[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / LTO / LTO.cpp
blob1e345e7dd89e5b2ffd0a34152eaa3d4e5d6a448f
1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes used to support LTO.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/LTO/LTO.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/Analysis/TargetTransformInfo.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/Bitcode/BitcodeWriter.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/AutoUpgrade.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/LegacyPassManager.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Metadata.h"
27 #include "llvm/IR/RemarkStreamer.h"
28 #include "llvm/LTO/LTOBackend.h"
29 #include "llvm/LTO/SummaryBasedOptimizations.h"
30 #include "llvm/Linker/IRMover.h"
31 #include "llvm/Object/IRObjectFile.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/SHA1.h"
37 #include "llvm/Support/SourceMgr.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/ThreadPool.h"
40 #include "llvm/Support/Threading.h"
41 #include "llvm/Support/VCSRevision.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
47 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
48 #include "llvm/Transforms/Utils/FunctionImportUtils.h"
49 #include "llvm/Transforms/Utils/SplitModule.h"
51 #include <set>
53 using namespace llvm;
54 using namespace lto;
55 using namespace object;
57 #define DEBUG_TYPE "lto"
59 static cl::opt<bool>
60 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
61 cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
63 /// Enable global value internalization in LTO.
64 cl::opt<bool> EnableLTOInternalization(
65 "enable-lto-internalization", cl::init(true), cl::Hidden,
66 cl::desc("Enable global value internalization in LTO"));
68 // Computes a unique hash for the Module considering the current list of
69 // export/import and other global analysis results.
70 // The hash is produced in \p Key.
71 void llvm::computeLTOCacheKey(
72 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
73 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
74 const FunctionImporter::ExportSetTy &ExportList,
75 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
76 const GVSummaryMapTy &DefinedGlobals,
77 const std::set<GlobalValue::GUID> &CfiFunctionDefs,
78 const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
79 // Compute the unique hash for this entry.
80 // This is based on the current compiler version, the module itself, the
81 // export list, the hash for every single module in the import list, the
82 // list of ResolvedODR for the module, and the list of preserved symbols.
83 SHA1 Hasher;
85 // Start with the compiler revision
86 Hasher.update(LLVM_VERSION_STRING);
87 #ifdef LLVM_REVISION
88 Hasher.update(LLVM_REVISION);
89 #endif
91 // Include the parts of the LTO configuration that affect code generation.
92 auto AddString = [&](StringRef Str) {
93 Hasher.update(Str);
94 Hasher.update(ArrayRef<uint8_t>{0});
96 auto AddUnsigned = [&](unsigned I) {
97 uint8_t Data[4];
98 Data[0] = I;
99 Data[1] = I >> 8;
100 Data[2] = I >> 16;
101 Data[3] = I >> 24;
102 Hasher.update(ArrayRef<uint8_t>{Data, 4});
104 auto AddUint64 = [&](uint64_t I) {
105 uint8_t Data[8];
106 Data[0] = I;
107 Data[1] = I >> 8;
108 Data[2] = I >> 16;
109 Data[3] = I >> 24;
110 Data[4] = I >> 32;
111 Data[5] = I >> 40;
112 Data[6] = I >> 48;
113 Data[7] = I >> 56;
114 Hasher.update(ArrayRef<uint8_t>{Data, 8});
116 AddString(Conf.CPU);
117 // FIXME: Hash more of Options. For now all clients initialize Options from
118 // command-line flags (which is unsupported in production), but may set
119 // RelaxELFRelocations. The clang driver can also pass FunctionSections,
120 // DataSections and DebuggerTuning via command line flags.
121 AddUnsigned(Conf.Options.RelaxELFRelocations);
122 AddUnsigned(Conf.Options.FunctionSections);
123 AddUnsigned(Conf.Options.DataSections);
124 AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
125 for (auto &A : Conf.MAttrs)
126 AddString(A);
127 if (Conf.RelocModel)
128 AddUnsigned(*Conf.RelocModel);
129 else
130 AddUnsigned(-1);
131 if (Conf.CodeModel)
132 AddUnsigned(*Conf.CodeModel);
133 else
134 AddUnsigned(-1);
135 AddUnsigned(Conf.CGOptLevel);
136 AddUnsigned(Conf.CGFileType);
137 AddUnsigned(Conf.OptLevel);
138 AddUnsigned(Conf.UseNewPM);
139 AddUnsigned(Conf.Freestanding);
140 AddString(Conf.OptPipeline);
141 AddString(Conf.AAPipeline);
142 AddString(Conf.OverrideTriple);
143 AddString(Conf.DefaultTriple);
144 AddString(Conf.DwoDir);
146 // Include the hash for the current module
147 auto ModHash = Index.getModuleHash(ModuleID);
148 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
149 for (auto F : ExportList)
150 // The export list can impact the internalization, be conservative here
151 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F)));
153 // Include the hash for every module we import functions from. The set of
154 // imported symbols for each module may affect code generation and is
155 // sensitive to link order, so include that as well.
156 for (auto &Entry : ImportList) {
157 auto ModHash = Index.getModuleHash(Entry.first());
158 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
160 AddUint64(Entry.second.size());
161 for (auto &Fn : Entry.second)
162 AddUint64(Fn);
165 // Include the hash for the resolved ODR.
166 for (auto &Entry : ResolvedODR) {
167 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
168 sizeof(GlobalValue::GUID)));
169 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
170 sizeof(GlobalValue::LinkageTypes)));
173 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
174 // defined in this module.
175 std::set<GlobalValue::GUID> UsedCfiDefs;
176 std::set<GlobalValue::GUID> UsedCfiDecls;
178 // Typeids used in this module.
179 std::set<GlobalValue::GUID> UsedTypeIds;
181 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
182 if (CfiFunctionDefs.count(ValueGUID))
183 UsedCfiDefs.insert(ValueGUID);
184 if (CfiFunctionDecls.count(ValueGUID))
185 UsedCfiDecls.insert(ValueGUID);
188 auto AddUsedThings = [&](GlobalValueSummary *GS) {
189 if (!GS) return;
190 AddUnsigned(GS->isLive());
191 AddUnsigned(GS->canAutoHide());
192 for (const ValueInfo &VI : GS->refs()) {
193 AddUnsigned(VI.isDSOLocal());
194 AddUsedCfiGlobal(VI.getGUID());
196 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
197 AddUnsigned(GVS->maybeReadOnly());
198 AddUnsigned(GVS->maybeWriteOnly());
200 if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
201 for (auto &TT : FS->type_tests())
202 UsedTypeIds.insert(TT);
203 for (auto &TT : FS->type_test_assume_vcalls())
204 UsedTypeIds.insert(TT.GUID);
205 for (auto &TT : FS->type_checked_load_vcalls())
206 UsedTypeIds.insert(TT.GUID);
207 for (auto &TT : FS->type_test_assume_const_vcalls())
208 UsedTypeIds.insert(TT.VFunc.GUID);
209 for (auto &TT : FS->type_checked_load_const_vcalls())
210 UsedTypeIds.insert(TT.VFunc.GUID);
211 for (auto &ET : FS->calls()) {
212 AddUnsigned(ET.first.isDSOLocal());
213 AddUsedCfiGlobal(ET.first.getGUID());
218 // Include the hash for the linkage type to reflect internalization and weak
219 // resolution, and collect any used type identifier resolutions.
220 for (auto &GS : DefinedGlobals) {
221 GlobalValue::LinkageTypes Linkage = GS.second->linkage();
222 Hasher.update(
223 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
224 AddUsedCfiGlobal(GS.first);
225 AddUsedThings(GS.second);
228 // Imported functions may introduce new uses of type identifier resolutions,
229 // so we need to collect their used resolutions as well.
230 for (auto &ImpM : ImportList)
231 for (auto &ImpF : ImpM.second) {
232 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
233 AddUsedThings(S);
234 // If this is an alias, we also care about any types/etc. that the aliasee
235 // may reference.
236 if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
237 AddUsedThings(AS->getBaseObject());
240 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
241 AddString(TId);
243 AddUnsigned(S.TTRes.TheKind);
244 AddUnsigned(S.TTRes.SizeM1BitWidth);
246 AddUint64(S.TTRes.AlignLog2);
247 AddUint64(S.TTRes.SizeM1);
248 AddUint64(S.TTRes.BitMask);
249 AddUint64(S.TTRes.InlineBits);
251 AddUint64(S.WPDRes.size());
252 for (auto &WPD : S.WPDRes) {
253 AddUnsigned(WPD.first);
254 AddUnsigned(WPD.second.TheKind);
255 AddString(WPD.second.SingleImplName);
257 AddUint64(WPD.second.ResByArg.size());
258 for (auto &ByArg : WPD.second.ResByArg) {
259 AddUint64(ByArg.first.size());
260 for (uint64_t Arg : ByArg.first)
261 AddUint64(Arg);
262 AddUnsigned(ByArg.second.TheKind);
263 AddUint64(ByArg.second.Info);
264 AddUnsigned(ByArg.second.Byte);
265 AddUnsigned(ByArg.second.Bit);
270 // Include the hash for all type identifiers used by this module.
271 for (GlobalValue::GUID TId : UsedTypeIds) {
272 auto TidIter = Index.typeIds().equal_range(TId);
273 for (auto It = TidIter.first; It != TidIter.second; ++It)
274 AddTypeIdSummary(It->second.first, It->second.second);
277 AddUnsigned(UsedCfiDefs.size());
278 for (auto &V : UsedCfiDefs)
279 AddUint64(V);
281 AddUnsigned(UsedCfiDecls.size());
282 for (auto &V : UsedCfiDecls)
283 AddUint64(V);
285 if (!Conf.SampleProfile.empty()) {
286 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
287 if (FileOrErr) {
288 Hasher.update(FileOrErr.get()->getBuffer());
290 if (!Conf.ProfileRemapping.empty()) {
291 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
292 if (FileOrErr)
293 Hasher.update(FileOrErr.get()->getBuffer());
298 Key = toHex(Hasher.result());
301 static void thinLTOResolvePrevailingGUID(
302 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
303 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
304 isPrevailing,
305 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
306 recordNewLinkage,
307 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
308 for (auto &S : VI.getSummaryList()) {
309 GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
310 // Ignore local and appending linkage values since the linker
311 // doesn't resolve them.
312 if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
313 GlobalValue::isAppendingLinkage(S->linkage()))
314 continue;
315 // We need to emit only one of these. The prevailing module will keep it,
316 // but turned into a weak, while the others will drop it when possible.
317 // This is both a compile-time optimization and a correctness
318 // transformation. This is necessary for correctness when we have exported
319 // a reference - we need to convert the linkonce to weak to
320 // ensure a copy is kept to satisfy the exported reference.
321 // FIXME: We may want to split the compile time and correctness
322 // aspects into separate routines.
323 if (isPrevailing(VI.getGUID(), S.get())) {
324 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
325 S->setLinkage(GlobalValue::getWeakLinkage(
326 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
327 // The kept copy is eligible for auto-hiding (hidden visibility) if all
328 // copies were (i.e. they were all linkonce_odr global unnamed addr).
329 // If any copy is not (e.g. it was originally weak_odr), then the symbol
330 // must remain externally available (e.g. a weak_odr from an explicitly
331 // instantiated template). Additionally, if it is in the
332 // GUIDPreservedSymbols set, that means that it is visibile outside
333 // the summary (e.g. in a native object or a bitcode file without
334 // summary), and in that case we cannot hide it as it isn't possible to
335 // check all copies.
336 S->setCanAutoHide(VI.canAutoHide() &&
337 !GUIDPreservedSymbols.count(VI.getGUID()));
340 // Alias and aliasee can't be turned into available_externally.
341 else if (!isa<AliasSummary>(S.get()) &&
342 !GlobalInvolvedWithAlias.count(S.get()))
343 S->setLinkage(GlobalValue::AvailableExternallyLinkage);
344 if (S->linkage() != OriginalLinkage)
345 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
349 /// Resolve linkage for prevailing symbols in the \p Index.
351 // We'd like to drop these functions if they are no longer referenced in the
352 // current module. However there is a chance that another module is still
353 // referencing them because of the import. We make sure we always emit at least
354 // one copy.
355 void llvm::thinLTOResolvePrevailingInIndex(
356 ModuleSummaryIndex &Index,
357 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
358 isPrevailing,
359 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
360 recordNewLinkage,
361 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
362 // We won't optimize the globals that are referenced by an alias for now
363 // Ideally we should turn the alias into a global and duplicate the definition
364 // when needed.
365 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
366 for (auto &I : Index)
367 for (auto &S : I.second.SummaryList)
368 if (auto AS = dyn_cast<AliasSummary>(S.get()))
369 GlobalInvolvedWithAlias.insert(&AS->getAliasee());
371 for (auto &I : Index)
372 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias,
373 isPrevailing, recordNewLinkage,
374 GUIDPreservedSymbols);
377 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
378 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
379 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
380 (VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
381 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
382 return false;
385 static void thinLTOInternalizeAndPromoteGUID(
386 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID,
387 function_ref<bool(StringRef, GlobalValue::GUID)> isExported,
388 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
389 isPrevailing) {
390 for (auto &S : GVSummaryList) {
391 if (isExported(S->modulePath(), GUID)) {
392 if (GlobalValue::isLocalLinkage(S->linkage()))
393 S->setLinkage(GlobalValue::ExternalLinkage);
394 } else if (EnableLTOInternalization &&
395 // Ignore local and appending linkage values since the linker
396 // doesn't resolve them.
397 !GlobalValue::isLocalLinkage(S->linkage()) &&
398 (!GlobalValue::isInterposableLinkage(S->linkage()) ||
399 isPrevailing(GUID, S.get())) &&
400 S->linkage() != GlobalValue::AppendingLinkage &&
401 // We can't internalize available_externally globals because this
402 // can break function pointer equality.
403 S->linkage() != GlobalValue::AvailableExternallyLinkage &&
404 // Functions and read-only variables with linkonce_odr and
405 // weak_odr linkage can be internalized. We can't internalize
406 // linkonce_odr and weak_odr variables which are both modified
407 // and read somewhere in the program because reads and writes
408 // will become inconsistent.
409 !isWeakObjectWithRWAccess(S.get()))
410 S->setLinkage(GlobalValue::InternalLinkage);
414 // Update the linkages in the given \p Index to mark exported values
415 // as external and non-exported values as internal.
416 void llvm::thinLTOInternalizeAndPromoteInIndex(
417 ModuleSummaryIndex &Index,
418 function_ref<bool(StringRef, GlobalValue::GUID)> isExported,
419 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
420 isPrevailing) {
421 for (auto &I : Index)
422 thinLTOInternalizeAndPromoteGUID(I.second.SummaryList, I.first, isExported,
423 isPrevailing);
426 // Requires a destructor for std::vector<InputModule>.
427 InputFile::~InputFile() = default;
429 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
430 std::unique_ptr<InputFile> File(new InputFile);
432 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
433 if (!FOrErr)
434 return FOrErr.takeError();
436 File->TargetTriple = FOrErr->TheReader.getTargetTriple();
437 File->SourceFileName = FOrErr->TheReader.getSourceFileName();
438 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
439 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
440 File->ComdatTable = FOrErr->TheReader.getComdatTable();
442 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
443 size_t Begin = File->Symbols.size();
444 for (const irsymtab::Reader::SymbolRef &Sym :
445 FOrErr->TheReader.module_symbols(I))
446 // Skip symbols that are irrelevant to LTO. Note that this condition needs
447 // to match the one in Skip() in LTO::addRegularLTO().
448 if (Sym.isGlobal() && !Sym.isFormatSpecific())
449 File->Symbols.push_back(Sym);
450 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
453 File->Mods = FOrErr->Mods;
454 File->Strtab = std::move(FOrErr->Strtab);
455 return std::move(File);
458 StringRef InputFile::getName() const {
459 return Mods[0].getModuleIdentifier();
462 BitcodeModule &InputFile::getSingleBitcodeModule() {
463 assert(Mods.size() == 1 && "Expect only one bitcode module");
464 return Mods[0];
467 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
468 Config &Conf)
469 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
470 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
471 Mover(std::make_unique<IRMover>(*CombinedModule)) {}
473 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
474 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
475 if (!Backend)
476 this->Backend =
477 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
480 LTO::LTO(Config Conf, ThinBackend Backend,
481 unsigned ParallelCodeGenParallelismLevel)
482 : Conf(std::move(Conf)),
483 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
484 ThinLTO(std::move(Backend)) {}
486 // Requires a destructor for MapVector<BitcodeModule>.
487 LTO::~LTO() = default;
489 // Add the symbols in the given module to the GlobalResolutions map, and resolve
490 // their partitions.
491 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
492 ArrayRef<SymbolResolution> Res,
493 unsigned Partition, bool InSummary) {
494 auto *ResI = Res.begin();
495 auto *ResE = Res.end();
496 (void)ResE;
497 for (const InputFile::Symbol &Sym : Syms) {
498 assert(ResI != ResE);
499 SymbolResolution Res = *ResI++;
501 StringRef Name = Sym.getName();
502 Triple TT(RegularLTO.CombinedModule->getTargetTriple());
503 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the
504 // way they are handled by lld), otherwise we can end up with two
505 // global resolutions (one with and one for a copy of the symbol without).
506 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
507 Name = Name.substr(strlen("__imp_"));
508 auto &GlobalRes = GlobalResolutions[Name];
509 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
510 if (Res.Prevailing) {
511 assert(!GlobalRes.Prevailing &&
512 "Multiple prevailing defs are not allowed");
513 GlobalRes.Prevailing = true;
514 GlobalRes.IRName = Sym.getIRName();
515 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
516 // Sometimes it can be two copies of symbol in a module and prevailing
517 // symbol can have no IR name. That might happen if symbol is defined in
518 // module level inline asm block. In case we have multiple modules with
519 // the same symbol we want to use IR name of the prevailing symbol.
520 // Otherwise, if we haven't seen a prevailing symbol, set the name so that
521 // we can later use it to check if there is any prevailing copy in IR.
522 GlobalRes.IRName = Sym.getIRName();
525 // Set the partition to external if we know it is re-defined by the linker
526 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
527 // regular object, is referenced from llvm.compiler_used, or was already
528 // recorded as being referenced from a different partition.
529 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
530 (GlobalRes.Partition != GlobalResolution::Unknown &&
531 GlobalRes.Partition != Partition)) {
532 GlobalRes.Partition = GlobalResolution::External;
533 } else
534 // First recorded reference, save the current partition.
535 GlobalRes.Partition = Partition;
537 // Flag as visible outside of summary if visible from a regular object or
538 // from a module that does not have a summary.
539 GlobalRes.VisibleOutsideSummary |=
540 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
544 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
545 ArrayRef<SymbolResolution> Res) {
546 StringRef Path = Input->getName();
547 OS << Path << '\n';
548 auto ResI = Res.begin();
549 for (const InputFile::Symbol &Sym : Input->symbols()) {
550 assert(ResI != Res.end());
551 SymbolResolution Res = *ResI++;
553 OS << "-r=" << Path << ',' << Sym.getName() << ',';
554 if (Res.Prevailing)
555 OS << 'p';
556 if (Res.FinalDefinitionInLinkageUnit)
557 OS << 'l';
558 if (Res.VisibleToRegularObj)
559 OS << 'x';
560 if (Res.LinkerRedefined)
561 OS << 'r';
562 OS << '\n';
564 OS.flush();
565 assert(ResI == Res.end());
568 Error LTO::add(std::unique_ptr<InputFile> Input,
569 ArrayRef<SymbolResolution> Res) {
570 assert(!CalledGetMaxTasks);
572 if (Conf.ResolutionFile)
573 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
575 if (RegularLTO.CombinedModule->getTargetTriple().empty())
576 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
578 const SymbolResolution *ResI = Res.begin();
579 for (unsigned I = 0; I != Input->Mods.size(); ++I)
580 if (Error Err = addModule(*Input, I, ResI, Res.end()))
581 return Err;
583 assert(ResI == Res.end());
584 return Error::success();
587 Error LTO::addModule(InputFile &Input, unsigned ModI,
588 const SymbolResolution *&ResI,
589 const SymbolResolution *ResE) {
590 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
591 if (!LTOInfo)
592 return LTOInfo.takeError();
594 if (EnableSplitLTOUnit.hasValue()) {
595 // If only some modules were split, flag this in the index so that
596 // we can skip or error on optimizations that need consistently split
597 // modules (whole program devirt and lower type tests).
598 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
599 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
600 } else
601 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
603 BitcodeModule BM = Input.Mods[ModI];
604 auto ModSyms = Input.module_symbols(ModI);
605 addModuleToGlobalRes(ModSyms, {ResI, ResE},
606 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
607 LTOInfo->HasSummary);
609 if (LTOInfo->IsThinLTO)
610 return addThinLTO(BM, ModSyms, ResI, ResE);
612 Expected<RegularLTOState::AddedModule> ModOrErr =
613 addRegularLTO(BM, ModSyms, ResI, ResE);
614 if (!ModOrErr)
615 return ModOrErr.takeError();
617 if (!LTOInfo->HasSummary)
618 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
620 // Regular LTO module summaries are added to a dummy module that represents
621 // the combined regular LTO module.
622 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
623 return Err;
624 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
625 return Error::success();
628 // Checks whether the given global value is in a non-prevailing comdat
629 // (comdat containing values the linker indicated were not prevailing,
630 // which we then dropped to available_externally), and if so, removes
631 // it from the comdat. This is called for all global values to ensure the
632 // comdat is empty rather than leaving an incomplete comdat. It is needed for
633 // regular LTO modules, in case we are in a mixed-LTO mode (both regular
634 // and thin LTO modules) compilation. Since the regular LTO module will be
635 // linked first in the final native link, we want to make sure the linker
636 // doesn't select any of these incomplete comdats that would be left
637 // in the regular LTO module without this cleanup.
638 static void
639 handleNonPrevailingComdat(GlobalValue &GV,
640 std::set<const Comdat *> &NonPrevailingComdats) {
641 Comdat *C = GV.getComdat();
642 if (!C)
643 return;
645 if (!NonPrevailingComdats.count(C))
646 return;
648 // Additionally need to drop externally visible global values from the comdat
649 // to available_externally, so that there aren't multiply defined linker
650 // errors.
651 if (!GV.hasLocalLinkage())
652 GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
654 if (auto GO = dyn_cast<GlobalObject>(&GV))
655 GO->setComdat(nullptr);
658 // Add a regular LTO object to the link.
659 // The resulting module needs to be linked into the combined LTO module with
660 // linkRegularLTO.
661 Expected<LTO::RegularLTOState::AddedModule>
662 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
663 const SymbolResolution *&ResI,
664 const SymbolResolution *ResE) {
665 RegularLTOState::AddedModule Mod;
666 Expected<std::unique_ptr<Module>> MOrErr =
667 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
668 /*IsImporting*/ false);
669 if (!MOrErr)
670 return MOrErr.takeError();
671 Module &M = **MOrErr;
672 Mod.M = std::move(*MOrErr);
674 if (Error Err = M.materializeMetadata())
675 return std::move(Err);
676 UpgradeDebugInfo(M);
678 ModuleSymbolTable SymTab;
679 SymTab.addModule(&M);
681 for (GlobalVariable &GV : M.globals())
682 if (GV.hasAppendingLinkage())
683 Mod.Keep.push_back(&GV);
685 DenseSet<GlobalObject *> AliasedGlobals;
686 for (auto &GA : M.aliases())
687 if (GlobalObject *GO = GA.getBaseObject())
688 AliasedGlobals.insert(GO);
690 // In this function we need IR GlobalValues matching the symbols in Syms
691 // (which is not backed by a module), so we need to enumerate them in the same
692 // order. The symbol enumeration order of a ModuleSymbolTable intentionally
693 // matches the order of an irsymtab, but when we read the irsymtab in
694 // InputFile::create we omit some symbols that are irrelevant to LTO. The
695 // Skip() function skips the same symbols from the module as InputFile does
696 // from the symbol table.
697 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
698 auto Skip = [&]() {
699 while (MsymI != MsymE) {
700 auto Flags = SymTab.getSymbolFlags(*MsymI);
701 if ((Flags & object::BasicSymbolRef::SF_Global) &&
702 !(Flags & object::BasicSymbolRef::SF_FormatSpecific))
703 return;
704 ++MsymI;
707 Skip();
709 std::set<const Comdat *> NonPrevailingComdats;
710 for (const InputFile::Symbol &Sym : Syms) {
711 assert(ResI != ResE);
712 SymbolResolution Res = *ResI++;
714 assert(MsymI != MsymE);
715 ModuleSymbolTable::Symbol Msym = *MsymI++;
716 Skip();
718 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
719 if (Res.Prevailing) {
720 if (Sym.isUndefined())
721 continue;
722 Mod.Keep.push_back(GV);
723 // For symbols re-defined with linker -wrap and -defsym options,
724 // set the linkage to weak to inhibit IPO. The linkage will be
725 // restored by the linker.
726 if (Res.LinkerRedefined)
727 GV->setLinkage(GlobalValue::WeakAnyLinkage);
729 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
730 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
731 GV->setLinkage(GlobalValue::getWeakLinkage(
732 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
733 } else if (isa<GlobalObject>(GV) &&
734 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
735 GV->hasAvailableExternallyLinkage()) &&
736 !AliasedGlobals.count(cast<GlobalObject>(GV))) {
737 // Any of the above three types of linkage indicates that the
738 // chosen prevailing symbol will have the same semantics as this copy of
739 // the symbol, so we may be able to link it with available_externally
740 // linkage. We will decide later whether to do that when we link this
741 // module (in linkRegularLTO), based on whether it is undefined.
742 Mod.Keep.push_back(GV);
743 GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
744 if (GV->hasComdat())
745 NonPrevailingComdats.insert(GV->getComdat());
746 cast<GlobalObject>(GV)->setComdat(nullptr);
749 // Set the 'local' flag based on the linker resolution for this symbol.
750 if (Res.FinalDefinitionInLinkageUnit) {
751 GV->setDSOLocal(true);
752 if (GV->hasDLLImportStorageClass())
753 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
754 DefaultStorageClass);
757 // Common resolution: collect the maximum size/alignment over all commons.
758 // We also record if we see an instance of a common as prevailing, so that
759 // if none is prevailing we can ignore it later.
760 if (Sym.isCommon()) {
761 // FIXME: We should figure out what to do about commons defined by asm.
762 // For now they aren't reported correctly by ModuleSymbolTable.
763 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()];
764 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
765 CommonRes.Align =
766 std::max(CommonRes.Align, MaybeAlign(Sym.getCommonAlignment()));
767 CommonRes.Prevailing |= Res.Prevailing;
771 if (!M.getComdatSymbolTable().empty())
772 for (GlobalValue &GV : M.global_values())
773 handleNonPrevailingComdat(GV, NonPrevailingComdats);
774 assert(MsymI == MsymE);
775 return std::move(Mod);
778 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
779 bool LivenessFromIndex) {
780 std::vector<GlobalValue *> Keep;
781 for (GlobalValue *GV : Mod.Keep) {
782 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID()))
783 continue;
785 if (!GV->hasAvailableExternallyLinkage()) {
786 Keep.push_back(GV);
787 continue;
790 // Only link available_externally definitions if we don't already have a
791 // definition.
792 GlobalValue *CombinedGV =
793 RegularLTO.CombinedModule->getNamedValue(GV->getName());
794 if (CombinedGV && !CombinedGV->isDeclaration())
795 continue;
797 Keep.push_back(GV);
800 return RegularLTO.Mover->move(std::move(Mod.M), Keep,
801 [](GlobalValue &, IRMover::ValueAdder) {},
802 /* IsPerformingImport */ false);
805 // Add a ThinLTO module to the link.
806 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
807 const SymbolResolution *&ResI,
808 const SymbolResolution *ResE) {
809 if (Error Err =
810 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
811 ThinLTO.ModuleMap.size()))
812 return Err;
814 for (const InputFile::Symbol &Sym : Syms) {
815 assert(ResI != ResE);
816 SymbolResolution Res = *ResI++;
818 if (!Sym.getIRName().empty()) {
819 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
820 Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
821 if (Res.Prevailing) {
822 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
824 // For linker redefined symbols (via --wrap or --defsym) we want to
825 // switch the linkage to `weak` to prevent IPOs from happening.
826 // Find the summary in the module for this very GV and record the new
827 // linkage so that we can switch it when we import the GV.
828 if (Res.LinkerRedefined)
829 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
830 GUID, BM.getModuleIdentifier()))
831 S->setLinkage(GlobalValue::WeakAnyLinkage);
834 // If the linker resolved the symbol to a local definition then mark it
835 // as local in the summary for the module we are adding.
836 if (Res.FinalDefinitionInLinkageUnit) {
837 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
838 GUID, BM.getModuleIdentifier())) {
839 S->setDSOLocal(true);
845 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
846 return make_error<StringError>(
847 "Expected at most one ThinLTO module per bitcode file",
848 inconvertibleErrorCode());
850 return Error::success();
853 unsigned LTO::getMaxTasks() const {
854 CalledGetMaxTasks = true;
855 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size();
858 // If only some of the modules were split, we cannot correctly handle
859 // code that contains type tests or type checked loads.
860 Error LTO::checkPartiallySplit() {
861 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
862 return Error::success();
864 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
865 Intrinsic::getName(Intrinsic::type_test));
866 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
867 Intrinsic::getName(Intrinsic::type_checked_load));
869 // First check if there are type tests / type checked loads in the
870 // merged regular LTO module IR.
871 if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
872 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
873 return make_error<StringError>(
874 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
875 inconvertibleErrorCode());
877 // Otherwise check if there are any recorded in the combined summary from the
878 // ThinLTO modules.
879 for (auto &P : ThinLTO.CombinedIndex) {
880 for (auto &S : P.second.SummaryList) {
881 auto *FS = dyn_cast<FunctionSummary>(S.get());
882 if (!FS)
883 continue;
884 if (!FS->type_test_assume_vcalls().empty() ||
885 !FS->type_checked_load_vcalls().empty() ||
886 !FS->type_test_assume_const_vcalls().empty() ||
887 !FS->type_checked_load_const_vcalls().empty() ||
888 !FS->type_tests().empty())
889 return make_error<StringError>(
890 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
891 inconvertibleErrorCode());
894 return Error::success();
897 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
898 // Compute "dead" symbols, we don't want to import/export these!
899 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
900 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
901 for (auto &Res : GlobalResolutions) {
902 // Normally resolution have IR name of symbol. We can do nothing here
903 // otherwise. See comments in GlobalResolution struct for more details.
904 if (Res.second.IRName.empty())
905 continue;
907 GlobalValue::GUID GUID = GlobalValue::getGUID(
908 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
910 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
911 GUIDPreservedSymbols.insert(GUID);
913 GUIDPrevailingResolutions[GUID] =
914 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
917 auto isPrevailing = [&](GlobalValue::GUID G) {
918 auto It = GUIDPrevailingResolutions.find(G);
919 if (It == GUIDPrevailingResolutions.end())
920 return PrevailingType::Unknown;
921 return It->second;
923 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
924 isPrevailing, Conf.OptLevel > 0);
926 // Setup output file to emit statistics.
927 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
928 if (!StatsFileOrErr)
929 return StatsFileOrErr.takeError();
930 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
932 // Finalize linking of regular LTO modules containing summaries now that
933 // we have computed liveness information.
934 for (auto &M : RegularLTO.ModsWithSummaries)
935 if (Error Err = linkRegularLTO(std::move(M),
936 /*LivenessFromIndex=*/true))
937 return Err;
939 // Ensure we don't have inconsistently split LTO units with type tests.
940 if (Error Err = checkPartiallySplit())
941 return Err;
943 Error Result = runRegularLTO(AddStream);
944 if (!Result)
945 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
947 if (StatsFile)
948 PrintStatisticsJSON(StatsFile->os());
950 return Result;
953 Error LTO::runRegularLTO(AddStreamFn AddStream) {
954 // Make sure commons have the right size/alignment: we kept the largest from
955 // all the prevailing when adding the inputs, and we apply it here.
956 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
957 for (auto &I : RegularLTO.Commons) {
958 if (!I.second.Prevailing)
959 // Don't do anything if no instance of this common was prevailing.
960 continue;
961 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
962 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
963 // Don't create a new global if the type is already correct, just make
964 // sure the alignment is correct.
965 OldGV->setAlignment(I.second.Align);
966 continue;
968 ArrayType *Ty =
969 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
970 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
971 GlobalValue::CommonLinkage,
972 ConstantAggregateZero::get(Ty), "");
973 GV->setAlignment(I.second.Align);
974 if (OldGV) {
975 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
976 GV->takeName(OldGV);
977 OldGV->eraseFromParent();
978 } else {
979 GV->setName(I.first);
983 if (Conf.PreOptModuleHook &&
984 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
985 return Error::success();
987 if (!Conf.CodeGenOnly) {
988 for (const auto &R : GlobalResolutions) {
989 if (!R.second.isPrevailingIRSymbol())
990 continue;
991 if (R.second.Partition != 0 &&
992 R.second.Partition != GlobalResolution::External)
993 continue;
995 GlobalValue *GV =
996 RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
997 // Ignore symbols defined in other partitions.
998 // Also skip declarations, which are not allowed to have internal linkage.
999 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
1000 continue;
1001 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
1002 : GlobalValue::UnnamedAddr::None);
1003 if (EnableLTOInternalization && R.second.Partition == 0)
1004 GV->setLinkage(GlobalValue::InternalLinkage);
1007 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1);
1009 if (Conf.PostInternalizeModuleHook &&
1010 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1011 return Error::success();
1013 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1014 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex);
1017 static const char *libcallRoutineNames[] = {
1018 #define HANDLE_LIBCALL(code, name) name,
1019 #include "llvm/IR/RuntimeLibcalls.def"
1020 #undef HANDLE_LIBCALL
1023 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() {
1024 return makeArrayRef(libcallRoutineNames);
1027 /// This class defines the interface to the ThinLTO backend.
1028 class lto::ThinBackendProc {
1029 protected:
1030 Config &Conf;
1031 ModuleSummaryIndex &CombinedIndex;
1032 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
1034 public:
1035 ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex,
1036 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
1037 : Conf(Conf), CombinedIndex(CombinedIndex),
1038 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
1040 virtual ~ThinBackendProc() {}
1041 virtual Error start(
1042 unsigned Task, BitcodeModule BM,
1043 const FunctionImporter::ImportMapTy &ImportList,
1044 const FunctionImporter::ExportSetTy &ExportList,
1045 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1046 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
1047 virtual Error wait() = 0;
1050 namespace {
1051 class InProcessThinBackend : public ThinBackendProc {
1052 ThreadPool BackendThreadPool;
1053 AddStreamFn AddStream;
1054 NativeObjectCache Cache;
1055 std::set<GlobalValue::GUID> CfiFunctionDefs;
1056 std::set<GlobalValue::GUID> CfiFunctionDecls;
1058 Optional<Error> Err;
1059 std::mutex ErrMu;
1061 public:
1062 InProcessThinBackend(
1063 Config &Conf, ModuleSummaryIndex &CombinedIndex,
1064 unsigned ThinLTOParallelismLevel,
1065 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1066 AddStreamFn AddStream, NativeObjectCache Cache)
1067 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1068 BackendThreadPool(ThinLTOParallelismLevel),
1069 AddStream(std::move(AddStream)), Cache(std::move(Cache)) {
1070 for (auto &Name : CombinedIndex.cfiFunctionDefs())
1071 CfiFunctionDefs.insert(
1072 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1073 for (auto &Name : CombinedIndex.cfiFunctionDecls())
1074 CfiFunctionDecls.insert(
1075 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1078 Error runThinLTOBackendThread(
1079 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
1080 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1081 const FunctionImporter::ImportMapTy &ImportList,
1082 const FunctionImporter::ExportSetTy &ExportList,
1083 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1084 const GVSummaryMapTy &DefinedGlobals,
1085 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1086 auto RunThinBackend = [&](AddStreamFn AddStream) {
1087 LTOLLVMContext BackendContext(Conf);
1088 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1089 if (!MOrErr)
1090 return MOrErr.takeError();
1092 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1093 ImportList, DefinedGlobals, ModuleMap);
1096 auto ModuleID = BM.getModuleIdentifier();
1098 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
1099 all_of(CombinedIndex.getModuleHash(ModuleID),
1100 [](uint32_t V) { return V == 0; }))
1101 // Cache disabled or no entry for this module in the combined index or
1102 // no module hash.
1103 return RunThinBackend(AddStream);
1105 SmallString<40> Key;
1106 // The module may be cached, this helps handling it.
1107 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
1108 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
1109 CfiFunctionDecls);
1110 if (AddStreamFn CacheAddStream = Cache(Task, Key))
1111 return RunThinBackend(CacheAddStream);
1113 return Error::success();
1116 Error start(
1117 unsigned Task, BitcodeModule BM,
1118 const FunctionImporter::ImportMapTy &ImportList,
1119 const FunctionImporter::ExportSetTy &ExportList,
1120 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1121 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1122 StringRef ModulePath = BM.getModuleIdentifier();
1123 assert(ModuleToDefinedGVSummaries.count(ModulePath));
1124 const GVSummaryMapTy &DefinedGlobals =
1125 ModuleToDefinedGVSummaries.find(ModulePath)->second;
1126 BackendThreadPool.async(
1127 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1128 const FunctionImporter::ImportMapTy &ImportList,
1129 const FunctionImporter::ExportSetTy &ExportList,
1130 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1131 &ResolvedODR,
1132 const GVSummaryMapTy &DefinedGlobals,
1133 MapVector<StringRef, BitcodeModule> &ModuleMap) {
1134 Error E = runThinLTOBackendThread(
1135 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1136 ResolvedODR, DefinedGlobals, ModuleMap);
1137 if (E) {
1138 std::unique_lock<std::mutex> L(ErrMu);
1139 if (Err)
1140 Err = joinErrors(std::move(*Err), std::move(E));
1141 else
1142 Err = std::move(E);
1145 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1146 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1147 return Error::success();
1150 Error wait() override {
1151 BackendThreadPool.wait();
1152 if (Err)
1153 return std::move(*Err);
1154 else
1155 return Error::success();
1158 } // end anonymous namespace
1160 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) {
1161 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex,
1162 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1163 AddStreamFn AddStream, NativeObjectCache Cache) {
1164 return std::make_unique<InProcessThinBackend>(
1165 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries,
1166 AddStream, Cache);
1170 // Given the original \p Path to an output file, replace any path
1171 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1172 // resulting directory if it does not yet exist.
1173 std::string lto::getThinLTOOutputFile(const std::string &Path,
1174 const std::string &OldPrefix,
1175 const std::string &NewPrefix) {
1176 if (OldPrefix.empty() && NewPrefix.empty())
1177 return Path;
1178 SmallString<128> NewPath(Path);
1179 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1180 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1181 if (!ParentPath.empty()) {
1182 // Make sure the new directory exists, creating it if necessary.
1183 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1184 llvm::errs() << "warning: could not create directory '" << ParentPath
1185 << "': " << EC.message() << '\n';
1187 return NewPath.str();
1190 namespace {
1191 class WriteIndexesThinBackend : public ThinBackendProc {
1192 std::string OldPrefix, NewPrefix;
1193 bool ShouldEmitImportsFiles;
1194 raw_fd_ostream *LinkedObjectsFile;
1195 lto::IndexWriteCallback OnWrite;
1197 public:
1198 WriteIndexesThinBackend(
1199 Config &Conf, ModuleSummaryIndex &CombinedIndex,
1200 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1201 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1202 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1203 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
1204 OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1205 ShouldEmitImportsFiles(ShouldEmitImportsFiles),
1206 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
1208 Error start(
1209 unsigned Task, BitcodeModule BM,
1210 const FunctionImporter::ImportMapTy &ImportList,
1211 const FunctionImporter::ExportSetTy &ExportList,
1212 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1213 MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1214 StringRef ModulePath = BM.getModuleIdentifier();
1215 std::string NewModulePath =
1216 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix);
1218 if (LinkedObjectsFile)
1219 *LinkedObjectsFile << NewModulePath << '\n';
1221 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
1222 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1223 ImportList, ModuleToSummariesForIndex);
1225 std::error_code EC;
1226 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1227 sys::fs::OpenFlags::OF_None);
1228 if (EC)
1229 return errorCodeToError(EC);
1230 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
1232 if (ShouldEmitImportsFiles) {
1233 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
1234 ModuleToSummariesForIndex);
1235 if (EC)
1236 return errorCodeToError(EC);
1239 if (OnWrite)
1240 OnWrite(ModulePath);
1241 return Error::success();
1244 Error wait() override { return Error::success(); }
1246 } // end anonymous namespace
1248 ThinBackend lto::createWriteIndexesThinBackend(
1249 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
1250 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
1251 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex,
1252 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1253 AddStreamFn AddStream, NativeObjectCache Cache) {
1254 return std::make_unique<WriteIndexesThinBackend>(
1255 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
1256 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
1260 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
1261 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1262 if (ThinLTO.ModuleMap.empty())
1263 return Error::success();
1265 if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex))
1266 return Error::success();
1268 // Collect for each module the list of function it defines (GUID ->
1269 // Summary).
1270 StringMap<GVSummaryMapTy>
1271 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
1272 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1273 ModuleToDefinedGVSummaries);
1274 // Create entries for any modules that didn't have any GV summaries
1275 // (either they didn't have any GVs to start with, or we suppressed
1276 // generation of the summaries because they e.g. had inline assembly
1277 // uses that couldn't be promoted/renamed on export). This is so
1278 // InProcessThinBackend::start can still launch a backend thread, which
1279 // is passed the map of summaries for the module, without any special
1280 // handling for this case.
1281 for (auto &Mod : ThinLTO.ModuleMap)
1282 if (!ModuleToDefinedGVSummaries.count(Mod.first))
1283 ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1285 // Synthesize entry counts for functions in the CombinedIndex.
1286 computeSyntheticCounts(ThinLTO.CombinedIndex);
1288 StringMap<FunctionImporter::ImportMapTy> ImportLists(
1289 ThinLTO.ModuleMap.size());
1290 StringMap<FunctionImporter::ExportSetTy> ExportLists(
1291 ThinLTO.ModuleMap.size());
1292 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1294 if (DumpThinCGSCCs)
1295 ThinLTO.CombinedIndex.dumpSCCs(outs());
1297 std::set<GlobalValue::GUID> ExportedGUIDs;
1299 // Perform index-based WPD. This will return immediately if there are
1300 // no index entries in the typeIdMetadata map (e.g. if we are instead
1301 // performing IR-based WPD in hybrid regular/thin LTO mode).
1302 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
1303 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
1304 LocalWPDTargetsMap);
1306 if (Conf.OptLevel > 0)
1307 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1308 ImportLists, ExportLists);
1310 // Figure out which symbols need to be internalized. This also needs to happen
1311 // at -O0 because summary-based DCE is implemented using internalization, and
1312 // we must apply DCE consistently with the full LTO module in order to avoid
1313 // undefined references during the final link.
1314 for (auto &Res : GlobalResolutions) {
1315 // If the symbol does not have external references or it is not prevailing,
1316 // then not need to mark it as exported from a ThinLTO partition.
1317 if (Res.second.Partition != GlobalResolution::External ||
1318 !Res.second.isPrevailingIRSymbol())
1319 continue;
1320 auto GUID = GlobalValue::getGUID(
1321 GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1322 // Mark exported unless index-based analysis determined it to be dead.
1323 if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1324 ExportedGUIDs.insert(GUID);
1327 // Any functions referenced by the jump table in the regular LTO object must
1328 // be exported.
1329 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1330 ExportedGUIDs.insert(
1331 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1333 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
1334 const auto &ExportList = ExportLists.find(ModuleIdentifier);
1335 return (ExportList != ExportLists.end() &&
1336 ExportList->second.count(GUID)) ||
1337 ExportedGUIDs.count(GUID);
1340 // Update local devirtualized targets that were exported by cross-module
1341 // importing or by other devirtualizations marked in the ExportedGUIDs set.
1342 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
1343 LocalWPDTargetsMap);
1345 auto isPrevailing = [&](GlobalValue::GUID GUID,
1346 const GlobalValueSummary *S) {
1347 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1349 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
1350 isPrevailing);
1352 auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1353 GlobalValue::GUID GUID,
1354 GlobalValue::LinkageTypes NewLinkage) {
1355 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1357 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing,
1358 recordNewLinkage, GUIDPreservedSymbols);
1360 std::unique_ptr<ThinBackendProc> BackendProc =
1361 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1362 AddStream, Cache);
1364 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined
1365 // module and parallel code generation partitions.
1366 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel;
1367 for (auto &Mod : ThinLTO.ModuleMap) {
1368 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first],
1369 ExportLists[Mod.first],
1370 ResolvedODR[Mod.first], ThinLTO.ModuleMap))
1371 return E;
1372 ++Task;
1375 return BackendProc->wait();
1378 Expected<std::unique_ptr<ToolOutputFile>>
1379 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename,
1380 StringRef RemarksPasses, StringRef RemarksFormat,
1381 bool RemarksWithHotness, int Count) {
1382 std::string Filename = RemarksFilename;
1383 if (!Filename.empty() && Count != -1)
1384 Filename += ".thin." + llvm::utostr(Count) + ".yaml";
1386 auto ResultOrErr = llvm::setupOptimizationRemarks(
1387 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness);
1388 if (Error E = ResultOrErr.takeError())
1389 return std::move(E);
1391 if (*ResultOrErr)
1392 (*ResultOrErr)->keep();
1394 return ResultOrErr;
1397 Expected<std::unique_ptr<ToolOutputFile>>
1398 lto::setupStatsFile(StringRef StatsFilename) {
1399 // Setup output file to emit statistics.
1400 if (StatsFilename.empty())
1401 return nullptr;
1403 llvm::EnableStatistics(false);
1404 std::error_code EC;
1405 auto StatsFile =
1406 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
1407 if (EC)
1408 return errorCodeToError(EC);
1410 StatsFile->keep();
1411 return std::move(StatsFile);