1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function. This is required due to the
11 // limited pc-relative displacements that ARM has.
13 //===----------------------------------------------------------------------===//
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
60 #define DEBUG_TYPE "arm-cp-islands"
62 #define ARM_CP_ISLANDS_OPT_NAME \
63 "ARM constant island placement and branch shortening pass"
64 STATISTIC(NumCPEs
, "Number of constpool entries");
65 STATISTIC(NumSplit
, "Number of uncond branches inserted");
66 STATISTIC(NumCBrFixed
, "Number of cond branches fixed");
67 STATISTIC(NumUBrFixed
, "Number of uncond branches fixed");
68 STATISTIC(NumTBs
, "Number of table branches generated");
69 STATISTIC(NumT2CPShrunk
, "Number of Thumb2 constantpool instructions shrunk");
70 STATISTIC(NumT2BrShrunk
, "Number of Thumb2 immediate branches shrunk");
71 STATISTIC(NumCBZ
, "Number of CBZ / CBNZ formed");
72 STATISTIC(NumJTMoved
, "Number of jump table destination blocks moved");
73 STATISTIC(NumJTInserted
, "Number of jump table intermediate blocks inserted");
74 STATISTIC(NumLEInserted
, "Number of LE backwards branches inserted");
77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden
, cl::init(true),
78 cl::desc("Adjust basic block layout to better use TB[BH]"));
80 static cl::opt
<unsigned>
81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden
, cl::init(30),
82 cl::desc("The max number of iteration for converge"));
84 static cl::opt
<bool> SynthesizeThumb1TBB(
85 "arm-synthesize-thumb-1-tbb", cl::Hidden
, cl::init(true),
86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
87 "equivalent to the TBB/TBH instructions"));
91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
92 /// requires constant pool entries to be scattered among the instructions
93 /// inside a function. To do this, it completely ignores the normal LLVM
94 /// constant pool; instead, it places constants wherever it feels like with
95 /// special instructions.
97 /// The terminology used in this pass includes:
98 /// Islands - Clumps of constants placed in the function.
99 /// Water - Potential places where an island could be formed.
100 /// CPE - A constant pool entry that has been placed somewhere, which
101 /// tracks a list of users.
102 class ARMConstantIslands
: public MachineFunctionPass
{
103 std::unique_ptr
<ARMBasicBlockUtils
> BBUtils
= nullptr;
105 /// WaterList - A sorted list of basic blocks where islands could be placed
106 /// (i.e. blocks that don't fall through to the following block, due
107 /// to a return, unreachable, or unconditional branch).
108 std::vector
<MachineBasicBlock
*> WaterList
;
110 /// NewWaterList - The subset of WaterList that was created since the
111 /// previous iteration by inserting unconditional branches.
112 SmallSet
<MachineBasicBlock
*, 4> NewWaterList
;
114 using water_iterator
= std::vector
<MachineBasicBlock
*>::iterator
;
116 /// CPUser - One user of a constant pool, keeping the machine instruction
117 /// pointer, the constant pool being referenced, and the max displacement
118 /// allowed from the instruction to the CP. The HighWaterMark records the
119 /// highest basic block where a new CPEntry can be placed. To ensure this
120 /// pass terminates, the CP entries are initially placed at the end of the
121 /// function and then move monotonically to lower addresses. The
122 /// exception to this rule is when the current CP entry for a particular
123 /// CPUser is out of range, but there is another CP entry for the same
124 /// constant value in range. We want to use the existing in-range CP
125 /// entry, but if it later moves out of range, the search for new water
126 /// should resume where it left off. The HighWaterMark is used to record
131 MachineBasicBlock
*HighWaterMark
;
135 bool KnownAlignment
= false;
137 CPUser(MachineInstr
*mi
, MachineInstr
*cpemi
, unsigned maxdisp
,
138 bool neg
, bool soimm
)
139 : MI(mi
), CPEMI(cpemi
), MaxDisp(maxdisp
), NegOk(neg
), IsSoImm(soimm
) {
140 HighWaterMark
= CPEMI
->getParent();
143 /// getMaxDisp - Returns the maximum displacement supported by MI.
144 /// Correct for unknown alignment.
145 /// Conservatively subtract 2 bytes to handle weird alignment effects.
146 unsigned getMaxDisp() const {
147 return (KnownAlignment
? MaxDisp
: MaxDisp
- 2) - 2;
151 /// CPUsers - Keep track of all of the machine instructions that use various
152 /// constant pools and their max displacement.
153 std::vector
<CPUser
> CPUsers
;
155 /// CPEntry - One per constant pool entry, keeping the machine instruction
156 /// pointer, the constpool index, and the number of CPUser's which
157 /// reference this entry.
163 CPEntry(MachineInstr
*cpemi
, unsigned cpi
, unsigned rc
= 0)
164 : CPEMI(cpemi
), CPI(cpi
), RefCount(rc
) {}
167 /// CPEntries - Keep track of all of the constant pool entry machine
168 /// instructions. For each original constpool index (i.e. those that existed
169 /// upon entry to this pass), it keeps a vector of entries. Original
170 /// elements are cloned as we go along; the clones are put in the vector of
171 /// the original element, but have distinct CPIs.
173 /// The first half of CPEntries contains generic constants, the second half
174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
175 /// which vector it will be in here.
176 std::vector
<std::vector
<CPEntry
>> CPEntries
;
178 /// Maps a JT index to the offset in CPEntries containing copies of that
179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
180 DenseMap
<int, int> JumpTableEntryIndices
;
182 /// Maps a JT index to the LEA that actually uses the index to calculate its
184 DenseMap
<int, int> JumpTableUserIndices
;
186 /// ImmBranch - One per immediate branch, keeping the machine instruction
187 /// pointer, conditional or unconditional, the max displacement,
188 /// and (if isCond is true) the corresponding unconditional branch
192 unsigned MaxDisp
: 31;
196 ImmBranch(MachineInstr
*mi
, unsigned maxdisp
, bool cond
, unsigned ubr
)
197 : MI(mi
), MaxDisp(maxdisp
), isCond(cond
), UncondBr(ubr
) {}
200 /// ImmBranches - Keep track of all the immediate branch instructions.
201 std::vector
<ImmBranch
> ImmBranches
;
203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
204 SmallVector
<MachineInstr
*, 4> PushPopMIs
;
206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
207 SmallVector
<MachineInstr
*, 4> T2JumpTables
;
209 /// HasFarJump - True if any far jump instruction has been emitted during
210 /// the branch fix up pass.
214 MachineConstantPool
*MCP
;
215 const ARMBaseInstrInfo
*TII
;
216 const ARMSubtarget
*STI
;
217 ARMFunctionInfo
*AFI
;
218 MachineDominatorTree
*DT
= nullptr;
222 bool isPositionIndependentOrROPI
;
227 ARMConstantIslands() : MachineFunctionPass(ID
) {}
229 bool runOnMachineFunction(MachineFunction
&MF
) override
;
231 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
232 AU
.addRequired
<MachineDominatorTree
>();
233 MachineFunctionPass::getAnalysisUsage(AU
);
236 MachineFunctionProperties
getRequiredProperties() const override
{
237 return MachineFunctionProperties().set(
238 MachineFunctionProperties::Property::NoVRegs
);
241 StringRef
getPassName() const override
{
242 return ARM_CP_ISLANDS_OPT_NAME
;
246 void doInitialConstPlacement(std::vector
<MachineInstr
*> &CPEMIs
);
247 void doInitialJumpTablePlacement(std::vector
<MachineInstr
*> &CPEMIs
);
248 bool BBHasFallthrough(MachineBasicBlock
*MBB
);
249 CPEntry
*findConstPoolEntry(unsigned CPI
, const MachineInstr
*CPEMI
);
250 Align
getCPEAlign(const MachineInstr
*CPEMI
);
251 void scanFunctionJumpTables();
252 void initializeFunctionInfo(const std::vector
<MachineInstr
*> &CPEMIs
);
253 MachineBasicBlock
*splitBlockBeforeInstr(MachineInstr
*MI
);
254 void updateForInsertedWaterBlock(MachineBasicBlock
*NewBB
);
255 bool decrementCPEReferenceCount(unsigned CPI
, MachineInstr
* CPEMI
);
256 unsigned getCombinedIndex(const MachineInstr
*CPEMI
);
257 int findInRangeCPEntry(CPUser
& U
, unsigned UserOffset
);
258 bool findAvailableWater(CPUser
&U
, unsigned UserOffset
,
259 water_iterator
&WaterIter
, bool CloserWater
);
260 void createNewWater(unsigned CPUserIndex
, unsigned UserOffset
,
261 MachineBasicBlock
*&NewMBB
);
262 bool handleConstantPoolUser(unsigned CPUserIndex
, bool CloserWater
);
263 void removeDeadCPEMI(MachineInstr
*CPEMI
);
264 bool removeUnusedCPEntries();
265 bool isCPEntryInRange(MachineInstr
*MI
, unsigned UserOffset
,
266 MachineInstr
*CPEMI
, unsigned Disp
, bool NegOk
,
267 bool DoDump
= false);
268 bool isWaterInRange(unsigned UserOffset
, MachineBasicBlock
*Water
,
269 CPUser
&U
, unsigned &Growth
);
270 bool fixupImmediateBr(ImmBranch
&Br
);
271 bool fixupConditionalBr(ImmBranch
&Br
);
272 bool fixupUnconditionalBr(ImmBranch
&Br
);
273 bool undoLRSpillRestore();
274 bool optimizeThumb2Instructions();
275 bool optimizeThumb2Branches();
276 bool reorderThumb2JumpTables();
277 bool preserveBaseRegister(MachineInstr
*JumpMI
, MachineInstr
*LEAMI
,
278 unsigned &DeadSize
, bool &CanDeleteLEA
,
280 bool optimizeThumb2JumpTables();
281 MachineBasicBlock
*adjustJTTargetBlockForward(MachineBasicBlock
*BB
,
282 MachineBasicBlock
*JTBB
);
284 unsigned getUserOffset(CPUser
&) const;
288 bool isOffsetInRange(unsigned UserOffset
, unsigned TrialOffset
,
289 unsigned Disp
, bool NegativeOK
, bool IsSoImm
= false);
290 bool isOffsetInRange(unsigned UserOffset
, unsigned TrialOffset
,
292 return isOffsetInRange(UserOffset
, TrialOffset
,
293 U
.getMaxDisp(), U
.NegOk
, U
.IsSoImm
);
297 } // end anonymous namespace
299 char ARMConstantIslands::ID
= 0;
301 /// verify - check BBOffsets, BBSizes, alignment of islands
302 void ARMConstantIslands::verify() {
304 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
305 assert(std::is_sorted(MF
->begin(), MF
->end(),
306 [&BBInfo
](const MachineBasicBlock
&LHS
,
307 const MachineBasicBlock
&RHS
) {
308 return BBInfo
[LHS
.getNumber()].postOffset() <
309 BBInfo
[RHS
.getNumber()].postOffset();
311 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers
.size() << " CP users.\n");
312 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
) {
313 CPUser
&U
= CPUsers
[i
];
314 unsigned UserOffset
= getUserOffset(U
);
315 // Verify offset using the real max displacement without the safety
317 if (isCPEntryInRange(U
.MI
, UserOffset
, U
.CPEMI
, U
.getMaxDisp()+2, U
.NegOk
,
318 /* DoDump = */ true)) {
319 LLVM_DEBUG(dbgs() << "OK\n");
322 LLVM_DEBUG(dbgs() << "Out of range.\n");
324 LLVM_DEBUG(MF
->dump());
325 llvm_unreachable("Constant pool entry out of range!");
330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
331 /// print block size and offset information - debugging
332 LLVM_DUMP_METHOD
void ARMConstantIslands::dumpBBs() {
333 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
335 for (unsigned J
= 0, E
= BBInfo
.size(); J
!=E
; ++J
) {
336 const BasicBlockInfo
&BBI
= BBInfo
[J
];
337 dbgs() << format("%08x %bb.%u\t", BBI
.Offset
, J
)
338 << " kb=" << unsigned(BBI
.KnownBits
)
339 << " ua=" << unsigned(BBI
.Unalign
) << " pa=" << Log2(BBI
.PostAlign
)
340 << format(" size=%#x\n", BBInfo
[J
].Size
);
346 bool ARMConstantIslands::runOnMachineFunction(MachineFunction
&mf
) {
348 MCP
= mf
.getConstantPool();
349 BBUtils
= std::unique_ptr
<ARMBasicBlockUtils
>(new ARMBasicBlockUtils(mf
));
351 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
352 << MCP
->getConstants().size() << " CP entries, aligned to "
353 << MCP
->getConstantPoolAlignment() << " bytes *****\n");
355 STI
= &static_cast<const ARMSubtarget
&>(MF
->getSubtarget());
356 TII
= STI
->getInstrInfo();
357 isPositionIndependentOrROPI
=
358 STI
->getTargetLowering()->isPositionIndependent() || STI
->isROPI();
359 AFI
= MF
->getInfo
<ARMFunctionInfo
>();
360 DT
= &getAnalysis
<MachineDominatorTree
>();
362 isThumb
= AFI
->isThumbFunction();
363 isThumb1
= AFI
->isThumb1OnlyFunction();
364 isThumb2
= AFI
->isThumb2Function();
367 bool GenerateTBB
= isThumb2
|| (isThumb1
&& SynthesizeThumb1TBB
);
369 // Renumber all of the machine basic blocks in the function, guaranteeing that
370 // the numbers agree with the position of the block in the function.
371 MF
->RenumberBlocks();
373 // Try to reorder and otherwise adjust the block layout to make good use
374 // of the TB[BH] instructions.
375 bool MadeChange
= false;
376 if (GenerateTBB
&& AdjustJumpTableBlocks
) {
377 scanFunctionJumpTables();
378 MadeChange
|= reorderThumb2JumpTables();
379 // Data is out of date, so clear it. It'll be re-computed later.
380 T2JumpTables
.clear();
381 // Blocks may have shifted around. Keep the numbering up to date.
382 MF
->RenumberBlocks();
385 // Perform the initial placement of the constant pool entries. To start with,
386 // we put them all at the end of the function.
387 std::vector
<MachineInstr
*> CPEMIs
;
389 doInitialConstPlacement(CPEMIs
);
391 if (MF
->getJumpTableInfo())
392 doInitialJumpTablePlacement(CPEMIs
);
394 /// The next UID to take is the first unused one.
395 AFI
->initPICLabelUId(CPEMIs
.size());
397 // Do the initial scan of the function, building up information about the
398 // sizes of each block, the location of all the water, and finding all of the
399 // constant pool users.
400 initializeFunctionInfo(CPEMIs
);
402 LLVM_DEBUG(dumpBBs());
404 // Functions with jump tables need an alignment of 4 because they use the ADR
405 // instruction, which aligns the PC to 4 bytes before adding an offset.
406 if (!T2JumpTables
.empty())
407 MF
->ensureAlignment(Align(4));
409 /// Remove dead constant pool entries.
410 MadeChange
|= removeUnusedCPEntries();
412 // Iteratively place constant pool entries and fix up branches until there
414 unsigned NoCPIters
= 0, NoBRIters
= 0;
416 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters
<< '\n');
417 bool CPChange
= false;
418 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
)
419 // For most inputs, it converges in no more than 5 iterations.
420 // If it doesn't end in 10, the input may have huge BB or many CPEs.
421 // In this case, we will try different heuristics.
422 CPChange
|= handleConstantPoolUser(i
, NoCPIters
>= CPMaxIteration
/ 2);
423 if (CPChange
&& ++NoCPIters
> CPMaxIteration
)
424 report_fatal_error("Constant Island pass failed to converge!");
425 LLVM_DEBUG(dumpBBs());
427 // Clear NewWaterList now. If we split a block for branches, it should
428 // appear as "new water" for the next iteration of constant pool placement.
429 NewWaterList
.clear();
431 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters
<< '\n');
432 bool BRChange
= false;
433 for (unsigned i
= 0, e
= ImmBranches
.size(); i
!= e
; ++i
)
434 BRChange
|= fixupImmediateBr(ImmBranches
[i
]);
435 if (BRChange
&& ++NoBRIters
> 30)
436 report_fatal_error("Branch Fix Up pass failed to converge!");
437 LLVM_DEBUG(dumpBBs());
439 if (!CPChange
&& !BRChange
)
444 // Shrink 32-bit Thumb2 load and store instructions.
445 if (isThumb2
&& !STI
->prefers32BitThumb())
446 MadeChange
|= optimizeThumb2Instructions();
448 // Shrink 32-bit branch instructions.
449 if (isThumb
&& STI
->hasV8MBaselineOps())
450 MadeChange
|= optimizeThumb2Branches();
452 // Optimize jump tables using TBB / TBH.
453 if (GenerateTBB
&& !STI
->genExecuteOnly())
454 MadeChange
|= optimizeThumb2JumpTables();
456 // After a while, this might be made debug-only, but it is not expensive.
459 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
460 // undo the spill / restore of LR if possible.
461 if (isThumb
&& !HasFarJump
&& AFI
->isLRSpilledForFarJump())
462 MadeChange
|= undoLRSpillRestore();
464 // Save the mapping between original and cloned constpool entries.
465 for (unsigned i
= 0, e
= CPEntries
.size(); i
!= e
; ++i
) {
466 for (unsigned j
= 0, je
= CPEntries
[i
].size(); j
!= je
; ++j
) {
467 const CPEntry
& CPE
= CPEntries
[i
][j
];
468 if (CPE
.CPEMI
&& CPE
.CPEMI
->getOperand(1).isCPI())
469 AFI
->recordCPEClone(i
, CPE
.CPI
);
473 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
479 JumpTableEntryIndices
.clear();
480 JumpTableUserIndices
.clear();
483 T2JumpTables
.clear();
488 /// Perform the initial placement of the regular constant pool entries.
489 /// To start with, we put them all at the end of the function.
491 ARMConstantIslands::doInitialConstPlacement(std::vector
<MachineInstr
*> &CPEMIs
) {
492 // Create the basic block to hold the CPE's.
493 MachineBasicBlock
*BB
= MF
->CreateMachineBasicBlock();
496 // MachineConstantPool measures alignment in bytes.
497 const Align
MaxAlign(MCP
->getConstantPoolAlignment());
498 const unsigned MaxLogAlign
= Log2(MaxAlign
);
500 // Mark the basic block as required by the const-pool.
501 BB
->setAlignment(MaxAlign
);
503 // The function needs to be as aligned as the basic blocks. The linker may
504 // move functions around based on their alignment.
505 MF
->ensureAlignment(BB
->getAlignment());
507 // Order the entries in BB by descending alignment. That ensures correct
508 // alignment of all entries as long as BB is sufficiently aligned. Keep
509 // track of the insertion point for each alignment. We are going to bucket
510 // sort the entries as they are created.
511 SmallVector
<MachineBasicBlock::iterator
, 8> InsPoint(MaxLogAlign
+ 1,
514 // Add all of the constants from the constant pool to the end block, use an
515 // identity mapping of CPI's to CPE's.
516 const std::vector
<MachineConstantPoolEntry
> &CPs
= MCP
->getConstants();
518 const DataLayout
&TD
= MF
->getDataLayout();
519 for (unsigned i
= 0, e
= CPs
.size(); i
!= e
; ++i
) {
520 unsigned Size
= TD
.getTypeAllocSize(CPs
[i
].getType());
521 unsigned Align
= CPs
[i
].getAlignment();
522 assert(isPowerOf2_32(Align
) && "Invalid alignment");
523 // Verify that all constant pool entries are a multiple of their alignment.
524 // If not, we would have to pad them out so that instructions stay aligned.
525 assert((Size
% Align
) == 0 && "CP Entry not multiple of 4 bytes!");
527 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
528 unsigned LogAlign
= Log2_32(Align
);
529 MachineBasicBlock::iterator InsAt
= InsPoint
[LogAlign
];
530 MachineInstr
*CPEMI
=
531 BuildMI(*BB
, InsAt
, DebugLoc(), TII
->get(ARM::CONSTPOOL_ENTRY
))
532 .addImm(i
).addConstantPoolIndex(i
).addImm(Size
);
533 CPEMIs
.push_back(CPEMI
);
535 // Ensure that future entries with higher alignment get inserted before
536 // CPEMI. This is bucket sort with iterators.
537 for (unsigned a
= LogAlign
+ 1; a
<= MaxLogAlign
; ++a
)
538 if (InsPoint
[a
] == InsAt
)
541 // Add a new CPEntry, but no corresponding CPUser yet.
542 CPEntries
.emplace_back(1, CPEntry(CPEMI
, i
));
544 LLVM_DEBUG(dbgs() << "Moved CPI#" << i
<< " to end of function, size = "
545 << Size
<< ", align = " << Align
<< '\n');
547 LLVM_DEBUG(BB
->dump());
550 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
551 /// instructions can be made more efficient if the jump table immediately
552 /// follows the instruction, it's best to place them immediately next to their
553 /// jumps to begin with. In almost all cases they'll never be moved from that
555 void ARMConstantIslands::doInitialJumpTablePlacement(
556 std::vector
<MachineInstr
*> &CPEMIs
) {
557 unsigned i
= CPEntries
.size();
558 auto MJTI
= MF
->getJumpTableInfo();
559 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
561 MachineBasicBlock
*LastCorrectlyNumberedBB
= nullptr;
562 for (MachineBasicBlock
&MBB
: *MF
) {
563 auto MI
= MBB
.getLastNonDebugInstr();
568 switch (MI
->getOpcode()) {
574 case ARM::BR_JTm_i12
:
576 JTOpcode
= ARM::JUMPTABLE_ADDRS
;
579 JTOpcode
= ARM::JUMPTABLE_INSTS
;
583 JTOpcode
= ARM::JUMPTABLE_TBB
;
587 JTOpcode
= ARM::JUMPTABLE_TBH
;
591 unsigned NumOps
= MI
->getDesc().getNumOperands();
592 MachineOperand JTOp
=
593 MI
->getOperand(NumOps
- (MI
->isPredicable() ? 2 : 1));
594 unsigned JTI
= JTOp
.getIndex();
595 unsigned Size
= JT
[JTI
].MBBs
.size() * sizeof(uint32_t);
596 MachineBasicBlock
*JumpTableBB
= MF
->CreateMachineBasicBlock();
597 MF
->insert(std::next(MachineFunction::iterator(MBB
)), JumpTableBB
);
598 MachineInstr
*CPEMI
= BuildMI(*JumpTableBB
, JumpTableBB
->begin(),
599 DebugLoc(), TII
->get(JTOpcode
))
601 .addJumpTableIndex(JTI
)
603 CPEMIs
.push_back(CPEMI
);
604 CPEntries
.emplace_back(1, CPEntry(CPEMI
, JTI
));
605 JumpTableEntryIndices
.insert(std::make_pair(JTI
, CPEntries
.size() - 1));
606 if (!LastCorrectlyNumberedBB
)
607 LastCorrectlyNumberedBB
= &MBB
;
610 // If we did anything then we need to renumber the subsequent blocks.
611 if (LastCorrectlyNumberedBB
)
612 MF
->RenumberBlocks(LastCorrectlyNumberedBB
);
615 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
616 /// into the block immediately after it.
617 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock
*MBB
) {
618 // Get the next machine basic block in the function.
619 MachineFunction::iterator MBBI
= MBB
->getIterator();
620 // Can't fall off end of function.
621 if (std::next(MBBI
) == MBB
->getParent()->end())
624 MachineBasicBlock
*NextBB
= &*std::next(MBBI
);
625 if (!MBB
->isSuccessor(NextBB
))
628 // Try to analyze the end of the block. A potential fallthrough may already
629 // have an unconditional branch for whatever reason.
630 MachineBasicBlock
*TBB
, *FBB
;
631 SmallVector
<MachineOperand
, 4> Cond
;
632 bool TooDifficult
= TII
->analyzeBranch(*MBB
, TBB
, FBB
, Cond
);
633 return TooDifficult
|| FBB
== nullptr;
636 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
637 /// look up the corresponding CPEntry.
638 ARMConstantIslands::CPEntry
*
639 ARMConstantIslands::findConstPoolEntry(unsigned CPI
,
640 const MachineInstr
*CPEMI
) {
641 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
642 // Number of entries per constpool index should be small, just do a
644 for (unsigned i
= 0, e
= CPEs
.size(); i
!= e
; ++i
) {
645 if (CPEs
[i
].CPEMI
== CPEMI
)
651 /// getCPEAlign - Returns the required alignment of the constant pool entry
652 /// represented by CPEMI.
653 Align
ARMConstantIslands::getCPEAlign(const MachineInstr
*CPEMI
) {
654 switch (CPEMI
->getOpcode()) {
655 case ARM::CONSTPOOL_ENTRY
:
657 case ARM::JUMPTABLE_TBB
:
658 return isThumb1
? Align(4) : Align(1);
659 case ARM::JUMPTABLE_TBH
:
660 return isThumb1
? Align(4) : Align(2);
661 case ARM::JUMPTABLE_INSTS
:
663 case ARM::JUMPTABLE_ADDRS
:
666 llvm_unreachable("unknown constpool entry kind");
669 unsigned CPI
= getCombinedIndex(CPEMI
);
670 assert(CPI
< MCP
->getConstants().size() && "Invalid constant pool index.");
671 return Align(MCP
->getConstants()[CPI
].getAlignment());
674 /// scanFunctionJumpTables - Do a scan of the function, building up
675 /// information about the sizes of each block and the locations of all
677 void ARMConstantIslands::scanFunctionJumpTables() {
678 for (MachineBasicBlock
&MBB
: *MF
) {
679 for (MachineInstr
&I
: MBB
)
681 (I
.getOpcode() == ARM::t2BR_JT
|| I
.getOpcode() == ARM::tBR_JTr
))
682 T2JumpTables
.push_back(&I
);
686 /// initializeFunctionInfo - Do the initial scan of the function, building up
687 /// information about the sizes of each block, the location of all the water,
688 /// and finding all of the constant pool users.
689 void ARMConstantIslands::
690 initializeFunctionInfo(const std::vector
<MachineInstr
*> &CPEMIs
) {
692 BBUtils
->computeAllBlockSizes();
693 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
694 // The known bits of the entry block offset are determined by the function
696 BBInfo
.front().KnownBits
= Log2(MF
->getAlignment());
698 // Compute block offsets and known bits.
699 BBUtils
->adjustBBOffsetsAfter(&MF
->front());
701 // Now go back through the instructions and build up our data structures.
702 for (MachineBasicBlock
&MBB
: *MF
) {
703 // If this block doesn't fall through into the next MBB, then this is
704 // 'water' that a constant pool island could be placed.
705 if (!BBHasFallthrough(&MBB
))
706 WaterList
.push_back(&MBB
);
708 for (MachineInstr
&I
: MBB
) {
709 if (I
.isDebugInstr())
712 unsigned Opc
= I
.getOpcode();
720 continue; // Ignore other JT branches
723 T2JumpTables
.push_back(&I
);
724 continue; // Does not get an entry in ImmBranches
755 // Record this immediate branch.
756 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
757 ImmBranches
.push_back(ImmBranch(&I
, MaxOffs
, isCond
, UOpc
));
760 if (Opc
== ARM::tPUSH
|| Opc
== ARM::tPOP_RET
)
761 PushPopMIs
.push_back(&I
);
763 if (Opc
== ARM::CONSTPOOL_ENTRY
|| Opc
== ARM::JUMPTABLE_ADDRS
||
764 Opc
== ARM::JUMPTABLE_INSTS
|| Opc
== ARM::JUMPTABLE_TBB
||
765 Opc
== ARM::JUMPTABLE_TBH
)
768 // Scan the instructions for constant pool operands.
769 for (unsigned op
= 0, e
= I
.getNumOperands(); op
!= e
; ++op
)
770 if (I
.getOperand(op
).isCPI() || I
.getOperand(op
).isJTI()) {
771 // We found one. The addressing mode tells us the max displacement
772 // from the PC that this instruction permits.
774 // Basic size info comes from the TSFlags field.
778 bool IsSoImm
= false;
782 llvm_unreachable("Unknown addressing mode for CP reference!");
784 // Taking the address of a CP entry.
786 case ARM::LEApcrelJT
:
787 // This takes a SoImm, which is 8 bit immediate rotated. We'll
788 // pretend the maximum offset is 255 * 4. Since each instruction
789 // 4 byte wide, this is always correct. We'll check for other
790 // displacements that fits in a SoImm as well.
796 case ARM::t2LEApcrel
:
797 case ARM::t2LEApcrelJT
:
802 case ARM::tLEApcrelJT
:
813 Bits
= 12; // +-offset_12
819 Scale
= 4; // +(offset_8*4)
825 Scale
= 4; // +-(offset_8*4)
830 Scale
= 2; // +-(offset_8*2)
835 // Remember that this is a user of a CP entry.
836 unsigned CPI
= I
.getOperand(op
).getIndex();
837 if (I
.getOperand(op
).isJTI()) {
838 JumpTableUserIndices
.insert(std::make_pair(CPI
, CPUsers
.size()));
839 CPI
= JumpTableEntryIndices
[CPI
];
842 MachineInstr
*CPEMI
= CPEMIs
[CPI
];
843 unsigned MaxOffs
= ((1 << Bits
)-1) * Scale
;
844 CPUsers
.push_back(CPUser(&I
, CPEMI
, MaxOffs
, NegOk
, IsSoImm
));
846 // Increment corresponding CPEntry reference count.
847 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
848 assert(CPE
&& "Cannot find a corresponding CPEntry!");
851 // Instructions can only use one CP entry, don't bother scanning the
852 // rest of the operands.
859 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
861 static bool CompareMBBNumbers(const MachineBasicBlock
*LHS
,
862 const MachineBasicBlock
*RHS
) {
863 return LHS
->getNumber() < RHS
->getNumber();
866 /// updateForInsertedWaterBlock - When a block is newly inserted into the
867 /// machine function, it upsets all of the block numbers. Renumber the blocks
868 /// and update the arrays that parallel this numbering.
869 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock
*NewBB
) {
870 // Renumber the MBB's to keep them consecutive.
871 NewBB
->getParent()->RenumberBlocks(NewBB
);
873 // Insert an entry into BBInfo to align it properly with the (newly
874 // renumbered) block numbers.
875 BBUtils
->insert(NewBB
->getNumber(), BasicBlockInfo());
877 // Next, update WaterList. Specifically, we need to add NewMBB as having
878 // available water after it.
879 water_iterator IP
= llvm::lower_bound(WaterList
, NewBB
, CompareMBBNumbers
);
880 WaterList
.insert(IP
, NewBB
);
883 /// Split the basic block containing MI into two blocks, which are joined by
884 /// an unconditional branch. Update data structures and renumber blocks to
885 /// account for this change and returns the newly created block.
886 MachineBasicBlock
*ARMConstantIslands::splitBlockBeforeInstr(MachineInstr
*MI
) {
887 MachineBasicBlock
*OrigBB
= MI
->getParent();
889 // Collect liveness information at MI.
890 LivePhysRegs
LRs(*MF
->getSubtarget().getRegisterInfo());
891 LRs
.addLiveOuts(*OrigBB
);
892 auto LivenessEnd
= ++MachineBasicBlock::iterator(MI
).getReverse();
893 for (MachineInstr
&LiveMI
: make_range(OrigBB
->rbegin(), LivenessEnd
))
894 LRs
.stepBackward(LiveMI
);
896 // Create a new MBB for the code after the OrigBB.
897 MachineBasicBlock
*NewBB
=
898 MF
->CreateMachineBasicBlock(OrigBB
->getBasicBlock());
899 MachineFunction::iterator MBBI
= ++OrigBB
->getIterator();
900 MF
->insert(MBBI
, NewBB
);
902 // Splice the instructions starting with MI over to NewBB.
903 NewBB
->splice(NewBB
->end(), OrigBB
, MI
, OrigBB
->end());
905 // Add an unconditional branch from OrigBB to NewBB.
906 // Note the new unconditional branch is not being recorded.
907 // There doesn't seem to be meaningful DebugInfo available; this doesn't
908 // correspond to anything in the source.
909 unsigned Opc
= isThumb
? (isThumb2
? ARM::t2B
: ARM::tB
) : ARM::B
;
911 BuildMI(OrigBB
, DebugLoc(), TII
->get(Opc
)).addMBB(NewBB
);
913 BuildMI(OrigBB
, DebugLoc(), TII
->get(Opc
))
915 .add(predOps(ARMCC::AL
));
918 // Update the CFG. All succs of OrigBB are now succs of NewBB.
919 NewBB
->transferSuccessors(OrigBB
);
921 // OrigBB branches to NewBB.
922 OrigBB
->addSuccessor(NewBB
);
924 // Update live-in information in the new block.
925 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
926 for (MCPhysReg L
: LRs
)
927 if (!MRI
.isReserved(L
))
930 // Update internal data structures to account for the newly inserted MBB.
931 // This is almost the same as updateForInsertedWaterBlock, except that
932 // the Water goes after OrigBB, not NewBB.
933 MF
->RenumberBlocks(NewBB
);
935 // Insert an entry into BBInfo to align it properly with the (newly
936 // renumbered) block numbers.
937 BBUtils
->insert(NewBB
->getNumber(), BasicBlockInfo());
939 // Next, update WaterList. Specifically, we need to add OrigMBB as having
940 // available water after it (but not if it's already there, which happens
941 // when splitting before a conditional branch that is followed by an
942 // unconditional branch - in that case we want to insert NewBB).
943 water_iterator IP
= llvm::lower_bound(WaterList
, OrigBB
, CompareMBBNumbers
);
944 MachineBasicBlock
* WaterBB
= *IP
;
945 if (WaterBB
== OrigBB
)
946 WaterList
.insert(std::next(IP
), NewBB
);
948 WaterList
.insert(IP
, OrigBB
);
949 NewWaterList
.insert(OrigBB
);
951 // Figure out how large the OrigBB is. As the first half of the original
952 // block, it cannot contain a tablejump. The size includes
953 // the new jump we added. (It should be possible to do this without
954 // recounting everything, but it's very confusing, and this is rarely
956 BBUtils
->computeBlockSize(OrigBB
);
958 // Figure out how large the NewMBB is. As the second half of the original
959 // block, it may contain a tablejump.
960 BBUtils
->computeBlockSize(NewBB
);
962 // All BBOffsets following these blocks must be modified.
963 BBUtils
->adjustBBOffsetsAfter(OrigBB
);
968 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
969 /// displacement computation. Update U.KnownAlignment to match its current
970 /// basic block location.
971 unsigned ARMConstantIslands::getUserOffset(CPUser
&U
) const {
972 unsigned UserOffset
= BBUtils
->getOffsetOf(U
.MI
);
974 SmallVectorImpl
<BasicBlockInfo
> &BBInfo
= BBUtils
->getBBInfo();
975 const BasicBlockInfo
&BBI
= BBInfo
[U
.MI
->getParent()->getNumber()];
976 unsigned KnownBits
= BBI
.internalKnownBits();
978 // The value read from PC is offset from the actual instruction address.
979 UserOffset
+= (isThumb
? 4 : 8);
981 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
982 // Make sure U.getMaxDisp() returns a constrained range.
983 U
.KnownAlignment
= (KnownBits
>= 2);
985 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
986 // purposes of the displacement computation; compensate for that here.
987 // For unknown alignments, getMaxDisp() constrains the range instead.
988 if (isThumb
&& U
.KnownAlignment
)
994 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
995 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
996 /// constant pool entry).
997 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
998 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
999 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1000 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset
,
1001 unsigned TrialOffset
, unsigned MaxDisp
,
1002 bool NegativeOK
, bool IsSoImm
) {
1003 if (UserOffset
<= TrialOffset
) {
1004 // User before the Trial.
1005 if (TrialOffset
- UserOffset
<= MaxDisp
)
1007 // FIXME: Make use full range of soimm values.
1008 } else if (NegativeOK
) {
1009 if (UserOffset
- TrialOffset
<= MaxDisp
)
1011 // FIXME: Make use full range of soimm values.
1016 /// isWaterInRange - Returns true if a CPE placed after the specified
1017 /// Water (a basic block) will be in range for the specific MI.
1019 /// Compute how much the function will grow by inserting a CPE after Water.
1020 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset
,
1021 MachineBasicBlock
* Water
, CPUser
&U
,
1023 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1024 const Align CPEAlign
= getCPEAlign(U
.CPEMI
);
1025 const unsigned CPEOffset
= BBInfo
[Water
->getNumber()].postOffset(CPEAlign
);
1026 unsigned NextBlockOffset
;
1027 Align NextBlockAlignment
;
1028 MachineFunction::const_iterator NextBlock
= Water
->getIterator();
1029 if (++NextBlock
== MF
->end()) {
1030 NextBlockOffset
= BBInfo
[Water
->getNumber()].postOffset();
1032 NextBlockOffset
= BBInfo
[NextBlock
->getNumber()].Offset
;
1033 NextBlockAlignment
= NextBlock
->getAlignment();
1035 unsigned Size
= U
.CPEMI
->getOperand(2).getImm();
1036 unsigned CPEEnd
= CPEOffset
+ Size
;
1038 // The CPE may be able to hide in the alignment padding before the next
1039 // block. It may also cause more padding to be required if it is more aligned
1040 // that the next block.
1041 if (CPEEnd
> NextBlockOffset
) {
1042 Growth
= CPEEnd
- NextBlockOffset
;
1043 // Compute the padding that would go at the end of the CPE to align the next
1045 Growth
+= offsetToAlignment(CPEEnd
, NextBlockAlignment
);
1047 // If the CPE is to be inserted before the instruction, that will raise
1048 // the offset of the instruction. Also account for unknown alignment padding
1049 // in blocks between CPE and the user.
1050 if (CPEOffset
< UserOffset
)
1051 UserOffset
+= Growth
+ UnknownPadding(MF
->getAlignment(), Log2(CPEAlign
));
1053 // CPE fits in existing padding.
1056 return isOffsetInRange(UserOffset
, CPEOffset
, U
);
1059 /// isCPEntryInRange - Returns true if the distance between specific MI and
1060 /// specific ConstPool entry instruction can fit in MI's displacement field.
1061 bool ARMConstantIslands::isCPEntryInRange(MachineInstr
*MI
, unsigned UserOffset
,
1062 MachineInstr
*CPEMI
, unsigned MaxDisp
,
1063 bool NegOk
, bool DoDump
) {
1064 unsigned CPEOffset
= BBUtils
->getOffsetOf(CPEMI
);
1068 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1069 unsigned Block
= MI
->getParent()->getNumber();
1070 const BasicBlockInfo
&BBI
= BBInfo
[Block
];
1071 dbgs() << "User of CPE#" << CPEMI
->getOperand(0).getImm()
1072 << " max delta=" << MaxDisp
1073 << format(" insn address=%#x", UserOffset
) << " in "
1074 << printMBBReference(*MI
->getParent()) << ": "
1075 << format("%#x-%x\t", BBI
.Offset
, BBI
.postOffset()) << *MI
1076 << format("CPE address=%#x offset=%+d: ", CPEOffset
,
1077 int(CPEOffset
- UserOffset
));
1081 return isOffsetInRange(UserOffset
, CPEOffset
, MaxDisp
, NegOk
);
1085 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1086 /// unconditionally branches to its only successor.
1087 static bool BBIsJumpedOver(MachineBasicBlock
*MBB
) {
1088 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
1091 MachineBasicBlock
*Succ
= *MBB
->succ_begin();
1092 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
1093 MachineInstr
*PredMI
= &Pred
->back();
1094 if (PredMI
->getOpcode() == ARM::B
|| PredMI
->getOpcode() == ARM::tB
1095 || PredMI
->getOpcode() == ARM::t2B
)
1096 return PredMI
->getOperand(0).getMBB() == Succ
;
1101 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1102 /// and instruction CPEMI, and decrement its refcount. If the refcount
1103 /// becomes 0 remove the entry and instruction. Returns true if we removed
1104 /// the entry, false if we didn't.
1105 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI
,
1106 MachineInstr
*CPEMI
) {
1107 // Find the old entry. Eliminate it if it is no longer used.
1108 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
1109 assert(CPE
&& "Unexpected!");
1110 if (--CPE
->RefCount
== 0) {
1111 removeDeadCPEMI(CPEMI
);
1112 CPE
->CPEMI
= nullptr;
1119 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr
*CPEMI
) {
1120 if (CPEMI
->getOperand(1).isCPI())
1121 return CPEMI
->getOperand(1).getIndex();
1123 return JumpTableEntryIndices
[CPEMI
->getOperand(1).getIndex()];
1126 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1127 /// if not, see if an in-range clone of the CPE is in range, and if so,
1128 /// change the data structures so the user references the clone. Returns:
1129 /// 0 = no existing entry found
1130 /// 1 = entry found, and there were no code insertions or deletions
1131 /// 2 = entry found, and there were code insertions or deletions
1132 int ARMConstantIslands::findInRangeCPEntry(CPUser
& U
, unsigned UserOffset
) {
1133 MachineInstr
*UserMI
= U
.MI
;
1134 MachineInstr
*CPEMI
= U
.CPEMI
;
1136 // Check to see if the CPE is already in-range.
1137 if (isCPEntryInRange(UserMI
, UserOffset
, CPEMI
, U
.getMaxDisp(), U
.NegOk
,
1139 LLVM_DEBUG(dbgs() << "In range\n");
1143 // No. Look for previously created clones of the CPE that are in range.
1144 unsigned CPI
= getCombinedIndex(CPEMI
);
1145 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
1146 for (unsigned i
= 0, e
= CPEs
.size(); i
!= e
; ++i
) {
1147 // We already tried this one
1148 if (CPEs
[i
].CPEMI
== CPEMI
)
1150 // Removing CPEs can leave empty entries, skip
1151 if (CPEs
[i
].CPEMI
== nullptr)
1153 if (isCPEntryInRange(UserMI
, UserOffset
, CPEs
[i
].CPEMI
, U
.getMaxDisp(),
1155 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI
<< " with CPE#"
1156 << CPEs
[i
].CPI
<< "\n");
1157 // Point the CPUser node to the replacement
1158 U
.CPEMI
= CPEs
[i
].CPEMI
;
1159 // Change the CPI in the instruction operand to refer to the clone.
1160 for (unsigned j
= 0, e
= UserMI
->getNumOperands(); j
!= e
; ++j
)
1161 if (UserMI
->getOperand(j
).isCPI()) {
1162 UserMI
->getOperand(j
).setIndex(CPEs
[i
].CPI
);
1165 // Adjust the refcount of the clone...
1167 // ...and the original. If we didn't remove the old entry, none of the
1168 // addresses changed, so we don't need another pass.
1169 return decrementCPEReferenceCount(CPI
, CPEMI
) ? 2 : 1;
1175 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1176 /// the specific unconditional branch instruction.
1177 static inline unsigned getUnconditionalBrDisp(int Opc
) {
1180 return ((1<<10)-1)*2;
1182 return ((1<<23)-1)*2;
1187 return ((1<<23)-1)*4;
1190 /// findAvailableWater - Look for an existing entry in the WaterList in which
1191 /// we can place the CPE referenced from U so it's within range of U's MI.
1192 /// Returns true if found, false if not. If it returns true, WaterIter
1193 /// is set to the WaterList entry. For Thumb, prefer water that will not
1194 /// introduce padding to water that will. To ensure that this pass
1195 /// terminates, the CPE location for a particular CPUser is only allowed to
1196 /// move to a lower address, so search backward from the end of the list and
1197 /// prefer the first water that is in range.
1198 bool ARMConstantIslands::findAvailableWater(CPUser
&U
, unsigned UserOffset
,
1199 water_iterator
&WaterIter
,
1201 if (WaterList
.empty())
1204 unsigned BestGrowth
= ~0u;
1205 // The nearest water without splitting the UserBB is right after it.
1206 // If the distance is still large (we have a big BB), then we need to split it
1207 // if we don't converge after certain iterations. This helps the following
1208 // situation to converge:
1213 // When a CP access is out of range, BB0 may be used as water. However,
1214 // inserting islands between BB0 and BB1 makes other accesses out of range.
1215 MachineBasicBlock
*UserBB
= U
.MI
->getParent();
1216 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1217 const Align CPEAlign
= getCPEAlign(U
.CPEMI
);
1218 unsigned MinNoSplitDisp
= BBInfo
[UserBB
->getNumber()].postOffset(CPEAlign
);
1219 if (CloserWater
&& MinNoSplitDisp
> U
.getMaxDisp() / 2)
1221 for (water_iterator IP
= std::prev(WaterList
.end()), B
= WaterList
.begin();;
1223 MachineBasicBlock
* WaterBB
= *IP
;
1224 // Check if water is in range and is either at a lower address than the
1225 // current "high water mark" or a new water block that was created since
1226 // the previous iteration by inserting an unconditional branch. In the
1227 // latter case, we want to allow resetting the high water mark back to
1228 // this new water since we haven't seen it before. Inserting branches
1229 // should be relatively uncommon and when it does happen, we want to be
1230 // sure to take advantage of it for all the CPEs near that block, so that
1231 // we don't insert more branches than necessary.
1232 // When CloserWater is true, we try to find the lowest address after (or
1233 // equal to) user MI's BB no matter of padding growth.
1235 if (isWaterInRange(UserOffset
, WaterBB
, U
, Growth
) &&
1236 (WaterBB
->getNumber() < U
.HighWaterMark
->getNumber() ||
1237 NewWaterList
.count(WaterBB
) || WaterBB
== U
.MI
->getParent()) &&
1238 Growth
< BestGrowth
) {
1239 // This is the least amount of required padding seen so far.
1240 BestGrowth
= Growth
;
1242 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB
)
1243 << " Growth=" << Growth
<< '\n');
1245 if (CloserWater
&& WaterBB
== U
.MI
->getParent())
1247 // Keep looking unless it is perfect and we're not looking for the lowest
1248 // possible address.
1249 if (!CloserWater
&& BestGrowth
== 0)
1255 return BestGrowth
!= ~0u;
1258 /// createNewWater - No existing WaterList entry will work for
1259 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1260 /// block is used if in range, and the conditional branch munged so control
1261 /// flow is correct. Otherwise the block is split to create a hole with an
1262 /// unconditional branch around it. In either case NewMBB is set to a
1263 /// block following which the new island can be inserted (the WaterList
1264 /// is not adjusted).
1265 void ARMConstantIslands::createNewWater(unsigned CPUserIndex
,
1266 unsigned UserOffset
,
1267 MachineBasicBlock
*&NewMBB
) {
1268 CPUser
&U
= CPUsers
[CPUserIndex
];
1269 MachineInstr
*UserMI
= U
.MI
;
1270 MachineInstr
*CPEMI
= U
.CPEMI
;
1271 const Align CPEAlign
= getCPEAlign(CPEMI
);
1272 MachineBasicBlock
*UserMBB
= UserMI
->getParent();
1273 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1274 const BasicBlockInfo
&UserBBI
= BBInfo
[UserMBB
->getNumber()];
1276 // If the block does not end in an unconditional branch already, and if the
1277 // end of the block is within range, make new water there. (The addition
1278 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1279 // Thumb2, 2 on Thumb1.
1280 if (BBHasFallthrough(UserMBB
)) {
1281 // Size of branch to insert.
1282 unsigned Delta
= isThumb1
? 2 : 4;
1283 // Compute the offset where the CPE will begin.
1284 unsigned CPEOffset
= UserBBI
.postOffset(CPEAlign
) + Delta
;
1286 if (isOffsetInRange(UserOffset
, CPEOffset
, U
)) {
1287 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB
)
1288 << format(", expected CPE offset %#x\n", CPEOffset
));
1289 NewMBB
= &*++UserMBB
->getIterator();
1290 // Add an unconditional branch from UserMBB to fallthrough block. Record
1291 // it for branch lengthening; this new branch will not get out of range,
1292 // but if the preceding conditional branch is out of range, the targets
1293 // will be exchanged, and the altered branch may be out of range, so the
1294 // machinery has to know about it.
1295 int UncondBr
= isThumb
? ((isThumb2
) ? ARM::t2B
: ARM::tB
) : ARM::B
;
1297 BuildMI(UserMBB
, DebugLoc(), TII
->get(UncondBr
)).addMBB(NewMBB
);
1299 BuildMI(UserMBB
, DebugLoc(), TII
->get(UncondBr
))
1301 .add(predOps(ARMCC::AL
));
1302 unsigned MaxDisp
= getUnconditionalBrDisp(UncondBr
);
1303 ImmBranches
.push_back(ImmBranch(&UserMBB
->back(),
1304 MaxDisp
, false, UncondBr
));
1305 BBUtils
->computeBlockSize(UserMBB
);
1306 BBUtils
->adjustBBOffsetsAfter(UserMBB
);
1311 // What a big block. Find a place within the block to split it. This is a
1312 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1313 // entries are 4 bytes: if instruction I references island CPE, and
1314 // instruction I+1 references CPE', it will not work well to put CPE as far
1315 // forward as possible, since then CPE' cannot immediately follow it (that
1316 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1317 // need to create a new island. So, we make a first guess, then walk through
1318 // the instructions between the one currently being looked at and the
1319 // possible insertion point, and make sure any other instructions that
1320 // reference CPEs will be able to use the same island area; if not, we back
1321 // up the insertion point.
1323 // Try to split the block so it's fully aligned. Compute the latest split
1324 // point where we can add a 4-byte branch instruction, and then align to
1325 // Align which is the largest possible alignment in the function.
1326 const Align Align
= MF
->getAlignment();
1327 assert(Align
>= CPEAlign
&& "Over-aligned constant pool entry");
1328 unsigned KnownBits
= UserBBI
.internalKnownBits();
1329 unsigned UPad
= UnknownPadding(Align
, KnownBits
);
1330 unsigned BaseInsertOffset
= UserOffset
+ U
.getMaxDisp() - UPad
;
1331 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1334 // The 4 in the following is for the unconditional branch we'll be inserting
1335 // (allows for long branch on Thumb1). Alignment of the island is handled
1336 // inside isOffsetInRange.
1337 BaseInsertOffset
-= 4;
1339 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset
)
1340 << " la=" << Log2(Align
) << " kb=" << KnownBits
1341 << " up=" << UPad
<< '\n');
1343 // This could point off the end of the block if we've already got constant
1344 // pool entries following this block; only the last one is in the water list.
1345 // Back past any possible branches (allow for a conditional and a maximally
1346 // long unconditional).
1347 if (BaseInsertOffset
+ 8 >= UserBBI
.postOffset()) {
1348 // Ensure BaseInsertOffset is larger than the offset of the instruction
1349 // following UserMI so that the loop which searches for the split point
1350 // iterates at least once.
1352 std::max(UserBBI
.postOffset() - UPad
- 8,
1353 UserOffset
+ TII
->getInstSizeInBytes(*UserMI
) + 1);
1354 // If the CP is referenced(ie, UserOffset) is in first four instructions
1355 // after IT, this recalculated BaseInsertOffset could be in the middle of
1356 // an IT block. If it is, change the BaseInsertOffset to just after the
1357 // IT block. This still make the CP Entry is in range becuase of the
1358 // following reasons.
1359 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1360 // U.getMaxDisp() - UPad).
1361 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1363 // 3. All the relevant instructions support much larger Maximum
1365 MachineBasicBlock::iterator I
= UserMI
;
1367 for (unsigned Offset
= UserOffset
+ TII
->getInstSizeInBytes(*UserMI
),
1369 I
->getOpcode() != ARM::t2IT
&&
1370 getITInstrPredicate(*I
, PredReg
) != ARMCC::AL
;
1371 Offset
+= TII
->getInstSizeInBytes(*I
), I
= std::next(I
)) {
1373 std::max(BaseInsertOffset
, Offset
+ TII
->getInstSizeInBytes(*I
) + 1);
1374 assert(I
!= UserMBB
->end() && "Fell off end of block");
1376 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset
));
1378 unsigned EndInsertOffset
= BaseInsertOffset
+ 4 + UPad
+
1379 CPEMI
->getOperand(2).getImm();
1380 MachineBasicBlock::iterator MI
= UserMI
;
1382 unsigned CPUIndex
= CPUserIndex
+1;
1383 unsigned NumCPUsers
= CPUsers
.size();
1384 MachineInstr
*LastIT
= nullptr;
1385 for (unsigned Offset
= UserOffset
+ TII
->getInstSizeInBytes(*UserMI
);
1386 Offset
< BaseInsertOffset
;
1387 Offset
+= TII
->getInstSizeInBytes(*MI
), MI
= std::next(MI
)) {
1388 assert(MI
!= UserMBB
->end() && "Fell off end of block");
1389 if (CPUIndex
< NumCPUsers
&& CPUsers
[CPUIndex
].MI
== &*MI
) {
1390 CPUser
&U
= CPUsers
[CPUIndex
];
1391 if (!isOffsetInRange(Offset
, EndInsertOffset
, U
)) {
1392 // Shift intertion point by one unit of alignment so it is within reach.
1393 BaseInsertOffset
-= Align
.value();
1394 EndInsertOffset
-= Align
.value();
1396 // This is overly conservative, as we don't account for CPEMIs being
1397 // reused within the block, but it doesn't matter much. Also assume CPEs
1398 // are added in order with alignment padding. We may eventually be able
1399 // to pack the aligned CPEs better.
1400 EndInsertOffset
+= U
.CPEMI
->getOperand(2).getImm();
1404 // Remember the last IT instruction.
1405 if (MI
->getOpcode() == ARM::t2IT
)
1411 // Avoid splitting an IT block.
1413 unsigned PredReg
= 0;
1414 ARMCC::CondCodes CC
= getITInstrPredicate(*MI
, PredReg
);
1415 if (CC
!= ARMCC::AL
)
1419 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1420 // On Windows, this instruction pair is covered by one single
1421 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1422 // constant island is injected inbetween them, the relocation will clobber
1423 // the instruction and fail to update the MOVT instruction.
1424 // (These instructions are bundled up until right before the ConstantIslands
1426 if (STI
->isTargetWindows() && isThumb
&& MI
->getOpcode() == ARM::t2MOVTi16
&&
1427 (MI
->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK
) ==
1430 assert(MI
->getOpcode() == ARM::t2MOVi16
&&
1431 (MI
->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK
) ==
1435 // We really must not split an IT block.
1438 assert(!isThumb
|| getITInstrPredicate(*MI
, PredReg
) == ARMCC::AL
);
1440 NewMBB
= splitBlockBeforeInstr(&*MI
);
1443 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1444 /// is out-of-range. If so, pick up the constant pool value and move it some
1445 /// place in-range. Return true if we changed any addresses (thus must run
1446 /// another pass of branch lengthening), false otherwise.
1447 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex
,
1449 CPUser
&U
= CPUsers
[CPUserIndex
];
1450 MachineInstr
*UserMI
= U
.MI
;
1451 MachineInstr
*CPEMI
= U
.CPEMI
;
1452 unsigned CPI
= getCombinedIndex(CPEMI
);
1453 unsigned Size
= CPEMI
->getOperand(2).getImm();
1454 // Compute this only once, it's expensive.
1455 unsigned UserOffset
= getUserOffset(U
);
1457 // See if the current entry is within range, or there is a clone of it
1459 int result
= findInRangeCPEntry(U
, UserOffset
);
1460 if (result
==1) return false;
1461 else if (result
==2) return true;
1463 // No existing clone of this CPE is within range.
1464 // We will be generating a new clone. Get a UID for it.
1465 unsigned ID
= AFI
->createPICLabelUId();
1467 // Look for water where we can place this CPE.
1468 MachineBasicBlock
*NewIsland
= MF
->CreateMachineBasicBlock();
1469 MachineBasicBlock
*NewMBB
;
1471 if (findAvailableWater(U
, UserOffset
, IP
, CloserWater
)) {
1472 LLVM_DEBUG(dbgs() << "Found water in range\n");
1473 MachineBasicBlock
*WaterBB
= *IP
;
1475 // If the original WaterList entry was "new water" on this iteration,
1476 // propagate that to the new island. This is just keeping NewWaterList
1477 // updated to match the WaterList, which will be updated below.
1478 if (NewWaterList
.erase(WaterBB
))
1479 NewWaterList
.insert(NewIsland
);
1481 // The new CPE goes before the following block (NewMBB).
1482 NewMBB
= &*++WaterBB
->getIterator();
1485 LLVM_DEBUG(dbgs() << "No water found\n");
1486 createNewWater(CPUserIndex
, UserOffset
, NewMBB
);
1488 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1489 // called while handling branches so that the water will be seen on the
1490 // next iteration for constant pools, but in this context, we don't want
1491 // it. Check for this so it will be removed from the WaterList.
1492 // Also remove any entry from NewWaterList.
1493 MachineBasicBlock
*WaterBB
= &*--NewMBB
->getIterator();
1494 IP
= find(WaterList
, WaterBB
);
1495 if (IP
!= WaterList
.end())
1496 NewWaterList
.erase(WaterBB
);
1498 // We are adding new water. Update NewWaterList.
1499 NewWaterList
.insert(NewIsland
);
1501 // Always align the new block because CP entries can be smaller than 4
1502 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1503 // be an already aligned constant pool block.
1504 const Align Alignment
= isThumb
? Align(2) : Align(4);
1505 if (NewMBB
->getAlignment() < Alignment
)
1506 NewMBB
->setAlignment(Alignment
);
1508 // Remove the original WaterList entry; we want subsequent insertions in
1509 // this vicinity to go after the one we're about to insert. This
1510 // considerably reduces the number of times we have to move the same CPE
1511 // more than once and is also important to ensure the algorithm terminates.
1512 if (IP
!= WaterList
.end())
1513 WaterList
.erase(IP
);
1515 // Okay, we know we can put an island before NewMBB now, do it!
1516 MF
->insert(NewMBB
->getIterator(), NewIsland
);
1518 // Update internal data structures to account for the newly inserted MBB.
1519 updateForInsertedWaterBlock(NewIsland
);
1521 // Now that we have an island to add the CPE to, clone the original CPE and
1522 // add it to the island.
1523 U
.HighWaterMark
= NewIsland
;
1524 U
.CPEMI
= BuildMI(NewIsland
, DebugLoc(), CPEMI
->getDesc())
1526 .add(CPEMI
->getOperand(1))
1528 CPEntries
[CPI
].push_back(CPEntry(U
.CPEMI
, ID
, 1));
1531 // Decrement the old entry, and remove it if refcount becomes 0.
1532 decrementCPEReferenceCount(CPI
, CPEMI
);
1534 // Mark the basic block as aligned as required by the const-pool entry.
1535 NewIsland
->setAlignment(getCPEAlign(U
.CPEMI
));
1537 // Increase the size of the island block to account for the new entry.
1538 BBUtils
->adjustBBSize(NewIsland
, Size
);
1539 BBUtils
->adjustBBOffsetsAfter(&*--NewIsland
->getIterator());
1541 // Finally, change the CPI in the instruction operand to be ID.
1542 for (unsigned i
= 0, e
= UserMI
->getNumOperands(); i
!= e
; ++i
)
1543 if (UserMI
->getOperand(i
).isCPI()) {
1544 UserMI
->getOperand(i
).setIndex(ID
);
1549 dbgs() << " Moved CPE to #" << ID
<< " CPI=" << CPI
1550 << format(" offset=%#x\n",
1551 BBUtils
->getBBInfo()[NewIsland
->getNumber()].Offset
));
1556 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1557 /// sizes and offsets of impacted basic blocks.
1558 void ARMConstantIslands::removeDeadCPEMI(MachineInstr
*CPEMI
) {
1559 MachineBasicBlock
*CPEBB
= CPEMI
->getParent();
1560 unsigned Size
= CPEMI
->getOperand(2).getImm();
1561 CPEMI
->eraseFromParent();
1562 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1563 BBUtils
->adjustBBSize(CPEBB
, -Size
);
1564 // All succeeding offsets have the current size value added in, fix this.
1565 if (CPEBB
->empty()) {
1566 BBInfo
[CPEBB
->getNumber()].Size
= 0;
1568 // This block no longer needs to be aligned.
1569 CPEBB
->setAlignment(Align::None());
1571 // Entries are sorted by descending alignment, so realign from the front.
1572 CPEBB
->setAlignment(getCPEAlign(&*CPEBB
->begin()));
1575 BBUtils
->adjustBBOffsetsAfter(CPEBB
);
1576 // An island has only one predecessor BB and one successor BB. Check if
1577 // this BB's predecessor jumps directly to this BB's successor. This
1578 // shouldn't happen currently.
1579 assert(!BBIsJumpedOver(CPEBB
) && "How did this happen?");
1580 // FIXME: remove the empty blocks after all the work is done?
1583 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1585 bool ARMConstantIslands::removeUnusedCPEntries() {
1586 unsigned MadeChange
= false;
1587 for (unsigned i
= 0, e
= CPEntries
.size(); i
!= e
; ++i
) {
1588 std::vector
<CPEntry
> &CPEs
= CPEntries
[i
];
1589 for (unsigned j
= 0, ee
= CPEs
.size(); j
!= ee
; ++j
) {
1590 if (CPEs
[j
].RefCount
== 0 && CPEs
[j
].CPEMI
) {
1591 removeDeadCPEMI(CPEs
[j
].CPEMI
);
1592 CPEs
[j
].CPEMI
= nullptr;
1601 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1602 /// away to fit in its displacement field.
1603 bool ARMConstantIslands::fixupImmediateBr(ImmBranch
&Br
) {
1604 MachineInstr
*MI
= Br
.MI
;
1605 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1607 // Check to see if the DestBB is already in-range.
1608 if (BBUtils
->isBBInRange(MI
, DestBB
, Br
.MaxDisp
))
1612 return fixupUnconditionalBr(Br
);
1613 return fixupConditionalBr(Br
);
1616 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1617 /// too far away to fit in its displacement field. If the LR register has been
1618 /// spilled in the epilogue, then we can use BL to implement a far jump.
1619 /// Otherwise, add an intermediate branch instruction to a branch.
1621 ARMConstantIslands::fixupUnconditionalBr(ImmBranch
&Br
) {
1622 MachineInstr
*MI
= Br
.MI
;
1623 MachineBasicBlock
*MBB
= MI
->getParent();
1625 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1627 if (!AFI
->isLRSpilled())
1628 report_fatal_error("underestimated function size");
1630 // Use BL to implement far jump.
1631 Br
.MaxDisp
= (1 << 21) * 2;
1632 MI
->setDesc(TII
->get(ARM::tBfar
));
1633 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1634 BBInfo
[MBB
->getNumber()].Size
+= 2;
1635 BBUtils
->adjustBBOffsetsAfter(MBB
);
1639 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI
);
1644 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1645 /// far away to fit in its displacement field. It is converted to an inverse
1646 /// conditional branch + an unconditional branch to the destination.
1648 ARMConstantIslands::fixupConditionalBr(ImmBranch
&Br
) {
1649 MachineInstr
*MI
= Br
.MI
;
1650 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1652 // Add an unconditional branch to the destination and invert the branch
1653 // condition to jump over it:
1659 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)MI
->getOperand(1).getImm();
1660 CC
= ARMCC::getOppositeCondition(CC
);
1661 Register CCReg
= MI
->getOperand(2).getReg();
1663 // If the branch is at the end of its MBB and that has a fall-through block,
1664 // direct the updated conditional branch to the fall-through block. Otherwise,
1665 // split the MBB before the next instruction.
1666 MachineBasicBlock
*MBB
= MI
->getParent();
1667 MachineInstr
*BMI
= &MBB
->back();
1668 bool NeedSplit
= (BMI
!= MI
) || !BBHasFallthrough(MBB
);
1672 if (std::next(MachineBasicBlock::iterator(MI
)) == std::prev(MBB
->end()) &&
1673 BMI
->getOpcode() == Br
.UncondBr
) {
1674 // Last MI in the BB is an unconditional branch. Can we simply invert the
1675 // condition and swap destinations:
1681 MachineBasicBlock
*NewDest
= BMI
->getOperand(0).getMBB();
1682 if (BBUtils
->isBBInRange(MI
, NewDest
, Br
.MaxDisp
)) {
1684 dbgs() << " Invert Bcc condition and swap its destination with "
1686 BMI
->getOperand(0).setMBB(DestBB
);
1687 MI
->getOperand(0).setMBB(NewDest
);
1688 MI
->getOperand(1).setImm(CC
);
1695 splitBlockBeforeInstr(MI
);
1696 // No need for the branch to the next block. We're adding an unconditional
1697 // branch to the destination.
1698 int delta
= TII
->getInstSizeInBytes(MBB
->back());
1699 BBUtils
->adjustBBSize(MBB
, -delta
);
1700 MBB
->back().eraseFromParent();
1702 // The conditional successor will be swapped between the BBs after this, so
1704 MBB
->addSuccessor(DestBB
);
1705 std::next(MBB
->getIterator())->removeSuccessor(DestBB
);
1707 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1709 MachineBasicBlock
*NextBB
= &*++MBB
->getIterator();
1711 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB
)
1712 << " also invert condition and change dest. to "
1713 << printMBBReference(*NextBB
) << "\n");
1715 // Insert a new conditional branch and a new unconditional branch.
1716 // Also update the ImmBranch as well as adding a new entry for the new branch.
1717 BuildMI(MBB
, DebugLoc(), TII
->get(MI
->getOpcode()))
1718 .addMBB(NextBB
).addImm(CC
).addReg(CCReg
);
1719 Br
.MI
= &MBB
->back();
1720 BBUtils
->adjustBBSize(MBB
, TII
->getInstSizeInBytes(MBB
->back()));
1722 BuildMI(MBB
, DebugLoc(), TII
->get(Br
.UncondBr
))
1724 .add(predOps(ARMCC::AL
));
1726 BuildMI(MBB
, DebugLoc(), TII
->get(Br
.UncondBr
)).addMBB(DestBB
);
1727 BBUtils
->adjustBBSize(MBB
, TII
->getInstSizeInBytes(MBB
->back()));
1728 unsigned MaxDisp
= getUnconditionalBrDisp(Br
.UncondBr
);
1729 ImmBranches
.push_back(ImmBranch(&MBB
->back(), MaxDisp
, false, Br
.UncondBr
));
1731 // Remove the old conditional branch. It may or may not still be in MBB.
1732 BBUtils
->adjustBBSize(MI
->getParent(), -TII
->getInstSizeInBytes(*MI
));
1733 MI
->eraseFromParent();
1734 BBUtils
->adjustBBOffsetsAfter(MBB
);
1738 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1739 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1740 /// to do this if tBfar is not used.
1741 bool ARMConstantIslands::undoLRSpillRestore() {
1742 bool MadeChange
= false;
1743 for (unsigned i
= 0, e
= PushPopMIs
.size(); i
!= e
; ++i
) {
1744 MachineInstr
*MI
= PushPopMIs
[i
];
1745 // First two operands are predicates.
1746 if (MI
->getOpcode() == ARM::tPOP_RET
&&
1747 MI
->getOperand(2).getReg() == ARM::PC
&&
1748 MI
->getNumExplicitOperands() == 3) {
1749 // Create the new insn and copy the predicate from the old.
1750 BuildMI(MI
->getParent(), MI
->getDebugLoc(), TII
->get(ARM::tBX_RET
))
1751 .add(MI
->getOperand(0))
1752 .add(MI
->getOperand(1));
1753 MI
->eraseFromParent();
1755 } else if (MI
->getOpcode() == ARM::tPUSH
&&
1756 MI
->getOperand(2).getReg() == ARM::LR
&&
1757 MI
->getNumExplicitOperands() == 3) {
1758 // Just remove the push.
1759 MI
->eraseFromParent();
1766 bool ARMConstantIslands::optimizeThumb2Instructions() {
1767 bool MadeChange
= false;
1769 // Shrink ADR and LDR from constantpool.
1770 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
) {
1771 CPUser
&U
= CPUsers
[i
];
1772 unsigned Opcode
= U
.MI
->getOpcode();
1773 unsigned NewOpc
= 0;
1778 case ARM::t2LEApcrel
:
1779 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1780 NewOpc
= ARM::tLEApcrel
;
1786 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1787 NewOpc
= ARM::tLDRpci
;
1797 unsigned UserOffset
= getUserOffset(U
);
1798 unsigned MaxOffs
= ((1 << Bits
) - 1) * Scale
;
1800 // Be conservative with inline asm.
1801 if (!U
.KnownAlignment
)
1804 // FIXME: Check if offset is multiple of scale if scale is not 4.
1805 if (isCPEntryInRange(U
.MI
, UserOffset
, U
.CPEMI
, MaxOffs
, false, true)) {
1806 LLVM_DEBUG(dbgs() << "Shrink: " << *U
.MI
);
1807 U
.MI
->setDesc(TII
->get(NewOpc
));
1808 MachineBasicBlock
*MBB
= U
.MI
->getParent();
1809 BBUtils
->adjustBBSize(MBB
, -2);
1810 BBUtils
->adjustBBOffsetsAfter(MBB
);
1820 bool ARMConstantIslands::optimizeThumb2Branches() {
1822 auto TryShrinkBranch
= [this](ImmBranch
&Br
) {
1823 unsigned Opcode
= Br
.MI
->getOpcode();
1824 unsigned NewOpc
= 0;
1841 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
1842 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1843 if (BBUtils
->isBBInRange(Br
.MI
, DestBB
, MaxOffs
)) {
1844 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br
.MI
);
1845 Br
.MI
->setDesc(TII
->get(NewOpc
));
1846 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1847 BBUtils
->adjustBBSize(MBB
, -2);
1848 BBUtils
->adjustBBOffsetsAfter(MBB
);
1857 MachineInstr
* MI
= nullptr;
1858 unsigned NewOpc
= 0;
1861 auto FindCmpForCBZ
= [this](ImmBranch
&Br
, ImmCompare
&ImmCmp
,
1862 MachineBasicBlock
*DestBB
) {
1863 ImmCmp
.MI
= nullptr;
1866 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1867 // so this transformation is not safe.
1868 if (!Br
.MI
->killsRegister(ARM::CPSR
))
1871 unsigned PredReg
= 0;
1872 unsigned NewOpc
= 0;
1873 ARMCC::CondCodes Pred
= getInstrPredicate(*Br
.MI
, PredReg
);
1874 if (Pred
== ARMCC::EQ
)
1876 else if (Pred
== ARMCC::NE
)
1877 NewOpc
= ARM::tCBNZ
;
1881 // Check if the distance is within 126. Subtract starting offset by 2
1882 // because the cmp will be eliminated.
1883 unsigned BrOffset
= BBUtils
->getOffsetOf(Br
.MI
) + 4 - 2;
1884 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1885 unsigned DestOffset
= BBInfo
[DestBB
->getNumber()].Offset
;
1886 if (BrOffset
>= DestOffset
|| (DestOffset
- BrOffset
) > 126)
1889 // Search backwards to find a tCMPi8
1890 auto *TRI
= STI
->getRegisterInfo();
1891 MachineInstr
*CmpMI
= findCMPToFoldIntoCBZ(Br
.MI
, TRI
);
1892 if (!CmpMI
|| CmpMI
->getOpcode() != ARM::tCMPi8
)
1896 ImmCmp
.NewOpc
= NewOpc
;
1900 auto TryConvertToLE
= [this](ImmBranch
&Br
, ImmCompare
&Cmp
) {
1901 if (Br
.MI
->getOpcode() != ARM::t2Bcc
|| !STI
->hasLOB() ||
1905 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1906 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1907 if (BBUtils
->getOffsetOf(MBB
) < BBUtils
->getOffsetOf(DestBB
) ||
1908 !BBUtils
->isBBInRange(Br
.MI
, DestBB
, 4094))
1911 if (!DT
->dominates(DestBB
, MBB
))
1914 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1915 // target of Br. So now we need to reverse the condition.
1916 Cmp
.NewOpc
= Cmp
.NewOpc
== ARM::tCBZ
? ARM::tCBNZ
: ARM::tCBZ
;
1918 MachineInstrBuilder MIB
= BuildMI(*MBB
, Br
.MI
, Br
.MI
->getDebugLoc(),
1919 TII
->get(ARM::t2LE
));
1920 MIB
.add(Br
.MI
->getOperand(0));
1921 Br
.MI
->eraseFromParent();
1927 bool MadeChange
= false;
1929 // The order in which branches appear in ImmBranches is approximately their
1930 // order within the function body. By visiting later branches first, we reduce
1931 // the distance between earlier forward branches and their targets, making it
1932 // more likely that the cbn?z optimization, which can only apply to forward
1933 // branches, will succeed.
1934 for (ImmBranch
&Br
: reverse(ImmBranches
)) {
1935 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1936 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1937 MachineBasicBlock
*ExitBB
= &MBB
->back() == Br
.MI
?
1938 MBB
->getFallThrough() :
1939 MBB
->back().getOperand(0).getMBB();
1942 if (FindCmpForCBZ(Br
, Cmp
, ExitBB
) && TryConvertToLE(Br
, Cmp
)) {
1946 FindCmpForCBZ(Br
, Cmp
, DestBB
);
1947 MadeChange
|= TryShrinkBranch(Br
);
1950 unsigned Opcode
= Br
.MI
->getOpcode();
1951 if ((Opcode
!= ARM::tBcc
&& Opcode
!= ARM::t2LE
) || !Cmp
.NewOpc
)
1954 Register Reg
= Cmp
.MI
->getOperand(0).getReg();
1956 // Check for Kill flags on Reg. If they are present remove them and set kill
1958 auto *TRI
= STI
->getRegisterInfo();
1959 MachineBasicBlock::iterator KillMI
= Br
.MI
;
1960 bool RegKilled
= false;
1963 if (KillMI
->killsRegister(Reg
, TRI
)) {
1964 KillMI
->clearRegisterKills(Reg
, TRI
);
1968 } while (KillMI
!= Cmp
.MI
);
1970 // Create the new CBZ/CBNZ
1971 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp
.MI
<< " and: " << *Br
.MI
);
1972 MachineInstr
*NewBR
=
1973 BuildMI(*MBB
, Br
.MI
, Br
.MI
->getDebugLoc(), TII
->get(Cmp
.NewOpc
))
1974 .addReg(Reg
, getKillRegState(RegKilled
))
1975 .addMBB(DestBB
, Br
.MI
->getOperand(0).getTargetFlags());
1977 Cmp
.MI
->eraseFromParent();
1978 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1979 BBInfo
[MBB
->getNumber()].Size
-= 2;
1981 if (Br
.MI
->getOpcode() == ARM::tBcc
) {
1982 Br
.MI
->eraseFromParent();
1984 } else if (&MBB
->back() != Br
.MI
) {
1985 // We've generated an LE and already erased the original conditional
1986 // branch. The CBN?Z is now used to branch to the other successor, so an
1987 // unconditional branch terminator is now redundant.
1988 MachineInstr
*LastMI
= &MBB
->back();
1989 if (LastMI
!= Br
.MI
) {
1990 BBInfo
[MBB
->getNumber()].Size
-= LastMI
->getDesc().getSize();
1991 LastMI
->eraseFromParent();
1994 BBUtils
->adjustBBOffsetsAfter(MBB
);
2002 static bool isSimpleIndexCalc(MachineInstr
&I
, unsigned EntryReg
,
2004 if (I
.getOpcode() != ARM::t2ADDrs
)
2007 if (I
.getOperand(0).getReg() != EntryReg
)
2010 if (I
.getOperand(1).getReg() != BaseReg
)
2013 // FIXME: what about CC and IdxReg?
2017 /// While trying to form a TBB/TBH instruction, we may (if the table
2018 /// doesn't immediately follow the BR_JT) need access to the start of the
2019 /// jump-table. We know one instruction that produces such a register; this
2020 /// function works out whether that definition can be preserved to the BR_JT,
2021 /// possibly by removing an intervening addition (which is usually needed to
2022 /// calculate the actual entry to jump to).
2023 bool ARMConstantIslands::preserveBaseRegister(MachineInstr
*JumpMI
,
2024 MachineInstr
*LEAMI
,
2027 bool &BaseRegKill
) {
2028 if (JumpMI
->getParent() != LEAMI
->getParent())
2031 // Now we hope that we have at least these instructions in the basic block:
2032 // BaseReg = t2LEA ...
2034 // EntryReg = t2ADDrs BaseReg, ...
2038 // We have to be very conservative about what we recognise here though. The
2039 // main perturbing factors to watch out for are:
2040 // + Spills at any point in the chain: not direct problems but we would
2041 // expect a blocking Def of the spilled register so in practice what we
2042 // can do is limited.
2043 // + EntryReg == BaseReg: this is the one situation we should allow a Def
2044 // of BaseReg, but only if the t2ADDrs can be removed.
2045 // + Some instruction other than t2ADDrs computing the entry. Not seen in
2046 // the wild, but we should be careful.
2047 Register EntryReg
= JumpMI
->getOperand(0).getReg();
2048 Register BaseReg
= LEAMI
->getOperand(0).getReg();
2050 CanDeleteLEA
= true;
2051 BaseRegKill
= false;
2052 MachineInstr
*RemovableAdd
= nullptr;
2053 MachineBasicBlock::iterator
I(LEAMI
);
2054 for (++I
; &*I
!= JumpMI
; ++I
) {
2055 if (isSimpleIndexCalc(*I
, EntryReg
, BaseReg
)) {
2060 for (unsigned K
= 0, E
= I
->getNumOperands(); K
!= E
; ++K
) {
2061 const MachineOperand
&MO
= I
->getOperand(K
);
2062 if (!MO
.isReg() || !MO
.getReg())
2064 if (MO
.isDef() && MO
.getReg() == BaseReg
)
2066 if (MO
.isUse() && MO
.getReg() == BaseReg
) {
2067 BaseRegKill
= BaseRegKill
|| MO
.isKill();
2068 CanDeleteLEA
= false;
2076 // Check the add really is removable, and that nothing else in the block
2077 // clobbers BaseReg.
2078 for (++I
; &*I
!= JumpMI
; ++I
) {
2079 for (unsigned K
= 0, E
= I
->getNumOperands(); K
!= E
; ++K
) {
2080 const MachineOperand
&MO
= I
->getOperand(K
);
2081 if (!MO
.isReg() || !MO
.getReg())
2083 if (MO
.isDef() && MO
.getReg() == BaseReg
)
2085 if (MO
.isUse() && MO
.getReg() == EntryReg
)
2086 RemovableAdd
= nullptr;
2091 RemovableAdd
->eraseFromParent();
2092 DeadSize
+= isThumb2
? 4 : 2;
2093 } else if (BaseReg
== EntryReg
) {
2094 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2099 // We reached the end of the block without seeing another definition of
2100 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2101 // used in the TBB/TBH if necessary.
2105 /// Returns whether CPEMI is the first instruction in the block
2106 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2107 /// we can switch the first register to PC and usually remove the address
2108 /// calculation that preceded it.
2109 static bool jumpTableFollowsTB(MachineInstr
*JTMI
, MachineInstr
*CPEMI
) {
2110 MachineFunction::iterator MBB
= JTMI
->getParent()->getIterator();
2111 MachineFunction
*MF
= MBB
->getParent();
2114 return MBB
!= MF
->end() && MBB
->begin() != MBB
->end() &&
2115 &*MBB
->begin() == CPEMI
;
2118 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr
*LEAMI
,
2119 MachineInstr
*JumpMI
,
2120 unsigned &DeadSize
) {
2121 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2122 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2123 // and is not clobbered / used.
2124 MachineInstr
*RemovableAdd
= nullptr;
2125 Register EntryReg
= JumpMI
->getOperand(0).getReg();
2127 // Find the last ADD to set EntryReg
2128 MachineBasicBlock::iterator
I(LEAMI
);
2129 for (++I
; &*I
!= JumpMI
; ++I
) {
2130 if (I
->getOpcode() == ARM::t2ADDrs
&& I
->getOperand(0).getReg() == EntryReg
)
2137 // Ensure EntryReg is not clobbered or used.
2138 MachineBasicBlock::iterator
J(RemovableAdd
);
2139 for (++J
; &*J
!= JumpMI
; ++J
) {
2140 for (unsigned K
= 0, E
= J
->getNumOperands(); K
!= E
; ++K
) {
2141 const MachineOperand
&MO
= J
->getOperand(K
);
2142 if (!MO
.isReg() || !MO
.getReg())
2144 if (MO
.isDef() && MO
.getReg() == EntryReg
)
2146 if (MO
.isUse() && MO
.getReg() == EntryReg
)
2151 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd
);
2152 RemovableAdd
->eraseFromParent();
2156 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2157 /// jumptables when it's possible.
2158 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2159 bool MadeChange
= false;
2161 // FIXME: After the tables are shrunk, can we get rid some of the
2162 // constantpool tables?
2163 MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
2164 if (!MJTI
) return false;
2166 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
2167 for (unsigned i
= 0, e
= T2JumpTables
.size(); i
!= e
; ++i
) {
2168 MachineInstr
*MI
= T2JumpTables
[i
];
2169 const MCInstrDesc
&MCID
= MI
->getDesc();
2170 unsigned NumOps
= MCID
.getNumOperands();
2171 unsigned JTOpIdx
= NumOps
- (MI
->isPredicable() ? 2 : 1);
2172 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
2173 unsigned JTI
= JTOP
.getIndex();
2174 assert(JTI
< JT
.size());
2177 bool HalfWordOk
= true;
2178 unsigned JTOffset
= BBUtils
->getOffsetOf(MI
) + 4;
2179 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
2180 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
2181 for (unsigned j
= 0, ee
= JTBBs
.size(); j
!= ee
; ++j
) {
2182 MachineBasicBlock
*MBB
= JTBBs
[j
];
2183 unsigned DstOffset
= BBInfo
[MBB
->getNumber()].Offset
;
2184 // Negative offset is not ok. FIXME: We should change BB layout to make
2185 // sure all the branches are forward.
2186 if (ByteOk
&& (DstOffset
- JTOffset
) > ((1<<8)-1)*2)
2188 unsigned TBHLimit
= ((1<<16)-1)*2;
2189 if (HalfWordOk
&& (DstOffset
- JTOffset
) > TBHLimit
)
2191 if (!ByteOk
&& !HalfWordOk
)
2195 if (!ByteOk
&& !HalfWordOk
)
2198 CPUser
&User
= CPUsers
[JumpTableUserIndices
[JTI
]];
2199 MachineBasicBlock
*MBB
= MI
->getParent();
2200 if (!MI
->getOperand(0).isKill()) // FIXME: needed now?
2203 unsigned DeadSize
= 0;
2204 bool CanDeleteLEA
= false;
2205 bool BaseRegKill
= false;
2207 unsigned IdxReg
= ~0U;
2208 bool IdxRegKill
= true;
2210 IdxReg
= MI
->getOperand(1).getReg();
2211 IdxRegKill
= MI
->getOperand(1).isKill();
2213 bool PreservedBaseReg
=
2214 preserveBaseRegister(MI
, User
.MI
, DeadSize
, CanDeleteLEA
, BaseRegKill
);
2215 if (!jumpTableFollowsTB(MI
, User
.CPEMI
) && !PreservedBaseReg
)
2218 // We're in thumb-1 mode, so we must have something like:
2219 // %idx = tLSLri %idx, 2
2220 // %base = tLEApcrelJT
2221 // %t = tLDRr %base, %idx
2222 Register BaseReg
= User
.MI
->getOperand(0).getReg();
2224 if (User
.MI
->getIterator() == User
.MI
->getParent()->begin())
2226 MachineInstr
*Shift
= User
.MI
->getPrevNode();
2227 if (Shift
->getOpcode() != ARM::tLSLri
||
2228 Shift
->getOperand(3).getImm() != 2 ||
2229 !Shift
->getOperand(2).isKill())
2231 IdxReg
= Shift
->getOperand(2).getReg();
2232 Register ShiftedIdxReg
= Shift
->getOperand(0).getReg();
2234 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2235 // the range is checked later, but the LEA might still clobber it and not
2236 // actually get removed.
2237 if (BaseReg
== IdxReg
&& !jumpTableFollowsTB(MI
, User
.CPEMI
))
2240 MachineInstr
*Load
= User
.MI
->getNextNode();
2241 if (Load
->getOpcode() != ARM::tLDRr
)
2243 if (Load
->getOperand(1).getReg() != BaseReg
||
2244 Load
->getOperand(2).getReg() != ShiftedIdxReg
||
2245 !Load
->getOperand(2).isKill())
2248 // If we're in PIC mode, there should be another ADD following.
2249 auto *TRI
= STI
->getRegisterInfo();
2251 // %base cannot be redefined after the load as it will appear before
2256 if (registerDefinedBetween(BaseReg
, Load
->getNextNode(), MBB
->end(), TRI
))
2259 if (isPositionIndependentOrROPI
) {
2260 MachineInstr
*Add
= Load
->getNextNode();
2261 if (Add
->getOpcode() != ARM::tADDrr
||
2262 Add
->getOperand(2).getReg() != BaseReg
||
2263 Add
->getOperand(3).getReg() != Load
->getOperand(0).getReg() ||
2264 !Add
->getOperand(3).isKill())
2266 if (Add
->getOperand(0).getReg() != MI
->getOperand(0).getReg())
2268 if (registerDefinedBetween(IdxReg
, Add
->getNextNode(), MI
, TRI
))
2269 // IdxReg gets redefined in the middle of the sequence.
2271 Add
->eraseFromParent();
2274 if (Load
->getOperand(0).getReg() != MI
->getOperand(0).getReg())
2276 if (registerDefinedBetween(IdxReg
, Load
->getNextNode(), MI
, TRI
))
2277 // IdxReg gets redefined in the middle of the sequence.
2281 // Now safe to delete the load and lsl. The LEA will be removed later.
2282 CanDeleteLEA
= true;
2283 Shift
->eraseFromParent();
2284 Load
->eraseFromParent();
2288 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI
);
2289 MachineInstr
*CPEMI
= User
.CPEMI
;
2290 unsigned Opc
= ByteOk
? ARM::t2TBB_JT
: ARM::t2TBH_JT
;
2292 Opc
= ByteOk
? ARM::tTBB_JT
: ARM::tTBH_JT
;
2294 MachineBasicBlock::iterator MI_JT
= MI
;
2295 MachineInstr
*NewJTMI
=
2296 BuildMI(*MBB
, MI_JT
, MI
->getDebugLoc(), TII
->get(Opc
))
2297 .addReg(User
.MI
->getOperand(0).getReg(),
2298 getKillRegState(BaseRegKill
))
2299 .addReg(IdxReg
, getKillRegState(IdxRegKill
))
2300 .addJumpTableIndex(JTI
, JTOP
.getTargetFlags())
2301 .addImm(CPEMI
->getOperand(0).getImm());
2302 LLVM_DEBUG(dbgs() << printMBBReference(*MBB
) << ": " << *NewJTMI
);
2304 unsigned JTOpc
= ByteOk
? ARM::JUMPTABLE_TBB
: ARM::JUMPTABLE_TBH
;
2305 CPEMI
->setDesc(TII
->get(JTOpc
));
2307 if (jumpTableFollowsTB(MI
, User
.CPEMI
)) {
2308 NewJTMI
->getOperand(0).setReg(ARM::PC
);
2309 NewJTMI
->getOperand(0).setIsKill(false);
2313 RemoveDeadAddBetweenLEAAndJT(User
.MI
, MI
, DeadSize
);
2315 User
.MI
->eraseFromParent();
2316 DeadSize
+= isThumb2
? 4 : 2;
2318 // The LEA was eliminated, the TBB instruction becomes the only new user
2319 // of the jump table.
2323 User
.IsSoImm
= false;
2324 User
.KnownAlignment
= false;
2326 // The LEA couldn't be eliminated, so we must add another CPUser to
2327 // record the TBB or TBH use.
2328 int CPEntryIdx
= JumpTableEntryIndices
[JTI
];
2329 auto &CPEs
= CPEntries
[CPEntryIdx
];
2331 find_if(CPEs
, [&](CPEntry
&E
) { return E
.CPEMI
== User
.CPEMI
; });
2333 CPUsers
.emplace_back(CPUser(NewJTMI
, User
.CPEMI
, 4, false, false));
2337 unsigned NewSize
= TII
->getInstSizeInBytes(*NewJTMI
);
2338 unsigned OrigSize
= TII
->getInstSizeInBytes(*MI
);
2339 MI
->eraseFromParent();
2341 int Delta
= OrigSize
- NewSize
+ DeadSize
;
2342 BBInfo
[MBB
->getNumber()].Size
-= Delta
;
2343 BBUtils
->adjustBBOffsetsAfter(MBB
);
2352 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2353 /// jump tables always branch forwards, since that's what tbb and tbh need.
2354 bool ARMConstantIslands::reorderThumb2JumpTables() {
2355 bool MadeChange
= false;
2357 MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
2358 if (!MJTI
) return false;
2360 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
2361 for (unsigned i
= 0, e
= T2JumpTables
.size(); i
!= e
; ++i
) {
2362 MachineInstr
*MI
= T2JumpTables
[i
];
2363 const MCInstrDesc
&MCID
= MI
->getDesc();
2364 unsigned NumOps
= MCID
.getNumOperands();
2365 unsigned JTOpIdx
= NumOps
- (MI
->isPredicable() ? 2 : 1);
2366 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
2367 unsigned JTI
= JTOP
.getIndex();
2368 assert(JTI
< JT
.size());
2370 // We prefer if target blocks for the jump table come after the jump
2371 // instruction so we can use TB[BH]. Loop through the target blocks
2372 // and try to adjust them such that that's true.
2373 int JTNumber
= MI
->getParent()->getNumber();
2374 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
2375 for (unsigned j
= 0, ee
= JTBBs
.size(); j
!= ee
; ++j
) {
2376 MachineBasicBlock
*MBB
= JTBBs
[j
];
2377 int DTNumber
= MBB
->getNumber();
2379 if (DTNumber
< JTNumber
) {
2380 // The destination precedes the switch. Try to move the block forward
2381 // so we have a positive offset.
2382 MachineBasicBlock
*NewBB
=
2383 adjustJTTargetBlockForward(MBB
, MI
->getParent());
2385 MJTI
->ReplaceMBBInJumpTable(JTI
, JTBBs
[j
], NewBB
);
2394 MachineBasicBlock
*ARMConstantIslands::
2395 adjustJTTargetBlockForward(MachineBasicBlock
*BB
, MachineBasicBlock
*JTBB
) {
2396 // If the destination block is terminated by an unconditional branch,
2397 // try to move it; otherwise, create a new block following the jump
2398 // table that branches back to the actual target. This is a very simple
2399 // heuristic. FIXME: We can definitely improve it.
2400 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
2401 SmallVector
<MachineOperand
, 4> Cond
;
2402 SmallVector
<MachineOperand
, 4> CondPrior
;
2403 MachineFunction::iterator BBi
= BB
->getIterator();
2404 MachineFunction::iterator OldPrior
= std::prev(BBi
);
2406 // If the block terminator isn't analyzable, don't try to move the block
2407 bool B
= TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
);
2409 // If the block ends in an unconditional branch, move it. The prior block
2410 // has to have an analyzable terminator for us to move this one. Be paranoid
2411 // and make sure we're not trying to move the entry block of the function.
2412 if (!B
&& Cond
.empty() && BB
!= &MF
->front() &&
2413 !TII
->analyzeBranch(*OldPrior
, TBB
, FBB
, CondPrior
)) {
2414 BB
->moveAfter(JTBB
);
2415 OldPrior
->updateTerminator();
2416 BB
->updateTerminator();
2417 // Update numbering to account for the block being moved.
2418 MF
->RenumberBlocks();
2423 // Create a new MBB for the code after the jump BB.
2424 MachineBasicBlock
*NewBB
=
2425 MF
->CreateMachineBasicBlock(JTBB
->getBasicBlock());
2426 MachineFunction::iterator MBBI
= ++JTBB
->getIterator();
2427 MF
->insert(MBBI
, NewBB
);
2429 // Copy live-in information to new block.
2430 for (const MachineBasicBlock::RegisterMaskPair
&RegMaskPair
: BB
->liveins())
2431 NewBB
->addLiveIn(RegMaskPair
);
2433 // Add an unconditional branch from NewBB to BB.
2434 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2435 // correspond directly to anything in the source.
2437 BuildMI(NewBB
, DebugLoc(), TII
->get(ARM::t2B
))
2439 .add(predOps(ARMCC::AL
));
2441 BuildMI(NewBB
, DebugLoc(), TII
->get(ARM::tB
))
2443 .add(predOps(ARMCC::AL
));
2445 // Update internal data structures to account for the newly inserted MBB.
2446 MF
->RenumberBlocks(NewBB
);
2449 NewBB
->addSuccessor(BB
);
2450 JTBB
->replaceSuccessor(BB
, NewBB
);
2456 /// createARMConstantIslandPass - returns an instance of the constpool
2458 FunctionPass
*llvm::createARMConstantIslandPass() {
2459 return new ARMConstantIslands();
2462 INITIALIZE_PASS(ARMConstantIslands
, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME
,