1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
26 using namespace llvm::object
;
27 using namespace llvm::support::endian
;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
33 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
34 or32le(L
, (Imm
& 0xFFF) << 10);
37 template <class T
> static void write(bool isBE
, void *P
, T V
) {
38 isBE
? write
<T
, support::big
>(P
, V
) : write
<T
, support::little
>(P
, V
);
41 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
42 uint32_t ImmLo
= (Imm
& 0x3) << 29;
43 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
44 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
51 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
52 return (Val
>> Start
) & Mask
;
57 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
60 typedef Elf_Shdr_Impl
<ELFT
> Elf_Shdr
;
61 typedef Elf_Sym_Impl
<ELFT
> Elf_Sym
;
62 typedef Elf_Rel_Impl
<ELFT
, false> Elf_Rel
;
63 typedef Elf_Rel_Impl
<ELFT
, true> Elf_Rela
;
65 typedef Elf_Ehdr_Impl
<ELFT
> Elf_Ehdr
;
67 typedef typename
ELFT::uint addr_type
;
69 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
72 static Expected
<std::unique_ptr
<DyldELFObject
>>
73 create(MemoryBufferRef Wrapper
);
75 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
77 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
79 // Methods for type inquiry through isa, cast and dyn_cast
80 static bool classof(const Binary
*v
) {
81 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
82 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
84 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
85 return v
->isDyldType();
91 // The MemoryBuffer passed into this constructor is just a wrapper around the
92 // actual memory. Ultimately, the Binary parent class will take ownership of
93 // this MemoryBuffer object but not the underlying memory.
95 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
96 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
97 this->isDyldELFObject
= true;
100 template <class ELFT
>
101 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
102 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
103 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
104 if (auto E
= Obj
.takeError())
106 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
107 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
108 return std::move(Ret
);
111 template <class ELFT
>
112 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
114 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
116 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
118 // This assumes the address passed in matches the target address bitness
119 // The template-based type cast handles everything else.
120 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
123 template <class ELFT
>
124 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
127 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
128 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
130 // This assumes the address passed in matches the target address bitness
131 // The template-based type cast handles everything else.
132 sym
->st_value
= static_cast<addr_type
>(Addr
);
135 class LoadedELFObjectInfo final
136 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
137 RuntimeDyld::LoadedObjectInfo
> {
139 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
140 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
142 OwningBinary
<ObjectFile
>
143 getObjectForDebug(const ObjectFile
&Obj
) const override
;
146 template <typename ELFT
>
147 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
148 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
149 const LoadedELFObjectInfo
&L
) {
150 typedef typename
ELFT::Shdr Elf_Shdr
;
151 typedef typename
ELFT::uint addr_type
;
153 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
154 DyldELFObject
<ELFT
>::create(Buffer
);
155 if (Error E
= ObjOrErr
.takeError())
158 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
160 // Iterate over all sections in the object.
161 auto SI
= SourceObject
.section_begin();
162 for (const auto &Sec
: Obj
->sections()) {
163 Expected
<StringRef
> NameOrErr
= Sec
.getName();
165 consumeError(NameOrErr
.takeError());
169 if (*NameOrErr
!= "") {
170 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
171 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
172 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
174 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
175 // This assumes that the address passed in matches the target address
176 // bitness. The template-based type cast handles everything else.
177 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
183 return std::move(Obj
);
186 static OwningBinary
<ObjectFile
>
187 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
188 assert(Obj
.isELF() && "Not an ELF object file.");
190 std::unique_ptr
<MemoryBuffer
> Buffer
=
191 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
193 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
194 handleAllErrors(DebugObj
.takeError());
195 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
197 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
198 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
200 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
201 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
203 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
204 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
206 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
208 llvm_unreachable("Unexpected ELF format");
210 handleAllErrors(DebugObj
.takeError());
211 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
214 OwningBinary
<ObjectFile
>
215 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
216 return createELFDebugObject(Obj
, *this);
219 } // anonymous namespace
223 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
224 JITSymbolResolver
&Resolver
)
225 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
226 RuntimeDyldELF::~RuntimeDyldELF() {}
228 void RuntimeDyldELF::registerEHFrames() {
229 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
230 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
231 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
232 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
233 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
234 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
236 UnregisteredEHFrameSections
.clear();
239 std::unique_ptr
<RuntimeDyldELF
>
240 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
241 RuntimeDyld::MemoryManager
&MemMgr
,
242 JITSymbolResolver
&Resolver
) {
245 return std::make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
249 case Triple::mips64el
:
250 return std::make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
254 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
255 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
256 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
257 return std::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
260 raw_string_ostream
ErrStream(ErrorStr
);
261 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
266 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
267 uint64_t Offset
, uint64_t Value
,
268 uint32_t Type
, int64_t Addend
,
269 uint64_t SymOffset
) {
272 llvm_unreachable("Relocation type not implemented yet!");
274 case ELF::R_X86_64_NONE
:
276 case ELF::R_X86_64_64
: {
277 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
279 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
280 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
283 case ELF::R_X86_64_32
:
284 case ELF::R_X86_64_32S
: {
286 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
287 (Type
== ELF::R_X86_64_32S
&&
288 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
289 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
290 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
292 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
293 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
296 case ELF::R_X86_64_PC8
: {
297 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
298 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
299 assert(isInt
<8>(RealOffset
));
300 int8_t TruncOffset
= (RealOffset
& 0xFF);
301 Section
.getAddress()[Offset
] = TruncOffset
;
304 case ELF::R_X86_64_PC32
: {
305 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
306 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
307 assert(isInt
<32>(RealOffset
));
308 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
309 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
313 case ELF::R_X86_64_PC64
: {
314 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
315 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
316 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
318 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
319 << format("%p\n", FinalAddress
));
322 case ELF::R_X86_64_GOTOFF64
: {
323 // Compute Value - GOTBase.
324 uint64_t GOTBase
= 0;
325 for (const auto &Section
: Sections
) {
326 if (Section
.getName() == ".got") {
327 GOTBase
= Section
.getLoadAddressWithOffset(0);
331 assert(GOTBase
!= 0 && "missing GOT");
332 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
333 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
339 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
340 uint64_t Offset
, uint32_t Value
,
341 uint32_t Type
, int32_t Addend
) {
343 case ELF::R_386_32
: {
344 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
348 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
349 // reach any 32 bit address.
350 case ELF::R_386_PLT32
:
351 case ELF::R_386_PC32
: {
352 uint32_t FinalAddress
=
353 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
354 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
355 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
360 // There are other relocation types, but it appears these are the
361 // only ones currently used by the LLVM ELF object writer
362 llvm_unreachable("Relocation type not implemented yet!");
367 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
368 uint64_t Offset
, uint64_t Value
,
369 uint32_t Type
, int64_t Addend
) {
370 uint32_t *TargetPtr
=
371 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
372 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
373 // Data should use target endian. Code should always use little endian.
374 bool isBE
= Arch
== Triple::aarch64_be
;
376 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
377 << format("%llx", Section
.getAddressWithOffset(Offset
))
378 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
379 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
380 << format("%x", Type
) << " Addend: 0x"
381 << format("%llx", Addend
) << "\n");
385 llvm_unreachable("Relocation type not implemented yet!");
387 case ELF::R_AARCH64_ABS16
: {
388 uint64_t Result
= Value
+ Addend
;
389 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&& Result
< UINT16_MAX
);
390 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
393 case ELF::R_AARCH64_ABS32
: {
394 uint64_t Result
= Value
+ Addend
;
395 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&& Result
< UINT32_MAX
);
396 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
399 case ELF::R_AARCH64_ABS64
:
400 write(isBE
, TargetPtr
, Value
+ Addend
);
402 case ELF::R_AARCH64_PREL32
: {
403 uint64_t Result
= Value
+ Addend
- FinalAddress
;
404 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
405 static_cast<int64_t>(Result
) <= UINT32_MAX
);
406 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
409 case ELF::R_AARCH64_PREL64
:
410 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
412 case ELF::R_AARCH64_CALL26
: // fallthrough
413 case ELF::R_AARCH64_JUMP26
: {
414 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
416 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
418 // "Check that -2^27 <= result < 2^27".
419 assert(isInt
<28>(BranchImm
));
420 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
423 case ELF::R_AARCH64_MOVW_UABS_G3
:
424 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
426 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
427 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
429 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
430 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
432 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
433 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
435 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
436 // Operation: Page(S+A) - Page(P)
438 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
440 // Check that -2^32 <= X < 2^32
441 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
443 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
444 // from bits 32:12 of X.
445 write32AArch64Addr(TargetPtr
, Result
>> 12);
448 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
450 // Immediate goes in bits 21:10 of LD/ST instruction, taken
451 // from bits 11:0 of X
452 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
454 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
456 // Immediate goes in bits 21:10 of LD/ST instruction, taken
457 // from bits 11:0 of X
458 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
460 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
462 // Immediate goes in bits 21:10 of LD/ST instruction, taken
463 // from bits 11:1 of X
464 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
466 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
468 // Immediate goes in bits 21:10 of LD/ST instruction, taken
469 // from bits 11:2 of X
470 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
472 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
474 // Immediate goes in bits 21:10 of LD/ST instruction, taken
475 // from bits 11:3 of X
476 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
478 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
480 // Immediate goes in bits 21:10 of LD/ST instruction, taken
481 // from bits 11:4 of X
482 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
487 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
488 uint64_t Offset
, uint32_t Value
,
489 uint32_t Type
, int32_t Addend
) {
490 // TODO: Add Thumb relocations.
491 uint32_t *TargetPtr
=
492 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
493 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
496 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
497 << Section
.getAddressWithOffset(Offset
)
498 << " FinalAddress: " << format("%p", FinalAddress
)
499 << " Value: " << format("%x", Value
)
500 << " Type: " << format("%x", Type
)
501 << " Addend: " << format("%x", Addend
) << "\n");
505 llvm_unreachable("Not implemented relocation type!");
507 case ELF::R_ARM_NONE
:
509 // Write a 31bit signed offset
510 case ELF::R_ARM_PREL31
:
511 support::ulittle32_t::ref
{TargetPtr
} =
512 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
513 ((Value
- FinalAddress
) & ~0x80000000);
515 case ELF::R_ARM_TARGET1
:
516 case ELF::R_ARM_ABS32
:
517 support::ulittle32_t::ref
{TargetPtr
} = Value
;
519 // Write first 16 bit of 32 bit value to the mov instruction.
520 // Last 4 bit should be shifted.
521 case ELF::R_ARM_MOVW_ABS_NC
:
522 case ELF::R_ARM_MOVT_ABS
:
523 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
524 Value
= Value
& 0xFFFF;
525 else if (Type
== ELF::R_ARM_MOVT_ABS
)
526 Value
= (Value
>> 16) & 0xFFFF;
527 support::ulittle32_t::ref
{TargetPtr
} =
528 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
529 (((Value
>> 12) & 0xF) << 16);
531 // Write 24 bit relative value to the branch instruction.
532 case ELF::R_ARM_PC24
: // Fall through.
533 case ELF::R_ARM_CALL
: // Fall through.
534 case ELF::R_ARM_JUMP24
:
535 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
536 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
537 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
538 support::ulittle32_t::ref
{TargetPtr
} =
539 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
544 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
545 if (Arch
== Triple::UnknownArch
||
546 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
547 IsMipsO32ABI
= false;
548 IsMipsN32ABI
= false;
549 IsMipsN64ABI
= false;
552 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
553 unsigned AbiVariant
= E
->getPlatformFlags();
554 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
555 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
557 IsMipsN64ABI
= Obj
.getFileFormatName().equals("ELF64-mips");
560 // Return the .TOC. section and offset.
561 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
562 ObjSectionToIDMap
&LocalSections
,
563 RelocationValueRef
&Rel
) {
564 // Set a default SectionID in case we do not find a TOC section below.
565 // This may happen for references to TOC base base (sym@toc, .odp
566 // relocation) without a .toc directive. In this case just use the
567 // first section (which is usually the .odp) since the code won't
568 // reference the .toc base directly.
569 Rel
.SymbolName
= nullptr;
572 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
573 // order. The TOC starts where the first of these sections starts.
574 for (auto &Section
: Obj
.sections()) {
575 Expected
<StringRef
> NameOrErr
= Section
.getName();
577 return NameOrErr
.takeError();
578 StringRef SectionName
= *NameOrErr
;
580 if (SectionName
== ".got"
581 || SectionName
== ".toc"
582 || SectionName
== ".tocbss"
583 || SectionName
== ".plt") {
584 if (auto SectionIDOrErr
=
585 findOrEmitSection(Obj
, Section
, false, LocalSections
))
586 Rel
.SectionID
= *SectionIDOrErr
;
588 return SectionIDOrErr
.takeError();
593 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
594 // thus permitting a full 64 Kbytes segment.
597 return Error::success();
600 // Returns the sections and offset associated with the ODP entry referenced
602 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
603 ObjSectionToIDMap
&LocalSections
,
604 RelocationValueRef
&Rel
) {
605 // Get the ELF symbol value (st_value) to compare with Relocation offset in
607 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
610 Expected
<section_iterator
> RelSecOrErr
= si
->getRelocatedSection();
612 report_fatal_error(toString(RelSecOrErr
.takeError()));
614 section_iterator RelSecI
= *RelSecOrErr
;
615 if (RelSecI
== Obj
.section_end())
618 Expected
<StringRef
> NameOrErr
= RelSecI
->getName();
620 return NameOrErr
.takeError();
621 StringRef RelSectionName
= *NameOrErr
;
623 if (RelSectionName
!= ".opd")
626 for (elf_relocation_iterator i
= si
->relocation_begin(),
627 e
= si
->relocation_end();
629 // The R_PPC64_ADDR64 relocation indicates the first field
631 uint64_t TypeFunc
= i
->getType();
632 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
637 uint64_t TargetSymbolOffset
= i
->getOffset();
638 symbol_iterator TargetSymbol
= i
->getSymbol();
640 if (auto AddendOrErr
= i
->getAddend())
641 Addend
= *AddendOrErr
;
643 return AddendOrErr
.takeError();
649 // Just check if following relocation is a R_PPC64_TOC
650 uint64_t TypeTOC
= i
->getType();
651 if (TypeTOC
!= ELF::R_PPC64_TOC
)
654 // Finally compares the Symbol value and the target symbol offset
655 // to check if this .opd entry refers to the symbol the relocation
657 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
660 section_iterator TSI
= Obj
.section_end();
661 if (auto TSIOrErr
= TargetSymbol
->getSection())
664 return TSIOrErr
.takeError();
665 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
667 bool IsCode
= TSI
->isText();
668 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
670 Rel
.SectionID
= *SectionIDOrErr
;
672 return SectionIDOrErr
.takeError();
673 Rel
.Addend
= (intptr_t)Addend
;
674 return Error::success();
677 llvm_unreachable("Attempting to get address of ODP entry!");
680 // Relocation masks following the #lo(value), #hi(value), #ha(value),
681 // #higher(value), #highera(value), #highest(value), and #highesta(value)
682 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
685 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
687 static inline uint16_t applyPPChi(uint64_t value
) {
688 return (value
>> 16) & 0xffff;
691 static inline uint16_t applyPPCha (uint64_t value
) {
692 return ((value
+ 0x8000) >> 16) & 0xffff;
695 static inline uint16_t applyPPChigher(uint64_t value
) {
696 return (value
>> 32) & 0xffff;
699 static inline uint16_t applyPPChighera (uint64_t value
) {
700 return ((value
+ 0x8000) >> 32) & 0xffff;
703 static inline uint16_t applyPPChighest(uint64_t value
) {
704 return (value
>> 48) & 0xffff;
707 static inline uint16_t applyPPChighesta (uint64_t value
) {
708 return ((value
+ 0x8000) >> 48) & 0xffff;
711 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
712 uint64_t Offset
, uint64_t Value
,
713 uint32_t Type
, int64_t Addend
) {
714 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
717 llvm_unreachable("Relocation type not implemented yet!");
719 case ELF::R_PPC_ADDR16_LO
:
720 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
722 case ELF::R_PPC_ADDR16_HI
:
723 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
725 case ELF::R_PPC_ADDR16_HA
:
726 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
731 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
732 uint64_t Offset
, uint64_t Value
,
733 uint32_t Type
, int64_t Addend
) {
734 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
737 llvm_unreachable("Relocation type not implemented yet!");
739 case ELF::R_PPC64_ADDR16
:
740 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
742 case ELF::R_PPC64_ADDR16_DS
:
743 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
745 case ELF::R_PPC64_ADDR16_LO
:
746 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
748 case ELF::R_PPC64_ADDR16_LO_DS
:
749 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
751 case ELF::R_PPC64_ADDR16_HI
:
752 case ELF::R_PPC64_ADDR16_HIGH
:
753 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
755 case ELF::R_PPC64_ADDR16_HA
:
756 case ELF::R_PPC64_ADDR16_HIGHA
:
757 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
759 case ELF::R_PPC64_ADDR16_HIGHER
:
760 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
762 case ELF::R_PPC64_ADDR16_HIGHERA
:
763 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
765 case ELF::R_PPC64_ADDR16_HIGHEST
:
766 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
768 case ELF::R_PPC64_ADDR16_HIGHESTA
:
769 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
771 case ELF::R_PPC64_ADDR14
: {
772 assert(((Value
+ Addend
) & 3) == 0);
773 // Preserve the AA/LK bits in the branch instruction
774 uint8_t aalk
= *(LocalAddress
+ 3);
775 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
777 case ELF::R_PPC64_REL16_LO
: {
778 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
779 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
780 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
782 case ELF::R_PPC64_REL16_HI
: {
783 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
784 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
785 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
787 case ELF::R_PPC64_REL16_HA
: {
788 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
789 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
790 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
792 case ELF::R_PPC64_ADDR32
: {
793 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
794 if (SignExtend64
<32>(Result
) != Result
)
795 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
796 writeInt32BE(LocalAddress
, Result
);
798 case ELF::R_PPC64_REL24
: {
799 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
800 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
801 if (SignExtend64
<26>(delta
) != delta
)
802 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
803 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
804 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
805 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
807 case ELF::R_PPC64_REL32
: {
808 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
809 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
810 if (SignExtend64
<32>(delta
) != delta
)
811 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
812 writeInt32BE(LocalAddress
, delta
);
814 case ELF::R_PPC64_REL64
: {
815 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
816 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
817 writeInt64BE(LocalAddress
, Delta
);
819 case ELF::R_PPC64_ADDR64
:
820 writeInt64BE(LocalAddress
, Value
+ Addend
);
825 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
826 uint64_t Offset
, uint64_t Value
,
827 uint32_t Type
, int64_t Addend
) {
828 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
831 llvm_unreachable("Relocation type not implemented yet!");
833 case ELF::R_390_PC16DBL
:
834 case ELF::R_390_PLT16DBL
: {
835 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
836 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
837 writeInt16BE(LocalAddress
, Delta
/ 2);
840 case ELF::R_390_PC32DBL
:
841 case ELF::R_390_PLT32DBL
: {
842 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
843 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
844 writeInt32BE(LocalAddress
, Delta
/ 2);
847 case ELF::R_390_PC16
: {
848 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
849 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
850 writeInt16BE(LocalAddress
, Delta
);
853 case ELF::R_390_PC32
: {
854 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
855 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
856 writeInt32BE(LocalAddress
, Delta
);
859 case ELF::R_390_PC64
: {
860 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
861 writeInt64BE(LocalAddress
, Delta
);
865 *LocalAddress
= (uint8_t)(Value
+ Addend
);
868 writeInt16BE(LocalAddress
, Value
+ Addend
);
871 writeInt32BE(LocalAddress
, Value
+ Addend
);
874 writeInt64BE(LocalAddress
, Value
+ Addend
);
879 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
880 uint64_t Offset
, uint64_t Value
,
881 uint32_t Type
, int64_t Addend
) {
882 bool isBE
= Arch
== Triple::bpfeb
;
886 llvm_unreachable("Relocation type not implemented yet!");
888 case ELF::R_BPF_NONE
:
890 case ELF::R_BPF_64_64
: {
891 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
892 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
893 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
896 case ELF::R_BPF_64_32
: {
898 assert(Value
<= UINT32_MAX
);
899 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
900 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
901 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
907 // The target location for the relocation is described by RE.SectionID and
908 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
909 // SectionEntry has three members describing its location.
910 // SectionEntry::Address is the address at which the section has been loaded
911 // into memory in the current (host) process. SectionEntry::LoadAddress is the
912 // address that the section will have in the target process.
913 // SectionEntry::ObjAddress is the address of the bits for this section in the
914 // original emitted object image (also in the current address space).
916 // Relocations will be applied as if the section were loaded at
917 // SectionEntry::LoadAddress, but they will be applied at an address based
918 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
919 // Target memory contents if they are required for value calculations.
921 // The Value parameter here is the load address of the symbol for the
922 // relocation to be applied. For relocations which refer to symbols in the
923 // current object Value will be the LoadAddress of the section in which
924 // the symbol resides (RE.Addend provides additional information about the
925 // symbol location). For external symbols, Value will be the address of the
926 // symbol in the target address space.
927 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
929 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
930 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
931 RE
.SymOffset
, RE
.SectionID
);
934 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
935 uint64_t Offset
, uint64_t Value
,
936 uint32_t Type
, int64_t Addend
,
937 uint64_t SymOffset
, SID SectionID
) {
940 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
943 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
944 (uint32_t)(Addend
& 0xffffffffL
));
946 case Triple::aarch64
:
947 case Triple::aarch64_be
:
948 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
950 case Triple::arm
: // Fall through.
953 case Triple::thumbeb
:
954 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
955 (uint32_t)(Addend
& 0xffffffffL
));
958 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
960 case Triple::ppc64
: // Fall through.
961 case Triple::ppc64le
:
962 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
964 case Triple::systemz
:
965 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
969 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
972 llvm_unreachable("Unsupported CPU type!");
976 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
977 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
980 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
981 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
982 if (Value
.SymbolName
)
983 addRelocationForSymbol(RE
, Value
.SymbolName
);
985 addRelocationForSection(RE
, Value
.SectionID
);
988 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
989 bool IsLocal
) const {
991 case ELF::R_MICROMIPS_GOT16
:
993 return ELF::R_MICROMIPS_LO16
;
995 case ELF::R_MICROMIPS_HI16
:
996 return ELF::R_MICROMIPS_LO16
;
997 case ELF::R_MIPS_GOT16
:
999 return ELF::R_MIPS_LO16
;
1001 case ELF::R_MIPS_HI16
:
1002 return ELF::R_MIPS_LO16
;
1003 case ELF::R_MIPS_PCHI16
:
1004 return ELF::R_MIPS_PCLO16
;
1008 return ELF::R_MIPS_NONE
;
1011 // Sometimes we don't need to create thunk for a branch.
1012 // This typically happens when branch target is located
1013 // in the same object file. In such case target is either
1014 // a weak symbol or symbol in a different executable section.
1015 // This function checks if branch target is located in the
1016 // same object file and if distance between source and target
1017 // fits R_AARCH64_CALL26 relocation. If both conditions are
1018 // met, it emits direct jump to the target and returns true.
1019 // Otherwise false is returned and thunk is created.
1020 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1021 unsigned SectionID
, relocation_iterator RelI
,
1022 const RelocationValueRef
&Value
) {
1024 if (Value
.SymbolName
) {
1025 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1027 // Don't create direct branch for external symbols.
1028 if (Loc
== GlobalSymbolTable
.end())
1031 const auto &SymInfo
= Loc
->second
;
1033 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1034 SymInfo
.getOffset()));
1036 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1038 uint64_t Offset
= RelI
->getOffset();
1039 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1041 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1042 // If distance between source and target is out of range then we should
1044 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1047 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1053 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1054 const RelocationValueRef
&Value
,
1055 relocation_iterator RelI
,
1058 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1059 SectionEntry
&Section
= Sections
[SectionID
];
1061 uint64_t Offset
= RelI
->getOffset();
1062 unsigned RelType
= RelI
->getType();
1063 // Look for an existing stub.
1064 StubMap::const_iterator i
= Stubs
.find(Value
);
1065 if (i
!= Stubs
.end()) {
1066 resolveRelocation(Section
, Offset
,
1067 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1069 LLVM_DEBUG(dbgs() << " Stub function found\n");
1070 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1071 // Create a new stub function.
1072 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1073 Stubs
[Value
] = Section
.getStubOffset();
1074 uint8_t *StubTargetAddr
= createStubFunction(
1075 Section
.getAddressWithOffset(Section
.getStubOffset()));
1077 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1078 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1079 RelocationEntry
REmovk_g2(SectionID
,
1080 StubTargetAddr
- Section
.getAddress() + 4,
1081 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1082 RelocationEntry
REmovk_g1(SectionID
,
1083 StubTargetAddr
- Section
.getAddress() + 8,
1084 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1085 RelocationEntry
REmovk_g0(SectionID
,
1086 StubTargetAddr
- Section
.getAddress() + 12,
1087 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1089 if (Value
.SymbolName
) {
1090 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1091 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1092 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1093 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1095 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1096 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1097 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1098 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1100 resolveRelocation(Section
, Offset
,
1101 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1102 Section
.getStubOffset())),
1104 Section
.advanceStubOffset(getMaxStubSize());
1108 Expected
<relocation_iterator
>
1109 RuntimeDyldELF::processRelocationRef(
1110 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1111 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1112 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1113 uint64_t RelType
= RelI
->getType();
1115 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1116 Addend
= *AddendOrErr
;
1118 consumeError(AddendOrErr
.takeError());
1119 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1121 // Obtain the symbol name which is referenced in the relocation
1122 StringRef TargetName
;
1123 if (Symbol
!= Obj
.symbol_end()) {
1124 if (auto TargetNameOrErr
= Symbol
->getName())
1125 TargetName
= *TargetNameOrErr
;
1127 return TargetNameOrErr
.takeError();
1129 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1130 << " TargetName: " << TargetName
<< "\n");
1131 RelocationValueRef Value
;
1132 // First search for the symbol in the local symbol table
1133 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1135 // Search for the symbol in the global symbol table
1136 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1137 if (Symbol
!= Obj
.symbol_end()) {
1138 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1139 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1140 if (!SymTypeOrErr
) {
1142 raw_string_ostream
OS(Buf
);
1143 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1145 report_fatal_error(Buf
);
1147 SymType
= *SymTypeOrErr
;
1149 if (gsi
!= GlobalSymbolTable
.end()) {
1150 const auto &SymInfo
= gsi
->second
;
1151 Value
.SectionID
= SymInfo
.getSectionID();
1152 Value
.Offset
= SymInfo
.getOffset();
1153 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1156 case SymbolRef::ST_Debug
: {
1157 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1158 // and can be changed by another developers. Maybe best way is add
1159 // a new symbol type ST_Section to SymbolRef and use it.
1160 auto SectionOrErr
= Symbol
->getSection();
1161 if (!SectionOrErr
) {
1163 raw_string_ostream
OS(Buf
);
1164 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1166 report_fatal_error(Buf
);
1168 section_iterator si
= *SectionOrErr
;
1169 if (si
== Obj
.section_end())
1170 llvm_unreachable("Symbol section not found, bad object file format!");
1171 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1172 bool isCode
= si
->isText();
1173 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1175 Value
.SectionID
= *SectionIDOrErr
;
1177 return SectionIDOrErr
.takeError();
1178 Value
.Addend
= Addend
;
1181 case SymbolRef::ST_Data
:
1182 case SymbolRef::ST_Function
:
1183 case SymbolRef::ST_Unknown
: {
1184 Value
.SymbolName
= TargetName
.data();
1185 Value
.Addend
= Addend
;
1187 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1188 // will manifest here as a NULL symbol name.
1189 // We can set this as a valid (but empty) symbol name, and rely
1190 // on addRelocationForSymbol to handle this.
1191 if (!Value
.SymbolName
)
1192 Value
.SymbolName
= "";
1196 llvm_unreachable("Unresolved symbol type!");
1201 uint64_t Offset
= RelI
->getOffset();
1203 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1205 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1206 if (RelType
== ELF::R_AARCH64_CALL26
|| RelType
== ELF::R_AARCH64_JUMP26
) {
1207 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1208 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1209 // Craete new GOT entry or find existing one. If GOT entry is
1210 // to be created, then we also emit ABS64 relocation for it.
1211 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1212 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1213 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1215 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1216 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1217 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1218 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1220 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1222 } else if (Arch
== Triple::arm
) {
1223 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1224 RelType
== ELF::R_ARM_JUMP24
) {
1225 // This is an ARM branch relocation, need to use a stub function.
1226 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1227 SectionEntry
&Section
= Sections
[SectionID
];
1229 // Look for an existing stub.
1230 StubMap::const_iterator i
= Stubs
.find(Value
);
1231 if (i
!= Stubs
.end()) {
1234 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1236 LLVM_DEBUG(dbgs() << " Stub function found\n");
1238 // Create a new stub function.
1239 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1240 Stubs
[Value
] = Section
.getStubOffset();
1241 uint8_t *StubTargetAddr
= createStubFunction(
1242 Section
.getAddressWithOffset(Section
.getStubOffset()));
1243 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1244 ELF::R_ARM_ABS32
, Value
.Addend
);
1245 if (Value
.SymbolName
)
1246 addRelocationForSymbol(RE
, Value
.SymbolName
);
1248 addRelocationForSection(RE
, Value
.SectionID
);
1250 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1251 Section
.getAddressWithOffset(
1252 Section
.getStubOffset())),
1254 Section
.advanceStubOffset(getMaxStubSize());
1257 uint32_t *Placeholder
=
1258 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1259 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1260 RelType
== ELF::R_ARM_ABS32
) {
1261 Value
.Addend
+= *Placeholder
;
1262 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1263 // See ELF for ARM documentation
1264 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1266 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1268 } else if (IsMipsO32ABI
) {
1269 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1270 computePlaceholderAddress(SectionID
, Offset
));
1271 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1272 if (RelType
== ELF::R_MIPS_26
) {
1273 // This is an Mips branch relocation, need to use a stub function.
1274 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1275 SectionEntry
&Section
= Sections
[SectionID
];
1277 // Extract the addend from the instruction.
1278 // We shift up by two since the Value will be down shifted again
1279 // when applying the relocation.
1280 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1282 Value
.Addend
+= Addend
;
1284 // Look up for existing stub.
1285 StubMap::const_iterator i
= Stubs
.find(Value
);
1286 if (i
!= Stubs
.end()) {
1287 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1288 addRelocationForSection(RE
, SectionID
);
1289 LLVM_DEBUG(dbgs() << " Stub function found\n");
1291 // Create a new stub function.
1292 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1293 Stubs
[Value
] = Section
.getStubOffset();
1295 unsigned AbiVariant
= Obj
.getPlatformFlags();
1297 uint8_t *StubTargetAddr
= createStubFunction(
1298 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1300 // Creating Hi and Lo relocations for the filled stub instructions.
1301 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1302 ELF::R_MIPS_HI16
, Value
.Addend
);
1303 RelocationEntry
RELo(SectionID
,
1304 StubTargetAddr
- Section
.getAddress() + 4,
1305 ELF::R_MIPS_LO16
, Value
.Addend
);
1307 if (Value
.SymbolName
) {
1308 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1309 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1311 addRelocationForSection(REHi
, Value
.SectionID
);
1312 addRelocationForSection(RELo
, Value
.SectionID
);
1315 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1316 addRelocationForSection(RE
, SectionID
);
1317 Section
.advanceStubOffset(getMaxStubSize());
1319 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1320 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1321 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1322 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1323 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1324 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1325 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1326 const RelocationValueRef
&MatchingValue
= I
->first
;
1327 RelocationEntry
&Reloc
= I
->second
;
1328 if (MatchingValue
== Value
&&
1329 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1330 SectionID
== Reloc
.SectionID
) {
1331 Reloc
.Addend
+= Addend
;
1332 if (Value
.SymbolName
)
1333 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1335 addRelocationForSection(Reloc
, Value
.SectionID
);
1336 I
= PendingRelocs
.erase(I
);
1340 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1341 if (Value
.SymbolName
)
1342 addRelocationForSymbol(RE
, Value
.SymbolName
);
1344 addRelocationForSection(RE
, Value
.SectionID
);
1346 if (RelType
== ELF::R_MIPS_32
)
1347 Value
.Addend
+= Opcode
;
1348 else if (RelType
== ELF::R_MIPS_PC16
)
1349 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1350 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1351 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1352 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1353 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1354 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1355 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1356 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1358 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1359 uint32_t r_type
= RelType
& 0xff;
1360 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1361 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1362 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1363 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1364 if (i
!= GOTSymbolOffsets
.end())
1365 RE
.SymOffset
= i
->second
;
1367 RE
.SymOffset
= allocateGOTEntries(1);
1368 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1370 if (Value
.SymbolName
)
1371 addRelocationForSymbol(RE
, Value
.SymbolName
);
1373 addRelocationForSection(RE
, Value
.SectionID
);
1374 } else if (RelType
== ELF::R_MIPS_26
) {
1375 // This is an Mips branch relocation, need to use a stub function.
1376 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1377 SectionEntry
&Section
= Sections
[SectionID
];
1379 // Look up for existing stub.
1380 StubMap::const_iterator i
= Stubs
.find(Value
);
1381 if (i
!= Stubs
.end()) {
1382 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1383 addRelocationForSection(RE
, SectionID
);
1384 LLVM_DEBUG(dbgs() << " Stub function found\n");
1386 // Create a new stub function.
1387 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1388 Stubs
[Value
] = Section
.getStubOffset();
1390 unsigned AbiVariant
= Obj
.getPlatformFlags();
1392 uint8_t *StubTargetAddr
= createStubFunction(
1393 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1396 // Creating Hi and Lo relocations for the filled stub instructions.
1397 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1398 ELF::R_MIPS_HI16
, Value
.Addend
);
1399 RelocationEntry
RELo(SectionID
,
1400 StubTargetAddr
- Section
.getAddress() + 4,
1401 ELF::R_MIPS_LO16
, Value
.Addend
);
1402 if (Value
.SymbolName
) {
1403 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1404 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1406 addRelocationForSection(REHi
, Value
.SectionID
);
1407 addRelocationForSection(RELo
, Value
.SectionID
);
1410 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1412 RelocationEntry
REHighest(SectionID
,
1413 StubTargetAddr
- Section
.getAddress(),
1414 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1415 RelocationEntry
REHigher(SectionID
,
1416 StubTargetAddr
- Section
.getAddress() + 4,
1417 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1418 RelocationEntry
REHi(SectionID
,
1419 StubTargetAddr
- Section
.getAddress() + 12,
1420 ELF::R_MIPS_HI16
, Value
.Addend
);
1421 RelocationEntry
RELo(SectionID
,
1422 StubTargetAddr
- Section
.getAddress() + 20,
1423 ELF::R_MIPS_LO16
, Value
.Addend
);
1424 if (Value
.SymbolName
) {
1425 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1426 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1427 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1428 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1430 addRelocationForSection(REHighest
, Value
.SectionID
);
1431 addRelocationForSection(REHigher
, Value
.SectionID
);
1432 addRelocationForSection(REHi
, Value
.SectionID
);
1433 addRelocationForSection(RELo
, Value
.SectionID
);
1436 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1437 addRelocationForSection(RE
, SectionID
);
1438 Section
.advanceStubOffset(getMaxStubSize());
1441 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1444 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1445 if (RelType
== ELF::R_PPC64_REL24
) {
1446 // Determine ABI variant in use for this object.
1447 unsigned AbiVariant
= Obj
.getPlatformFlags();
1448 AbiVariant
&= ELF::EF_PPC64_ABI
;
1449 // A PPC branch relocation will need a stub function if the target is
1450 // an external symbol (either Value.SymbolName is set, or SymType is
1451 // Symbol::ST_Unknown) or if the target address is not within the
1452 // signed 24-bits branch address.
1453 SectionEntry
&Section
= Sections
[SectionID
];
1454 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1455 bool RangeOverflow
= false;
1456 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1458 if (AbiVariant
!= 2) {
1459 // In the ELFv1 ABI, a function call may point to the .opd entry,
1460 // so the final symbol value is calculated based on the relocation
1461 // values in the .opd section.
1462 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1463 return std::move(Err
);
1465 // In the ELFv2 ABI, a function symbol may provide a local entry
1466 // point, which must be used for direct calls.
1467 if (Value
.SectionID
== SectionID
){
1468 uint8_t SymOther
= Symbol
->getOther();
1469 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1472 uint8_t *RelocTarget
=
1473 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1474 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1475 // If it is within 26-bits branch range, just set the branch target
1476 if (SignExtend64
<26>(delta
) != delta
) {
1477 RangeOverflow
= true;
1478 } else if ((AbiVariant
!= 2) ||
1479 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1480 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1481 addRelocationForSection(RE
, Value
.SectionID
);
1484 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1486 // It is an external symbol (either Value.SymbolName is set, or
1487 // SymType is SymbolRef::ST_Unknown) or out of range.
1488 StubMap::const_iterator i
= Stubs
.find(Value
);
1489 if (i
!= Stubs
.end()) {
1490 // Symbol function stub already created, just relocate to it
1491 resolveRelocation(Section
, Offset
,
1492 reinterpret_cast<uint64_t>(
1493 Section
.getAddressWithOffset(i
->second
)),
1495 LLVM_DEBUG(dbgs() << " Stub function found\n");
1497 // Create a new stub function.
1498 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1499 Stubs
[Value
] = Section
.getStubOffset();
1500 uint8_t *StubTargetAddr
= createStubFunction(
1501 Section
.getAddressWithOffset(Section
.getStubOffset()),
1503 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1504 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1506 // Generates the 64-bits address loads as exemplified in section
1507 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1508 // apply to the low part of the instructions, so we have to update
1509 // the offset according to the target endianness.
1510 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1511 if (!IsTargetLittleEndian
)
1512 StubRelocOffset
+= 2;
1514 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1515 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1516 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1517 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1518 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1519 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1520 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1521 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1523 if (Value
.SymbolName
) {
1524 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1525 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1526 addRelocationForSymbol(REh
, Value
.SymbolName
);
1527 addRelocationForSymbol(REl
, Value
.SymbolName
);
1529 addRelocationForSection(REhst
, Value
.SectionID
);
1530 addRelocationForSection(REhr
, Value
.SectionID
);
1531 addRelocationForSection(REh
, Value
.SectionID
);
1532 addRelocationForSection(REl
, Value
.SectionID
);
1535 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1536 Section
.getAddressWithOffset(
1537 Section
.getStubOffset())),
1539 Section
.advanceStubOffset(getMaxStubSize());
1541 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1542 // Restore the TOC for external calls
1543 if (AbiVariant
== 2)
1544 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1546 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1549 } else if (RelType
== ELF::R_PPC64_TOC16
||
1550 RelType
== ELF::R_PPC64_TOC16_DS
||
1551 RelType
== ELF::R_PPC64_TOC16_LO
||
1552 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1553 RelType
== ELF::R_PPC64_TOC16_HI
||
1554 RelType
== ELF::R_PPC64_TOC16_HA
) {
1555 // These relocations are supposed to subtract the TOC address from
1556 // the final value. This does not fit cleanly into the RuntimeDyld
1557 // scheme, since there may be *two* sections involved in determining
1558 // the relocation value (the section of the symbol referred to by the
1559 // relocation, and the TOC section associated with the current module).
1561 // Fortunately, these relocations are currently only ever generated
1562 // referring to symbols that themselves reside in the TOC, which means
1563 // that the two sections are actually the same. Thus they cancel out
1564 // and we can immediately resolve the relocation right now.
1566 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1567 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1568 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1569 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1570 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1571 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1572 default: llvm_unreachable("Wrong relocation type.");
1575 RelocationValueRef TOCValue
;
1576 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1577 return std::move(Err
);
1578 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1579 llvm_unreachable("Unsupported TOC relocation.");
1580 Value
.Addend
-= TOCValue
.Addend
;
1581 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1583 // There are two ways to refer to the TOC address directly: either
1584 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1585 // ignored), or via any relocation that refers to the magic ".TOC."
1586 // symbols (in which case the addend is respected).
1587 if (RelType
== ELF::R_PPC64_TOC
) {
1588 RelType
= ELF::R_PPC64_ADDR64
;
1589 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1590 return std::move(Err
);
1591 } else if (TargetName
== ".TOC.") {
1592 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1593 return std::move(Err
);
1594 Value
.Addend
+= Addend
;
1597 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1599 if (Value
.SymbolName
)
1600 addRelocationForSymbol(RE
, Value
.SymbolName
);
1602 addRelocationForSection(RE
, Value
.SectionID
);
1604 } else if (Arch
== Triple::systemz
&&
1605 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1606 // Create function stubs for both PLT and GOT references, regardless of
1607 // whether the GOT reference is to data or code. The stub contains the
1608 // full address of the symbol, as needed by GOT references, and the
1609 // executable part only adds an overhead of 8 bytes.
1611 // We could try to conserve space by allocating the code and data
1612 // parts of the stub separately. However, as things stand, we allocate
1613 // a stub for every relocation, so using a GOT in JIT code should be
1614 // no less space efficient than using an explicit constant pool.
1615 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1616 SectionEntry
&Section
= Sections
[SectionID
];
1618 // Look for an existing stub.
1619 StubMap::const_iterator i
= Stubs
.find(Value
);
1620 uintptr_t StubAddress
;
1621 if (i
!= Stubs
.end()) {
1622 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1623 LLVM_DEBUG(dbgs() << " Stub function found\n");
1625 // Create a new stub function.
1626 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1628 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1629 uintptr_t StubAlignment
= getStubAlignment();
1631 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1633 unsigned StubOffset
= StubAddress
- BaseAddress
;
1635 Stubs
[Value
] = StubOffset
;
1636 createStubFunction((uint8_t *)StubAddress
);
1637 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1639 if (Value
.SymbolName
)
1640 addRelocationForSymbol(RE
, Value
.SymbolName
);
1642 addRelocationForSection(RE
, Value
.SectionID
);
1643 Section
.advanceStubOffset(getMaxStubSize());
1646 if (RelType
== ELF::R_390_GOTENT
)
1647 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1650 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1651 } else if (Arch
== Triple::x86_64
) {
1652 if (RelType
== ELF::R_X86_64_PLT32
) {
1653 // The way the PLT relocations normally work is that the linker allocates
1655 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1656 // entry will then jump to an address provided by the GOT. On first call,
1658 // GOT address will point back into PLT code that resolves the symbol. After
1659 // the first call, the GOT entry points to the actual function.
1661 // For local functions we're ignoring all of that here and just replacing
1662 // the PLT32 relocation type with PC32, which will translate the relocation
1663 // into a PC-relative call directly to the function. For external symbols we
1664 // can't be sure the function will be within 2^32 bytes of the call site, so
1665 // we need to create a stub, which calls into the GOT. This case is
1666 // equivalent to the usual PLT implementation except that we use the stub
1667 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1668 // rather than allocating a PLT section.
1669 if (Value
.SymbolName
) {
1670 // This is a call to an external function.
1671 // Look for an existing stub.
1672 SectionEntry
&Section
= Sections
[SectionID
];
1673 StubMap::const_iterator i
= Stubs
.find(Value
);
1674 uintptr_t StubAddress
;
1675 if (i
!= Stubs
.end()) {
1676 StubAddress
= uintptr_t(Section
.getAddress()) + i
->second
;
1677 LLVM_DEBUG(dbgs() << " Stub function found\n");
1679 // Create a new stub function (equivalent to a PLT entry).
1680 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1682 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1683 uintptr_t StubAlignment
= getStubAlignment();
1685 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1687 unsigned StubOffset
= StubAddress
- BaseAddress
;
1688 Stubs
[Value
] = StubOffset
;
1689 createStubFunction((uint8_t *)StubAddress
);
1691 // Bump our stub offset counter
1692 Section
.advanceStubOffset(getMaxStubSize());
1694 // Allocate a GOT Entry
1695 uint64_t GOTOffset
= allocateGOTEntries(1);
1697 // The load of the GOT address has an addend of -4
1698 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1699 ELF::R_X86_64_PC32
);
1701 // Fill in the value of the symbol we're targeting into the GOT
1702 addRelocationForSymbol(
1703 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1707 // Make the target call a call into the stub table.
1708 resolveRelocation(Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1711 RelocationEntry
RE(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
.Addend
,
1713 addRelocationForSection(RE
, Value
.SectionID
);
1715 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1716 RelType
== ELF::R_X86_64_GOTPCRELX
||
1717 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1718 uint64_t GOTOffset
= allocateGOTEntries(1);
1719 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1720 ELF::R_X86_64_PC32
);
1722 // Fill in the value of the symbol we're targeting into the GOT
1723 RelocationEntry RE
=
1724 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1725 if (Value
.SymbolName
)
1726 addRelocationForSymbol(RE
, Value
.SymbolName
);
1728 addRelocationForSection(RE
, Value
.SectionID
);
1729 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1730 // Fill in a 64-bit GOT offset.
1731 uint64_t GOTOffset
= allocateGOTEntries(1);
1732 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1733 ELF::R_X86_64_64
, 0);
1735 // Fill in the value of the symbol we're targeting into the GOT
1736 RelocationEntry RE
=
1737 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1738 if (Value
.SymbolName
)
1739 addRelocationForSymbol(RE
, Value
.SymbolName
);
1741 addRelocationForSection(RE
, Value
.SectionID
);
1742 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1743 // Materialize the address of the base of the GOT relative to the PC.
1744 // This doesn't create a GOT entry, but it does mean we need a GOT
1746 (void)allocateGOTEntries(0);
1747 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1748 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1749 // GOTOFF relocations ultimately require a section difference relocation.
1750 (void)allocateGOTEntries(0);
1751 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1752 } else if (RelType
== ELF::R_X86_64_PC32
) {
1753 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1754 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1755 } else if (RelType
== ELF::R_X86_64_PC64
) {
1756 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1757 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1759 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1762 if (Arch
== Triple::x86
) {
1763 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1765 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1770 size_t RuntimeDyldELF::getGOTEntrySize() {
1771 // We don't use the GOT in all of these cases, but it's essentially free
1772 // to put them all here.
1775 case Triple::x86_64
:
1776 case Triple::aarch64
:
1777 case Triple::aarch64_be
:
1779 case Triple::ppc64le
:
1780 case Triple::systemz
:
1781 Result
= sizeof(uint64_t);
1786 Result
= sizeof(uint32_t);
1789 case Triple::mipsel
:
1790 case Triple::mips64
:
1791 case Triple::mips64el
:
1792 if (IsMipsO32ABI
|| IsMipsN32ABI
)
1793 Result
= sizeof(uint32_t);
1794 else if (IsMipsN64ABI
)
1795 Result
= sizeof(uint64_t);
1797 llvm_unreachable("Mips ABI not handled");
1800 llvm_unreachable("Unsupported CPU type!");
1805 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
1806 if (GOTSectionID
== 0) {
1807 GOTSectionID
= Sections
.size();
1808 // Reserve a section id. We'll allocate the section later
1809 // once we know the total size
1810 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1812 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
1813 CurrentGOTIndex
+= no
;
1817 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
1818 unsigned GOTRelType
) {
1819 auto E
= GOTOffsetMap
.insert({Value
, 0});
1821 uint64_t GOTOffset
= allocateGOTEntries(1);
1823 // Create relocation for newly created GOT entry
1824 RelocationEntry RE
=
1825 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
1826 if (Value
.SymbolName
)
1827 addRelocationForSymbol(RE
, Value
.SymbolName
);
1829 addRelocationForSection(RE
, Value
.SectionID
);
1831 E
.first
->second
= GOTOffset
;
1834 return E
.first
->second
;
1837 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
1841 // Fill in the relative address of the GOT Entry into the stub
1842 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
1843 addRelocationForSection(GOTRE
, GOTSectionID
);
1846 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
1847 uint64_t SymbolOffset
,
1849 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
1852 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
1853 ObjSectionToIDMap
&SectionMap
) {
1855 if (!PendingRelocs
.empty())
1856 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
1858 // If necessary, allocate the global offset table
1859 if (GOTSectionID
!= 0) {
1860 // Allocate memory for the section
1861 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
1862 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
1863 GOTSectionID
, ".got", false);
1865 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
1867 Sections
[GOTSectionID
] =
1868 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
1870 // For now, initialize all GOT entries to zero. We'll fill them in as
1871 // needed when GOT-based relocations are applied.
1872 memset(Addr
, 0, TotalSize
);
1873 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1874 // To correctly resolve Mips GOT relocations, we need a mapping from
1875 // object's sections to GOTs.
1876 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
1878 if (SI
->relocation_begin() != SI
->relocation_end()) {
1879 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
1881 return make_error
<RuntimeDyldError
>(
1882 toString(RelSecOrErr
.takeError()));
1884 section_iterator RelocatedSection
= *RelSecOrErr
;
1885 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
1886 assert (i
!= SectionMap
.end());
1887 SectionToGOTMap
[i
->second
] = GOTSectionID
;
1890 GOTSymbolOffsets
.clear();
1894 // Look for and record the EH frame section.
1895 ObjSectionToIDMap::iterator i
, e
;
1896 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
1897 const SectionRef
&Section
= i
->first
;
1900 Expected
<StringRef
> NameOrErr
= Section
.getName();
1904 consumeError(NameOrErr
.takeError());
1906 if (Name
== ".eh_frame") {
1907 UnregisteredEHFrameSections
.push_back(i
->second
);
1913 CurrentGOTIndex
= 0;
1915 return Error::success();
1918 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
1922 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
1923 unsigned RelTy
= R
.getType();
1924 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
1925 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
1926 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
1928 if (Arch
== Triple::x86_64
)
1929 return RelTy
== ELF::R_X86_64_GOTPCREL
||
1930 RelTy
== ELF::R_X86_64_GOTPCRELX
||
1931 RelTy
== ELF::R_X86_64_GOT64
||
1932 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
1936 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
1937 if (Arch
!= Triple::x86_64
)
1938 return true; // Conservative answer
1940 switch (R
.getType()) {
1942 return true; // Conservative answer
1945 case ELF::R_X86_64_GOTPCREL
:
1946 case ELF::R_X86_64_GOTPCRELX
:
1947 case ELF::R_X86_64_REX_GOTPCRELX
:
1948 case ELF::R_X86_64_GOTPC64
:
1949 case ELF::R_X86_64_GOT64
:
1950 case ELF::R_X86_64_GOTOFF64
:
1951 case ELF::R_X86_64_PC32
:
1952 case ELF::R_X86_64_PC64
:
1953 case ELF::R_X86_64_64
:
1954 // We know that these reloation types won't need a stub function. This list
1955 // can be extended as needed.