1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
31 using namespace PatternMatch
;
33 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
34 /// reusing an existing cast if a suitable one exists, moving an existing
35 /// cast if a suitable one exists but isn't in the right place, or
36 /// creating a new one.
37 Value
*SCEVExpander::ReuseOrCreateCast(Value
*V
, Type
*Ty
,
38 Instruction::CastOps Op
,
39 BasicBlock::iterator IP
) {
40 // This function must be called with the builder having a valid insertion
41 // point. It doesn't need to be the actual IP where the uses of the returned
42 // cast will be added, but it must dominate such IP.
43 // We use this precondition to produce a cast that will dominate all its
44 // uses. In particular, this is crucial for the case where the builder's
45 // insertion point *is* the point where we were asked to put the cast.
46 // Since we don't know the builder's insertion point is actually
47 // where the uses will be added (only that it dominates it), we are
48 // not allowed to move it.
49 BasicBlock::iterator BIP
= Builder
.GetInsertPoint();
51 Instruction
*Ret
= nullptr;
53 // Check to see if there is already a cast!
54 for (User
*U
: V
->users())
55 if (U
->getType() == Ty
)
56 if (CastInst
*CI
= dyn_cast
<CastInst
>(U
))
57 if (CI
->getOpcode() == Op
) {
58 // If the cast isn't where we want it, create a new cast at IP.
59 // Likewise, do not reuse a cast at BIP because it must dominate
60 // instructions that might be inserted before BIP.
61 if (BasicBlock::iterator(CI
) != IP
|| BIP
== IP
) {
62 // Create a new cast, and leave the old cast in place in case
63 // it is being used as an insert point.
64 Ret
= CastInst::Create(Op
, V
, Ty
, "", &*IP
);
66 CI
->replaceAllUsesWith(Ret
);
75 Ret
= CastInst::Create(Op
, V
, Ty
, V
->getName(), &*IP
);
77 // We assert at the end of the function since IP might point to an
78 // instruction with different dominance properties than a cast
79 // (an invoke for example) and not dominate BIP (but the cast does).
80 assert(SE
.DT
.dominates(Ret
, &*BIP
));
82 rememberInstruction(Ret
);
86 static BasicBlock::iterator
findInsertPointAfter(Instruction
*I
,
87 BasicBlock
*MustDominate
) {
88 BasicBlock::iterator IP
= ++I
->getIterator();
89 if (auto *II
= dyn_cast
<InvokeInst
>(I
))
90 IP
= II
->getNormalDest()->begin();
92 while (isa
<PHINode
>(IP
))
95 if (isa
<FuncletPadInst
>(IP
) || isa
<LandingPadInst
>(IP
)) {
97 } else if (isa
<CatchSwitchInst
>(IP
)) {
98 IP
= MustDominate
->getFirstInsertionPt();
100 assert(!IP
->isEHPad() && "unexpected eh pad!");
106 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
107 /// which must be possible with a noop cast, doing what we can to share
109 Value
*SCEVExpander::InsertNoopCastOfTo(Value
*V
, Type
*Ty
) {
110 Instruction::CastOps Op
= CastInst::getCastOpcode(V
, false, Ty
, false);
111 assert((Op
== Instruction::BitCast
||
112 Op
== Instruction::PtrToInt
||
113 Op
== Instruction::IntToPtr
) &&
114 "InsertNoopCastOfTo cannot perform non-noop casts!");
115 assert(SE
.getTypeSizeInBits(V
->getType()) == SE
.getTypeSizeInBits(Ty
) &&
116 "InsertNoopCastOfTo cannot change sizes!");
118 // Short-circuit unnecessary bitcasts.
119 if (Op
== Instruction::BitCast
) {
120 if (V
->getType() == Ty
)
122 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
)) {
123 if (CI
->getOperand(0)->getType() == Ty
)
124 return CI
->getOperand(0);
127 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
128 if ((Op
== Instruction::PtrToInt
|| Op
== Instruction::IntToPtr
) &&
129 SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(V
->getType())) {
130 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
131 if ((CI
->getOpcode() == Instruction::PtrToInt
||
132 CI
->getOpcode() == Instruction::IntToPtr
) &&
133 SE
.getTypeSizeInBits(CI
->getType()) ==
134 SE
.getTypeSizeInBits(CI
->getOperand(0)->getType()))
135 return CI
->getOperand(0);
136 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
137 if ((CE
->getOpcode() == Instruction::PtrToInt
||
138 CE
->getOpcode() == Instruction::IntToPtr
) &&
139 SE
.getTypeSizeInBits(CE
->getType()) ==
140 SE
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
141 return CE
->getOperand(0);
144 // Fold a cast of a constant.
145 if (Constant
*C
= dyn_cast
<Constant
>(V
))
146 return ConstantExpr::getCast(Op
, C
, Ty
);
148 // Cast the argument at the beginning of the entry block, after
149 // any bitcasts of other arguments.
150 if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
151 BasicBlock::iterator IP
= A
->getParent()->getEntryBlock().begin();
152 while ((isa
<BitCastInst
>(IP
) &&
153 isa
<Argument
>(cast
<BitCastInst
>(IP
)->getOperand(0)) &&
154 cast
<BitCastInst
>(IP
)->getOperand(0) != A
) ||
155 isa
<DbgInfoIntrinsic
>(IP
))
157 return ReuseOrCreateCast(A
, Ty
, Op
, IP
);
160 // Cast the instruction immediately after the instruction.
161 Instruction
*I
= cast
<Instruction
>(V
);
162 BasicBlock::iterator IP
= findInsertPointAfter(I
, Builder
.GetInsertBlock());
163 return ReuseOrCreateCast(I
, Ty
, Op
, IP
);
166 /// InsertBinop - Insert the specified binary operator, doing a small amount
167 /// of work to avoid inserting an obviously redundant operation, and hoisting
168 /// to an outer loop when the opportunity is there and it is safe.
169 Value
*SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode
,
170 Value
*LHS
, Value
*RHS
,
171 SCEV::NoWrapFlags Flags
, bool IsSafeToHoist
) {
172 // Fold a binop with constant operands.
173 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
174 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
175 return ConstantExpr::get(Opcode
, CLHS
, CRHS
);
177 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
178 unsigned ScanLimit
= 6;
179 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
180 // Scanning starts from the last instruction before the insertion point.
181 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
182 if (IP
!= BlockBegin
) {
184 for (; ScanLimit
; --IP
, --ScanLimit
) {
185 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187 if (isa
<DbgInfoIntrinsic
>(IP
))
190 auto canGenerateIncompatiblePoison
= [&Flags
](Instruction
*I
) {
191 // Ensure that no-wrap flags match.
192 if (isa
<OverflowingBinaryOperator
>(I
)) {
193 if (I
->hasNoSignedWrap() != (Flags
& SCEV::FlagNSW
))
195 if (I
->hasNoUnsignedWrap() != (Flags
& SCEV::FlagNUW
))
198 // Conservatively, do not use any instruction which has any of exact
200 if (isa
<PossiblyExactOperator
>(I
) && I
->isExact())
204 if (IP
->getOpcode() == (unsigned)Opcode
&& IP
->getOperand(0) == LHS
&&
205 IP
->getOperand(1) == RHS
&& !canGenerateIncompatiblePoison(&*IP
))
207 if (IP
== BlockBegin
) break;
211 // Save the original insertion point so we can restore it when we're done.
212 DebugLoc Loc
= Builder
.GetInsertPoint()->getDebugLoc();
213 SCEVInsertPointGuard
Guard(Builder
, this);
216 // Move the insertion point out of as many loops as we can.
217 while (const Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock())) {
218 if (!L
->isLoopInvariant(LHS
) || !L
->isLoopInvariant(RHS
)) break;
219 BasicBlock
*Preheader
= L
->getLoopPreheader();
220 if (!Preheader
) break;
222 // Ok, move up a level.
223 Builder
.SetInsertPoint(Preheader
->getTerminator());
227 // If we haven't found this binop, insert it.
228 Instruction
*BO
= cast
<Instruction
>(Builder
.CreateBinOp(Opcode
, LHS
, RHS
));
229 BO
->setDebugLoc(Loc
);
230 if (Flags
& SCEV::FlagNUW
)
231 BO
->setHasNoUnsignedWrap();
232 if (Flags
& SCEV::FlagNSW
)
233 BO
->setHasNoSignedWrap();
234 rememberInstruction(BO
);
239 /// FactorOutConstant - Test if S is divisible by Factor, using signed
240 /// division. If so, update S with Factor divided out and return true.
241 /// S need not be evenly divisible if a reasonable remainder can be
243 static bool FactorOutConstant(const SCEV
*&S
, const SCEV
*&Remainder
,
244 const SCEV
*Factor
, ScalarEvolution
&SE
,
245 const DataLayout
&DL
) {
246 // Everything is divisible by one.
252 S
= SE
.getConstant(S
->getType(), 1);
256 // For a Constant, check for a multiple of the given factor.
257 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
261 // Check for divisibility.
262 if (const SCEVConstant
*FC
= dyn_cast
<SCEVConstant
>(Factor
)) {
264 ConstantInt::get(SE
.getContext(), C
->getAPInt().sdiv(FC
->getAPInt()));
265 // If the quotient is zero and the remainder is non-zero, reject
266 // the value at this scale. It will be considered for subsequent
269 const SCEV
*Div
= SE
.getConstant(CI
);
271 Remainder
= SE
.getAddExpr(
272 Remainder
, SE
.getConstant(C
->getAPInt().srem(FC
->getAPInt())));
278 // In a Mul, check if there is a constant operand which is a multiple
279 // of the given factor.
280 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
281 // Size is known, check if there is a constant operand which is a multiple
282 // of the given factor. If so, we can factor it.
283 const SCEVConstant
*FC
= cast
<SCEVConstant
>(Factor
);
284 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(M
->getOperand(0)))
285 if (!C
->getAPInt().srem(FC
->getAPInt())) {
286 SmallVector
<const SCEV
*, 4> NewMulOps(M
->op_begin(), M
->op_end());
287 NewMulOps
[0] = SE
.getConstant(C
->getAPInt().sdiv(FC
->getAPInt()));
288 S
= SE
.getMulExpr(NewMulOps
);
293 // In an AddRec, check if both start and step are divisible.
294 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
295 const SCEV
*Step
= A
->getStepRecurrence(SE
);
296 const SCEV
*StepRem
= SE
.getConstant(Step
->getType(), 0);
297 if (!FactorOutConstant(Step
, StepRem
, Factor
, SE
, DL
))
299 if (!StepRem
->isZero())
301 const SCEV
*Start
= A
->getStart();
302 if (!FactorOutConstant(Start
, Remainder
, Factor
, SE
, DL
))
304 S
= SE
.getAddRecExpr(Start
, Step
, A
->getLoop(),
305 A
->getNoWrapFlags(SCEV::FlagNW
));
312 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
313 /// is the number of SCEVAddRecExprs present, which are kept at the end of
316 static void SimplifyAddOperands(SmallVectorImpl
<const SCEV
*> &Ops
,
318 ScalarEvolution
&SE
) {
319 unsigned NumAddRecs
= 0;
320 for (unsigned i
= Ops
.size(); i
> 0 && isa
<SCEVAddRecExpr
>(Ops
[i
-1]); --i
)
322 // Group Ops into non-addrecs and addrecs.
323 SmallVector
<const SCEV
*, 8> NoAddRecs(Ops
.begin(), Ops
.end() - NumAddRecs
);
324 SmallVector
<const SCEV
*, 8> AddRecs(Ops
.end() - NumAddRecs
, Ops
.end());
325 // Let ScalarEvolution sort and simplify the non-addrecs list.
326 const SCEV
*Sum
= NoAddRecs
.empty() ?
327 SE
.getConstant(Ty
, 0) :
328 SE
.getAddExpr(NoAddRecs
);
329 // If it returned an add, use the operands. Otherwise it simplified
330 // the sum into a single value, so just use that.
332 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Sum
))
333 Ops
.append(Add
->op_begin(), Add
->op_end());
334 else if (!Sum
->isZero())
336 // Then append the addrecs.
337 Ops
.append(AddRecs
.begin(), AddRecs
.end());
340 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
341 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
342 /// This helps expose more opportunities for folding parts of the expressions
343 /// into GEP indices.
345 static void SplitAddRecs(SmallVectorImpl
<const SCEV
*> &Ops
,
347 ScalarEvolution
&SE
) {
349 SmallVector
<const SCEV
*, 8> AddRecs
;
350 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
351 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Ops
[i
])) {
352 const SCEV
*Start
= A
->getStart();
353 if (Start
->isZero()) break;
354 const SCEV
*Zero
= SE
.getConstant(Ty
, 0);
355 AddRecs
.push_back(SE
.getAddRecExpr(Zero
,
356 A
->getStepRecurrence(SE
),
358 A
->getNoWrapFlags(SCEV::FlagNW
)));
359 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Start
)) {
361 Ops
.append(Add
->op_begin(), Add
->op_end());
362 e
+= Add
->getNumOperands();
367 if (!AddRecs
.empty()) {
368 // Add the addrecs onto the end of the list.
369 Ops
.append(AddRecs
.begin(), AddRecs
.end());
370 // Resort the operand list, moving any constants to the front.
371 SimplifyAddOperands(Ops
, Ty
, SE
);
375 /// expandAddToGEP - Expand an addition expression with a pointer type into
376 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
377 /// BasicAliasAnalysis and other passes analyze the result. See the rules
378 /// for getelementptr vs. inttoptr in
379 /// http://llvm.org/docs/LangRef.html#pointeraliasing
382 /// Design note: The correctness of using getelementptr here depends on
383 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
384 /// they may introduce pointer arithmetic which may not be safely converted
385 /// into getelementptr.
387 /// Design note: It might seem desirable for this function to be more
388 /// loop-aware. If some of the indices are loop-invariant while others
389 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
390 /// loop-invariant portions of the overall computation outside the loop.
391 /// However, there are a few reasons this is not done here. Hoisting simple
392 /// arithmetic is a low-level optimization that often isn't very
393 /// important until late in the optimization process. In fact, passes
394 /// like InstructionCombining will combine GEPs, even if it means
395 /// pushing loop-invariant computation down into loops, so even if the
396 /// GEPs were split here, the work would quickly be undone. The
397 /// LoopStrengthReduction pass, which is usually run quite late (and
398 /// after the last InstructionCombining pass), takes care of hoisting
399 /// loop-invariant portions of expressions, after considering what
400 /// can be folded using target addressing modes.
402 Value
*SCEVExpander::expandAddToGEP(const SCEV
*const *op_begin
,
403 const SCEV
*const *op_end
,
407 Type
*OriginalElTy
= PTy
->getElementType();
408 Type
*ElTy
= OriginalElTy
;
409 SmallVector
<Value
*, 4> GepIndices
;
410 SmallVector
<const SCEV
*, 8> Ops(op_begin
, op_end
);
411 bool AnyNonZeroIndices
= false;
413 // Split AddRecs up into parts as either of the parts may be usable
414 // without the other.
415 SplitAddRecs(Ops
, Ty
, SE
);
417 Type
*IntPtrTy
= DL
.getIntPtrType(PTy
);
419 // Descend down the pointer's type and attempt to convert the other
420 // operands into GEP indices, at each level. The first index in a GEP
421 // indexes into the array implied by the pointer operand; the rest of
422 // the indices index into the element or field type selected by the
425 // If the scale size is not 0, attempt to factor out a scale for
427 SmallVector
<const SCEV
*, 8> ScaledOps
;
428 if (ElTy
->isSized()) {
429 const SCEV
*ElSize
= SE
.getSizeOfExpr(IntPtrTy
, ElTy
);
430 if (!ElSize
->isZero()) {
431 SmallVector
<const SCEV
*, 8> NewOps
;
432 for (const SCEV
*Op
: Ops
) {
433 const SCEV
*Remainder
= SE
.getConstant(Ty
, 0);
434 if (FactorOutConstant(Op
, Remainder
, ElSize
, SE
, DL
)) {
435 // Op now has ElSize factored out.
436 ScaledOps
.push_back(Op
);
437 if (!Remainder
->isZero())
438 NewOps
.push_back(Remainder
);
439 AnyNonZeroIndices
= true;
441 // The operand was not divisible, so add it to the list of operands
442 // we'll scan next iteration.
443 NewOps
.push_back(Op
);
446 // If we made any changes, update Ops.
447 if (!ScaledOps
.empty()) {
449 SimplifyAddOperands(Ops
, Ty
, SE
);
454 // Record the scaled array index for this level of the type. If
455 // we didn't find any operands that could be factored, tentatively
456 // assume that element zero was selected (since the zero offset
457 // would obviously be folded away).
458 Value
*Scaled
= ScaledOps
.empty() ?
459 Constant::getNullValue(Ty
) :
460 expandCodeFor(SE
.getAddExpr(ScaledOps
), Ty
);
461 GepIndices
.push_back(Scaled
);
463 // Collect struct field index operands.
464 while (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
465 bool FoundFieldNo
= false;
466 // An empty struct has no fields.
467 if (STy
->getNumElements() == 0) break;
468 // Field offsets are known. See if a constant offset falls within any of
469 // the struct fields.
472 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[0]))
473 if (SE
.getTypeSizeInBits(C
->getType()) <= 64) {
474 const StructLayout
&SL
= *DL
.getStructLayout(STy
);
475 uint64_t FullOffset
= C
->getValue()->getZExtValue();
476 if (FullOffset
< SL
.getSizeInBytes()) {
477 unsigned ElIdx
= SL
.getElementContainingOffset(FullOffset
);
478 GepIndices
.push_back(
479 ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), ElIdx
));
480 ElTy
= STy
->getTypeAtIndex(ElIdx
);
482 SE
.getConstant(Ty
, FullOffset
- SL
.getElementOffset(ElIdx
));
483 AnyNonZeroIndices
= true;
487 // If no struct field offsets were found, tentatively assume that
488 // field zero was selected (since the zero offset would obviously
491 ElTy
= STy
->getTypeAtIndex(0u);
492 GepIndices
.push_back(
493 Constant::getNullValue(Type::getInt32Ty(Ty
->getContext())));
497 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(ElTy
))
498 ElTy
= ATy
->getElementType();
503 // If none of the operands were convertible to proper GEP indices, cast
504 // the base to i8* and do an ugly getelementptr with that. It's still
505 // better than ptrtoint+arithmetic+inttoptr at least.
506 if (!AnyNonZeroIndices
) {
507 // Cast the base to i8*.
508 V
= InsertNoopCastOfTo(V
,
509 Type::getInt8PtrTy(Ty
->getContext(), PTy
->getAddressSpace()));
511 assert(!isa
<Instruction
>(V
) ||
512 SE
.DT
.dominates(cast
<Instruction
>(V
), &*Builder
.GetInsertPoint()));
514 // Expand the operands for a plain byte offset.
515 Value
*Idx
= expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
517 // Fold a GEP with constant operands.
518 if (Constant
*CLHS
= dyn_cast
<Constant
>(V
))
519 if (Constant
*CRHS
= dyn_cast
<Constant
>(Idx
))
520 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty
->getContext()),
523 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
524 unsigned ScanLimit
= 6;
525 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
526 // Scanning starts from the last instruction before the insertion point.
527 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
528 if (IP
!= BlockBegin
) {
530 for (; ScanLimit
; --IP
, --ScanLimit
) {
531 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
533 if (isa
<DbgInfoIntrinsic
>(IP
))
535 if (IP
->getOpcode() == Instruction::GetElementPtr
&&
536 IP
->getOperand(0) == V
&& IP
->getOperand(1) == Idx
)
538 if (IP
== BlockBegin
) break;
542 // Save the original insertion point so we can restore it when we're done.
543 SCEVInsertPointGuard
Guard(Builder
, this);
545 // Move the insertion point out of as many loops as we can.
546 while (const Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock())) {
547 if (!L
->isLoopInvariant(V
) || !L
->isLoopInvariant(Idx
)) break;
548 BasicBlock
*Preheader
= L
->getLoopPreheader();
549 if (!Preheader
) break;
551 // Ok, move up a level.
552 Builder
.SetInsertPoint(Preheader
->getTerminator());
556 Value
*GEP
= Builder
.CreateGEP(Builder
.getInt8Ty(), V
, Idx
, "uglygep");
557 rememberInstruction(GEP
);
563 SCEVInsertPointGuard
Guard(Builder
, this);
565 // Move the insertion point out of as many loops as we can.
566 while (const Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock())) {
567 if (!L
->isLoopInvariant(V
)) break;
569 bool AnyIndexNotLoopInvariant
= any_of(
570 GepIndices
, [L
](Value
*Op
) { return !L
->isLoopInvariant(Op
); });
572 if (AnyIndexNotLoopInvariant
)
575 BasicBlock
*Preheader
= L
->getLoopPreheader();
576 if (!Preheader
) break;
578 // Ok, move up a level.
579 Builder
.SetInsertPoint(Preheader
->getTerminator());
582 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
583 // because ScalarEvolution may have changed the address arithmetic to
584 // compute a value which is beyond the end of the allocated object.
586 if (V
->getType() != PTy
)
587 Casted
= InsertNoopCastOfTo(Casted
, PTy
);
588 Value
*GEP
= Builder
.CreateGEP(OriginalElTy
, Casted
, GepIndices
, "scevgep");
589 Ops
.push_back(SE
.getUnknown(GEP
));
590 rememberInstruction(GEP
);
593 return expand(SE
.getAddExpr(Ops
));
596 Value
*SCEVExpander::expandAddToGEP(const SCEV
*Op
, PointerType
*PTy
, Type
*Ty
,
598 const SCEV
*const Ops
[1] = {Op
};
599 return expandAddToGEP(Ops
, Ops
+ 1, PTy
, Ty
, V
);
602 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603 /// SCEV expansion. If they are nested, this is the most nested. If they are
604 /// neighboring, pick the later.
605 static const Loop
*PickMostRelevantLoop(const Loop
*A
, const Loop
*B
,
609 if (A
->contains(B
)) return B
;
610 if (B
->contains(A
)) return A
;
611 if (DT
.dominates(A
->getHeader(), B
->getHeader())) return B
;
612 if (DT
.dominates(B
->getHeader(), A
->getHeader())) return A
;
613 return A
; // Arbitrarily break the tie.
616 /// getRelevantLoop - Get the most relevant loop associated with the given
617 /// expression, according to PickMostRelevantLoop.
618 const Loop
*SCEVExpander::getRelevantLoop(const SCEV
*S
) {
619 // Test whether we've already computed the most relevant loop for this SCEV.
620 auto Pair
= RelevantLoops
.insert(std::make_pair(S
, nullptr));
622 return Pair
.first
->second
;
624 if (isa
<SCEVConstant
>(S
))
625 // A constant has no relevant loops.
627 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
628 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
->getValue()))
629 return Pair
.first
->second
= SE
.LI
.getLoopFor(I
->getParent());
630 // A non-instruction has no relevant loops.
633 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
)) {
634 const Loop
*L
= nullptr;
635 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
637 for (const SCEV
*Op
: N
->operands())
638 L
= PickMostRelevantLoop(L
, getRelevantLoop(Op
), SE
.DT
);
639 return RelevantLoops
[N
] = L
;
641 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
)) {
642 const Loop
*Result
= getRelevantLoop(C
->getOperand());
643 return RelevantLoops
[C
] = Result
;
645 if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
646 const Loop
*Result
= PickMostRelevantLoop(
647 getRelevantLoop(D
->getLHS()), getRelevantLoop(D
->getRHS()), SE
.DT
);
648 return RelevantLoops
[D
] = Result
;
650 llvm_unreachable("Unexpected SCEV type!");
655 /// LoopCompare - Compare loops by PickMostRelevantLoop.
659 explicit LoopCompare(DominatorTree
&dt
) : DT(dt
) {}
661 bool operator()(std::pair
<const Loop
*, const SCEV
*> LHS
,
662 std::pair
<const Loop
*, const SCEV
*> RHS
) const {
663 // Keep pointer operands sorted at the end.
664 if (LHS
.second
->getType()->isPointerTy() !=
665 RHS
.second
->getType()->isPointerTy())
666 return LHS
.second
->getType()->isPointerTy();
668 // Compare loops with PickMostRelevantLoop.
669 if (LHS
.first
!= RHS
.first
)
670 return PickMostRelevantLoop(LHS
.first
, RHS
.first
, DT
) != LHS
.first
;
672 // If one operand is a non-constant negative and the other is not,
673 // put the non-constant negative on the right so that a sub can
674 // be used instead of a negate and add.
675 if (LHS
.second
->isNonConstantNegative()) {
676 if (!RHS
.second
->isNonConstantNegative())
678 } else if (RHS
.second
->isNonConstantNegative())
681 // Otherwise they are equivalent according to this comparison.
688 Value
*SCEVExpander::visitAddExpr(const SCEVAddExpr
*S
) {
689 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
691 // Collect all the add operands in a loop, along with their associated loops.
692 // Iterate in reverse so that constants are emitted last, all else equal, and
693 // so that pointer operands are inserted first, which the code below relies on
694 // to form more involved GEPs.
695 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
696 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(S
->op_end()),
697 E(S
->op_begin()); I
!= E
; ++I
)
698 OpsAndLoops
.push_back(std::make_pair(getRelevantLoop(*I
), *I
));
700 // Sort by loop. Use a stable sort so that constants follow non-constants and
701 // pointer operands precede non-pointer operands.
702 llvm::stable_sort(OpsAndLoops
, LoopCompare(SE
.DT
));
704 // Emit instructions to add all the operands. Hoist as much as possible
705 // out of loops, and form meaningful getelementptrs where possible.
706 Value
*Sum
= nullptr;
707 for (auto I
= OpsAndLoops
.begin(), E
= OpsAndLoops
.end(); I
!= E
;) {
708 const Loop
*CurLoop
= I
->first
;
709 const SCEV
*Op
= I
->second
;
711 // This is the first operand. Just expand it.
714 } else if (PointerType
*PTy
= dyn_cast
<PointerType
>(Sum
->getType())) {
715 // The running sum expression is a pointer. Try to form a getelementptr
716 // at this level with that as the base.
717 SmallVector
<const SCEV
*, 4> NewOps
;
718 for (; I
!= E
&& I
->first
== CurLoop
; ++I
) {
719 // If the operand is SCEVUnknown and not instructions, peek through
720 // it, to enable more of it to be folded into the GEP.
721 const SCEV
*X
= I
->second
;
722 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(X
))
723 if (!isa
<Instruction
>(U
->getValue()))
724 X
= SE
.getSCEV(U
->getValue());
727 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, Sum
);
728 } else if (PointerType
*PTy
= dyn_cast
<PointerType
>(Op
->getType())) {
729 // The running sum is an integer, and there's a pointer at this level.
730 // Try to form a getelementptr. If the running sum is instructions,
731 // use a SCEVUnknown to avoid re-analyzing them.
732 SmallVector
<const SCEV
*, 4> NewOps
;
733 NewOps
.push_back(isa
<Instruction
>(Sum
) ? SE
.getUnknown(Sum
) :
735 for (++I
; I
!= E
&& I
->first
== CurLoop
; ++I
)
736 NewOps
.push_back(I
->second
);
737 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, expand(Op
));
738 } else if (Op
->isNonConstantNegative()) {
739 // Instead of doing a negate and add, just do a subtract.
740 Value
*W
= expandCodeFor(SE
.getNegativeSCEV(Op
), Ty
);
741 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
742 Sum
= InsertBinop(Instruction::Sub
, Sum
, W
, SCEV::FlagAnyWrap
,
743 /*IsSafeToHoist*/ true);
747 Value
*W
= expandCodeFor(Op
, Ty
);
748 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
749 // Canonicalize a constant to the RHS.
750 if (isa
<Constant
>(Sum
)) std::swap(Sum
, W
);
751 Sum
= InsertBinop(Instruction::Add
, Sum
, W
, S
->getNoWrapFlags(),
752 /*IsSafeToHoist*/ true);
760 Value
*SCEVExpander::visitMulExpr(const SCEVMulExpr
*S
) {
761 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
763 // Collect all the mul operands in a loop, along with their associated loops.
764 // Iterate in reverse so that constants are emitted last, all else equal.
765 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
766 for (std::reverse_iterator
<SCEVMulExpr::op_iterator
> I(S
->op_end()),
767 E(S
->op_begin()); I
!= E
; ++I
)
768 OpsAndLoops
.push_back(std::make_pair(getRelevantLoop(*I
), *I
));
770 // Sort by loop. Use a stable sort so that constants follow non-constants.
771 llvm::stable_sort(OpsAndLoops
, LoopCompare(SE
.DT
));
773 // Emit instructions to mul all the operands. Hoist as much as possible
775 Value
*Prod
= nullptr;
776 auto I
= OpsAndLoops
.begin();
778 // Expand the calculation of X pow N in the following manner:
779 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
780 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
781 const auto ExpandOpBinPowN
= [this, &I
, &OpsAndLoops
, &Ty
]() {
783 // Calculate how many times the same operand from the same loop is included
785 uint64_t Exponent
= 0;
786 const uint64_t MaxExponent
= UINT64_MAX
>> 1;
787 // No one sane will ever try to calculate such huge exponents, but if we
788 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
789 // below when the power of 2 exceeds our Exponent, and we want it to be
790 // 1u << 31 at most to not deal with unsigned overflow.
791 while (E
!= OpsAndLoops
.end() && *I
== *E
&& Exponent
!= MaxExponent
) {
795 assert(Exponent
> 0 && "Trying to calculate a zeroth exponent of operand?");
797 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
798 // that are needed into the result.
799 Value
*P
= expandCodeFor(I
->second
, Ty
);
800 Value
*Result
= nullptr;
803 for (uint64_t BinExp
= 2; BinExp
<= Exponent
; BinExp
<<= 1) {
804 P
= InsertBinop(Instruction::Mul
, P
, P
, SCEV::FlagAnyWrap
,
805 /*IsSafeToHoist*/ true);
806 if (Exponent
& BinExp
)
807 Result
= Result
? InsertBinop(Instruction::Mul
, Result
, P
,
809 /*IsSafeToHoist*/ true)
814 assert(Result
&& "Nothing was expanded?");
818 while (I
!= OpsAndLoops
.end()) {
820 // This is the first operand. Just expand it.
821 Prod
= ExpandOpBinPowN();
822 } else if (I
->second
->isAllOnesValue()) {
823 // Instead of doing a multiply by negative one, just do a negate.
824 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
825 Prod
= InsertBinop(Instruction::Sub
, Constant::getNullValue(Ty
), Prod
,
826 SCEV::FlagAnyWrap
, /*IsSafeToHoist*/ true);
830 Value
*W
= ExpandOpBinPowN();
831 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
832 // Canonicalize a constant to the RHS.
833 if (isa
<Constant
>(Prod
)) std::swap(Prod
, W
);
835 if (match(W
, m_Power2(RHS
))) {
836 // Canonicalize Prod*(1<<C) to Prod<<C.
837 assert(!Ty
->isVectorTy() && "vector types are not SCEVable");
838 auto NWFlags
= S
->getNoWrapFlags();
839 // clear nsw flag if shl will produce poison value.
840 if (RHS
->logBase2() == RHS
->getBitWidth() - 1)
841 NWFlags
= ScalarEvolution::clearFlags(NWFlags
, SCEV::FlagNSW
);
842 Prod
= InsertBinop(Instruction::Shl
, Prod
,
843 ConstantInt::get(Ty
, RHS
->logBase2()), NWFlags
,
844 /*IsSafeToHoist*/ true);
846 Prod
= InsertBinop(Instruction::Mul
, Prod
, W
, S
->getNoWrapFlags(),
847 /*IsSafeToHoist*/ true);
855 Value
*SCEVExpander::visitUDivExpr(const SCEVUDivExpr
*S
) {
856 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
858 Value
*LHS
= expandCodeFor(S
->getLHS(), Ty
);
859 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(S
->getRHS())) {
860 const APInt
&RHS
= SC
->getAPInt();
861 if (RHS
.isPowerOf2())
862 return InsertBinop(Instruction::LShr
, LHS
,
863 ConstantInt::get(Ty
, RHS
.logBase2()),
864 SCEV::FlagAnyWrap
, /*IsSafeToHoist*/ true);
867 Value
*RHS
= expandCodeFor(S
->getRHS(), Ty
);
868 return InsertBinop(Instruction::UDiv
, LHS
, RHS
, SCEV::FlagAnyWrap
,
869 /*IsSafeToHoist*/ SE
.isKnownNonZero(S
->getRHS()));
872 /// Move parts of Base into Rest to leave Base with the minimal
873 /// expression that provides a pointer operand suitable for a
875 static void ExposePointerBase(const SCEV
*&Base
, const SCEV
*&Rest
,
876 ScalarEvolution
&SE
) {
877 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Base
)) {
878 Base
= A
->getStart();
879 Rest
= SE
.getAddExpr(Rest
,
880 SE
.getAddRecExpr(SE
.getConstant(A
->getType(), 0),
881 A
->getStepRecurrence(SE
),
883 A
->getNoWrapFlags(SCEV::FlagNW
)));
885 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(Base
)) {
886 Base
= A
->getOperand(A
->getNumOperands()-1);
887 SmallVector
<const SCEV
*, 8> NewAddOps(A
->op_begin(), A
->op_end());
888 NewAddOps
.back() = Rest
;
889 Rest
= SE
.getAddExpr(NewAddOps
);
890 ExposePointerBase(Base
, Rest
, SE
);
894 /// Determine if this is a well-behaved chain of instructions leading back to
895 /// the PHI. If so, it may be reused by expanded expressions.
896 bool SCEVExpander::isNormalAddRecExprPHI(PHINode
*PN
, Instruction
*IncV
,
898 if (IncV
->getNumOperands() == 0 || isa
<PHINode
>(IncV
) ||
899 (isa
<CastInst
>(IncV
) && !isa
<BitCastInst
>(IncV
)))
901 // If any of the operands don't dominate the insert position, bail.
902 // Addrec operands are always loop-invariant, so this can only happen
903 // if there are instructions which haven't been hoisted.
904 if (L
== IVIncInsertLoop
) {
905 for (User::op_iterator OI
= IncV
->op_begin()+1,
906 OE
= IncV
->op_end(); OI
!= OE
; ++OI
)
907 if (Instruction
*OInst
= dyn_cast
<Instruction
>(OI
))
908 if (!SE
.DT
.dominates(OInst
, IVIncInsertPos
))
911 // Advance to the next instruction.
912 IncV
= dyn_cast
<Instruction
>(IncV
->getOperand(0));
916 if (IncV
->mayHaveSideEffects())
922 return isNormalAddRecExprPHI(PN
, IncV
, L
);
925 /// getIVIncOperand returns an induction variable increment's induction
926 /// variable operand.
928 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
929 /// operands dominate InsertPos.
931 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
932 /// simple patterns generated by getAddRecExprPHILiterally and
933 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
934 Instruction
*SCEVExpander::getIVIncOperand(Instruction
*IncV
,
935 Instruction
*InsertPos
,
937 if (IncV
== InsertPos
)
940 switch (IncV
->getOpcode()) {
943 // Check for a simple Add/Sub or GEP of a loop invariant step.
944 case Instruction::Add
:
945 case Instruction::Sub
: {
946 Instruction
*OInst
= dyn_cast
<Instruction
>(IncV
->getOperand(1));
947 if (!OInst
|| SE
.DT
.dominates(OInst
, InsertPos
))
948 return dyn_cast
<Instruction
>(IncV
->getOperand(0));
951 case Instruction::BitCast
:
952 return dyn_cast
<Instruction
>(IncV
->getOperand(0));
953 case Instruction::GetElementPtr
:
954 for (auto I
= IncV
->op_begin() + 1, E
= IncV
->op_end(); I
!= E
; ++I
) {
955 if (isa
<Constant
>(*I
))
957 if (Instruction
*OInst
= dyn_cast
<Instruction
>(*I
)) {
958 if (!SE
.DT
.dominates(OInst
, InsertPos
))
962 // allow any kind of GEP as long as it can be hoisted.
965 // This must be a pointer addition of constants (pretty), which is already
966 // handled, or some number of address-size elements (ugly). Ugly geps
967 // have 2 operands. i1* is used by the expander to represent an
968 // address-size element.
969 if (IncV
->getNumOperands() != 2)
971 unsigned AS
= cast
<PointerType
>(IncV
->getType())->getAddressSpace();
972 if (IncV
->getType() != Type::getInt1PtrTy(SE
.getContext(), AS
)
973 && IncV
->getType() != Type::getInt8PtrTy(SE
.getContext(), AS
))
977 return dyn_cast
<Instruction
>(IncV
->getOperand(0));
981 /// If the insert point of the current builder or any of the builders on the
982 /// stack of saved builders has 'I' as its insert point, update it to point to
983 /// the instruction after 'I'. This is intended to be used when the instruction
984 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
985 /// different block, the inconsistent insert point (with a mismatched
986 /// Instruction and Block) can lead to an instruction being inserted in a block
987 /// other than its parent.
988 void SCEVExpander::fixupInsertPoints(Instruction
*I
) {
989 BasicBlock::iterator
It(*I
);
990 BasicBlock::iterator NewInsertPt
= std::next(It
);
991 if (Builder
.GetInsertPoint() == It
)
992 Builder
.SetInsertPoint(&*NewInsertPt
);
993 for (auto *InsertPtGuard
: InsertPointGuards
)
994 if (InsertPtGuard
->GetInsertPoint() == It
)
995 InsertPtGuard
->SetInsertPoint(NewInsertPt
);
998 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
999 /// it available to other uses in this loop. Recursively hoist any operands,
1000 /// until we reach a value that dominates InsertPos.
1001 bool SCEVExpander::hoistIVInc(Instruction
*IncV
, Instruction
*InsertPos
) {
1002 if (SE
.DT
.dominates(IncV
, InsertPos
))
1005 // InsertPos must itself dominate IncV so that IncV's new position satisfies
1006 // its existing users.
1007 if (isa
<PHINode
>(InsertPos
) ||
1008 !SE
.DT
.dominates(InsertPos
->getParent(), IncV
->getParent()))
1011 if (!SE
.LI
.movementPreservesLCSSAForm(IncV
, InsertPos
))
1014 // Check that the chain of IV operands leading back to Phi can be hoisted.
1015 SmallVector
<Instruction
*, 4> IVIncs
;
1017 Instruction
*Oper
= getIVIncOperand(IncV
, InsertPos
, /*allowScale*/true);
1020 // IncV is safe to hoist.
1021 IVIncs
.push_back(IncV
);
1023 if (SE
.DT
.dominates(IncV
, InsertPos
))
1026 for (auto I
= IVIncs
.rbegin(), E
= IVIncs
.rend(); I
!= E
; ++I
) {
1027 fixupInsertPoints(*I
);
1028 (*I
)->moveBefore(InsertPos
);
1033 /// Determine if this cyclic phi is in a form that would have been generated by
1034 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1035 /// as it is in a low-cost form, for example, no implied multiplication. This
1036 /// should match any patterns generated by getAddRecExprPHILiterally and
1038 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode
*PN
, Instruction
*IncV
,
1040 for(Instruction
*IVOper
= IncV
;
1041 (IVOper
= getIVIncOperand(IVOper
, L
->getLoopPreheader()->getTerminator(),
1042 /*allowScale=*/false));) {
1049 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1050 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1051 /// need to materialize IV increments elsewhere to handle difficult situations.
1052 Value
*SCEVExpander::expandIVInc(PHINode
*PN
, Value
*StepV
, const Loop
*L
,
1053 Type
*ExpandTy
, Type
*IntTy
,
1056 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1057 if (ExpandTy
->isPointerTy()) {
1058 PointerType
*GEPPtrTy
= cast
<PointerType
>(ExpandTy
);
1059 // If the step isn't constant, don't use an implicitly scaled GEP, because
1060 // that would require a multiply inside the loop.
1061 if (!isa
<ConstantInt
>(StepV
))
1062 GEPPtrTy
= PointerType::get(Type::getInt1Ty(SE
.getContext()),
1063 GEPPtrTy
->getAddressSpace());
1064 IncV
= expandAddToGEP(SE
.getSCEV(StepV
), GEPPtrTy
, IntTy
, PN
);
1065 if (IncV
->getType() != PN
->getType()) {
1066 IncV
= Builder
.CreateBitCast(IncV
, PN
->getType());
1067 rememberInstruction(IncV
);
1070 IncV
= useSubtract
?
1071 Builder
.CreateSub(PN
, StepV
, Twine(IVName
) + ".iv.next") :
1072 Builder
.CreateAdd(PN
, StepV
, Twine(IVName
) + ".iv.next");
1073 rememberInstruction(IncV
);
1078 /// Hoist the addrec instruction chain rooted in the loop phi above the
1079 /// position. This routine assumes that this is possible (has been checked).
1080 void SCEVExpander::hoistBeforePos(DominatorTree
*DT
, Instruction
*InstToHoist
,
1081 Instruction
*Pos
, PHINode
*LoopPhi
) {
1083 if (DT
->dominates(InstToHoist
, Pos
))
1085 // Make sure the increment is where we want it. But don't move it
1086 // down past a potential existing post-inc user.
1087 fixupInsertPoints(InstToHoist
);
1088 InstToHoist
->moveBefore(Pos
);
1090 InstToHoist
= cast
<Instruction
>(InstToHoist
->getOperand(0));
1091 } while (InstToHoist
!= LoopPhi
);
1094 /// Check whether we can cheaply express the requested SCEV in terms of
1095 /// the available PHI SCEV by truncation and/or inversion of the step.
1096 static bool canBeCheaplyTransformed(ScalarEvolution
&SE
,
1097 const SCEVAddRecExpr
*Phi
,
1098 const SCEVAddRecExpr
*Requested
,
1100 Type
*PhiTy
= SE
.getEffectiveSCEVType(Phi
->getType());
1101 Type
*RequestedTy
= SE
.getEffectiveSCEVType(Requested
->getType());
1103 if (RequestedTy
->getIntegerBitWidth() > PhiTy
->getIntegerBitWidth())
1106 // Try truncate it if necessary.
1107 Phi
= dyn_cast
<SCEVAddRecExpr
>(SE
.getTruncateOrNoop(Phi
, RequestedTy
));
1111 // Check whether truncation will help.
1112 if (Phi
== Requested
) {
1117 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1118 if (SE
.getAddExpr(Requested
->getStart(),
1119 SE
.getNegativeSCEV(Requested
)) == Phi
) {
1127 static bool IsIncrementNSW(ScalarEvolution
&SE
, const SCEVAddRecExpr
*AR
) {
1128 if (!isa
<IntegerType
>(AR
->getType()))
1131 unsigned BitWidth
= cast
<IntegerType
>(AR
->getType())->getBitWidth();
1132 Type
*WideTy
= IntegerType::get(AR
->getType()->getContext(), BitWidth
* 2);
1133 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
1134 const SCEV
*OpAfterExtend
= SE
.getAddExpr(SE
.getSignExtendExpr(Step
, WideTy
),
1135 SE
.getSignExtendExpr(AR
, WideTy
));
1136 const SCEV
*ExtendAfterOp
=
1137 SE
.getSignExtendExpr(SE
.getAddExpr(AR
, Step
), WideTy
);
1138 return ExtendAfterOp
== OpAfterExtend
;
1141 static bool IsIncrementNUW(ScalarEvolution
&SE
, const SCEVAddRecExpr
*AR
) {
1142 if (!isa
<IntegerType
>(AR
->getType()))
1145 unsigned BitWidth
= cast
<IntegerType
>(AR
->getType())->getBitWidth();
1146 Type
*WideTy
= IntegerType::get(AR
->getType()->getContext(), BitWidth
* 2);
1147 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
1148 const SCEV
*OpAfterExtend
= SE
.getAddExpr(SE
.getZeroExtendExpr(Step
, WideTy
),
1149 SE
.getZeroExtendExpr(AR
, WideTy
));
1150 const SCEV
*ExtendAfterOp
=
1151 SE
.getZeroExtendExpr(SE
.getAddExpr(AR
, Step
), WideTy
);
1152 return ExtendAfterOp
== OpAfterExtend
;
1155 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1156 /// the base addrec, which is the addrec without any non-loop-dominating
1157 /// values, and return the PHI.
1159 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr
*Normalized
,
1165 assert((!IVIncInsertLoop
||IVIncInsertPos
) && "Uninitialized insert position");
1167 // Reuse a previously-inserted PHI, if present.
1168 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1170 PHINode
*AddRecPhiMatch
= nullptr;
1171 Instruction
*IncV
= nullptr;
1175 // Only try partially matching scevs that need truncation and/or
1176 // step-inversion if we know this loop is outside the current loop.
1177 bool TryNonMatchingSCEV
=
1179 SE
.DT
.properlyDominates(LatchBlock
, IVIncInsertLoop
->getHeader());
1181 for (PHINode
&PN
: L
->getHeader()->phis()) {
1182 if (!SE
.isSCEVable(PN
.getType()))
1185 const SCEVAddRecExpr
*PhiSCEV
= dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(&PN
));
1189 bool IsMatchingSCEV
= PhiSCEV
== Normalized
;
1190 // We only handle truncation and inversion of phi recurrences for the
1191 // expanded expression if the expanded expression's loop dominates the
1192 // loop we insert to. Check now, so we can bail out early.
1193 if (!IsMatchingSCEV
&& !TryNonMatchingSCEV
)
1196 // TODO: this possibly can be reworked to avoid this cast at all.
1197 Instruction
*TempIncV
=
1198 dyn_cast
<Instruction
>(PN
.getIncomingValueForBlock(LatchBlock
));
1202 // Check whether we can reuse this PHI node.
1204 if (!isExpandedAddRecExprPHI(&PN
, TempIncV
, L
))
1206 if (L
== IVIncInsertLoop
&& !hoistIVInc(TempIncV
, IVIncInsertPos
))
1209 if (!isNormalAddRecExprPHI(&PN
, TempIncV
, L
))
1213 // Stop if we have found an exact match SCEV.
1214 if (IsMatchingSCEV
) {
1218 AddRecPhiMatch
= &PN
;
1222 // Try whether the phi can be translated into the requested form
1223 // (truncated and/or offset by a constant).
1224 if ((!TruncTy
|| InvertStep
) &&
1225 canBeCheaplyTransformed(SE
, PhiSCEV
, Normalized
, InvertStep
)) {
1226 // Record the phi node. But don't stop we might find an exact match
1228 AddRecPhiMatch
= &PN
;
1230 TruncTy
= SE
.getEffectiveSCEVType(Normalized
->getType());
1234 if (AddRecPhiMatch
) {
1235 // Potentially, move the increment. We have made sure in
1236 // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1237 if (L
== IVIncInsertLoop
)
1238 hoistBeforePos(&SE
.DT
, IncV
, IVIncInsertPos
, AddRecPhiMatch
);
1240 // Ok, the add recurrence looks usable.
1241 // Remember this PHI, even in post-inc mode.
1242 InsertedValues
.insert(AddRecPhiMatch
);
1243 // Remember the increment.
1244 rememberInstruction(IncV
);
1245 return AddRecPhiMatch
;
1249 // Save the original insertion point so we can restore it when we're done.
1250 SCEVInsertPointGuard
Guard(Builder
, this);
1252 // Another AddRec may need to be recursively expanded below. For example, if
1253 // this AddRec is quadratic, the StepV may itself be an AddRec in this
1254 // loop. Remove this loop from the PostIncLoops set before expanding such
1255 // AddRecs. Otherwise, we cannot find a valid position for the step
1256 // (i.e. StepV can never dominate its loop header). Ideally, we could do
1257 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1258 // so it's not worth implementing SmallPtrSet::swap.
1259 PostIncLoopSet SavedPostIncLoops
= PostIncLoops
;
1260 PostIncLoops
.clear();
1262 // Expand code for the start value into the loop preheader.
1263 assert(L
->getLoopPreheader() &&
1264 "Can't expand add recurrences without a loop preheader!");
1265 Value
*StartV
= expandCodeFor(Normalized
->getStart(), ExpandTy
,
1266 L
->getLoopPreheader()->getTerminator());
1268 // StartV must have been be inserted into L's preheader to dominate the new
1270 assert(!isa
<Instruction
>(StartV
) ||
1271 SE
.DT
.properlyDominates(cast
<Instruction
>(StartV
)->getParent(),
1274 // Expand code for the step value. Do this before creating the PHI so that PHI
1275 // reuse code doesn't see an incomplete PHI.
1276 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
1277 // If the stride is negative, insert a sub instead of an add for the increment
1278 // (unless it's a constant, because subtracts of constants are canonicalized
1280 bool useSubtract
= !ExpandTy
->isPointerTy() && Step
->isNonConstantNegative();
1282 Step
= SE
.getNegativeSCEV(Step
);
1283 // Expand the step somewhere that dominates the loop header.
1284 Value
*StepV
= expandCodeFor(Step
, IntTy
, &L
->getHeader()->front());
1286 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1287 // we actually do emit an addition. It does not apply if we emit a
1289 bool IncrementIsNUW
= !useSubtract
&& IsIncrementNUW(SE
, Normalized
);
1290 bool IncrementIsNSW
= !useSubtract
&& IsIncrementNSW(SE
, Normalized
);
1293 BasicBlock
*Header
= L
->getHeader();
1294 Builder
.SetInsertPoint(Header
, Header
->begin());
1295 pred_iterator HPB
= pred_begin(Header
), HPE
= pred_end(Header
);
1296 PHINode
*PN
= Builder
.CreatePHI(ExpandTy
, std::distance(HPB
, HPE
),
1297 Twine(IVName
) + ".iv");
1298 rememberInstruction(PN
);
1300 // Create the step instructions and populate the PHI.
1301 for (pred_iterator HPI
= HPB
; HPI
!= HPE
; ++HPI
) {
1302 BasicBlock
*Pred
= *HPI
;
1304 // Add a start value.
1305 if (!L
->contains(Pred
)) {
1306 PN
->addIncoming(StartV
, Pred
);
1310 // Create a step value and add it to the PHI.
1311 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1312 // instructions at IVIncInsertPos.
1313 Instruction
*InsertPos
= L
== IVIncInsertLoop
?
1314 IVIncInsertPos
: Pred
->getTerminator();
1315 Builder
.SetInsertPoint(InsertPos
);
1316 Value
*IncV
= expandIVInc(PN
, StepV
, L
, ExpandTy
, IntTy
, useSubtract
);
1318 if (isa
<OverflowingBinaryOperator
>(IncV
)) {
1320 cast
<BinaryOperator
>(IncV
)->setHasNoUnsignedWrap();
1322 cast
<BinaryOperator
>(IncV
)->setHasNoSignedWrap();
1324 PN
->addIncoming(IncV
, Pred
);
1327 // After expanding subexpressions, restore the PostIncLoops set so the caller
1328 // can ensure that IVIncrement dominates the current uses.
1329 PostIncLoops
= SavedPostIncLoops
;
1331 // Remember this PHI, even in post-inc mode.
1332 InsertedValues
.insert(PN
);
1337 Value
*SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr
*S
) {
1338 Type
*STy
= S
->getType();
1339 Type
*IntTy
= SE
.getEffectiveSCEVType(STy
);
1340 const Loop
*L
= S
->getLoop();
1342 // Determine a normalized form of this expression, which is the expression
1343 // before any post-inc adjustment is made.
1344 const SCEVAddRecExpr
*Normalized
= S
;
1345 if (PostIncLoops
.count(L
)) {
1346 PostIncLoopSet Loops
;
1348 Normalized
= cast
<SCEVAddRecExpr
>(normalizeForPostIncUse(S
, Loops
, SE
));
1351 // Strip off any non-loop-dominating component from the addrec start.
1352 const SCEV
*Start
= Normalized
->getStart();
1353 const SCEV
*PostLoopOffset
= nullptr;
1354 if (!SE
.properlyDominates(Start
, L
->getHeader())) {
1355 PostLoopOffset
= Start
;
1356 Start
= SE
.getConstant(Normalized
->getType(), 0);
1357 Normalized
= cast
<SCEVAddRecExpr
>(
1358 SE
.getAddRecExpr(Start
, Normalized
->getStepRecurrence(SE
),
1359 Normalized
->getLoop(),
1360 Normalized
->getNoWrapFlags(SCEV::FlagNW
)));
1363 // Strip off any non-loop-dominating component from the addrec step.
1364 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
1365 const SCEV
*PostLoopScale
= nullptr;
1366 if (!SE
.dominates(Step
, L
->getHeader())) {
1367 PostLoopScale
= Step
;
1368 Step
= SE
.getConstant(Normalized
->getType(), 1);
1369 if (!Start
->isZero()) {
1370 // The normalization below assumes that Start is constant zero, so if
1371 // it isn't re-associate Start to PostLoopOffset.
1372 assert(!PostLoopOffset
&& "Start not-null but PostLoopOffset set?");
1373 PostLoopOffset
= Start
;
1374 Start
= SE
.getConstant(Normalized
->getType(), 0);
1377 cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(
1378 Start
, Step
, Normalized
->getLoop(),
1379 Normalized
->getNoWrapFlags(SCEV::FlagNW
)));
1382 // Expand the core addrec. If we need post-loop scaling, force it to
1383 // expand to an integer type to avoid the need for additional casting.
1384 Type
*ExpandTy
= PostLoopScale
? IntTy
: STy
;
1385 // We can't use a pointer type for the addrec if the pointer type is
1387 Type
*AddRecPHIExpandTy
=
1388 DL
.isNonIntegralPointerType(STy
) ? Normalized
->getType() : ExpandTy
;
1390 // In some cases, we decide to reuse an existing phi node but need to truncate
1391 // it and/or invert the step.
1392 Type
*TruncTy
= nullptr;
1393 bool InvertStep
= false;
1394 PHINode
*PN
= getAddRecExprPHILiterally(Normalized
, L
, AddRecPHIExpandTy
,
1395 IntTy
, TruncTy
, InvertStep
);
1397 // Accommodate post-inc mode, if necessary.
1399 if (!PostIncLoops
.count(L
))
1402 // In PostInc mode, use the post-incremented value.
1403 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1404 assert(LatchBlock
&& "PostInc mode requires a unique loop latch!");
1405 Result
= PN
->getIncomingValueForBlock(LatchBlock
);
1407 // For an expansion to use the postinc form, the client must call
1408 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1409 // or dominated by IVIncInsertPos.
1410 if (isa
<Instruction
>(Result
) &&
1411 !SE
.DT
.dominates(cast
<Instruction
>(Result
),
1412 &*Builder
.GetInsertPoint())) {
1413 // The induction variable's postinc expansion does not dominate this use.
1414 // IVUsers tries to prevent this case, so it is rare. However, it can
1415 // happen when an IVUser outside the loop is not dominated by the latch
1416 // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1417 // all cases. Consider a phi outside whose operand is replaced during
1418 // expansion with the value of the postinc user. Without fundamentally
1419 // changing the way postinc users are tracked, the only remedy is
1420 // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1421 // but hopefully expandCodeFor handles that.
1423 !ExpandTy
->isPointerTy() && Step
->isNonConstantNegative();
1425 Step
= SE
.getNegativeSCEV(Step
);
1428 // Expand the step somewhere that dominates the loop header.
1429 SCEVInsertPointGuard
Guard(Builder
, this);
1430 StepV
= expandCodeFor(Step
, IntTy
, &L
->getHeader()->front());
1432 Result
= expandIVInc(PN
, StepV
, L
, ExpandTy
, IntTy
, useSubtract
);
1436 // We have decided to reuse an induction variable of a dominating loop. Apply
1437 // truncation and/or inversion of the step.
1439 Type
*ResTy
= Result
->getType();
1440 // Normalize the result type.
1441 if (ResTy
!= SE
.getEffectiveSCEVType(ResTy
))
1442 Result
= InsertNoopCastOfTo(Result
, SE
.getEffectiveSCEVType(ResTy
));
1443 // Truncate the result.
1444 if (TruncTy
!= Result
->getType()) {
1445 Result
= Builder
.CreateTrunc(Result
, TruncTy
);
1446 rememberInstruction(Result
);
1448 // Invert the result.
1450 Result
= Builder
.CreateSub(expandCodeFor(Normalized
->getStart(), TruncTy
),
1452 rememberInstruction(Result
);
1456 // Re-apply any non-loop-dominating scale.
1457 if (PostLoopScale
) {
1458 assert(S
->isAffine() && "Can't linearly scale non-affine recurrences.");
1459 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1460 Result
= Builder
.CreateMul(Result
,
1461 expandCodeFor(PostLoopScale
, IntTy
));
1462 rememberInstruction(Result
);
1465 // Re-apply any non-loop-dominating offset.
1466 if (PostLoopOffset
) {
1467 if (PointerType
*PTy
= dyn_cast
<PointerType
>(ExpandTy
)) {
1468 if (Result
->getType()->isIntegerTy()) {
1469 Value
*Base
= expandCodeFor(PostLoopOffset
, ExpandTy
);
1470 Result
= expandAddToGEP(SE
.getUnknown(Result
), PTy
, IntTy
, Base
);
1472 Result
= expandAddToGEP(PostLoopOffset
, PTy
, IntTy
, Result
);
1475 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1476 Result
= Builder
.CreateAdd(Result
,
1477 expandCodeFor(PostLoopOffset
, IntTy
));
1478 rememberInstruction(Result
);
1485 Value
*SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr
*S
) {
1486 // In canonical mode we compute the addrec as an expression of a canonical IV
1487 // using evaluateAtIteration and expand the resulting SCEV expression. This
1488 // way we avoid introducing new IVs to carry on the comutation of the addrec
1489 // throughout the loop.
1491 // For nested addrecs evaluateAtIteration might need a canonical IV of a
1492 // type wider than the addrec itself. Emitting a canonical IV of the
1493 // proper type might produce non-legal types, for example expanding an i64
1494 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1495 // back to non-canonical mode for nested addrecs.
1496 if (!CanonicalMode
|| (S
->getNumOperands() > 2))
1497 return expandAddRecExprLiterally(S
);
1499 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1500 const Loop
*L
= S
->getLoop();
1502 // First check for an existing canonical IV in a suitable type.
1503 PHINode
*CanonicalIV
= nullptr;
1504 if (PHINode
*PN
= L
->getCanonicalInductionVariable())
1505 if (SE
.getTypeSizeInBits(PN
->getType()) >= SE
.getTypeSizeInBits(Ty
))
1508 // Rewrite an AddRec in terms of the canonical induction variable, if
1509 // its type is more narrow.
1511 SE
.getTypeSizeInBits(CanonicalIV
->getType()) >
1512 SE
.getTypeSizeInBits(Ty
)) {
1513 SmallVector
<const SCEV
*, 4> NewOps(S
->getNumOperands());
1514 for (unsigned i
= 0, e
= S
->getNumOperands(); i
!= e
; ++i
)
1515 NewOps
[i
] = SE
.getAnyExtendExpr(S
->op_begin()[i
], CanonicalIV
->getType());
1516 Value
*V
= expand(SE
.getAddRecExpr(NewOps
, S
->getLoop(),
1517 S
->getNoWrapFlags(SCEV::FlagNW
)));
1518 BasicBlock::iterator NewInsertPt
=
1519 findInsertPointAfter(cast
<Instruction
>(V
), Builder
.GetInsertBlock());
1520 V
= expandCodeFor(SE
.getTruncateExpr(SE
.getUnknown(V
), Ty
), nullptr,
1525 // {X,+,F} --> X + {0,+,F}
1526 if (!S
->getStart()->isZero()) {
1527 SmallVector
<const SCEV
*, 4> NewOps(S
->op_begin(), S
->op_end());
1528 NewOps
[0] = SE
.getConstant(Ty
, 0);
1529 const SCEV
*Rest
= SE
.getAddRecExpr(NewOps
, L
,
1530 S
->getNoWrapFlags(SCEV::FlagNW
));
1532 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1533 // comments on expandAddToGEP for details.
1534 const SCEV
*Base
= S
->getStart();
1535 // Dig into the expression to find the pointer base for a GEP.
1536 const SCEV
*ExposedRest
= Rest
;
1537 ExposePointerBase(Base
, ExposedRest
, SE
);
1538 // If we found a pointer, expand the AddRec with a GEP.
1539 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Base
->getType())) {
1540 // Make sure the Base isn't something exotic, such as a multiplied
1541 // or divided pointer value. In those cases, the result type isn't
1542 // actually a pointer type.
1543 if (!isa
<SCEVMulExpr
>(Base
) && !isa
<SCEVUDivExpr
>(Base
)) {
1544 Value
*StartV
= expand(Base
);
1545 assert(StartV
->getType() == PTy
&& "Pointer type mismatch for GEP!");
1546 return expandAddToGEP(ExposedRest
, PTy
, Ty
, StartV
);
1550 // Just do a normal add. Pre-expand the operands to suppress folding.
1552 // The LHS and RHS values are factored out of the expand call to make the
1553 // output independent of the argument evaluation order.
1554 const SCEV
*AddExprLHS
= SE
.getUnknown(expand(S
->getStart()));
1555 const SCEV
*AddExprRHS
= SE
.getUnknown(expand(Rest
));
1556 return expand(SE
.getAddExpr(AddExprLHS
, AddExprRHS
));
1559 // If we don't yet have a canonical IV, create one.
1561 // Create and insert the PHI node for the induction variable in the
1563 BasicBlock
*Header
= L
->getHeader();
1564 pred_iterator HPB
= pred_begin(Header
), HPE
= pred_end(Header
);
1565 CanonicalIV
= PHINode::Create(Ty
, std::distance(HPB
, HPE
), "indvar",
1567 rememberInstruction(CanonicalIV
);
1569 SmallSet
<BasicBlock
*, 4> PredSeen
;
1570 Constant
*One
= ConstantInt::get(Ty
, 1);
1571 for (pred_iterator HPI
= HPB
; HPI
!= HPE
; ++HPI
) {
1572 BasicBlock
*HP
= *HPI
;
1573 if (!PredSeen
.insert(HP
).second
) {
1574 // There must be an incoming value for each predecessor, even the
1576 CanonicalIV
->addIncoming(CanonicalIV
->getIncomingValueForBlock(HP
), HP
);
1580 if (L
->contains(HP
)) {
1581 // Insert a unit add instruction right before the terminator
1582 // corresponding to the back-edge.
1583 Instruction
*Add
= BinaryOperator::CreateAdd(CanonicalIV
, One
,
1585 HP
->getTerminator());
1586 Add
->setDebugLoc(HP
->getTerminator()->getDebugLoc());
1587 rememberInstruction(Add
);
1588 CanonicalIV
->addIncoming(Add
, HP
);
1590 CanonicalIV
->addIncoming(Constant::getNullValue(Ty
), HP
);
1595 // {0,+,1} --> Insert a canonical induction variable into the loop!
1596 if (S
->isAffine() && S
->getOperand(1)->isOne()) {
1597 assert(Ty
== SE
.getEffectiveSCEVType(CanonicalIV
->getType()) &&
1598 "IVs with types different from the canonical IV should "
1599 "already have been handled!");
1603 // {0,+,F} --> {0,+,1} * F
1605 // If this is a simple linear addrec, emit it now as a special case.
1606 if (S
->isAffine()) // {0,+,F} --> i*F
1608 expand(SE
.getTruncateOrNoop(
1609 SE
.getMulExpr(SE
.getUnknown(CanonicalIV
),
1610 SE
.getNoopOrAnyExtend(S
->getOperand(1),
1611 CanonicalIV
->getType())),
1614 // If this is a chain of recurrences, turn it into a closed form, using the
1615 // folders, then expandCodeFor the closed form. This allows the folders to
1616 // simplify the expression without having to build a bunch of special code
1617 // into this folder.
1618 const SCEV
*IH
= SE
.getUnknown(CanonicalIV
); // Get I as a "symbolic" SCEV.
1620 // Promote S up to the canonical IV type, if the cast is foldable.
1621 const SCEV
*NewS
= S
;
1622 const SCEV
*Ext
= SE
.getNoopOrAnyExtend(S
, CanonicalIV
->getType());
1623 if (isa
<SCEVAddRecExpr
>(Ext
))
1626 const SCEV
*V
= cast
<SCEVAddRecExpr
>(NewS
)->evaluateAtIteration(IH
, SE
);
1627 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1629 // Truncate the result down to the original type, if needed.
1630 const SCEV
*T
= SE
.getTruncateOrNoop(V
, Ty
);
1634 Value
*SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr
*S
) {
1635 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1636 Value
*V
= expandCodeFor(S
->getOperand(),
1637 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1638 Value
*I
= Builder
.CreateTrunc(V
, Ty
);
1639 rememberInstruction(I
);
1643 Value
*SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr
*S
) {
1644 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1645 Value
*V
= expandCodeFor(S
->getOperand(),
1646 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1647 Value
*I
= Builder
.CreateZExt(V
, Ty
);
1648 rememberInstruction(I
);
1652 Value
*SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr
*S
) {
1653 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1654 Value
*V
= expandCodeFor(S
->getOperand(),
1655 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1656 Value
*I
= Builder
.CreateSExt(V
, Ty
);
1657 rememberInstruction(I
);
1661 Value
*SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr
*S
) {
1662 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1663 Type
*Ty
= LHS
->getType();
1664 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1665 // In the case of mixed integer and pointer types, do the
1666 // rest of the comparisons as integer.
1667 Type
*OpTy
= S
->getOperand(i
)->getType();
1668 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1669 Ty
= SE
.getEffectiveSCEVType(Ty
);
1670 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1672 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1673 Value
*ICmp
= Builder
.CreateICmpSGT(LHS
, RHS
);
1674 rememberInstruction(ICmp
);
1675 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "smax");
1676 rememberInstruction(Sel
);
1679 // In the case of mixed integer and pointer types, cast the
1680 // final result back to the pointer type.
1681 if (LHS
->getType() != S
->getType())
1682 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1686 Value
*SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr
*S
) {
1687 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1688 Type
*Ty
= LHS
->getType();
1689 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1690 // In the case of mixed integer and pointer types, do the
1691 // rest of the comparisons as integer.
1692 Type
*OpTy
= S
->getOperand(i
)->getType();
1693 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1694 Ty
= SE
.getEffectiveSCEVType(Ty
);
1695 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1697 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1698 Value
*ICmp
= Builder
.CreateICmpUGT(LHS
, RHS
);
1699 rememberInstruction(ICmp
);
1700 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "umax");
1701 rememberInstruction(Sel
);
1704 // In the case of mixed integer and pointer types, cast the
1705 // final result back to the pointer type.
1706 if (LHS
->getType() != S
->getType())
1707 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1711 Value
*SCEVExpander::visitSMinExpr(const SCEVSMinExpr
*S
) {
1712 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands() - 1));
1713 Type
*Ty
= LHS
->getType();
1714 for (int i
= S
->getNumOperands() - 2; i
>= 0; --i
) {
1715 // In the case of mixed integer and pointer types, do the
1716 // rest of the comparisons as integer.
1717 Type
*OpTy
= S
->getOperand(i
)->getType();
1718 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1719 Ty
= SE
.getEffectiveSCEVType(Ty
);
1720 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1722 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1723 Value
*ICmp
= Builder
.CreateICmpSLT(LHS
, RHS
);
1724 rememberInstruction(ICmp
);
1725 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "smin");
1726 rememberInstruction(Sel
);
1729 // In the case of mixed integer and pointer types, cast the
1730 // final result back to the pointer type.
1731 if (LHS
->getType() != S
->getType())
1732 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1736 Value
*SCEVExpander::visitUMinExpr(const SCEVUMinExpr
*S
) {
1737 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands() - 1));
1738 Type
*Ty
= LHS
->getType();
1739 for (int i
= S
->getNumOperands() - 2; i
>= 0; --i
) {
1740 // In the case of mixed integer and pointer types, do the
1741 // rest of the comparisons as integer.
1742 Type
*OpTy
= S
->getOperand(i
)->getType();
1743 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1744 Ty
= SE
.getEffectiveSCEVType(Ty
);
1745 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1747 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1748 Value
*ICmp
= Builder
.CreateICmpULT(LHS
, RHS
);
1749 rememberInstruction(ICmp
);
1750 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "umin");
1751 rememberInstruction(Sel
);
1754 // In the case of mixed integer and pointer types, cast the
1755 // final result back to the pointer type.
1756 if (LHS
->getType() != S
->getType())
1757 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1761 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, Type
*Ty
,
1764 return expandCodeFor(SH
, Ty
);
1767 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, Type
*Ty
) {
1768 // Expand the code for this SCEV.
1769 Value
*V
= expand(SH
);
1771 assert(SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(SH
->getType()) &&
1772 "non-trivial casts should be done with the SCEVs directly!");
1773 V
= InsertNoopCastOfTo(V
, Ty
);
1778 ScalarEvolution::ValueOffsetPair
1779 SCEVExpander::FindValueInExprValueMap(const SCEV
*S
,
1780 const Instruction
*InsertPt
) {
1781 SetVector
<ScalarEvolution::ValueOffsetPair
> *Set
= SE
.getSCEVValues(S
);
1782 // If the expansion is not in CanonicalMode, and the SCEV contains any
1783 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1784 if (CanonicalMode
|| !SE
.containsAddRecurrence(S
)) {
1785 // If S is scConstant, it may be worse to reuse an existing Value.
1786 if (S
->getSCEVType() != scConstant
&& Set
) {
1787 // Choose a Value from the set which dominates the insertPt.
1788 // insertPt should be inside the Value's parent loop so as not to break
1790 for (auto const &VOPair
: *Set
) {
1791 Value
*V
= VOPair
.first
;
1792 ConstantInt
*Offset
= VOPair
.second
;
1793 Instruction
*EntInst
= nullptr;
1794 if (V
&& isa
<Instruction
>(V
) && (EntInst
= cast
<Instruction
>(V
)) &&
1795 S
->getType() == V
->getType() &&
1796 EntInst
->getFunction() == InsertPt
->getFunction() &&
1797 SE
.DT
.dominates(EntInst
, InsertPt
) &&
1798 (SE
.LI
.getLoopFor(EntInst
->getParent()) == nullptr ||
1799 SE
.LI
.getLoopFor(EntInst
->getParent())->contains(InsertPt
)))
1804 return {nullptr, nullptr};
1807 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1808 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1809 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1810 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1811 // the expansion will try to reuse Value from ExprValueMap, and only when it
1812 // fails, expand the SCEV literally.
1813 Value
*SCEVExpander::expand(const SCEV
*S
) {
1814 // Compute an insertion point for this SCEV object. Hoist the instructions
1815 // as far out in the loop nest as possible.
1816 Instruction
*InsertPt
= &*Builder
.GetInsertPoint();
1818 // We can move insertion point only if there is no div or rem operations
1819 // otherwise we are risky to move it over the check for zero denominator.
1820 auto SafeToHoist
= [](const SCEV
*S
) {
1821 return !SCEVExprContains(S
, [](const SCEV
*S
) {
1822 if (const auto *D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
1823 if (const auto *SC
= dyn_cast
<SCEVConstant
>(D
->getRHS()))
1824 // Division by non-zero constants can be hoisted.
1825 return SC
->getValue()->isZero();
1826 // All other divisions should not be moved as they may be
1827 // divisions by zero and should be kept within the
1828 // conditions of the surrounding loops that guard their
1829 // execution (see PR35406).
1835 if (SafeToHoist(S
)) {
1836 for (Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock());;
1837 L
= L
->getParentLoop()) {
1838 if (SE
.isLoopInvariant(S
, L
)) {
1840 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
1841 InsertPt
= Preheader
->getTerminator();
1843 // LSR sets the insertion point for AddRec start/step values to the
1844 // block start to simplify value reuse, even though it's an invalid
1845 // position. SCEVExpander must correct for this in all cases.
1846 InsertPt
= &*L
->getHeader()->getFirstInsertionPt();
1848 // If the SCEV is computable at this level, insert it into the header
1849 // after the PHIs (and after any other instructions that we've inserted
1850 // there) so that it is guaranteed to dominate any user inside the loop.
1851 if (L
&& SE
.hasComputableLoopEvolution(S
, L
) && !PostIncLoops
.count(L
))
1852 InsertPt
= &*L
->getHeader()->getFirstInsertionPt();
1853 while (InsertPt
->getIterator() != Builder
.GetInsertPoint() &&
1854 (isInsertedInstruction(InsertPt
) ||
1855 isa
<DbgInfoIntrinsic
>(InsertPt
)))
1856 InsertPt
= &*std::next(InsertPt
->getIterator());
1862 // IndVarSimplify sometimes sets the insertion point at the block start, even
1863 // when there are PHIs at that point. We must correct for this.
1864 if (isa
<PHINode
>(*InsertPt
))
1865 InsertPt
= &*InsertPt
->getParent()->getFirstInsertionPt();
1867 // Check to see if we already expanded this here.
1868 auto I
= InsertedExpressions
.find(std::make_pair(S
, InsertPt
));
1869 if (I
!= InsertedExpressions
.end())
1872 SCEVInsertPointGuard
Guard(Builder
, this);
1873 Builder
.SetInsertPoint(InsertPt
);
1875 // Expand the expression into instructions.
1876 ScalarEvolution::ValueOffsetPair VO
= FindValueInExprValueMap(S
, InsertPt
);
1877 Value
*V
= VO
.first
;
1881 else if (VO
.second
) {
1882 if (PointerType
*Vty
= dyn_cast
<PointerType
>(V
->getType())) {
1883 Type
*Ety
= Vty
->getPointerElementType();
1884 int64_t Offset
= VO
.second
->getSExtValue();
1885 int64_t ESize
= SE
.getTypeSizeInBits(Ety
);
1886 if ((Offset
* 8) % ESize
== 0) {
1888 ConstantInt::getSigned(VO
.second
->getType(), -(Offset
* 8) / ESize
);
1889 V
= Builder
.CreateGEP(Ety
, V
, Idx
, "scevgep");
1892 ConstantInt::getSigned(VO
.second
->getType(), -Offset
);
1893 unsigned AS
= Vty
->getAddressSpace();
1894 V
= Builder
.CreateBitCast(V
, Type::getInt8PtrTy(SE
.getContext(), AS
));
1895 V
= Builder
.CreateGEP(Type::getInt8Ty(SE
.getContext()), V
, Idx
,
1897 V
= Builder
.CreateBitCast(V
, Vty
);
1900 V
= Builder
.CreateSub(V
, VO
.second
);
1903 // Remember the expanded value for this SCEV at this location.
1905 // This is independent of PostIncLoops. The mapped value simply materializes
1906 // the expression at this insertion point. If the mapped value happened to be
1907 // a postinc expansion, it could be reused by a non-postinc user, but only if
1908 // its insertion point was already at the head of the loop.
1909 InsertedExpressions
[std::make_pair(S
, InsertPt
)] = V
;
1913 void SCEVExpander::rememberInstruction(Value
*I
) {
1914 if (!PostIncLoops
.empty())
1915 InsertedPostIncValues
.insert(I
);
1917 InsertedValues
.insert(I
);
1920 /// getOrInsertCanonicalInductionVariable - This method returns the
1921 /// canonical induction variable of the specified type for the specified
1922 /// loop (inserting one if there is none). A canonical induction variable
1923 /// starts at zero and steps by one on each iteration.
1925 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop
*L
,
1927 assert(Ty
->isIntegerTy() && "Can only insert integer induction variables!");
1929 // Build a SCEV for {0,+,1}<L>.
1930 // Conservatively use FlagAnyWrap for now.
1931 const SCEV
*H
= SE
.getAddRecExpr(SE
.getConstant(Ty
, 0),
1932 SE
.getConstant(Ty
, 1), L
, SCEV::FlagAnyWrap
);
1934 // Emit code for it.
1935 SCEVInsertPointGuard
Guard(Builder
, this);
1937 cast
<PHINode
>(expandCodeFor(H
, nullptr, &L
->getHeader()->front()));
1942 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1943 /// replace them with their most canonical representative. Return the number of
1944 /// phis eliminated.
1946 /// This does not depend on any SCEVExpander state but should be used in
1947 /// the same context that SCEVExpander is used.
1949 SCEVExpander::replaceCongruentIVs(Loop
*L
, const DominatorTree
*DT
,
1950 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
,
1951 const TargetTransformInfo
*TTI
) {
1952 // Find integer phis in order of increasing width.
1953 SmallVector
<PHINode
*, 8> Phis
;
1954 for (PHINode
&PN
: L
->getHeader()->phis())
1955 Phis
.push_back(&PN
);
1958 llvm::sort(Phis
, [](Value
*LHS
, Value
*RHS
) {
1959 // Put pointers at the back and make sure pointer < pointer = false.
1960 if (!LHS
->getType()->isIntegerTy() || !RHS
->getType()->isIntegerTy())
1961 return RHS
->getType()->isIntegerTy() && !LHS
->getType()->isIntegerTy();
1962 return RHS
->getType()->getPrimitiveSizeInBits() <
1963 LHS
->getType()->getPrimitiveSizeInBits();
1966 unsigned NumElim
= 0;
1967 DenseMap
<const SCEV
*, PHINode
*> ExprToIVMap
;
1968 // Process phis from wide to narrow. Map wide phis to their truncation
1969 // so narrow phis can reuse them.
1970 for (PHINode
*Phi
: Phis
) {
1971 auto SimplifyPHINode
= [&](PHINode
*PN
) -> Value
* {
1972 if (Value
*V
= SimplifyInstruction(PN
, {DL
, &SE
.TLI
, &SE
.DT
, &SE
.AC
}))
1974 if (!SE
.isSCEVable(PN
->getType()))
1976 auto *Const
= dyn_cast
<SCEVConstant
>(SE
.getSCEV(PN
));
1979 return Const
->getValue();
1982 // Fold constant phis. They may be congruent to other constant phis and
1983 // would confuse the logic below that expects proper IVs.
1984 if (Value
*V
= SimplifyPHINode(Phi
)) {
1985 if (V
->getType() != Phi
->getType())
1987 Phi
->replaceAllUsesWith(V
);
1988 DeadInsts
.emplace_back(Phi
);
1990 DEBUG_WITH_TYPE(DebugType
, dbgs()
1991 << "INDVARS: Eliminated constant iv: " << *Phi
<< '\n');
1995 if (!SE
.isSCEVable(Phi
->getType()))
1998 PHINode
*&OrigPhiRef
= ExprToIVMap
[SE
.getSCEV(Phi
)];
2001 if (Phi
->getType()->isIntegerTy() && TTI
&&
2002 TTI
->isTruncateFree(Phi
->getType(), Phis
.back()->getType())) {
2003 // This phi can be freely truncated to the narrowest phi type. Map the
2004 // truncated expression to it so it will be reused for narrow types.
2005 const SCEV
*TruncExpr
=
2006 SE
.getTruncateExpr(SE
.getSCEV(Phi
), Phis
.back()->getType());
2007 ExprToIVMap
[TruncExpr
] = Phi
;
2012 // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2014 if (OrigPhiRef
->getType()->isPointerTy() != Phi
->getType()->isPointerTy())
2017 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
2018 Instruction
*OrigInc
= dyn_cast
<Instruction
>(
2019 OrigPhiRef
->getIncomingValueForBlock(LatchBlock
));
2020 Instruction
*IsomorphicInc
=
2021 dyn_cast
<Instruction
>(Phi
->getIncomingValueForBlock(LatchBlock
));
2023 if (OrigInc
&& IsomorphicInc
) {
2024 // If this phi has the same width but is more canonical, replace the
2025 // original with it. As part of the "more canonical" determination,
2026 // respect a prior decision to use an IV chain.
2027 if (OrigPhiRef
->getType() == Phi
->getType() &&
2028 !(ChainedPhis
.count(Phi
) ||
2029 isExpandedAddRecExprPHI(OrigPhiRef
, OrigInc
, L
)) &&
2030 (ChainedPhis
.count(Phi
) ||
2031 isExpandedAddRecExprPHI(Phi
, IsomorphicInc
, L
))) {
2032 std::swap(OrigPhiRef
, Phi
);
2033 std::swap(OrigInc
, IsomorphicInc
);
2035 // Replacing the congruent phi is sufficient because acyclic
2036 // redundancy elimination, CSE/GVN, should handle the
2037 // rest. However, once SCEV proves that a phi is congruent,
2038 // it's often the head of an IV user cycle that is isomorphic
2039 // with the original phi. It's worth eagerly cleaning up the
2040 // common case of a single IV increment so that DeleteDeadPHIs
2041 // can remove cycles that had postinc uses.
2042 const SCEV
*TruncExpr
=
2043 SE
.getTruncateOrNoop(SE
.getSCEV(OrigInc
), IsomorphicInc
->getType());
2044 if (OrigInc
!= IsomorphicInc
&&
2045 TruncExpr
== SE
.getSCEV(IsomorphicInc
) &&
2046 SE
.LI
.replacementPreservesLCSSAForm(IsomorphicInc
, OrigInc
) &&
2047 hoistIVInc(OrigInc
, IsomorphicInc
)) {
2048 DEBUG_WITH_TYPE(DebugType
,
2049 dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2050 << *IsomorphicInc
<< '\n');
2051 Value
*NewInc
= OrigInc
;
2052 if (OrigInc
->getType() != IsomorphicInc
->getType()) {
2053 Instruction
*IP
= nullptr;
2054 if (PHINode
*PN
= dyn_cast
<PHINode
>(OrigInc
))
2055 IP
= &*PN
->getParent()->getFirstInsertionPt();
2057 IP
= OrigInc
->getNextNode();
2059 IRBuilder
<> Builder(IP
);
2060 Builder
.SetCurrentDebugLocation(IsomorphicInc
->getDebugLoc());
2061 NewInc
= Builder
.CreateTruncOrBitCast(
2062 OrigInc
, IsomorphicInc
->getType(), IVName
);
2064 IsomorphicInc
->replaceAllUsesWith(NewInc
);
2065 DeadInsts
.emplace_back(IsomorphicInc
);
2069 DEBUG_WITH_TYPE(DebugType
, dbgs() << "INDVARS: Eliminated congruent iv: "
2072 Value
*NewIV
= OrigPhiRef
;
2073 if (OrigPhiRef
->getType() != Phi
->getType()) {
2074 IRBuilder
<> Builder(&*L
->getHeader()->getFirstInsertionPt());
2075 Builder
.SetCurrentDebugLocation(Phi
->getDebugLoc());
2076 NewIV
= Builder
.CreateTruncOrBitCast(OrigPhiRef
, Phi
->getType(), IVName
);
2078 Phi
->replaceAllUsesWith(NewIV
);
2079 DeadInsts
.emplace_back(Phi
);
2084 Value
*SCEVExpander::getExactExistingExpansion(const SCEV
*S
,
2085 const Instruction
*At
, Loop
*L
) {
2086 Optional
<ScalarEvolution::ValueOffsetPair
> VO
=
2087 getRelatedExistingExpansion(S
, At
, L
);
2088 if (VO
&& VO
.getValue().second
== nullptr)
2089 return VO
.getValue().first
;
2093 Optional
<ScalarEvolution::ValueOffsetPair
>
2094 SCEVExpander::getRelatedExistingExpansion(const SCEV
*S
, const Instruction
*At
,
2096 using namespace llvm::PatternMatch
;
2098 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
2099 L
->getExitingBlocks(ExitingBlocks
);
2101 // Look for suitable value in simple conditions at the loop exits.
2102 for (BasicBlock
*BB
: ExitingBlocks
) {
2103 ICmpInst::Predicate Pred
;
2104 Instruction
*LHS
, *RHS
;
2106 if (!match(BB
->getTerminator(),
2107 m_Br(m_ICmp(Pred
, m_Instruction(LHS
), m_Instruction(RHS
)),
2108 m_BasicBlock(), m_BasicBlock())))
2111 if (SE
.getSCEV(LHS
) == S
&& SE
.DT
.dominates(LHS
, At
))
2112 return ScalarEvolution::ValueOffsetPair(LHS
, nullptr);
2114 if (SE
.getSCEV(RHS
) == S
&& SE
.DT
.dominates(RHS
, At
))
2115 return ScalarEvolution::ValueOffsetPair(RHS
, nullptr);
2118 // Use expand's logic which is used for reusing a previous Value in
2120 ScalarEvolution::ValueOffsetPair VO
= FindValueInExprValueMap(S
, At
);
2124 // There is potential to make this significantly smarter, but this simple
2125 // heuristic already gets some interesting cases.
2127 // Can not find suitable value.
2131 bool SCEVExpander::isHighCostExpansionHelper(
2132 const SCEV
*S
, Loop
*L
, const Instruction
*At
,
2133 SmallPtrSetImpl
<const SCEV
*> &Processed
) {
2135 // If we can find an existing value for this scev available at the point "At"
2136 // then consider the expression cheap.
2137 if (At
&& getRelatedExistingExpansion(S
, At
, L
))
2140 // Zero/One operand expressions
2141 switch (S
->getSCEVType()) {
2146 return isHighCostExpansionHelper(cast
<SCEVTruncateExpr
>(S
)->getOperand(),
2149 return isHighCostExpansionHelper(cast
<SCEVZeroExtendExpr
>(S
)->getOperand(),
2152 return isHighCostExpansionHelper(cast
<SCEVSignExtendExpr
>(S
)->getOperand(),
2156 if (!Processed
.insert(S
).second
)
2159 if (auto *UDivExpr
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2160 // If the divisor is a power of two and the SCEV type fits in a native
2161 // integer (and the LHS not expensive), consider the division cheap
2162 // irrespective of whether it occurs in the user code since it can be
2163 // lowered into a right shift.
2164 if (auto *SC
= dyn_cast
<SCEVConstant
>(UDivExpr
->getRHS()))
2165 if (SC
->getAPInt().isPowerOf2()) {
2166 if (isHighCostExpansionHelper(UDivExpr
->getLHS(), L
, At
, Processed
))
2168 const DataLayout
&DL
=
2169 L
->getHeader()->getParent()->getParent()->getDataLayout();
2170 unsigned Width
= cast
<IntegerType
>(UDivExpr
->getType())->getBitWidth();
2171 return DL
.isIllegalInteger(Width
);
2174 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2175 // HowManyLessThans produced to compute a precise expression, rather than a
2176 // UDiv from the user's code. If we can't find a UDiv in the code with some
2177 // simple searching, assume the former consider UDivExpr expensive to
2179 BasicBlock
*ExitingBB
= L
->getExitingBlock();
2183 // At the beginning of this function we already tried to find existing value
2184 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2185 // involving division. This is just a simple search heuristic.
2187 At
= &ExitingBB
->back();
2188 if (!getRelatedExistingExpansion(
2189 SE
.getAddExpr(S
, SE
.getConstant(S
->getType(), 1)), At
, L
))
2193 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2194 // the exit condition.
2195 if (isa
<SCEVMinMaxExpr
>(S
))
2198 // Recurse past nary expressions, which commonly occur in the
2199 // BackedgeTakenCount. They may already exist in program code, and if not,
2200 // they are not too expensive rematerialize.
2201 if (const SCEVNAryExpr
*NAry
= dyn_cast
<SCEVNAryExpr
>(S
)) {
2202 for (auto *Op
: NAry
->operands())
2203 if (isHighCostExpansionHelper(Op
, L
, At
, Processed
))
2207 // If we haven't recognized an expensive SCEV pattern, assume it's an
2208 // expression produced by program code.
2212 Value
*SCEVExpander::expandCodeForPredicate(const SCEVPredicate
*Pred
,
2215 switch (Pred
->getKind()) {
2216 case SCEVPredicate::P_Union
:
2217 return expandUnionPredicate(cast
<SCEVUnionPredicate
>(Pred
), IP
);
2218 case SCEVPredicate::P_Equal
:
2219 return expandEqualPredicate(cast
<SCEVEqualPredicate
>(Pred
), IP
);
2220 case SCEVPredicate::P_Wrap
: {
2221 auto *AddRecPred
= cast
<SCEVWrapPredicate
>(Pred
);
2222 return expandWrapPredicate(AddRecPred
, IP
);
2225 llvm_unreachable("Unknown SCEV predicate type");
2228 Value
*SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate
*Pred
,
2230 Value
*Expr0
= expandCodeFor(Pred
->getLHS(), Pred
->getLHS()->getType(), IP
);
2231 Value
*Expr1
= expandCodeFor(Pred
->getRHS(), Pred
->getRHS()->getType(), IP
);
2233 Builder
.SetInsertPoint(IP
);
2234 auto *I
= Builder
.CreateICmpNE(Expr0
, Expr1
, "ident.check");
2238 Value
*SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr
*AR
,
2239 Instruction
*Loc
, bool Signed
) {
2240 assert(AR
->isAffine() && "Cannot generate RT check for "
2241 "non-affine expression");
2243 SCEVUnionPredicate Pred
;
2244 const SCEV
*ExitCount
=
2245 SE
.getPredicatedBackedgeTakenCount(AR
->getLoop(), Pred
);
2247 assert(ExitCount
!= SE
.getCouldNotCompute() && "Invalid loop count");
2249 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
2250 const SCEV
*Start
= AR
->getStart();
2252 Type
*ARTy
= AR
->getType();
2253 unsigned SrcBits
= SE
.getTypeSizeInBits(ExitCount
->getType());
2254 unsigned DstBits
= SE
.getTypeSizeInBits(ARTy
);
2256 // The expression {Start,+,Step} has nusw/nssw if
2257 // Step < 0, Start - |Step| * Backedge <= Start
2258 // Step >= 0, Start + |Step| * Backedge > Start
2259 // and |Step| * Backedge doesn't unsigned overflow.
2261 IntegerType
*CountTy
= IntegerType::get(Loc
->getContext(), SrcBits
);
2262 Builder
.SetInsertPoint(Loc
);
2263 Value
*TripCountVal
= expandCodeFor(ExitCount
, CountTy
, Loc
);
2266 IntegerType::get(Loc
->getContext(), SE
.getTypeSizeInBits(ARTy
));
2267 Type
*ARExpandTy
= DL
.isNonIntegralPointerType(ARTy
) ? ARTy
: Ty
;
2269 Value
*StepValue
= expandCodeFor(Step
, Ty
, Loc
);
2270 Value
*NegStepValue
= expandCodeFor(SE
.getNegativeSCEV(Step
), Ty
, Loc
);
2271 Value
*StartValue
= expandCodeFor(Start
, ARExpandTy
, Loc
);
2274 ConstantInt::get(Loc
->getContext(), APInt::getNullValue(DstBits
));
2276 Builder
.SetInsertPoint(Loc
);
2278 Value
*StepCompare
= Builder
.CreateICmp(ICmpInst::ICMP_SLT
, StepValue
, Zero
);
2279 Value
*AbsStep
= Builder
.CreateSelect(StepCompare
, NegStepValue
, StepValue
);
2281 // Get the backedge taken count and truncate or extended to the AR type.
2282 Value
*TruncTripCount
= Builder
.CreateZExtOrTrunc(TripCountVal
, Ty
);
2283 auto *MulF
= Intrinsic::getDeclaration(Loc
->getModule(),
2284 Intrinsic::umul_with_overflow
, Ty
);
2286 // Compute |Step| * Backedge
2287 CallInst
*Mul
= Builder
.CreateCall(MulF
, {AbsStep
, TruncTripCount
}, "mul");
2288 Value
*MulV
= Builder
.CreateExtractValue(Mul
, 0, "mul.result");
2289 Value
*OfMul
= Builder
.CreateExtractValue(Mul
, 1, "mul.overflow");
2292 // Start + |Step| * Backedge < Start
2293 // Start - |Step| * Backedge > Start
2294 Value
*Add
= nullptr, *Sub
= nullptr;
2295 if (PointerType
*ARPtrTy
= dyn_cast
<PointerType
>(ARExpandTy
)) {
2296 const SCEV
*MulS
= SE
.getSCEV(MulV
);
2297 const SCEV
*NegMulS
= SE
.getNegativeSCEV(MulS
);
2298 Add
= Builder
.CreateBitCast(expandAddToGEP(MulS
, ARPtrTy
, Ty
, StartValue
),
2300 Sub
= Builder
.CreateBitCast(
2301 expandAddToGEP(NegMulS
, ARPtrTy
, Ty
, StartValue
), ARPtrTy
);
2303 Add
= Builder
.CreateAdd(StartValue
, MulV
);
2304 Sub
= Builder
.CreateSub(StartValue
, MulV
);
2307 Value
*EndCompareGT
= Builder
.CreateICmp(
2308 Signed
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
, Sub
, StartValue
);
2310 Value
*EndCompareLT
= Builder
.CreateICmp(
2311 Signed
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
, Add
, StartValue
);
2313 // Select the answer based on the sign of Step.
2315 Builder
.CreateSelect(StepCompare
, EndCompareGT
, EndCompareLT
);
2317 // If the backedge taken count type is larger than the AR type,
2318 // check that we don't drop any bits by truncating it. If we are
2319 // dropping bits, then we have overflow (unless the step is zero).
2320 if (SE
.getTypeSizeInBits(CountTy
) > SE
.getTypeSizeInBits(Ty
)) {
2321 auto MaxVal
= APInt::getMaxValue(DstBits
).zext(SrcBits
);
2322 auto *BackedgeCheck
=
2323 Builder
.CreateICmp(ICmpInst::ICMP_UGT
, TripCountVal
,
2324 ConstantInt::get(Loc
->getContext(), MaxVal
));
2325 BackedgeCheck
= Builder
.CreateAnd(
2326 BackedgeCheck
, Builder
.CreateICmp(ICmpInst::ICMP_NE
, StepValue
, Zero
));
2328 EndCheck
= Builder
.CreateOr(EndCheck
, BackedgeCheck
);
2331 EndCheck
= Builder
.CreateOr(EndCheck
, OfMul
);
2335 Value
*SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate
*Pred
,
2337 const auto *A
= cast
<SCEVAddRecExpr
>(Pred
->getExpr());
2338 Value
*NSSWCheck
= nullptr, *NUSWCheck
= nullptr;
2340 // Add a check for NUSW
2341 if (Pred
->getFlags() & SCEVWrapPredicate::IncrementNUSW
)
2342 NUSWCheck
= generateOverflowCheck(A
, IP
, false);
2344 // Add a check for NSSW
2345 if (Pred
->getFlags() & SCEVWrapPredicate::IncrementNSSW
)
2346 NSSWCheck
= generateOverflowCheck(A
, IP
, true);
2348 if (NUSWCheck
&& NSSWCheck
)
2349 return Builder
.CreateOr(NUSWCheck
, NSSWCheck
);
2357 return ConstantInt::getFalse(IP
->getContext());
2360 Value
*SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate
*Union
,
2362 auto *BoolType
= IntegerType::get(IP
->getContext(), 1);
2363 Value
*Check
= ConstantInt::getNullValue(BoolType
);
2365 // Loop over all checks in this set.
2366 for (auto Pred
: Union
->getPredicates()) {
2367 auto *NextCheck
= expandCodeForPredicate(Pred
, IP
);
2368 Builder
.SetInsertPoint(IP
);
2369 Check
= Builder
.CreateOr(Check
, NextCheck
);
2376 // Search for a SCEV subexpression that is not safe to expand. Any expression
2377 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2378 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2379 // instruction, but the important thing is that we prove the denominator is
2380 // nonzero before expansion.
2382 // IVUsers already checks that IV-derived expressions are safe. So this check is
2383 // only needed when the expression includes some subexpression that is not IV
2386 // Currently, we only allow division by a nonzero constant here. If this is
2387 // inadequate, we could easily allow division by SCEVUnknown by using
2388 // ValueTracking to check isKnownNonZero().
2390 // We cannot generally expand recurrences unless the step dominates the loop
2391 // header. The expander handles the special case of affine recurrences by
2392 // scaling the recurrence outside the loop, but this technique isn't generally
2393 // applicable. Expanding a nested recurrence outside a loop requires computing
2394 // binomial coefficients. This could be done, but the recurrence has to be in a
2395 // perfectly reduced form, which can't be guaranteed.
2396 struct SCEVFindUnsafe
{
2397 ScalarEvolution
&SE
;
2400 SCEVFindUnsafe(ScalarEvolution
&se
): SE(se
), IsUnsafe(false) {}
2402 bool follow(const SCEV
*S
) {
2403 if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2404 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(D
->getRHS());
2405 if (!SC
|| SC
->getValue()->isZero()) {
2410 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2411 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
2412 if (!AR
->isAffine() && !SE
.dominates(Step
, AR
->getLoop()->getHeader())) {
2419 bool isDone() const { return IsUnsafe
; }
2424 bool isSafeToExpand(const SCEV
*S
, ScalarEvolution
&SE
) {
2425 SCEVFindUnsafe
Search(SE
);
2426 visitAll(S
, Search
);
2427 return !Search
.IsUnsafe
;
2430 bool isSafeToExpandAt(const SCEV
*S
, const Instruction
*InsertionPoint
,
2431 ScalarEvolution
&SE
) {
2432 if (!isSafeToExpand(S
, SE
))
2434 // We have to prove that the expanded site of S dominates InsertionPoint.
2435 // This is easy when not in the same block, but hard when S is an instruction
2436 // to be expanded somewhere inside the same block as our insertion point.
2437 // What we really need here is something analogous to an OrderedBasicBlock,
2438 // but for the moment, we paper over the problem by handling two common and
2439 // cheap to check cases.
2440 if (SE
.properlyDominates(S
, InsertionPoint
->getParent()))
2442 if (SE
.dominates(S
, InsertionPoint
->getParent())) {
2443 if (InsertionPoint
->getParent()->getTerminator() == InsertionPoint
)
2445 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
))
2446 for (const Value
*V
: InsertionPoint
->operand_values())
2447 if (V
== U
->getValue())