[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUCallLowering.cpp
blob58c44acde1a7fe34929c41e94c4617f4ef7a0f3d
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUSubtarget.h"
19 #include "SIISelLowering.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "SIRegisterInfo.h"
22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/Support/LowLevelTypeImpl.h"
29 using namespace llvm;
31 namespace {
33 struct OutgoingValueHandler : public CallLowering::ValueHandler {
34 OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
35 MachineInstrBuilder MIB, CCAssignFn *AssignFn)
36 : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
38 MachineInstrBuilder MIB;
40 bool isIncomingArgumentHandler() const override { return false; }
42 Register getStackAddress(uint64_t Size, int64_t Offset,
43 MachinePointerInfo &MPO) override {
44 llvm_unreachable("not implemented");
47 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
48 MachinePointerInfo &MPO, CCValAssign &VA) override {
49 llvm_unreachable("not implemented");
52 void assignValueToReg(Register ValVReg, Register PhysReg,
53 CCValAssign &VA) override {
54 Register ExtReg;
55 if (VA.getLocVT().getSizeInBits() < 32) {
56 // 16-bit types are reported as legal for 32-bit registers. We need to
57 // extend and do a 32-bit copy to avoid the verifier complaining about it.
58 ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
59 } else
60 ExtReg = extendRegister(ValVReg, VA);
62 MIRBuilder.buildCopy(PhysReg, ExtReg);
63 MIB.addUse(PhysReg, RegState::Implicit);
66 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
67 CCValAssign::LocInfo LocInfo,
68 const CallLowering::ArgInfo &Info,
69 ISD::ArgFlagsTy Flags,
70 CCState &State) override {
71 return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
75 struct IncomingArgHandler : public CallLowering::ValueHandler {
76 uint64_t StackUsed = 0;
78 IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
79 CCAssignFn *AssignFn)
80 : ValueHandler(B, MRI, AssignFn) {}
82 Register getStackAddress(uint64_t Size, int64_t Offset,
83 MachinePointerInfo &MPO) override {
84 auto &MFI = MIRBuilder.getMF().getFrameInfo();
85 int FI = MFI.CreateFixedObject(Size, Offset, true);
86 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
87 Register AddrReg = MRI.createGenericVirtualRegister(
88 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
89 MIRBuilder.buildFrameIndex(AddrReg, FI);
90 StackUsed = std::max(StackUsed, Size + Offset);
91 return AddrReg;
94 void assignValueToReg(Register ValVReg, Register PhysReg,
95 CCValAssign &VA) override {
96 markPhysRegUsed(PhysReg);
98 if (VA.getLocVT().getSizeInBits() < 32) {
99 // 16-bit types are reported as legal for 32-bit registers. We need to do
100 // a 32-bit copy, and truncate to avoid the verifier complaining about it.
101 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
102 MIRBuilder.buildTrunc(ValVReg, Copy);
103 return;
106 switch (VA.getLocInfo()) {
107 case CCValAssign::LocInfo::SExt:
108 case CCValAssign::LocInfo::ZExt:
109 case CCValAssign::LocInfo::AExt: {
110 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
111 MIRBuilder.buildTrunc(ValVReg, Copy);
112 break;
114 default:
115 MIRBuilder.buildCopy(ValVReg, PhysReg);
116 break;
120 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
121 MachinePointerInfo &MPO, CCValAssign &VA) override {
122 // FIXME: Get alignment
123 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
124 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
125 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
128 /// How the physical register gets marked varies between formal
129 /// parameters (it's a basic-block live-in), and a call instruction
130 /// (it's an implicit-def of the BL).
131 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
133 // FIXME: What is the point of this being a callback?
134 bool isIncomingArgumentHandler() const override { return true; }
137 struct FormalArgHandler : public IncomingArgHandler {
138 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
139 CCAssignFn *AssignFn)
140 : IncomingArgHandler(B, MRI, AssignFn) {}
142 void markPhysRegUsed(unsigned PhysReg) override {
143 MIRBuilder.getMBB().addLiveIn(PhysReg);
149 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
150 : CallLowering(&TLI) {
153 void AMDGPUCallLowering::splitToValueTypes(
154 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
155 const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
156 SplitArgTy PerformArgSplit) const {
157 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
158 LLVMContext &Ctx = OrigArg.Ty->getContext();
160 if (OrigArg.Ty->isVoidTy())
161 return;
163 SmallVector<EVT, 4> SplitVTs;
164 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
166 assert(OrigArg.Regs.size() == SplitVTs.size());
168 int SplitIdx = 0;
169 for (EVT VT : SplitVTs) {
170 unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
171 Type *Ty = VT.getTypeForEVT(Ctx);
175 if (NumParts == 1) {
176 // No splitting to do, but we want to replace the original type (e.g. [1 x
177 // double] -> double).
178 SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
179 OrigArg.Flags, OrigArg.IsFixed);
181 ++SplitIdx;
182 continue;
185 LLT LLTy = getLLTForType(*Ty, DL);
187 SmallVector<Register, 8> SplitRegs;
189 EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
190 Type *PartTy = PartVT.getTypeForEVT(Ctx);
191 LLT PartLLT = getLLTForType(*PartTy, DL);
193 // FIXME: Should we be reporting all of the part registers for a single
194 // argument, and let handleAssignments take care of the repacking?
195 for (unsigned i = 0; i < NumParts; ++i) {
196 Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
197 SplitRegs.push_back(PartReg);
198 SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
201 PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
203 ++SplitIdx;
207 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
208 static LLT getMultipleType(LLT OrigTy, int Factor) {
209 if (OrigTy.isVector()) {
210 return LLT::vector(OrigTy.getNumElements() * Factor,
211 OrigTy.getElementType());
214 return LLT::scalar(OrigTy.getSizeInBits() * Factor);
217 // TODO: Move to generic code
218 static void unpackRegsToOrigType(MachineIRBuilder &B,
219 ArrayRef<Register> DstRegs,
220 Register SrcReg,
221 LLT SrcTy,
222 LLT PartTy) {
223 assert(DstRegs.size() > 1 && "Nothing to unpack");
225 MachineFunction &MF = B.getMF();
226 MachineRegisterInfo &MRI = MF.getRegInfo();
228 const unsigned SrcSize = SrcTy.getSizeInBits();
229 const unsigned PartSize = PartTy.getSizeInBits();
231 if (SrcTy.isVector() && !PartTy.isVector() &&
232 PartSize > SrcTy.getElementType().getSizeInBits()) {
233 // Vector was scalarized, and the elements extended.
234 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
235 SrcReg);
236 for (int i = 0, e = DstRegs.size(); i != e; ++i)
237 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
238 return;
241 if (SrcSize % PartSize == 0) {
242 B.buildUnmerge(DstRegs, SrcReg);
243 return;
246 const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
248 LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
249 auto ImpDef = B.buildUndef(BigTy);
251 Register BigReg = MRI.createGenericVirtualRegister(BigTy);
252 B.buildInsert(BigReg, ImpDef.getReg(0), SrcReg, 0).getReg(0);
254 int64_t Offset = 0;
255 for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
256 B.buildExtract(DstRegs[i], BigReg, Offset);
259 /// Lower the return value for the already existing \p Ret. This assumes that
260 /// \p B's insertion point is correct.
261 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
262 const Value *Val, ArrayRef<Register> VRegs,
263 MachineInstrBuilder &Ret) const {
264 if (!Val)
265 return true;
267 auto &MF = B.getMF();
268 const auto &F = MF.getFunction();
269 const DataLayout &DL = MF.getDataLayout();
271 CallingConv::ID CC = F.getCallingConv();
272 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
273 MachineRegisterInfo &MRI = MF.getRegInfo();
275 ArgInfo OrigRetInfo(VRegs, Val->getType());
276 setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
277 SmallVector<ArgInfo, 4> SplitRetInfos;
279 splitToValueTypes(
280 OrigRetInfo, SplitRetInfos, DL, MRI, CC,
281 [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
282 unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
285 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
287 OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn);
288 return handleAssignments(B, SplitRetInfos, RetHandler);
291 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
292 const Value *Val,
293 ArrayRef<Register> VRegs) const {
295 MachineFunction &MF = B.getMF();
296 MachineRegisterInfo &MRI = MF.getRegInfo();
297 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
298 MFI->setIfReturnsVoid(!Val);
300 assert(!Val == VRegs.empty() && "Return value without a vreg");
302 CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
303 const bool IsShader = AMDGPU::isShader(CC);
304 const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
305 AMDGPU::isKernel(CC);
306 if (IsWaveEnd) {
307 B.buildInstr(AMDGPU::S_ENDPGM)
308 .addImm(0);
309 return true;
312 auto const &ST = B.getMF().getSubtarget<GCNSubtarget>();
314 unsigned ReturnOpc =
315 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
317 auto Ret = B.buildInstrNoInsert(ReturnOpc);
318 Register ReturnAddrVReg;
319 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
320 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
321 Ret.addUse(ReturnAddrVReg);
324 if (!lowerReturnVal(B, Val, VRegs, Ret))
325 return false;
327 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
328 const SIRegisterInfo *TRI = ST.getRegisterInfo();
329 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
330 &AMDGPU::SGPR_64RegClass);
331 B.buildCopy(ReturnAddrVReg, LiveInReturn);
334 // TODO: Handle CalleeSavedRegsViaCopy.
336 B.insertInstr(Ret);
337 return true;
340 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
341 Type *ParamTy,
342 uint64_t Offset) const {
344 MachineFunction &MF = B.getMF();
345 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
346 MachineRegisterInfo &MRI = MF.getRegInfo();
347 const Function &F = MF.getFunction();
348 const DataLayout &DL = F.getParent()->getDataLayout();
349 PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
350 LLT PtrType = getLLTForType(*PtrTy, DL);
351 Register DstReg = MRI.createGenericVirtualRegister(PtrType);
352 Register KernArgSegmentPtr =
353 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
354 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
356 Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
357 B.buildConstant(OffsetReg, Offset);
359 B.buildGEP(DstReg, KernArgSegmentVReg, OffsetReg);
361 return DstReg;
364 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
365 Type *ParamTy, uint64_t Offset,
366 unsigned Align,
367 Register DstReg) const {
368 MachineFunction &MF = B.getMF();
369 const Function &F = MF.getFunction();
370 const DataLayout &DL = F.getParent()->getDataLayout();
371 PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
372 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
373 unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
374 Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
376 MachineMemOperand *MMO =
377 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
378 MachineMemOperand::MODereferenceable |
379 MachineMemOperand::MOInvariant,
380 TypeSize, Align);
382 B.buildLoad(DstReg, PtrReg, *MMO);
385 // Allocate special inputs passed in user SGPRs.
386 static void allocateHSAUserSGPRs(CCState &CCInfo,
387 MachineIRBuilder &B,
388 MachineFunction &MF,
389 const SIRegisterInfo &TRI,
390 SIMachineFunctionInfo &Info) {
391 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
392 if (Info.hasPrivateSegmentBuffer()) {
393 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
394 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
395 CCInfo.AllocateReg(PrivateSegmentBufferReg);
398 if (Info.hasDispatchPtr()) {
399 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
400 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
401 CCInfo.AllocateReg(DispatchPtrReg);
404 if (Info.hasQueuePtr()) {
405 unsigned QueuePtrReg = Info.addQueuePtr(TRI);
406 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
407 CCInfo.AllocateReg(QueuePtrReg);
410 if (Info.hasKernargSegmentPtr()) {
411 MachineRegisterInfo &MRI = MF.getRegInfo();
412 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
413 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
414 Register VReg = MRI.createGenericVirtualRegister(P4);
415 MRI.addLiveIn(InputPtrReg, VReg);
416 B.getMBB().addLiveIn(InputPtrReg);
417 B.buildCopy(VReg, InputPtrReg);
418 CCInfo.AllocateReg(InputPtrReg);
421 if (Info.hasDispatchID()) {
422 unsigned DispatchIDReg = Info.addDispatchID(TRI);
423 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
424 CCInfo.AllocateReg(DispatchIDReg);
427 if (Info.hasFlatScratchInit()) {
428 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
429 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
430 CCInfo.AllocateReg(FlatScratchInitReg);
433 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
434 // these from the dispatch pointer.
437 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
438 MachineIRBuilder &B, const Function &F,
439 ArrayRef<ArrayRef<Register>> VRegs) const {
440 MachineFunction &MF = B.getMF();
441 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
442 MachineRegisterInfo &MRI = MF.getRegInfo();
443 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
444 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
445 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
447 const DataLayout &DL = F.getParent()->getDataLayout();
449 SmallVector<CCValAssign, 16> ArgLocs;
450 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
452 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
454 unsigned i = 0;
455 const unsigned KernArgBaseAlign = 16;
456 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
457 uint64_t ExplicitArgOffset = 0;
459 // TODO: Align down to dword alignment and extract bits for extending loads.
460 for (auto &Arg : F.args()) {
461 Type *ArgTy = Arg.getType();
462 unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
463 if (AllocSize == 0)
464 continue;
466 unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
468 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
469 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
471 ArrayRef<Register> OrigArgRegs = VRegs[i];
472 Register ArgReg =
473 OrigArgRegs.size() == 1
474 ? OrigArgRegs[0]
475 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
476 unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
477 ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
478 lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
479 if (OrigArgRegs.size() > 1)
480 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
481 ++i;
484 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
485 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
486 return true;
489 // TODO: Move this to generic code
490 static void packSplitRegsToOrigType(MachineIRBuilder &B,
491 ArrayRef<Register> OrigRegs,
492 ArrayRef<Register> Regs,
493 LLT LLTy,
494 LLT PartLLT) {
495 if (!LLTy.isVector() && !PartLLT.isVector()) {
496 B.buildMerge(OrigRegs[0], Regs);
497 return;
500 if (LLTy.isVector() && PartLLT.isVector()) {
501 assert(LLTy.getElementType() == PartLLT.getElementType());
503 int DstElts = LLTy.getNumElements();
504 int PartElts = PartLLT.getNumElements();
505 if (DstElts % PartElts == 0)
506 B.buildConcatVectors(OrigRegs[0], Regs);
507 else {
508 // Deal with v3s16 split into v2s16
509 assert(PartElts == 2 && DstElts % 2 != 0);
510 int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);
512 LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
513 auto RoundedConcat = B.buildConcatVectors(RoundedDestTy, Regs);
514 B.buildExtract(OrigRegs[0], RoundedConcat, 0);
517 return;
520 assert(LLTy.isVector() && !PartLLT.isVector());
522 LLT DstEltTy = LLTy.getElementType();
523 if (DstEltTy == PartLLT) {
524 // Vector was trivially scalarized.
525 B.buildBuildVector(OrigRegs[0], Regs);
526 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
527 // Deal with vector with 64-bit elements decomposed to 32-bit
528 // registers. Need to create intermediate 64-bit elements.
529 SmallVector<Register, 8> EltMerges;
530 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
532 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
534 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
535 auto Merge = B.buildMerge(DstEltTy,
536 Regs.take_front(PartsPerElt));
537 EltMerges.push_back(Merge.getReg(0));
538 Regs = Regs.drop_front(PartsPerElt);
541 B.buildBuildVector(OrigRegs[0], EltMerges);
542 } else {
543 // Vector was split, and elements promoted to a wider type.
544 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
545 auto BV = B.buildBuildVector(BVType, Regs);
546 B.buildTrunc(OrigRegs[0], BV);
550 bool AMDGPUCallLowering::lowerFormalArguments(
551 MachineIRBuilder &B, const Function &F,
552 ArrayRef<ArrayRef<Register>> VRegs) const {
553 CallingConv::ID CC = F.getCallingConv();
555 // The infrastructure for normal calling convention lowering is essentially
556 // useless for kernels. We want to avoid any kind of legalization or argument
557 // splitting.
558 if (CC == CallingConv::AMDGPU_KERNEL)
559 return lowerFormalArgumentsKernel(B, F, VRegs);
561 const bool IsShader = AMDGPU::isShader(CC);
562 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
564 MachineFunction &MF = B.getMF();
565 MachineBasicBlock &MBB = B.getMBB();
566 MachineRegisterInfo &MRI = MF.getRegInfo();
567 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
568 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
569 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
570 const DataLayout &DL = F.getParent()->getDataLayout();
573 SmallVector<CCValAssign, 16> ArgLocs;
574 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
576 if (!IsEntryFunc) {
577 Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
578 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
579 &AMDGPU::SGPR_64RegClass);
580 MBB.addLiveIn(ReturnAddrReg);
581 B.buildCopy(LiveInReturn, ReturnAddrReg);
584 if (Info->hasImplicitBufferPtr()) {
585 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
586 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
587 CCInfo.AllocateReg(ImplicitBufferPtrReg);
591 SmallVector<ArgInfo, 32> SplitArgs;
592 unsigned Idx = 0;
593 unsigned PSInputNum = 0;
595 for (auto &Arg : F.args()) {
596 if (DL.getTypeStoreSize(Arg.getType()) == 0)
597 continue;
599 const bool InReg = Arg.hasAttribute(Attribute::InReg);
601 // SGPR arguments to functions not implemented.
602 if (!IsShader && InReg)
603 return false;
605 if (Arg.hasAttribute(Attribute::SwiftSelf) ||
606 Arg.hasAttribute(Attribute::SwiftError) ||
607 Arg.hasAttribute(Attribute::Nest))
608 return false;
610 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
611 const bool ArgUsed = !Arg.use_empty();
612 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
614 if (!SkipArg) {
615 Info->markPSInputAllocated(PSInputNum);
616 if (ArgUsed)
617 Info->markPSInputEnabled(PSInputNum);
620 ++PSInputNum;
622 if (SkipArg) {
623 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
624 B.buildUndef(VRegs[Idx][I]);
626 ++Idx;
627 continue;
631 ArgInfo OrigArg(VRegs[Idx], Arg.getType());
632 setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
634 splitToValueTypes(
635 OrigArg, SplitArgs, DL, MRI, CC,
636 // FIXME: We should probably be passing multiple registers to
637 // handleAssignments to do this
638 [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
639 packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
640 LLTy, PartLLT);
643 ++Idx;
646 // At least one interpolation mode must be enabled or else the GPU will
647 // hang.
649 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
650 // set PSInputAddr, the user wants to enable some bits after the compilation
651 // based on run-time states. Since we can't know what the final PSInputEna
652 // will look like, so we shouldn't do anything here and the user should take
653 // responsibility for the correct programming.
655 // Otherwise, the following restrictions apply:
656 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
657 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
658 // enabled too.
659 if (CC == CallingConv::AMDGPU_PS) {
660 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
661 ((Info->getPSInputAddr() & 0xF) == 0 &&
662 Info->isPSInputAllocated(11))) {
663 CCInfo.AllocateReg(AMDGPU::VGPR0);
664 CCInfo.AllocateReg(AMDGPU::VGPR1);
665 Info->markPSInputAllocated(0);
666 Info->markPSInputEnabled(0);
669 if (Subtarget.isAmdPalOS()) {
670 // For isAmdPalOS, the user does not enable some bits after compilation
671 // based on run-time states; the register values being generated here are
672 // the final ones set in hardware. Therefore we need to apply the
673 // workaround to PSInputAddr and PSInputEnable together. (The case where
674 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
675 // set up an input arg for a particular interpolation mode, but nothing
676 // uses that input arg. Really we should have an earlier pass that removes
677 // such an arg.)
678 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
679 if ((PsInputBits & 0x7F) == 0 ||
680 ((PsInputBits & 0xF) == 0 &&
681 (PsInputBits >> 11 & 1)))
682 Info->markPSInputEnabled(
683 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
687 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
688 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
690 if (!MBB.empty())
691 B.setInstr(*MBB.begin());
693 FormalArgHandler Handler(B, MRI, AssignFn);
694 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
695 return false;
697 if (!IsEntryFunc) {
698 // Special inputs come after user arguments.
699 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
702 // Start adding system SGPRs.
703 if (IsEntryFunc) {
704 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
705 } else {
706 CCInfo.AllocateReg(Info->getScratchRSrcReg());
707 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
708 CCInfo.AllocateReg(Info->getFrameOffsetReg());
709 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
712 // Move back to the end of the basic block.
713 B.setMBB(MBB);
715 return true;