBlockValueConstantRange(V
, Result
, CxtI
);
1528 LLVM_DEBUG(dbgs() << " Result = " << Result
<< "\n");
1532 ValueLatticeElement
LazyValueInfoImpl::
1533 getValueOnEdge(Value
*V
, BasicBlock
*FromBB
, BasicBlock
*ToBB
,
1534 Instruction
*CxtI
) {
1535 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V
<< " from '"
1536 << FromBB
->getName() << "' to '" << ToBB
->getName()
1539 ValueLatticeElement Result
;
1540 if (!getEdgeValue(V
, FromBB
, ToBB
, Result
, CxtI
)) {
1542 bool WasFastQuery
= getEdgeValue(V
, FromBB
, ToBB
, Result
, CxtI
);
1544 assert(WasFastQuery
&& "More work to do after problem solved?");
1547 LLVM_DEBUG(dbgs() << " Result = " << Result
<< "\n");
1551 void LazyValueInfoImpl::threadEdge(BasicBlock
*PredBB
, BasicBlock
*OldSucc
,
1552 BasicBlock
*NewSucc
) {
1553 TheCache
.threadEdgeImpl(OldSucc
, NewSucc
);
1556 //===----------------------------------------------------------------------===//
1557 // LazyValueInfo Impl
1558 //===----------------------------------------------------------------------===//
1560 /// This lazily constructs the LazyValueInfoImpl.
1561 static LazyValueInfoImpl
&getImpl(void *&PImpl
, AssumptionCache
*AC
,
1562 const DataLayout
*DL
,
1563 DominatorTree
*DT
= nullptr) {
1565 assert(DL
&& "getCache() called with a null DataLayout");
1566 PImpl
= new LazyValueInfoImpl(AC
, *DL
, DT
);
1568 return *static_cast<LazyValueInfoImpl
*>(PImpl
);
1571 bool LazyValueInfoWrapperPass::runOnFunction(Function
&F
) {
1572 Info
.AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1573 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1575 DominatorTreeWrapperPass
*DTWP
=
1576 getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
1577 Info
.DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
1578 Info
.TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
1581 getImpl(Info
.PImpl
, Info
.AC
, &DL
, Info
.DT
).clear();
1587 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1588 AU
.setPreservesAll();
1589 AU
.addRequired
<AssumptionCacheTracker
>();
1590 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
1593 LazyValueInfo
&LazyValueInfoWrapperPass::getLVI() { return Info
; }
1595 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1597 void LazyValueInfo::releaseMemory() {
1598 // If the cache was allocated, free it.
1600 delete &getImpl(PImpl
, AC
, nullptr);
1605 bool LazyValueInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
1606 FunctionAnalysisManager::Invalidator
&Inv
) {
1607 // We need to invalidate if we have either failed to preserve this analyses
1608 // result directly or if any of its dependencies have been invalidated.
1609 auto PAC
= PA
.getChecker
<LazyValueAnalysis
>();
1610 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
1611 (DT
&& Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
)))
1617 void LazyValueInfoWrapperPass::releaseMemory() { Info
.releaseMemory(); }
1619 LazyValueInfo
LazyValueAnalysis::run(Function
&F
,
1620 FunctionAnalysisManager
&FAM
) {
1621 auto &AC
= FAM
.getResult
<AssumptionAnalysis
>(F
);
1622 auto &TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
1623 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
1625 return LazyValueInfo(&AC
, &F
.getParent()->getDataLayout(), &TLI
, DT
);
1628 /// Returns true if we can statically tell that this value will never be a
1629 /// "useful" constant. In practice, this means we've got something like an
1630 /// alloca or a malloc call for which a comparison against a constant can
1631 /// only be guarding dead code. Note that we are potentially giving up some
1632 /// precision in dead code (a constant result) in favour of avoiding a
1633 /// expensive search for a easily answered common query.
1634 static bool isKnownNonConstant(Value
*V
) {
1635 V
= V
->stripPointerCasts();
1636 // The return val of alloc cannot be a Constant.
1637 if (isa
<AllocaInst
>(V
))
1642 Constant
*LazyValueInfo::getConstant(Value
*V
, BasicBlock
*BB
,
1643 Instruction
*CxtI
) {
1644 // Bail out early if V is known not to be a Constant.
1645 if (isKnownNonConstant(V
))
1648 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1649 ValueLatticeElement Result
=
1650 getImpl(PImpl
, AC
, &DL
, DT
).getValueInBlock(V
, BB
, CxtI
);
1652 if (Result
.isConstant())
1653 return Result
.getConstant();
1654 if (Result
.isConstantRange()) {
1655 const ConstantRange
&CR
= Result
.getConstantRange();
1656 if (const APInt
*SingleVal
= CR
.getSingleElement())
1657 return ConstantInt::get(V
->getContext(), *SingleVal
);
1662 ConstantRange
LazyValueInfo::getConstantRange(Value
*V
, BasicBlock
*BB
,
1663 Instruction
*CxtI
) {
1664 assert(V
->getType()->isIntegerTy());
1665 unsigned Width
= V
->getType()->getIntegerBitWidth();
1666 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1667 ValueLatticeElement Result
=
1668 getImpl(PImpl
, AC
, &DL
, DT
).getValueInBlock(V
, BB
, CxtI
);
1669 if (Result
.isUndefined())
1670 return ConstantRange::getEmpty(Width
);
1671 if (Result
.isConstantRange())
1672 return Result
.getConstantRange();
1673 // We represent ConstantInt constants as constant ranges but other kinds
1674 // of integer constants, i.e. ConstantExpr will be tagged as constants
1675 assert(!(Result
.isConstant() && isa
<ConstantInt
>(Result
.getConstant())) &&
1676 "ConstantInt value must be represented as constantrange");
1677 return ConstantRange::getFull(Width
);
1680 /// Determine whether the specified value is known to be a
1681 /// constant on the specified edge. Return null if not.
1682 Constant
*LazyValueInfo::getConstantOnEdge(Value
*V
, BasicBlock
*FromBB
,
1684 Instruction
*CxtI
) {
1685 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1686 ValueLatticeElement Result
=
1687 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1689 if (Result
.isConstant())
1690 return Result
.getConstant();
1691 if (Result
.isConstantRange()) {
1692 const ConstantRange
&CR
= Result
.getConstantRange();
1693 if (const APInt
*SingleVal
= CR
.getSingleElement())
1694 return ConstantInt::get(V
->getContext(), *SingleVal
);
1699 ConstantRange
LazyValueInfo::getConstantRangeOnEdge(Value
*V
,
1702 Instruction
*CxtI
) {
1703 unsigned Width
= V
->getType()->getIntegerBitWidth();
1704 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1705 ValueLatticeElement Result
=
1706 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1708 if (Result
.isUndefined())
1709 return ConstantRange::getEmpty(Width
);
1710 if (Result
.isConstantRange())
1711 return Result
.getConstantRange();
1712 // We represent ConstantInt constants as constant ranges but other kinds
1713 // of integer constants, i.e. ConstantExpr will be tagged as constants
1714 assert(!(Result
.isConstant() && isa
<ConstantInt
>(Result
.getConstant())) &&
1715 "ConstantInt value must be represented as constantrange");
1716 return ConstantRange::getFull(Width
);
1719 static LazyValueInfo::Tristate
1720 getPredicateResult(unsigned Pred
, Constant
*C
, const ValueLatticeElement
&Val
,
1721 const DataLayout
&DL
, TargetLibraryInfo
*TLI
) {
1722 // If we know the value is a constant, evaluate the conditional.
1723 Constant
*Res
= nullptr;
1724 if (Val
.isConstant()) {
1725 Res
= ConstantFoldCompareInstOperands(Pred
, Val
.getConstant(), C
, DL
, TLI
);
1726 if (ConstantInt
*ResCI
= dyn_cast
<ConstantInt
>(Res
))
1727 return ResCI
->isZero() ? LazyValueInfo::False
: LazyValueInfo::True
;
1728 return LazyValueInfo::Unknown
;
1731 if (Val
.isConstantRange()) {
1732 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
);
1733 if (!CI
) return LazyValueInfo::Unknown
;
1735 const ConstantRange
&CR
= Val
.getConstantRange();
1736 if (Pred
== ICmpInst::ICMP_EQ
) {
1737 if (!CR
.contains(CI
->getValue()))
1738 return LazyValueInfo::False
;
1740 if (CR
.isSingleElement())
1741 return LazyValueInfo::True
;
1742 } else if (Pred
== ICmpInst::ICMP_NE
) {
1743 if (!CR
.contains(CI
->getValue()))
1744 return LazyValueInfo::True
;
1746 if (CR
.isSingleElement())
1747 return LazyValueInfo::False
;
1749 // Handle more complex predicates.
1750 ConstantRange TrueValues
= ConstantRange::makeExactICmpRegion(
1751 (ICmpInst::Predicate
)Pred
, CI
->getValue());
1752 if (TrueValues
.contains(CR
))
1753 return LazyValueInfo::True
;
1754 if (TrueValues
.inverse().contains(CR
))
1755 return LazyValueInfo::False
;
1757 return LazyValueInfo::Unknown
;
1760 if (Val
.isNotConstant()) {
1761 // If this is an equality comparison, we can try to fold it knowing that
1763 if (Pred
== ICmpInst::ICMP_EQ
) {
1764 // !C1 == C -> false iff C1 == C.
1765 Res
= ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE
,
1766 Val
.getNotConstant(), C
, DL
,
1768 if (Res
->isNullValue())
1769 return LazyValueInfo::False
;
1770 } else if (Pred
== ICmpInst::ICMP_NE
) {
1771 // !C1 != C -> true iff C1 == C.
1772 Res
= ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE
,
1773 Val
.getNotConstant(), C
, DL
,
1775 if (Res
->isNullValue())
1776 return LazyValueInfo::True
;
1778 return LazyValueInfo::Unknown
;
1781 return LazyValueInfo::Unknown
;
1784 /// Determine whether the specified value comparison with a constant is known to
1785 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1786 LazyValueInfo::Tristate
1787 LazyValueInfo::getPredicateOnEdge(unsigned Pred
, Value
*V
, Constant
*C
,
1788 BasicBlock
*FromBB
, BasicBlock
*ToBB
,
1789 Instruction
*CxtI
) {
1790 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1791 ValueLatticeElement Result
=
1792 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1794 return getPredicateResult(Pred
, C
, Result
, DL
, TLI
);
1797 LazyValueInfo::Tristate
1798 LazyValueInfo::getPredicateAt(unsigned Pred
, Value
*V
, Constant
*C
,
1799 Instruction
*CxtI
) {
1800 // Is or is not NonNull are common predicates being queried. If
1801 // isKnownNonZero can tell us the result of the predicate, we can
1802 // return it quickly. But this is only a fastpath, and falling
1803 // through would still be correct.
1804 const DataLayout
&DL
= CxtI
->getModule()->getDataLayout();
1805 if (V
->getType()->isPointerTy() && C
->isNullValue() &&
1806 isKnownNonZero(V
->stripPointerCastsSameRepresentation(), DL
)) {
1807 if (Pred
== ICmpInst::ICMP_EQ
)
1808 return LazyValueInfo::False
;
1809 else if (Pred
== ICmpInst::ICMP_NE
)
1810 return LazyValueInfo::True
;
1812 ValueLatticeElement Result
= getImpl(PImpl
, AC
, &DL
, DT
).getValueAt(V
, CxtI
);
1813 Tristate Ret
= getPredicateResult(Pred
, C
, Result
, DL
, TLI
);
1817 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1818 // LVI as a whole tries to compute a lattice value which is conservatively
1819 // correct at a given location. In this case, we have a predicate which we
1820 // weren't able to prove about the merged result, and we're pushing that
1821 // predicate back along each incoming edge to see if we can prove it
1822 // separately for each input. As a motivating example, consider:
1824 // %v1 = ... ; constantrange<1, 5>
1827 // %v2 = ... ; constantrange<10, 20>
1830 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1831 // %pred = icmp eq i32 %phi, 8
1832 // We can't tell from the lattice value for '%phi' that '%pred' is false
1833 // along each path, but by checking the predicate over each input separately,
1835 // We limit the search to one step backwards from the current BB and value.
1836 // We could consider extending this to search further backwards through the
1837 // CFG and/or value graph, but there are non-obvious compile time vs quality
1840 BasicBlock
*BB
= CxtI
->getParent();
1842 // Function entry or an unreachable block. Bail to avoid confusing
1844 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1848 // If V is a PHI node in the same block as the context, we need to ask
1849 // questions about the predicate as applied to the incoming value along
1850 // each edge. This is useful for eliminating cases where the predicate is
1851 // known along all incoming edges.
1852 if (auto *PHI
= dyn_cast
<PHINode
>(V
))
1853 if (PHI
->getParent() == BB
) {
1854 Tristate Baseline
= Unknown
;
1855 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
< e
; i
++) {
1856 Value
*Incoming
= PHI
->getIncomingValue(i
);
1857 BasicBlock
*PredBB
= PHI
->getIncomingBlock(i
);
1858 // Note that PredBB may be BB itself.
1859 Tristate Result
= getPredicateOnEdge(Pred
, Incoming
, C
, PredBB
, BB
,
1862 // Keep going as long as we've seen a consistent known result for
1864 Baseline
= (i
== 0) ? Result
/* First iteration */
1865 : (Baseline
== Result
? Baseline
: Unknown
); /* All others */
1866 if (Baseline
== Unknown
)
1869 if (Baseline
!= Unknown
)
1873 // For a comparison where the V is outside this block, it's possible
1874 // that we've branched on it before. Look to see if the value is known
1875 // on all incoming edges.
1876 if (!isa
<Instruction
>(V
) ||
1877 cast
<Instruction
>(V
)->getParent() != BB
) {
1878 // For predecessor edge, determine if the comparison is true or false
1879 // on that edge. If they're all true or all false, we can conclude
1880 // the value of the comparison in this block.
1881 Tristate Baseline
= getPredicateOnEdge(Pred
, V
, C
, *PI
, BB
, CxtI
);
1882 if (Baseline
!= Unknown
) {
1883 // Check that all remaining incoming values match the first one.
1884 while (++PI
!= PE
) {
1885 Tristate Ret
= getPredicateOnEdge(Pred
, V
, C
, *PI
, BB
, CxtI
);
1886 if (Ret
!= Baseline
) break;
1888 // If we terminated early, then one of the values didn't match.
1898 void LazyValueInfo::threadEdge(BasicBlock
*PredBB
, BasicBlock
*OldSucc
,
1899 BasicBlock
*NewSucc
) {
1901 const DataLayout
&DL
= PredBB
->getModule()->getDataLayout();
1902 getImpl(PImpl
, AC
, &DL
, DT
).threadEdge(PredBB
, OldSucc
, NewSucc
);
1906 void LazyValueInfo::eraseBlock(BasicBlock
*BB
) {
1908 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1909 getImpl(PImpl
, AC
, &DL
, DT
).eraseBlock(BB
);
1914 void LazyValueInfo::printLVI(Function
&F
, DominatorTree
&DTree
, raw_ostream
&OS
) {
1916 getImpl(PImpl
, AC
, DL
, DT
).printLVI(F
, DTree
, OS
);
1920 void LazyValueInfo::disableDT() {
1922 getImpl(PImpl
, AC
, DL
, DT
).disableDT();
1925 void LazyValueInfo::enableDT() {
1927 getImpl(PImpl
, AC
, DL
, DT
).enableDT();
1930 // Print the LVI for the function arguments at the start of each basic block.
1931 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1932 const BasicBlock
*BB
, formatted_raw_ostream
&OS
) {
1933 // Find if there are latticevalues defined for arguments of the function.
1934 auto *F
= BB
->getParent();
1935 for (auto &Arg
: F
->args()) {
1936 ValueLatticeElement Result
= LVIImpl
->getValueInBlock(
1937 const_cast<Argument
*>(&Arg
), const_cast<BasicBlock
*>(BB
));
1938 if (Result
.isUndefined())
1940 OS
<< "; LatticeVal for: '" << Arg
<< "' is: " << Result
<< "\n";
1944 // This function prints the LVI analysis for the instruction I at the beginning
1945 // of various basic blocks. It relies on calculated values that are stored in
1946 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1947 // LazyValueInfo for `I`, and print that info.
1948 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1949 const Instruction
*I
, formatted_raw_ostream
&OS
) {
1951 auto *ParentBB
= I
->getParent();
1952 SmallPtrSet
<const BasicBlock
*, 16> BlocksContainingLVI
;
1953 // We can generate (solve) LVI values only for blocks that are dominated by
1954 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1955 // that contain redundant/uninteresting information, we print LVI for
1956 // blocks that may use this LVI information (such as immediate successor
1957 // blocks, and blocks that contain uses of `I`).
1958 auto printResult
= [&](const BasicBlock
*BB
) {
1959 if (!BlocksContainingLVI
.insert(BB
).second
)
1961 ValueLatticeElement Result
= LVIImpl
->getValueInBlock(
1962 const_cast<Instruction
*>(I
), const_cast<BasicBlock
*>(BB
));
1963 OS
<< "; LatticeVal for: '" << *I
<< "' in BB: '";
1964 BB
->printAsOperand(OS
, false);
1965 OS
<< "' is: " << Result
<< "\n";
1968 printResult(ParentBB
);
1969 // Print the LVI analysis results for the immediate successor blocks, that
1970 // are dominated by `ParentBB`.
1971 for (auto *BBSucc
: successors(ParentBB
))
1972 if (DT
.dominates(ParentBB
, BBSucc
))
1973 printResult(BBSucc
);
1975 // Print LVI in blocks where `I` is used.
1976 for (auto *U
: I
->users())
1977 if (auto *UseI
= dyn_cast
<Instruction
>(U
))
1978 if (!isa
<PHINode
>(UseI
) || DT
.dominates(ParentBB
, UseI
->getParent()))
1979 printResult(UseI
->getParent());
1984 // Printer class for LazyValueInfo results.
1985 class LazyValueInfoPrinter
: public FunctionPass
{
1987 static char ID
; // Pass identification, replacement for typeid
1988 LazyValueInfoPrinter() : FunctionPass(ID
) {
1989 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1992 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1993 AU
.setPreservesAll();
1994 AU
.addRequired
<LazyValueInfoWrapperPass
>();
1995 AU
.addRequired
<DominatorTreeWrapperPass
>();
1998 // Get the mandatory dominator tree analysis and pass this in to the
1999 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2000 bool runOnFunction(Function
&F
) override
{
2001 dbgs() << "LVI for function '" << F
.getName() << "':\n";
2002 auto &LVI
= getAnalysis
<LazyValueInfoWrapperPass
>().getLVI();
2003 auto &DTree
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2004 LVI
.printLVI(F
, DTree
, dbgs());
2010 char LazyValueInfoPrinter::ID
= 0;
2011 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter
, "print-lazy-value-info",
2012 "Lazy Value Info Printer Pass", false, false)
2013 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass
)
2014 INITIALIZE_PASS_END(LazyValueInfoPrinter
, "print-lazy-value-info",
2015 "Lazy Value Info Printer Pass", false, false)