1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 // !0 = !{ !"an example type tree" }
26 // !1 = !{ !"int", !0 }
27 // !2 = !{ !"float", !0 }
28 // !3 = !{ !"const float", !2, i64 1 }
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
50 // The path tag node has 4 fields with the last field being optional.
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1} // Scalar type node
79 // !3 = !{!"A", !2, i64 0} // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 // // Struct type node
82 // !5 = !{!4, !2, i64 4} // Path tag node
84 // The struct type nodes and the scalar type nodes form a type DAG.
86 // char (!1) -- edge to Root
87 // short (!2) -- edge to char
88 // A (!3) -- edge with offset 0 to short
89 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
106 //===----------------------------------------------------------------------===//
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/Instruction.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/CommandLine.h"
120 #include "llvm/Support/ErrorHandling.h"
124 using namespace llvm
;
126 // A handy option for disabling TBAA functionality. The same effect can also be
127 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
129 static cl::opt
<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden
);
133 /// isNewFormatTypeNode - Return true iff the given type node is in the new
134 /// size-aware format.
135 static bool isNewFormatTypeNode(const MDNode
*N
) {
136 if (N
->getNumOperands() < 3)
138 // In the old format the first operand is a string.
139 if (!isa
<MDNode
>(N
->getOperand(0)))
144 /// This is a simple wrapper around an MDNode which provides a higher-level
145 /// interface by hiding the details of how alias analysis information is encoded
147 template<typename MDNodeTy
>
149 MDNodeTy
*Node
= nullptr;
152 TBAANodeImpl() = default;
153 explicit TBAANodeImpl(MDNodeTy
*N
) : Node(N
) {}
155 /// getNode - Get the MDNode for this TBAANode.
156 MDNodeTy
*getNode() const { return Node
; }
158 /// isNewFormat - Return true iff the wrapped type node is in the new
159 /// size-aware format.
160 bool isNewFormat() const { return isNewFormatTypeNode(Node
); }
162 /// getParent - Get this TBAANode's Alias tree parent.
163 TBAANodeImpl
<MDNodeTy
> getParent() const {
165 return TBAANodeImpl(cast
<MDNodeTy
>(Node
->getOperand(0)));
167 if (Node
->getNumOperands() < 2)
168 return TBAANodeImpl
<MDNodeTy
>();
169 MDNodeTy
*P
= dyn_cast_or_null
<MDNodeTy
>(Node
->getOperand(1));
171 return TBAANodeImpl
<MDNodeTy
>();
172 // Ok, this node has a valid parent. Return it.
173 return TBAANodeImpl
<MDNodeTy
>(P
);
176 /// Test if this TBAANode represents a type for objects which are
177 /// not modified (by any means) in the context where this
178 /// AliasAnalysis is relevant.
179 bool isTypeImmutable() const {
180 if (Node
->getNumOperands() < 3)
182 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(Node
->getOperand(2));
185 return CI
->getValue()[0];
189 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
192 using TBAANode
= TBAANodeImpl
<const MDNode
>;
193 using MutableTBAANode
= TBAANodeImpl
<MDNode
>;
196 /// This is a simple wrapper around an MDNode which provides a
197 /// higher-level interface by hiding the details of how alias analysis
198 /// information is encoded in its operands.
199 template<typename MDNodeTy
>
200 class TBAAStructTagNodeImpl
{
201 /// This node should be created with createTBAAAccessTag().
205 explicit TBAAStructTagNodeImpl(MDNodeTy
*N
) : Node(N
) {}
207 /// Get the MDNode for this TBAAStructTagNode.
208 MDNodeTy
*getNode() const { return Node
; }
210 /// isNewFormat - Return true iff the wrapped access tag is in the new
211 /// size-aware format.
212 bool isNewFormat() const {
213 if (Node
->getNumOperands() < 4)
215 if (MDNodeTy
*AccessType
= getAccessType())
216 if (!TBAANodeImpl
<MDNodeTy
>(AccessType
).isNewFormat())
221 MDNodeTy
*getBaseType() const {
222 return dyn_cast_or_null
<MDNode
>(Node
->getOperand(0));
225 MDNodeTy
*getAccessType() const {
226 return dyn_cast_or_null
<MDNode
>(Node
->getOperand(1));
229 uint64_t getOffset() const {
230 return mdconst::extract
<ConstantInt
>(Node
->getOperand(2))->getZExtValue();
233 uint64_t getSize() const {
236 return mdconst::extract
<ConstantInt
>(Node
->getOperand(3))->getZExtValue();
239 /// Test if this TBAAStructTagNode represents a type for objects
240 /// which are not modified (by any means) in the context where this
241 /// AliasAnalysis is relevant.
242 bool isTypeImmutable() const {
243 unsigned OpNo
= isNewFormat() ? 4 : 3;
244 if (Node
->getNumOperands() < OpNo
+ 1)
246 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(Node
->getOperand(OpNo
));
249 return CI
->getValue()[0];
253 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
254 /// qualified \c MDNods.
256 using TBAAStructTagNode
= TBAAStructTagNodeImpl
<const MDNode
>;
257 using MutableTBAAStructTagNode
= TBAAStructTagNodeImpl
<MDNode
>;
260 /// This is a simple wrapper around an MDNode which provides a
261 /// higher-level interface by hiding the details of how alias analysis
262 /// information is encoded in its operands.
263 class TBAAStructTypeNode
{
264 /// This node should be created with createTBAATypeNode().
265 const MDNode
*Node
= nullptr;
268 TBAAStructTypeNode() = default;
269 explicit TBAAStructTypeNode(const MDNode
*N
) : Node(N
) {}
271 /// Get the MDNode for this TBAAStructTypeNode.
272 const MDNode
*getNode() const { return Node
; }
274 /// isNewFormat - Return true iff the wrapped type node is in the new
275 /// size-aware format.
276 bool isNewFormat() const { return isNewFormatTypeNode(Node
); }
278 bool operator==(const TBAAStructTypeNode
&Other
) const {
279 return getNode() == Other
.getNode();
282 /// getId - Return type identifier.
283 Metadata
*getId() const {
284 return Node
->getOperand(isNewFormat() ? 2 : 0);
287 unsigned getNumFields() const {
288 unsigned FirstFieldOpNo
= isNewFormat() ? 3 : 1;
289 unsigned NumOpsPerField
= isNewFormat() ? 3 : 2;
290 return (getNode()->getNumOperands() - FirstFieldOpNo
) / NumOpsPerField
;
293 TBAAStructTypeNode
getFieldType(unsigned FieldIndex
) const {
294 unsigned FirstFieldOpNo
= isNewFormat() ? 3 : 1;
295 unsigned NumOpsPerField
= isNewFormat() ? 3 : 2;
296 unsigned OpIndex
= FirstFieldOpNo
+ FieldIndex
* NumOpsPerField
;
297 auto *TypeNode
= cast
<MDNode
>(getNode()->getOperand(OpIndex
));
298 return TBAAStructTypeNode(TypeNode
);
301 /// Get this TBAAStructTypeNode's field in the type DAG with
302 /// given offset. Update the offset to be relative to the field type.
303 TBAAStructTypeNode
getField(uint64_t &Offset
) const {
304 bool NewFormat
= isNewFormat();
306 // New-format root and scalar type nodes have no fields.
307 if (Node
->getNumOperands() < 6)
308 return TBAAStructTypeNode();
310 // Parent can be omitted for the root node.
311 if (Node
->getNumOperands() < 2)
312 return TBAAStructTypeNode();
314 // Fast path for a scalar type node and a struct type node with a single
316 if (Node
->getNumOperands() <= 3) {
317 uint64_t Cur
= Node
->getNumOperands() == 2
319 : mdconst::extract
<ConstantInt
>(Node
->getOperand(2))
322 MDNode
*P
= dyn_cast_or_null
<MDNode
>(Node
->getOperand(1));
324 return TBAAStructTypeNode();
325 return TBAAStructTypeNode(P
);
329 // Assume the offsets are in order. We return the previous field if
330 // the current offset is bigger than the given offset.
331 unsigned FirstFieldOpNo
= NewFormat
? 3 : 1;
332 unsigned NumOpsPerField
= NewFormat
? 3 : 2;
334 for (unsigned Idx
= FirstFieldOpNo
; Idx
< Node
->getNumOperands();
335 Idx
+= NumOpsPerField
) {
336 uint64_t Cur
= mdconst::extract
<ConstantInt
>(Node
->getOperand(Idx
+ 1))
339 assert(Idx
>= FirstFieldOpNo
+ NumOpsPerField
&&
340 "TBAAStructTypeNode::getField should have an offset match!");
341 TheIdx
= Idx
- NumOpsPerField
;
345 // Move along the last field.
347 TheIdx
= Node
->getNumOperands() - NumOpsPerField
;
348 uint64_t Cur
= mdconst::extract
<ConstantInt
>(Node
->getOperand(TheIdx
+ 1))
351 MDNode
*P
= dyn_cast_or_null
<MDNode
>(Node
->getOperand(TheIdx
));
353 return TBAAStructTypeNode();
354 return TBAAStructTypeNode(P
);
358 } // end anonymous namespace
360 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
361 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
363 static bool isStructPathTBAA(const MDNode
*MD
) {
364 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
366 return isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
369 AliasResult
TypeBasedAAResult::alias(const MemoryLocation
&LocA
,
370 const MemoryLocation
&LocB
,
373 return AAResultBase::alias(LocA
, LocB
, AAQI
);
375 // If accesses may alias, chain to the next AliasAnalysis.
376 if (Aliases(LocA
.AATags
.TBAA
, LocB
.AATags
.TBAA
))
377 return AAResultBase::alias(LocA
, LocB
, AAQI
);
379 // Otherwise return a definitive result.
383 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation
&Loc
,
387 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
389 const MDNode
*M
= Loc
.AATags
.TBAA
;
391 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
393 // If this is an "immutable" type, we can assume the pointer is pointing
394 // to constant memory.
395 if ((!isStructPathTBAA(M
) && TBAANode(M
).isTypeImmutable()) ||
396 (isStructPathTBAA(M
) && TBAAStructTagNode(M
).isTypeImmutable()))
399 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
402 FunctionModRefBehavior
403 TypeBasedAAResult::getModRefBehavior(const CallBase
*Call
) {
405 return AAResultBase::getModRefBehavior(Call
);
407 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
409 // If this is an "immutable" type, we can assume the call doesn't write
411 if (const MDNode
*M
= Call
->getMetadata(LLVMContext::MD_tbaa
))
412 if ((!isStructPathTBAA(M
) && TBAANode(M
).isTypeImmutable()) ||
413 (isStructPathTBAA(M
) && TBAAStructTagNode(M
).isTypeImmutable()))
414 Min
= FMRB_OnlyReadsMemory
;
416 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call
) & Min
);
419 FunctionModRefBehavior
TypeBasedAAResult::getModRefBehavior(const Function
*F
) {
420 // Functions don't have metadata. Just chain to the next implementation.
421 return AAResultBase::getModRefBehavior(F
);
424 ModRefInfo
TypeBasedAAResult::getModRefInfo(const CallBase
*Call
,
425 const MemoryLocation
&Loc
,
428 return AAResultBase::getModRefInfo(Call
, Loc
, AAQI
);
430 if (const MDNode
*L
= Loc
.AATags
.TBAA
)
431 if (const MDNode
*M
= Call
->getMetadata(LLVMContext::MD_tbaa
))
433 return ModRefInfo::NoModRef
;
435 return AAResultBase::getModRefInfo(Call
, Loc
, AAQI
);
438 ModRefInfo
TypeBasedAAResult::getModRefInfo(const CallBase
*Call1
,
439 const CallBase
*Call2
,
442 return AAResultBase::getModRefInfo(Call1
, Call2
, AAQI
);
444 if (const MDNode
*M1
= Call1
->getMetadata(LLVMContext::MD_tbaa
))
445 if (const MDNode
*M2
= Call2
->getMetadata(LLVMContext::MD_tbaa
))
446 if (!Aliases(M1
, M2
))
447 return ModRefInfo::NoModRef
;
449 return AAResultBase::getModRefInfo(Call1
, Call2
, AAQI
);
452 bool MDNode::isTBAAVtableAccess() const {
453 if (!isStructPathTBAA(this)) {
454 if (getNumOperands() < 1)
456 if (MDString
*Tag1
= dyn_cast
<MDString
>(getOperand(0))) {
457 if (Tag1
->getString() == "vtable pointer")
463 // For struct-path aware TBAA, we use the access type of the tag.
464 TBAAStructTagNode
Tag(this);
465 TBAAStructTypeNode
AccessType(Tag
.getAccessType());
466 if(auto *Id
= dyn_cast
<MDString
>(AccessType
.getId()))
467 if (Id
->getString() == "vtable pointer")
472 static bool matchAccessTags(const MDNode
*A
, const MDNode
*B
,
473 const MDNode
**GenericTag
= nullptr);
475 MDNode
*MDNode::getMostGenericTBAA(MDNode
*A
, MDNode
*B
) {
476 const MDNode
*GenericTag
;
477 matchAccessTags(A
, B
, &GenericTag
);
478 return const_cast<MDNode
*>(GenericTag
);
481 static const MDNode
*getLeastCommonType(const MDNode
*A
, const MDNode
*B
) {
488 SmallSetVector
<const MDNode
*, 4> PathA
;
490 while (TA
.getNode()) {
491 if (PathA
.count(TA
.getNode()))
492 report_fatal_error("Cycle found in TBAA metadata.");
493 PathA
.insert(TA
.getNode());
497 SmallSetVector
<const MDNode
*, 4> PathB
;
499 while (TB
.getNode()) {
500 if (PathB
.count(TB
.getNode()))
501 report_fatal_error("Cycle found in TBAA metadata.");
502 PathB
.insert(TB
.getNode());
506 int IA
= PathA
.size() - 1;
507 int IB
= PathB
.size() - 1;
509 const MDNode
*Ret
= nullptr;
510 while (IA
>= 0 && IB
>= 0) {
511 if (PathA
[IA
] == PathB
[IB
])
522 void Instruction::getAAMetadata(AAMDNodes
&N
, bool Merge
) const {
525 MDNode::getMostGenericTBAA(N
.TBAA
, getMetadata(LLVMContext::MD_tbaa
));
527 N
.TBAA
= getMetadata(LLVMContext::MD_tbaa
);
530 N
.Scope
= MDNode::getMostGenericAliasScope(
531 N
.Scope
, getMetadata(LLVMContext::MD_alias_scope
));
533 N
.Scope
= getMetadata(LLVMContext::MD_alias_scope
);
537 MDNode::intersect(N
.NoAlias
, getMetadata(LLVMContext::MD_noalias
));
539 N
.NoAlias
= getMetadata(LLVMContext::MD_noalias
);
542 static const MDNode
*createAccessTag(const MDNode
*AccessType
) {
543 // If there is no access type or the access type is the root node, then
544 // we don't have any useful access tag to return.
545 if (!AccessType
|| AccessType
->getNumOperands() < 2)
548 Type
*Int64
= IntegerType::get(AccessType
->getContext(), 64);
549 auto *OffsetNode
= ConstantAsMetadata::get(ConstantInt::get(Int64
, 0));
551 if (TBAAStructTypeNode(AccessType
).isNewFormat()) {
552 // TODO: Take access ranges into account when matching access tags and
553 // fix this code to generate actual access sizes for generic tags.
554 uint64_t AccessSize
= UINT64_MAX
;
556 ConstantAsMetadata::get(ConstantInt::get(Int64
, AccessSize
));
557 Metadata
*Ops
[] = {const_cast<MDNode
*>(AccessType
),
558 const_cast<MDNode
*>(AccessType
),
559 OffsetNode
, SizeNode
};
560 return MDNode::get(AccessType
->getContext(), Ops
);
563 Metadata
*Ops
[] = {const_cast<MDNode
*>(AccessType
),
564 const_cast<MDNode
*>(AccessType
),
566 return MDNode::get(AccessType
->getContext(), Ops
);
569 static bool hasField(TBAAStructTypeNode BaseType
,
570 TBAAStructTypeNode FieldType
) {
571 for (unsigned I
= 0, E
= BaseType
.getNumFields(); I
!= E
; ++I
) {
572 TBAAStructTypeNode T
= BaseType
.getFieldType(I
);
573 if (T
== FieldType
|| hasField(T
, FieldType
))
579 /// Return true if for two given accesses, one of the accessed objects may be a
580 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
581 /// describe the accesses to the base object and the subobject respectively.
582 /// \p CommonType must be the metadata node describing the common type of the
583 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
584 /// may alias and \p Generic, if not null, points to the most generic access
585 /// tag for the given two.
586 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag
,
587 TBAAStructTagNode SubobjectTag
,
588 const MDNode
*CommonType
,
589 const MDNode
**GenericTag
,
591 // If the base object is of the least common type, then this may be an access
593 if (BaseTag
.getAccessType() == BaseTag
.getBaseType() &&
594 BaseTag
.getAccessType() == CommonType
) {
596 *GenericTag
= createAccessTag(CommonType
);
601 // If the access to the base object is through a field of the subobject's
602 // type, then this may be an access to that field. To check for that we start
603 // from the base type, follow the edge with the correct offset in the type DAG
604 // and adjust the offset until we reach the field type or until we reach the
606 bool NewFormat
= BaseTag
.isNewFormat();
607 TBAAStructTypeNode
BaseType(BaseTag
.getBaseType());
608 uint64_t OffsetInBase
= BaseTag
.getOffset();
611 // In the old format there is no distinction between fields and parent
612 // types, so in this case we consider all nodes up to the root.
613 if (!BaseType
.getNode()) {
614 assert(!NewFormat
&& "Did not see access type in access path!");
618 if (BaseType
.getNode() == SubobjectTag
.getBaseType()) {
619 bool SameMemberAccess
= OffsetInBase
== SubobjectTag
.getOffset();
621 *GenericTag
= SameMemberAccess
? SubobjectTag
.getNode() :
622 createAccessTag(CommonType
);
624 MayAlias
= SameMemberAccess
;
628 // With new-format nodes we stop at the access type.
629 if (NewFormat
&& BaseType
.getNode() == BaseTag
.getAccessType())
632 // Follow the edge with the correct offset. Offset will be adjusted to
633 // be relative to the field type.
634 BaseType
= BaseType
.getField(OffsetInBase
);
637 // If the base object has a direct or indirect field of the subobject's type,
638 // then this may be an access to that field. We need this to check now that
639 // we support aggregates as access types.
641 // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
642 TBAAStructTypeNode
FieldType(SubobjectTag
.getBaseType());
643 if (hasField(BaseType
, FieldType
)) {
645 *GenericTag
= createAccessTag(CommonType
);
654 /// matchTags - Return true if the given couple of accesses are allowed to
655 /// overlap. If \arg GenericTag is not null, then on return it points to the
656 /// most generic access descriptor for the given two.
657 static bool matchAccessTags(const MDNode
*A
, const MDNode
*B
,
658 const MDNode
**GenericTag
) {
665 // Accesses with no TBAA information may alias with any other accesses.
668 *GenericTag
= nullptr;
672 // Verify that both input nodes are struct-path aware. Auto-upgrade should
673 // have taken care of this.
674 assert(isStructPathTBAA(A
) && "Access A is not struct-path aware!");
675 assert(isStructPathTBAA(B
) && "Access B is not struct-path aware!");
677 TBAAStructTagNode
TagA(A
), TagB(B
);
678 const MDNode
*CommonType
= getLeastCommonType(TagA
.getAccessType(),
679 TagB
.getAccessType());
681 // If the final access types have different roots, they're part of different
682 // potentially unrelated type systems, so we must be conservative.
685 *GenericTag
= nullptr;
689 // If one of the accessed objects may be a subobject of the other, then such
690 // accesses may alias.
692 if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA
, /* SubobjectTag= */ TagB
,
693 CommonType
, GenericTag
, MayAlias
) ||
694 mayBeAccessToSubobjectOf(/* BaseTag= */ TagB
, /* SubobjectTag= */ TagA
,
695 CommonType
, GenericTag
, MayAlias
))
698 // Otherwise, we've proved there's no alias.
700 *GenericTag
= createAccessTag(CommonType
);
704 /// Aliases - Test whether the access represented by tag A may alias the
705 /// access represented by tag B.
706 bool TypeBasedAAResult::Aliases(const MDNode
*A
, const MDNode
*B
) const {
707 return matchAccessTags(A
, B
);
710 AnalysisKey
TypeBasedAA::Key
;
712 TypeBasedAAResult
TypeBasedAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
713 return TypeBasedAAResult();
716 char TypeBasedAAWrapperPass::ID
= 0;
717 INITIALIZE_PASS(TypeBasedAAWrapperPass
, "tbaa", "Type-Based Alias Analysis",
720 ImmutablePass
*llvm::createTypeBasedAAWrapperPass() {
721 return new TypeBasedAAWrapperPass();
724 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID
) {
725 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
728 bool TypeBasedAAWrapperPass::doInitialization(Module
&M
) {
729 Result
.reset(new TypeBasedAAResult());
733 bool TypeBasedAAWrapperPass::doFinalization(Module
&M
) {
738 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
739 AU
.setPreservesAll();