[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / ARM / ARMTargetMachine.cpp
blob5c8007f101d9a75f175a3e1ff81c3a121669058e
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetParser.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include <cassert>
51 #include <memory>
52 #include <string>
54 using namespace llvm;
56 static cl::opt<bool>
57 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
58 cl::desc("Inhibit optimization of S->D register accesses on A15"),
59 cl::init(false));
61 static cl::opt<bool>
62 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
63 cl::desc("Run SimplifyCFG after expanding atomic operations"
64 " to make use of cmpxchg flow-based information"),
65 cl::init(true));
67 static cl::opt<bool>
68 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
69 cl::desc("Enable ARM load/store optimization pass"),
70 cl::init(true));
72 // FIXME: Unify control over GlobalMerge.
73 static cl::opt<cl::boolOrDefault>
74 EnableGlobalMerge("arm-global-merge", cl::Hidden,
75 cl::desc("Enable the global merge pass"));
77 namespace llvm {
78 void initializeARMExecutionDomainFixPass(PassRegistry&);
81 extern "C" void LLVMInitializeARMTarget() {
82 // Register the target.
83 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
84 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
85 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
86 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
88 PassRegistry &Registry = *PassRegistry::getPassRegistry();
89 initializeGlobalISel(Registry);
90 initializeARMLoadStoreOptPass(Registry);
91 initializeARMPreAllocLoadStoreOptPass(Registry);
92 initializeARMParallelDSPPass(Registry);
93 initializeARMCodeGenPreparePass(Registry);
94 initializeARMConstantIslandsPass(Registry);
95 initializeARMExecutionDomainFixPass(Registry);
96 initializeARMExpandPseudoPass(Registry);
97 initializeThumb2SizeReducePass(Registry);
98 initializeMVEVPTBlockPass(Registry);
99 initializeMVETailPredicationPass(Registry);
100 initializeARMLowOverheadLoopsPass(Registry);
103 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
104 if (TT.isOSBinFormatMachO())
105 return std::make_unique<TargetLoweringObjectFileMachO>();
106 if (TT.isOSWindows())
107 return std::make_unique<TargetLoweringObjectFileCOFF>();
108 return std::make_unique<ARMElfTargetObjectFile>();
111 static ARMBaseTargetMachine::ARMABI
112 computeTargetABI(const Triple &TT, StringRef CPU,
113 const TargetOptions &Options) {
114 StringRef ABIName = Options.MCOptions.getABIName();
116 if (ABIName.empty())
117 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
119 if (ABIName == "aapcs16")
120 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
121 else if (ABIName.startswith("aapcs"))
122 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
123 else if (ABIName.startswith("apcs"))
124 return ARMBaseTargetMachine::ARM_ABI_APCS;
126 llvm_unreachable("Unhandled/unknown ABI Name!");
127 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
130 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
131 const TargetOptions &Options,
132 bool isLittle) {
133 auto ABI = computeTargetABI(TT, CPU, Options);
134 std::string Ret;
136 if (isLittle)
137 // Little endian.
138 Ret += "e";
139 else
140 // Big endian.
141 Ret += "E";
143 Ret += DataLayout::getManglingComponent(TT);
145 // Pointers are 32 bits and aligned to 32 bits.
146 Ret += "-p:32:32";
148 // Function pointers are aligned to 8 bits (because the LSB stores the
149 // ARM/Thumb state).
150 Ret += "-Fi8";
152 // ABIs other than APCS have 64 bit integers with natural alignment.
153 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
154 Ret += "-i64:64";
156 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
157 // bits, others to 64 bits. We always try to align to 64 bits.
158 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
159 Ret += "-f64:32:64";
161 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
162 // to 64. We always ty to give them natural alignment.
163 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
164 Ret += "-v64:32:64-v128:32:128";
165 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
166 Ret += "-v128:64:128";
168 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
169 // particular hardware support on 32-bit ARM).
170 Ret += "-a:0:32";
172 // Integer registers are 32 bits.
173 Ret += "-n32";
175 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
176 // aligned everywhere else.
177 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
178 Ret += "-S128";
179 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
180 Ret += "-S64";
181 else
182 Ret += "-S32";
184 return Ret;
187 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
188 Optional<Reloc::Model> RM) {
189 if (!RM.hasValue())
190 // Default relocation model on Darwin is PIC.
191 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
193 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
194 assert(TT.isOSBinFormatELF() &&
195 "ROPI/RWPI currently only supported for ELF");
197 // DynamicNoPIC is only used on darwin.
198 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
199 return Reloc::Static;
201 return *RM;
204 /// Create an ARM architecture model.
206 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
207 StringRef CPU, StringRef FS,
208 const TargetOptions &Options,
209 Optional<Reloc::Model> RM,
210 Optional<CodeModel::Model> CM,
211 CodeGenOpt::Level OL, bool isLittle)
212 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
213 CPU, FS, Options, getEffectiveRelocModel(TT, RM),
214 getEffectiveCodeModel(CM, CodeModel::Small), OL),
215 TargetABI(computeTargetABI(TT, CPU, Options)),
216 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
218 // Default to triple-appropriate float ABI
219 if (Options.FloatABIType == FloatABI::Default) {
220 if (isTargetHardFloat())
221 this->Options.FloatABIType = FloatABI::Hard;
222 else
223 this->Options.FloatABIType = FloatABI::Soft;
226 // Default to triple-appropriate EABI
227 if (Options.EABIVersion == EABI::Default ||
228 Options.EABIVersion == EABI::Unknown) {
229 // musl is compatible with glibc with regard to EABI version
230 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
231 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
232 TargetTriple.getEnvironment() == Triple::MuslEABI ||
233 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
234 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
235 this->Options.EABIVersion = EABI::GNU;
236 else
237 this->Options.EABIVersion = EABI::EABI5;
240 if (TT.isOSBinFormatMachO()) {
241 this->Options.TrapUnreachable = true;
242 this->Options.NoTrapAfterNoreturn = true;
245 initAsmInfo();
248 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
250 const ARMSubtarget *
251 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
252 Attribute CPUAttr = F.getFnAttribute("target-cpu");
253 Attribute FSAttr = F.getFnAttribute("target-features");
255 std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
256 ? CPUAttr.getValueAsString().str()
257 : TargetCPU;
258 std::string FS = !FSAttr.hasAttribute(Attribute::None)
259 ? FSAttr.getValueAsString().str()
260 : TargetFS;
262 // FIXME: This is related to the code below to reset the target options,
263 // we need to know whether or not the soft float flag is set on the
264 // function before we can generate a subtarget. We also need to use
265 // it as a key for the subtarget since that can be the only difference
266 // between two functions.
267 bool SoftFloat =
268 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
269 // If the soft float attribute is set on the function turn on the soft float
270 // subtarget feature.
271 if (SoftFloat)
272 FS += FS.empty() ? "+soft-float" : ",+soft-float";
274 // Use the optminsize to identify the subtarget, but don't use it in the
275 // feature string.
276 std::string Key = CPU + FS;
277 if (F.hasMinSize())
278 Key += "+minsize";
280 auto &I = SubtargetMap[Key];
281 if (!I) {
282 // This needs to be done before we create a new subtarget since any
283 // creation will depend on the TM and the code generation flags on the
284 // function that reside in TargetOptions.
285 resetTargetOptions(F);
286 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
287 F.hasMinSize());
289 if (!I->isThumb() && !I->hasARMOps())
290 F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
291 "instructions, but the target does not support ARM mode execution.");
294 return I.get();
297 TargetTransformInfo
298 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
299 return TargetTransformInfo(ARMTTIImpl(this, F));
302 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
303 StringRef CPU, StringRef FS,
304 const TargetOptions &Options,
305 Optional<Reloc::Model> RM,
306 Optional<CodeModel::Model> CM,
307 CodeGenOpt::Level OL, bool JIT)
308 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
310 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
311 StringRef CPU, StringRef FS,
312 const TargetOptions &Options,
313 Optional<Reloc::Model> RM,
314 Optional<CodeModel::Model> CM,
315 CodeGenOpt::Level OL, bool JIT)
316 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
318 namespace {
320 /// ARM Code Generator Pass Configuration Options.
321 class ARMPassConfig : public TargetPassConfig {
322 public:
323 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
324 : TargetPassConfig(TM, PM) {
325 if (TM.getOptLevel() != CodeGenOpt::None) {
326 ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
327 TM.getTargetFeatureString());
328 if (STI.hasFeature(ARM::FeatureUseMISched))
329 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
333 ARMBaseTargetMachine &getARMTargetMachine() const {
334 return getTM<ARMBaseTargetMachine>();
337 ScheduleDAGInstrs *
338 createMachineScheduler(MachineSchedContext *C) const override {
339 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
340 // add DAG Mutations here.
341 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
342 if (ST.hasFusion())
343 DAG->addMutation(createARMMacroFusionDAGMutation());
344 return DAG;
347 ScheduleDAGInstrs *
348 createPostMachineScheduler(MachineSchedContext *C) const override {
349 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
350 // add DAG Mutations here.
351 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
352 if (ST.hasFusion())
353 DAG->addMutation(createARMMacroFusionDAGMutation());
354 return DAG;
357 void addIRPasses() override;
358 void addCodeGenPrepare() override;
359 bool addPreISel() override;
360 bool addInstSelector() override;
361 bool addIRTranslator() override;
362 bool addLegalizeMachineIR() override;
363 bool addRegBankSelect() override;
364 bool addGlobalInstructionSelect() override;
365 void addPreRegAlloc() override;
366 void addPreSched2() override;
367 void addPreEmitPass() override;
369 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
372 class ARMExecutionDomainFix : public ExecutionDomainFix {
373 public:
374 static char ID;
375 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
376 StringRef getPassName() const override {
377 return "ARM Execution Domain Fix";
380 char ARMExecutionDomainFix::ID;
382 } // end anonymous namespace
384 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
385 "ARM Execution Domain Fix", false, false)
386 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
387 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
388 "ARM Execution Domain Fix", false, false)
390 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
391 return new ARMPassConfig(*this, PM);
394 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
395 return getStandardCSEConfigForOpt(TM->getOptLevel());
398 void ARMPassConfig::addIRPasses() {
399 if (TM->Options.ThreadModel == ThreadModel::Single)
400 addPass(createLowerAtomicPass());
401 else
402 addPass(createAtomicExpandPass());
404 // Cmpxchg instructions are often used with a subsequent comparison to
405 // determine whether it succeeded. We can exploit existing control-flow in
406 // ldrex/strex loops to simplify this, but it needs tidying up.
407 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
408 addPass(createCFGSimplificationPass(
409 1, false, false, true, true, [this](const Function &F) {
410 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
411 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
412 }));
414 TargetPassConfig::addIRPasses();
416 // Run the parallel DSP pass.
417 if (getOptLevel() == CodeGenOpt::Aggressive)
418 addPass(createARMParallelDSPPass());
420 // Match interleaved memory accesses to ldN/stN intrinsics.
421 if (TM->getOptLevel() != CodeGenOpt::None)
422 addPass(createInterleavedAccessPass());
425 void ARMPassConfig::addCodeGenPrepare() {
426 if (getOptLevel() != CodeGenOpt::None)
427 addPass(createARMCodeGenPreparePass());
428 TargetPassConfig::addCodeGenPrepare();
431 bool ARMPassConfig::addPreISel() {
432 if ((TM->getOptLevel() != CodeGenOpt::None &&
433 EnableGlobalMerge == cl::BOU_UNSET) ||
434 EnableGlobalMerge == cl::BOU_TRUE) {
435 // FIXME: This is using the thumb1 only constant value for
436 // maximal global offset for merging globals. We may want
437 // to look into using the old value for non-thumb1 code of
438 // 4095 based on the TargetMachine, but this starts to become
439 // tricky when doing code gen per function.
440 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
441 (EnableGlobalMerge == cl::BOU_UNSET);
442 // Merging of extern globals is enabled by default on non-Mach-O as we
443 // expect it to be generally either beneficial or harmless. On Mach-O it
444 // is disabled as we emit the .subsections_via_symbols directive which
445 // means that merging extern globals is not safe.
446 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
447 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
448 MergeExternalByDefault));
451 if (TM->getOptLevel() != CodeGenOpt::None) {
452 addPass(createHardwareLoopsPass());
453 addPass(createMVETailPredicationPass());
456 return false;
459 bool ARMPassConfig::addInstSelector() {
460 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
461 return false;
464 bool ARMPassConfig::addIRTranslator() {
465 addPass(new IRTranslator());
466 return false;
469 bool ARMPassConfig::addLegalizeMachineIR() {
470 addPass(new Legalizer());
471 return false;
474 bool ARMPassConfig::addRegBankSelect() {
475 addPass(new RegBankSelect());
476 return false;
479 bool ARMPassConfig::addGlobalInstructionSelect() {
480 addPass(new InstructionSelect());
481 return false;
484 void ARMPassConfig::addPreRegAlloc() {
485 if (getOptLevel() != CodeGenOpt::None) {
486 addPass(createMLxExpansionPass());
488 if (EnableARMLoadStoreOpt)
489 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
491 if (!DisableA15SDOptimization)
492 addPass(createA15SDOptimizerPass());
496 void ARMPassConfig::addPreSched2() {
497 if (getOptLevel() != CodeGenOpt::None) {
498 if (EnableARMLoadStoreOpt)
499 addPass(createARMLoadStoreOptimizationPass());
501 addPass(new ARMExecutionDomainFix());
502 addPass(createBreakFalseDeps());
505 // Expand some pseudo instructions into multiple instructions to allow
506 // proper scheduling.
507 addPass(createARMExpandPseudoPass());
509 if (getOptLevel() != CodeGenOpt::None) {
510 // in v8, IfConversion depends on Thumb instruction widths
511 addPass(createThumb2SizeReductionPass([this](const Function &F) {
512 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
513 }));
515 addPass(createIfConverter([](const MachineFunction &MF) {
516 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
517 }));
519 addPass(createMVEVPTBlockPass());
520 addPass(createThumb2ITBlockPass());
523 void ARMPassConfig::addPreEmitPass() {
524 addPass(createThumb2SizeReductionPass());
526 // Constant island pass work on unbundled instructions.
527 addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
528 return MF.getSubtarget<ARMSubtarget>().isThumb2();
529 }));
531 // Don't optimize barriers at -O0.
532 if (getOptLevel() != CodeGenOpt::None)
533 addPass(createARMOptimizeBarriersPass());
535 addPass(createARMConstantIslandPass());
536 addPass(createARMLowOverheadLoopsPass());