[lib/ObjectYAML] - Cleanup the private interface of ELFState<ELFT>. NFCI.
[llvm-complete.git] / lib / Target / ARM / ARMSubtarget.cpp
blob54443d2126f728e30acaa5fa2c41ff6ab129fc5c
1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #include "ARM.h"
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMInstrInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "MCTargetDesc/ARMMCTargetDesc.h"
24 #include "Thumb1FrameLowering.h"
25 #include "Thumb1InstrInfo.h"
26 #include "Thumb2InstrInfo.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Target/TargetOptions.h"
41 using namespace llvm;
43 #define DEBUG_TYPE "arm-subtarget"
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51 cl::init(true), cl::Hidden);
53 enum ITMode {
54 DefaultIT,
55 RestrictedIT,
56 NoRestrictedIT
59 static cl::opt<ITMode>
60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61 cl::ZeroOrMore,
62 cl::values(clEnumValN(DefaultIT, "arm-default-it",
63 "Generate IT block based on arch"),
64 clEnumValN(RestrictedIT, "arm-restrict-it",
65 "Disallow deprecated IT based on ARMv8"),
66 clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
67 "Allow IT blocks based on ARMv7")));
69 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
70 /// currently supported (for testing only).
71 static cl::opt<bool>
72 ForceFastISel("arm-force-fast-isel",
73 cl::init(false), cl::Hidden);
75 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
76 /// so that we can use initializer lists for subtarget initialization.
77 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
78 StringRef FS) {
79 initializeEnvironment();
80 initSubtargetFeatures(CPU, FS);
81 return *this;
84 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
85 StringRef FS) {
86 ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
87 if (STI.isThumb1Only())
88 return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
90 return new ARMFrameLowering(STI);
93 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
94 const std::string &FS,
95 const ARMBaseTargetMachine &TM, bool IsLittle,
96 bool MinSize)
97 : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
98 CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
99 TargetTriple(TT), Options(TM.Options), TM(TM),
100 FrameLowering(initializeFrameLowering(CPU, FS)),
101 // At this point initializeSubtargetDependencies has been called so
102 // we can query directly.
103 InstrInfo(isThumb1Only()
104 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
105 : !isThumb()
106 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
107 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
108 TLInfo(TM, *this) {
110 CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
111 Legalizer.reset(new ARMLegalizerInfo(*this));
113 auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
115 // FIXME: At this point, we can't rely on Subtarget having RBI.
116 // It's awkward to mix passing RBI and the Subtarget; should we pass
117 // TII/TRI as well?
118 InstSelector.reset(createARMInstructionSelector(
119 *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
121 RegBankInfo.reset(RBI);
124 const CallLowering *ARMSubtarget::getCallLowering() const {
125 return CallLoweringInfo.get();
128 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
129 return InstSelector.get();
132 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
133 return Legalizer.get();
136 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
137 return RegBankInfo.get();
140 bool ARMSubtarget::isXRaySupported() const {
141 // We don't currently suppport Thumb, but Windows requires Thumb.
142 return hasV6Ops() && hasARMOps() && !isTargetWindows();
145 void ARMSubtarget::initializeEnvironment() {
146 // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
147 // directly from it, but we can try to make sure they're consistent when both
148 // available.
149 UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
150 Options.ExceptionModel == ExceptionHandling::None) ||
151 Options.ExceptionModel == ExceptionHandling::SjLj;
152 assert((!TM.getMCAsmInfo() ||
153 (TM.getMCAsmInfo()->getExceptionHandlingType() ==
154 ExceptionHandling::SjLj) == UseSjLjEH) &&
155 "inconsistent sjlj choice between CodeGen and MC");
158 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
159 if (CPUString.empty()) {
160 CPUString = "generic";
162 if (isTargetDarwin()) {
163 StringRef ArchName = TargetTriple.getArchName();
164 ARM::ArchKind AK = ARM::parseArch(ArchName);
165 if (AK == ARM::ArchKind::ARMV7S)
166 // Default to the Swift CPU when targeting armv7s/thumbv7s.
167 CPUString = "swift";
168 else if (AK == ARM::ArchKind::ARMV7K)
169 // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
170 // ARMv7k does not use SjLj exception handling.
171 CPUString = "cortex-a7";
175 // Insert the architecture feature derived from the target triple into the
176 // feature string. This is important for setting features that are implied
177 // based on the architecture version.
178 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
179 if (!FS.empty()) {
180 if (!ArchFS.empty())
181 ArchFS = (Twine(ArchFS) + "," + FS).str();
182 else
183 ArchFS = FS;
185 ParseSubtargetFeatures(CPUString, ArchFS);
187 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
188 // Assert this for now to make the change obvious.
189 assert(hasV6T2Ops() || !hasThumb2());
191 // Execute only support requires movt support
192 if (genExecuteOnly()) {
193 NoMovt = false;
194 assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
197 // Keep a pointer to static instruction cost data for the specified CPU.
198 SchedModel = getSchedModelForCPU(CPUString);
200 // Initialize scheduling itinerary for the specified CPU.
201 InstrItins = getInstrItineraryForCPU(CPUString);
203 // FIXME: this is invalid for WindowsCE
204 if (isTargetWindows())
205 NoARM = true;
207 if (isAAPCS_ABI())
208 stackAlignment = 8;
209 if (isTargetNaCl() || isAAPCS16_ABI())
210 stackAlignment = 16;
212 // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
213 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
214 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
215 // support in the assembler and linker to be used. This would need to be
216 // fixed to fully support tail calls in Thumb1.
218 // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
219 // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
220 // means if we need to reload LR, it takes extra instructions, which outweighs
221 // the value of the tail call; but here we don't know yet whether LR is going
222 // to be used. We take the optimistic approach of generating the tail call and
223 // perhaps taking a hit if we need to restore the LR.
225 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
226 // but we need to make sure there are enough registers; the only valid
227 // registers are the 4 used for parameters. We don't currently do this
228 // case.
230 SupportsTailCall = !isThumb() || hasV8MBaselineOps();
232 if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
233 SupportsTailCall = false;
235 switch (IT) {
236 case DefaultIT:
237 RestrictIT = hasV8Ops();
238 break;
239 case RestrictedIT:
240 RestrictIT = true;
241 break;
242 case NoRestrictedIT:
243 RestrictIT = false;
244 break;
247 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
248 const FeatureBitset &Bits = getFeatureBits();
249 if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
250 (Options.UnsafeFPMath || isTargetDarwin()))
251 UseNEONForSinglePrecisionFP = true;
253 if (isRWPI())
254 ReserveR9 = true;
256 // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
257 if (MVEVectorCostFactor == 0)
258 MVEVectorCostFactor = 2;
260 // FIXME: Teach TableGen to deal with these instead of doing it manually here.
261 switch (ARMProcFamily) {
262 case Others:
263 case CortexA5:
264 break;
265 case CortexA7:
266 LdStMultipleTiming = DoubleIssue;
267 break;
268 case CortexA8:
269 LdStMultipleTiming = DoubleIssue;
270 break;
271 case CortexA9:
272 LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
273 PreISelOperandLatencyAdjustment = 1;
274 break;
275 case CortexA12:
276 break;
277 case CortexA15:
278 MaxInterleaveFactor = 2;
279 PreISelOperandLatencyAdjustment = 1;
280 PartialUpdateClearance = 12;
281 break;
282 case CortexA17:
283 case CortexA32:
284 case CortexA35:
285 case CortexA53:
286 case CortexA55:
287 case CortexA57:
288 case CortexA72:
289 case CortexA73:
290 case CortexA75:
291 case CortexA76:
292 case CortexR4:
293 case CortexR4F:
294 case CortexR5:
295 case CortexR7:
296 case CortexM3:
297 case CortexR52:
298 break;
299 case Exynos:
300 LdStMultipleTiming = SingleIssuePlusExtras;
301 MaxInterleaveFactor = 4;
302 if (!isThumb())
303 PrefLoopAlignment = 3;
304 break;
305 case Kryo:
306 break;
307 case Krait:
308 PreISelOperandLatencyAdjustment = 1;
309 break;
310 case NeoverseN1:
311 break;
312 case Swift:
313 MaxInterleaveFactor = 2;
314 LdStMultipleTiming = SingleIssuePlusExtras;
315 PreISelOperandLatencyAdjustment = 1;
316 PartialUpdateClearance = 12;
317 break;
321 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
323 bool ARMSubtarget::isAPCS_ABI() const {
324 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
325 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
327 bool ARMSubtarget::isAAPCS_ABI() const {
328 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
329 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
330 TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
332 bool ARMSubtarget::isAAPCS16_ABI() const {
333 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
334 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
337 bool ARMSubtarget::isROPI() const {
338 return TM.getRelocationModel() == Reloc::ROPI ||
339 TM.getRelocationModel() == Reloc::ROPI_RWPI;
341 bool ARMSubtarget::isRWPI() const {
342 return TM.getRelocationModel() == Reloc::RWPI ||
343 TM.getRelocationModel() == Reloc::ROPI_RWPI;
346 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
347 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
348 return true;
350 // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
351 // the section that is being relocated. This means we have to use o load even
352 // for GVs that are known to be local to the dso.
353 if (isTargetMachO() && TM.isPositionIndependent() &&
354 (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
355 return true;
357 return false;
360 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
361 return isTargetELF() && TM.isPositionIndependent() &&
362 !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
365 unsigned ARMSubtarget::getMispredictionPenalty() const {
366 return SchedModel.MispredictPenalty;
369 bool ARMSubtarget::enableMachineScheduler() const {
370 // The MachineScheduler can increase register usage, so we use more high
371 // registers and end up with more T2 instructions that cannot be converted to
372 // T1 instructions. At least until we do better at converting to thumb1
373 // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
374 // Machine scheduler, relying on the DAG register pressure scheduler instead.
375 if (isMClass() && hasMinSize())
376 return false;
377 // Enable the MachineScheduler before register allocation for subtargets
378 // with the use-misched feature.
379 return useMachineScheduler();
382 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
383 bool ARMSubtarget::enablePostRAScheduler() const {
384 if (disablePostRAScheduler())
385 return false;
386 // Don't reschedule potential IT blocks.
387 return !isThumb1Only();
390 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
392 bool ARMSubtarget::useStride4VFPs() const {
393 // For general targets, the prologue can grow when VFPs are allocated with
394 // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
395 // format which it's more important to get right.
396 return isTargetWatchABI() ||
397 (useWideStrideVFP() && !OptMinSize);
400 bool ARMSubtarget::useMovt() const {
401 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
402 // immediates as it is inherently position independent, and may be out of
403 // range otherwise.
404 return !NoMovt && hasV8MBaselineOps() &&
405 (isTargetWindows() || !OptMinSize || genExecuteOnly());
408 bool ARMSubtarget::useFastISel() const {
409 // Enable fast-isel for any target, for testing only.
410 if (ForceFastISel)
411 return true;
413 // Limit fast-isel to the targets that are or have been tested.
414 if (!hasV6Ops())
415 return false;
417 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
418 return TM.Options.EnableFastISel &&
419 ((isTargetMachO() && !isThumb1Only()) ||
420 (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
423 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
424 // The GPR register class has multiple possible allocation orders, with
425 // tradeoffs preferred by different sub-architectures and optimisation goals.
426 // The allocation orders are:
427 // 0: (the default tablegen order, not used)
428 // 1: r14, r0-r13
429 // 2: r0-r7
430 // 3: r0-r7, r12, lr, r8-r11
431 // Note that the register allocator will change this order so that
432 // callee-saved registers are used later, as they require extra work in the
433 // prologue/epilogue (though we sometimes override that).
435 // For thumb1-only targets, only the low registers are allocatable.
436 if (isThumb1Only())
437 return 2;
439 // Allocate low registers first, so we can select more 16-bit instructions.
440 // We also (in ignoreCSRForAllocationOrder) override the default behaviour
441 // with regards to callee-saved registers, because pushing extra registers is
442 // much cheaper (in terms of code size) than using high registers. After
443 // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
444 // can return with the pop, don't need an extra "bx lr") and then the rest of
445 // the high registers.
446 if (isThumb2() && MF.getFunction().hasMinSize())
447 return 3;
449 // Otherwise, allocate in the default order, using LR first because saving it
450 // allows a shorter epilogue sequence.
451 return 1;
454 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
455 unsigned PhysReg) const {
456 // To minimize code size in Thumb2, we prefer the usage of low regs (lower
457 // cost per use) so we can use narrow encoding. By default, caller-saved
458 // registers (e.g. lr, r12) are always allocated first, regardless of
459 // their cost per use. When optForMinSize, we prefer the low regs even if
460 // they are CSR because usually push/pop can be folded into existing ones.
461 return isThumb2() && MF.getFunction().hasMinSize() &&
462 ARM::GPRRegClass.contains(PhysReg);