1 //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the SparseMultiSet class, which adds multiset behavior to
12 // A sparse multiset holds a small number of objects identified by integer keys
13 // from a moderately sized universe. The sparse multiset uses more memory than
14 // other containers in order to provide faster operations. Any key can map to
15 // multiple values. A SparseMultiSetNode class is provided, which serves as a
16 // convenient base class for the contents of a SparseMultiSet.
18 //===----------------------------------------------------------------------===//
20 #ifndef LLVM_ADT_SPARSEMULTISET_H
21 #define LLVM_ADT_SPARSEMULTISET_H
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SparseSet.h"
35 /// Fast multiset implementation for objects that can be identified by small
38 /// SparseMultiSet allocates memory proportional to the size of the key
39 /// universe, so it is not recommended for building composite data structures.
40 /// It is useful for algorithms that require a single set with fast operations.
42 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
43 /// fast clear() as fast as a vector. The find(), insert(), and erase()
44 /// operations are all constant time, and typically faster than a hash table.
45 /// The iteration order doesn't depend on numerical key values, it only depends
46 /// on the order of insert() and erase() operations. Iteration order is the
47 /// insertion order. Iteration is only provided over elements of equivalent
48 /// keys, but iterators are bidirectional.
50 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
51 /// offers constant-time clear() and size() operations as well as fast iteration
52 /// independent on the size of the universe.
54 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
55 /// array holding indexes into the dense vector. Most of the memory is used by
56 /// the sparse array which is the size of the key universe. The SparseT template
57 /// parameter provides a space/speed tradeoff for sets holding many elements.
59 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
60 /// sparse array uses 4 x Universe bytes.
62 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
63 /// lines, but the sparse array is 4x smaller. N is the number of elements in
66 /// For sets that may grow to thousands of elements, SparseT should be set to
67 /// uint16_t or uint32_t.
69 /// Multiset behavior is provided by providing doubly linked lists for values
70 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
71 /// one desires a growable number of entries per key, as it will retain the
72 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
73 /// better choice than a SparseSet of growable containers or a vector of
74 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
75 /// the iterators don't point to the element erased), allowing for more
76 /// intuitive and fast removal.
78 /// @tparam ValueT The type of objects in the set.
79 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
80 /// @tparam SparseT An unsigned integer type. See above.
82 template<typename ValueT
,
83 typename KeyFunctorT
= identity
<unsigned>,
84 typename SparseT
= uint8_t>
85 class SparseMultiSet
{
86 static_assert(std::numeric_limits
<SparseT
>::is_integer
&&
87 !std::numeric_limits
<SparseT
>::is_signed
,
88 "SparseT must be an unsigned integer type");
90 /// The actual data that's stored, as a doubly-linked list implemented via
91 /// indices into the DenseVector. The doubly linked list is implemented
92 /// circular in Prev indices, and INVALID-terminated in Next indices. This
93 /// provides efficient access to list tails. These nodes can also be
94 /// tombstones, in which case they are actually nodes in a single-linked
95 /// freelist of recyclable slots.
97 static const unsigned INVALID
= ~0U;
103 SMSNode(ValueT D
, unsigned P
, unsigned N
) : Data(D
), Prev(P
), Next(N
) {}
105 /// List tails have invalid Nexts.
106 bool isTail() const {
107 return Next
== INVALID
;
110 /// Whether this node is a tombstone node, and thus is in our freelist.
111 bool isTombstone() const {
112 return Prev
== INVALID
;
115 /// Since the list is circular in Prev, all non-tombstone nodes have a valid
117 bool isValid() const { return Prev
!= INVALID
; }
120 using KeyT
= typename
KeyFunctorT::argument_type
;
121 using DenseT
= SmallVector
<SMSNode
, 8>;
123 SparseT
*Sparse
= nullptr;
124 unsigned Universe
= 0;
125 KeyFunctorT KeyIndexOf
;
126 SparseSetValFunctor
<KeyT
, ValueT
, KeyFunctorT
> ValIndexOf
;
128 /// We have a built-in recycler for reusing tombstone slots. This recycler
129 /// puts a singly-linked free list into tombstone slots, allowing us quick
130 /// erasure, iterator preservation, and dense size.
131 unsigned FreelistIdx
= SMSNode::INVALID
;
132 unsigned NumFree
= 0;
134 unsigned sparseIndex(const ValueT
&Val
) const {
135 assert(ValIndexOf(Val
) < Universe
&&
136 "Invalid key in set. Did object mutate?");
137 return ValIndexOf(Val
);
139 unsigned sparseIndex(const SMSNode
&N
) const { return sparseIndex(N
.Data
); }
141 /// Whether the given entry is the head of the list. List heads's previous
142 /// pointers are to the tail of the list, allowing for efficient access to the
143 /// list tail. D must be a valid entry node.
144 bool isHead(const SMSNode
&D
) const {
145 assert(D
.isValid() && "Invalid node for head");
146 return Dense
[D
.Prev
].isTail();
149 /// Whether the given entry is a singleton entry, i.e. the only entry with
151 bool isSingleton(const SMSNode
&N
) const {
152 assert(N
.isValid() && "Invalid node for singleton");
153 // Is N its own predecessor?
154 return &Dense
[N
.Prev
] == &N
;
157 /// Add in the given SMSNode. Uses a free entry in our freelist if
158 /// available. Returns the index of the added node.
159 unsigned addValue(const ValueT
& V
, unsigned Prev
, unsigned Next
) {
161 Dense
.push_back(SMSNode(V
, Prev
, Next
));
162 return Dense
.size() - 1;
165 // Peel off a free slot
166 unsigned Idx
= FreelistIdx
;
167 unsigned NextFree
= Dense
[Idx
].Next
;
168 assert(Dense
[Idx
].isTombstone() && "Non-tombstone free?");
170 Dense
[Idx
] = SMSNode(V
, Prev
, Next
);
171 FreelistIdx
= NextFree
;
176 /// Make the current index a new tombstone. Pushes it onto the freelist.
177 void makeTombstone(unsigned Idx
) {
178 Dense
[Idx
].Prev
= SMSNode::INVALID
;
179 Dense
[Idx
].Next
= FreelistIdx
;
185 using value_type
= ValueT
;
186 using reference
= ValueT
&;
187 using const_reference
= const ValueT
&;
188 using pointer
= ValueT
*;
189 using const_pointer
= const ValueT
*;
190 using size_type
= unsigned;
192 SparseMultiSet() = default;
193 SparseMultiSet(const SparseMultiSet
&) = delete;
194 SparseMultiSet
&operator=(const SparseMultiSet
&) = delete;
195 ~SparseMultiSet() { free(Sparse
); }
197 /// Set the universe size which determines the largest key the set can hold.
198 /// The universe must be sized before any elements can be added.
200 /// @param U Universe size. All object keys must be less than U.
202 void setUniverse(unsigned U
) {
203 // It's not hard to resize the universe on a non-empty set, but it doesn't
204 // seem like a likely use case, so we can add that code when we need it.
205 assert(empty() && "Can only resize universe on an empty map");
206 // Hysteresis prevents needless reallocations.
207 if (U
>= Universe
/4 && U
<= Universe
)
210 // The Sparse array doesn't actually need to be initialized, so malloc
211 // would be enough here, but that will cause tools like valgrind to
212 // complain about branching on uninitialized data.
213 Sparse
= static_cast<SparseT
*>(safe_calloc(U
, sizeof(SparseT
)));
217 /// Our iterators are iterators over the collection of objects that share a
219 template<typename SMSPtrTy
>
220 class iterator_base
: public std::iterator
<std::bidirectional_iterator_tag
,
222 friend class SparseMultiSet
;
228 iterator_base(SMSPtrTy P
, unsigned I
, unsigned SI
)
229 : SMS(P
), Idx(I
), SparseIdx(SI
) {}
231 /// Whether our iterator has fallen outside our dense vector.
233 if (Idx
== SMSNode::INVALID
)
236 assert(Idx
< SMS
->Dense
.size() && "Out of range, non-INVALID Idx?");
240 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
241 bool isKeyed() const { return SparseIdx
< SMS
->Universe
; }
243 unsigned Prev() const { return SMS
->Dense
[Idx
].Prev
; }
244 unsigned Next() const { return SMS
->Dense
[Idx
].Next
; }
246 void setPrev(unsigned P
) { SMS
->Dense
[Idx
].Prev
= P
; }
247 void setNext(unsigned N
) { SMS
->Dense
[Idx
].Next
= N
; }
250 using super
= std::iterator
<std::bidirectional_iterator_tag
, ValueT
>;
251 using value_type
= typename
super::value_type
;
252 using difference_type
= typename
super::difference_type
;
253 using pointer
= typename
super::pointer
;
254 using reference
= typename
super::reference
;
256 reference
operator*() const {
257 assert(isKeyed() && SMS
->sparseIndex(SMS
->Dense
[Idx
].Data
) == SparseIdx
&&
258 "Dereferencing iterator of invalid key or index");
260 return SMS
->Dense
[Idx
].Data
;
262 pointer
operator->() const { return &operator*(); }
264 /// Comparison operators
265 bool operator==(const iterator_base
&RHS
) const {
266 // end compares equal
267 if (SMS
== RHS
.SMS
&& Idx
== RHS
.Idx
) {
268 assert((isEnd() || SparseIdx
== RHS
.SparseIdx
) &&
269 "Same dense entry, but different keys?");
276 bool operator!=(const iterator_base
&RHS
) const {
277 return !operator==(RHS
);
280 /// Increment and decrement operators
281 iterator_base
&operator--() { // predecrement - Back up
282 assert(isKeyed() && "Decrementing an invalid iterator");
283 assert((isEnd() || !SMS
->isHead(SMS
->Dense
[Idx
])) &&
284 "Decrementing head of list");
286 // If we're at the end, then issue a new find()
288 Idx
= SMS
->findIndex(SparseIdx
).Prev();
294 iterator_base
&operator++() { // preincrement - Advance
295 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
299 iterator_base
operator--(int) { // postdecrement
300 iterator_base
I(*this);
304 iterator_base
operator++(int) { // postincrement
305 iterator_base
I(*this);
311 using iterator
= iterator_base
<SparseMultiSet
*>;
312 using const_iterator
= iterator_base
<const SparseMultiSet
*>;
315 using RangePair
= std::pair
<iterator
, iterator
>;
317 /// Returns an iterator past this container. Note that such an iterator cannot
318 /// be decremented, but will compare equal to other end iterators.
319 iterator
end() { return iterator(this, SMSNode::INVALID
, SMSNode::INVALID
); }
320 const_iterator
end() const {
321 return const_iterator(this, SMSNode::INVALID
, SMSNode::INVALID
);
324 /// Returns true if the set is empty.
326 /// This is not the same as BitVector::empty().
328 bool empty() const { return size() == 0; }
330 /// Returns the number of elements in the set.
332 /// This is not the same as BitVector::size() which returns the size of the
335 size_type
size() const {
336 assert(NumFree
<= Dense
.size() && "Out-of-bounds free entries");
337 return Dense
.size() - NumFree
;
340 /// Clears the set. This is a very fast constant time operation.
343 // Sparse does not need to be cleared, see find().
346 FreelistIdx
= SMSNode::INVALID
;
349 /// Find an element by its index.
351 /// @param Idx A valid index to find.
352 /// @returns An iterator to the element identified by key, or end().
354 iterator
findIndex(unsigned Idx
) {
355 assert(Idx
< Universe
&& "Key out of range");
356 const unsigned Stride
= std::numeric_limits
<SparseT
>::max() + 1u;
357 for (unsigned i
= Sparse
[Idx
], e
= Dense
.size(); i
< e
; i
+= Stride
) {
358 const unsigned FoundIdx
= sparseIndex(Dense
[i
]);
359 // Check that we're pointing at the correct entry and that it is the head
361 if (Idx
== FoundIdx
&& Dense
[i
].isValid() && isHead(Dense
[i
]))
362 return iterator(this, i
, Idx
);
363 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
370 /// Find an element by its key.
372 /// @param Key A valid key to find.
373 /// @returns An iterator to the element identified by key, or end().
375 iterator
find(const KeyT
&Key
) {
376 return findIndex(KeyIndexOf(Key
));
379 const_iterator
find(const KeyT
&Key
) const {
380 iterator I
= const_cast<SparseMultiSet
*>(this)->findIndex(KeyIndexOf(Key
));
381 return const_iterator(I
.SMS
, I
.Idx
, KeyIndexOf(Key
));
384 /// Returns the number of elements identified by Key. This will be linear in
385 /// the number of elements of that key.
386 size_type
count(const KeyT
&Key
) const {
388 for (const_iterator It
= find(Key
); It
!= end(); ++It
)
394 /// Returns true if this set contains an element identified by Key.
395 bool contains(const KeyT
&Key
) const {
396 return find(Key
) != end();
399 /// Return the head and tail of the subset's list, otherwise returns end().
400 iterator
getHead(const KeyT
&Key
) { return find(Key
); }
401 iterator
getTail(const KeyT
&Key
) {
402 iterator I
= find(Key
);
404 I
= iterator(this, I
.Prev(), KeyIndexOf(Key
));
408 /// The bounds of the range of items sharing Key K. First member is the head
409 /// of the list, and the second member is a decrementable end iterator for
411 RangePair
equal_range(const KeyT
&K
) {
412 iterator B
= find(K
);
413 iterator E
= iterator(this, SMSNode::INVALID
, B
.SparseIdx
);
414 return make_pair(B
, E
);
417 /// Insert a new element at the tail of the subset list. Returns an iterator
418 /// to the newly added entry.
419 iterator
insert(const ValueT
&Val
) {
420 unsigned Idx
= sparseIndex(Val
);
421 iterator I
= findIndex(Idx
);
423 unsigned NodeIdx
= addValue(Val
, SMSNode::INVALID
, SMSNode::INVALID
);
426 // Make a singleton list
427 Sparse
[Idx
] = NodeIdx
;
428 Dense
[NodeIdx
].Prev
= NodeIdx
;
429 return iterator(this, NodeIdx
, Idx
);
432 // Stick it at the end.
433 unsigned HeadIdx
= I
.Idx
;
434 unsigned TailIdx
= I
.Prev();
435 Dense
[TailIdx
].Next
= NodeIdx
;
436 Dense
[HeadIdx
].Prev
= NodeIdx
;
437 Dense
[NodeIdx
].Prev
= TailIdx
;
439 return iterator(this, NodeIdx
, Idx
);
442 /// Erases an existing element identified by a valid iterator.
444 /// This invalidates iterators pointing at the same entry, but erase() returns
445 /// an iterator pointing to the next element in the subset's list. This makes
446 /// it possible to erase selected elements while iterating over the subset:
448 /// tie(I, E) = Set.equal_range(Key);
451 /// I = Set.erase(I);
455 /// Note that if the last element in the subset list is erased, this will
456 /// return an end iterator which can be decremented to get the new tail (if it
459 /// tie(B, I) = Set.equal_range(Key);
460 /// for (bool isBegin = B == I; !isBegin; /* empty */) {
461 /// isBegin = (--I) == B;
466 iterator
erase(iterator I
) {
467 assert(I
.isKeyed() && !I
.isEnd() && !Dense
[I
.Idx
].isTombstone() &&
468 "erasing invalid/end/tombstone iterator");
470 // First, unlink the node from its list. Then swap the node out with the
471 // dense vector's last entry
472 iterator NextI
= unlink(Dense
[I
.Idx
]);
474 // Put in a tombstone.
475 makeTombstone(I
.Idx
);
480 /// Erase all elements with the given key. This invalidates all
481 /// iterators of that key.
482 void eraseAll(const KeyT
&K
) {
483 for (iterator I
= find(K
); I
!= end(); /* empty */)
488 /// Unlink the node from its list. Returns the next node in the list.
489 iterator
unlink(const SMSNode
&N
) {
490 if (isSingleton(N
)) {
491 // Singleton is already unlinked
492 assert(N
.Next
== SMSNode::INVALID
&& "Singleton has next?");
493 return iterator(this, SMSNode::INVALID
, ValIndexOf(N
.Data
));
497 // If we're the head, then update the sparse array and our next.
498 Sparse
[sparseIndex(N
)] = N
.Next
;
499 Dense
[N
.Next
].Prev
= N
.Prev
;
500 return iterator(this, N
.Next
, ValIndexOf(N
.Data
));
504 // If we're the tail, then update our head and our previous.
505 findIndex(sparseIndex(N
)).setPrev(N
.Prev
);
506 Dense
[N
.Prev
].Next
= N
.Next
;
508 // Give back an end iterator that can be decremented
509 iterator
I(this, N
.Prev
, ValIndexOf(N
.Data
));
513 // Otherwise, just drop us
514 Dense
[N
.Next
].Prev
= N
.Prev
;
515 Dense
[N
.Prev
].Next
= N
.Next
;
516 return iterator(this, N
.Next
, ValIndexOf(N
.Data
));
520 } // end namespace llvm
522 #endif // LLVM_ADT_SPARSEMULTISET_H