1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
42 class ARMELFObjectWriter
: public MCELFObjectTargetWriter
{
44 ARMELFObjectWriter(uint8_t OSABI
)
45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI
, ELF::EM_ARM
,
46 /*HasRelocationAddend*/ false) {}
48 } // end anonymous namespace
50 Optional
<MCFixupKind
> ARMAsmBackend::getFixupKind(StringRef Name
) const {
51 if (STI
.getTargetTriple().isOSBinFormatELF() && Name
== "R_ARM_NONE")
54 return MCAsmBackend::getFixupKind(Name
);
57 const MCFixupKindInfo
&ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind
) const {
58 const static MCFixupKindInfo InfosLE
[ARM::NumTargetFixupKinds
] = {
59 // This table *must* be in the order that the fixup_* kinds are defined in
62 // Name Offset (bits) Size (bits) Flags
63 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
64 {"fixup_t2_ldst_pcrel_12", 0, 32,
65 MCFixupKindInfo::FKF_IsPCRel
|
66 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
67 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
68 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
69 {"fixup_t2_pcrel_10", 0, 32,
70 MCFixupKindInfo::FKF_IsPCRel
|
71 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
72 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
73 {"fixup_t2_pcrel_9", 0, 32,
74 MCFixupKindInfo::FKF_IsPCRel
|
75 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
76 {"fixup_thumb_adr_pcrel_10", 0, 8,
77 MCFixupKindInfo::FKF_IsPCRel
|
78 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
79 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
80 {"fixup_t2_adr_pcrel_12", 0, 32,
81 MCFixupKindInfo::FKF_IsPCRel
|
82 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
83 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
84 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
85 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
86 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
87 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
88 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
89 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
90 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
91 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
92 {"fixup_arm_thumb_blx", 0, 32,
93 MCFixupKindInfo::FKF_IsPCRel
|
94 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
95 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
96 {"fixup_arm_thumb_cp", 0, 8,
97 MCFixupKindInfo::FKF_IsPCRel
|
98 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
99 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel
},
100 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
102 {"fixup_arm_movt_hi16", 0, 20, 0},
103 {"fixup_arm_movw_lo16", 0, 20, 0},
104 {"fixup_t2_movt_hi16", 0, 20, 0},
105 {"fixup_t2_movw_lo16", 0, 20, 0},
106 {"fixup_arm_mod_imm", 0, 12, 0},
107 {"fixup_t2_so_imm", 0, 26, 0},
108 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
109 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
110 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
111 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
112 {"fixup_bfcsel_else_target", 0, 32, 0},
113 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
114 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel
}
116 const static MCFixupKindInfo InfosBE
[ARM::NumTargetFixupKinds
] = {
117 // This table *must* be in the order that the fixup_* kinds are defined in
120 // Name Offset (bits) Size (bits) Flags
121 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
122 {"fixup_t2_ldst_pcrel_12", 0, 32,
123 MCFixupKindInfo::FKF_IsPCRel
|
124 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
125 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
126 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
127 {"fixup_t2_pcrel_10", 0, 32,
128 MCFixupKindInfo::FKF_IsPCRel
|
129 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
130 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
131 {"fixup_t2_pcrel_9", 0, 32,
132 MCFixupKindInfo::FKF_IsPCRel
|
133 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
134 {"fixup_thumb_adr_pcrel_10", 8, 8,
135 MCFixupKindInfo::FKF_IsPCRel
|
136 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
137 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
138 {"fixup_t2_adr_pcrel_12", 0, 32,
139 MCFixupKindInfo::FKF_IsPCRel
|
140 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
141 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
142 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
143 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
144 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
145 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
146 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
147 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
148 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
149 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
150 {"fixup_arm_thumb_blx", 0, 32,
151 MCFixupKindInfo::FKF_IsPCRel
|
152 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
153 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
154 {"fixup_arm_thumb_cp", 8, 8,
155 MCFixupKindInfo::FKF_IsPCRel
|
156 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
157 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel
},
158 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
160 {"fixup_arm_movt_hi16", 12, 20, 0},
161 {"fixup_arm_movw_lo16", 12, 20, 0},
162 {"fixup_t2_movt_hi16", 12, 20, 0},
163 {"fixup_t2_movw_lo16", 12, 20, 0},
164 {"fixup_arm_mod_imm", 20, 12, 0},
165 {"fixup_t2_so_imm", 26, 6, 0},
166 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
167 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
168 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
169 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
170 {"fixup_bfcsel_else_target", 0, 32, 0},
171 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
172 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel
}
175 if (Kind
< FirstTargetFixupKind
)
176 return MCAsmBackend::getFixupKindInfo(Kind
);
178 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
180 return (Endian
== support::little
? InfosLE
181 : InfosBE
)[Kind
- FirstTargetFixupKind
];
184 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag
) {
197 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op
,
198 const MCSubtargetInfo
&STI
) const {
199 bool HasThumb2
= STI
.getFeatureBits()[ARM::FeatureThumb2
];
200 bool HasV8MBaselineOps
= STI
.getFeatureBits()[ARM::HasV8MBaselineOps
];
206 return HasThumb2
? (unsigned)ARM::t2Bcc
: Op
;
208 return HasThumb2
? (unsigned)ARM::t2LDRpci
: Op
;
210 return HasThumb2
? (unsigned)ARM::t2ADR
: Op
;
212 return HasV8MBaselineOps
? (unsigned)ARM::t2B
: Op
;
220 bool ARMAsmBackend::mayNeedRelaxation(const MCInst
&Inst
,
221 const MCSubtargetInfo
&STI
) const {
222 if (getRelaxedOpcode(Inst
.getOpcode(), STI
) != Inst
.getOpcode())
227 static const char *checkPCRelOffset(uint64_t Value
, int64_t Min
, int64_t Max
) {
228 int64_t Offset
= int64_t(Value
) - 4;
229 if (Offset
< Min
|| Offset
> Max
)
230 return "out of range pc-relative fixup value";
234 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup
&Fixup
,
235 uint64_t Value
) const {
236 switch (Fixup
.getTargetKind()) {
237 case ARM::fixup_arm_thumb_br
: {
238 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
239 // low bit being an implied zero. There's an implied +4 offset for the
240 // branch, so we adjust the other way here to determine what's
243 // Relax if the value is too big for a (signed) i8.
244 int64_t Offset
= int64_t(Value
) - 4;
245 if (Offset
> 2046 || Offset
< -2048)
246 return "out of range pc-relative fixup value";
249 case ARM::fixup_arm_thumb_bcc
: {
250 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
251 // low bit being an implied zero. There's an implied +4 offset for the
252 // branch, so we adjust the other way here to determine what's
255 // Relax if the value is too big for a (signed) i8.
256 int64_t Offset
= int64_t(Value
) - 4;
257 if (Offset
> 254 || Offset
< -256)
258 return "out of range pc-relative fixup value";
261 case ARM::fixup_thumb_adr_pcrel_10
:
262 case ARM::fixup_arm_thumb_cp
: {
263 // If the immediate is negative, greater than 1020, or not a multiple
264 // of four, the wide version of the instruction must be used.
265 int64_t Offset
= int64_t(Value
) - 4;
267 return "misaligned pc-relative fixup value";
268 else if (Offset
> 1020 || Offset
< 0)
269 return "out of range pc-relative fixup value";
272 case ARM::fixup_arm_thumb_cb
: {
273 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
274 // instruction it is actually out of range for the instruction.
275 // It will be changed to a NOP.
276 int64_t Offset
= (Value
& ~1);
278 return "will be converted to nop";
281 case ARM::fixup_bf_branch
:
282 return checkPCRelOffset(Value
, 0, 30);
283 case ARM::fixup_bf_target
:
284 return checkPCRelOffset(Value
, -0x10000, +0xfffe);
285 case ARM::fixup_bfl_target
:
286 return checkPCRelOffset(Value
, -0x40000, +0x3fffe);
287 case ARM::fixup_bfc_target
:
288 return checkPCRelOffset(Value
, -0x1000, +0xffe);
290 return checkPCRelOffset(Value
, 0, +0xffe);
292 // The offset field in the LE and LETP instructions is an 11-bit
293 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
294 // interpreted as a negative offset from the value read from pc,
295 // i.e. from instruction_address+4.
297 // So an LE instruction can in principle address the instruction
298 // immediately after itself, or (not very usefully) the address
299 // half way through the 4-byte LE.
300 return checkPCRelOffset(Value
, -0xffe, 0);
301 case ARM::fixup_bfcsel_else_target
: {
302 if (Value
!= 2 && Value
!= 4)
303 return "out of range label-relative fixup value";
308 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
313 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup
&Fixup
, uint64_t Value
,
314 const MCRelaxableFragment
*DF
,
315 const MCAsmLayout
&Layout
) const {
316 return reasonForFixupRelaxation(Fixup
, Value
);
319 void ARMAsmBackend::relaxInstruction(const MCInst
&Inst
,
320 const MCSubtargetInfo
&STI
,
322 unsigned RelaxedOp
= getRelaxedOpcode(Inst
.getOpcode(), STI
);
324 // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
325 if (RelaxedOp
== Inst
.getOpcode()) {
326 SmallString
<256> Tmp
;
327 raw_svector_ostream
OS(Tmp
);
328 Inst
.dump_pretty(OS
);
330 report_fatal_error("unexpected instruction to relax: " + OS
.str());
333 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
334 // have to change the operands too.
335 if ((Inst
.getOpcode() == ARM::tCBZ
|| Inst
.getOpcode() == ARM::tCBNZ
) &&
336 RelaxedOp
== ARM::tHINT
) {
337 Res
.setOpcode(RelaxedOp
);
338 Res
.addOperand(MCOperand::createImm(0));
339 Res
.addOperand(MCOperand::createImm(14));
340 Res
.addOperand(MCOperand::createReg(0));
344 // The rest of instructions we're relaxing have the same operands.
345 // We just need to update to the proper opcode.
347 Res
.setOpcode(RelaxedOp
);
350 bool ARMAsmBackend::writeNopData(raw_ostream
&OS
, uint64_t Count
) const {
351 const uint16_t Thumb1_16bitNopEncoding
= 0x46c0; // using MOV r8,r8
352 const uint16_t Thumb2_16bitNopEncoding
= 0xbf00; // NOP
353 const uint32_t ARMv4_NopEncoding
= 0xe1a00000; // using MOV r0,r0
354 const uint32_t ARMv6T2_NopEncoding
= 0xe320f000; // NOP
356 const uint16_t nopEncoding
=
357 hasNOP() ? Thumb2_16bitNopEncoding
: Thumb1_16bitNopEncoding
;
358 uint64_t NumNops
= Count
/ 2;
359 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
360 support::endian::write(OS
, nopEncoding
, Endian
);
366 const uint32_t nopEncoding
=
367 hasNOP() ? ARMv6T2_NopEncoding
: ARMv4_NopEncoding
;
368 uint64_t NumNops
= Count
/ 4;
369 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
370 support::endian::write(OS
, nopEncoding
, Endian
);
371 // FIXME: should this function return false when unable to write exactly
372 // 'Count' bytes with NOP encodings?
375 break; // No leftover bytes to write
383 OS
.write("\0\0\xa0", 3);
390 static uint32_t swapHalfWords(uint32_t Value
, bool IsLittleEndian
) {
391 if (IsLittleEndian
) {
392 // Note that the halfwords are stored high first and low second in thumb;
393 // so we need to swap the fixup value here to map properly.
394 uint32_t Swapped
= (Value
& 0xFFFF0000) >> 16;
395 Swapped
|= (Value
& 0x0000FFFF) << 16;
401 static uint32_t joinHalfWords(uint32_t FirstHalf
, uint32_t SecondHalf
,
402 bool IsLittleEndian
) {
405 if (IsLittleEndian
) {
406 Value
= (SecondHalf
& 0xFFFF) << 16;
407 Value
|= (FirstHalf
& 0xFFFF);
409 Value
= (SecondHalf
& 0xFFFF);
410 Value
|= (FirstHalf
& 0xFFFF) << 16;
416 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler
&Asm
,
417 const MCFixup
&Fixup
,
418 const MCValue
&Target
, uint64_t Value
,
419 bool IsResolved
, MCContext
&Ctx
,
420 const MCSubtargetInfo
* STI
) const {
421 unsigned Kind
= Fixup
.getKind();
423 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
424 // and .word relocations they put the Thumb bit into the addend if possible.
425 // Other relocation types don't want this bit though (branches couldn't encode
426 // it if it *was* present, and no other relocations exist) and it can
427 // interfere with checking valid expressions.
428 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
429 if (A
->hasSubsectionsViaSymbols() && Asm
.isThumbFunc(&A
->getSymbol()) &&
430 A
->getSymbol().isExternal() &&
431 (Kind
== FK_Data_4
|| Kind
== ARM::fixup_arm_movw_lo16
||
432 Kind
== ARM::fixup_arm_movt_hi16
|| Kind
== ARM::fixup_t2_movw_lo16
||
433 Kind
== ARM::fixup_t2_movt_hi16
))
439 Ctx
.reportError(Fixup
.getLoc(), "bad relocation fixup type");
450 case ARM::fixup_arm_movt_hi16
:
451 assert(STI
!= nullptr);
452 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
455 case ARM::fixup_arm_movw_lo16
: {
456 unsigned Hi4
= (Value
& 0xF000) >> 12;
457 unsigned Lo12
= Value
& 0x0FFF;
458 // inst{19-16} = Hi4;
459 // inst{11-0} = Lo12;
460 Value
= (Hi4
<< 16) | (Lo12
);
463 case ARM::fixup_t2_movt_hi16
:
464 assert(STI
!= nullptr);
465 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
468 case ARM::fixup_t2_movw_lo16
: {
469 unsigned Hi4
= (Value
& 0xF000) >> 12;
470 unsigned i
= (Value
& 0x800) >> 11;
471 unsigned Mid3
= (Value
& 0x700) >> 8;
472 unsigned Lo8
= Value
& 0x0FF;
473 // inst{19-16} = Hi4;
475 // inst{14-12} = Mid3;
477 Value
= (Hi4
<< 16) | (i
<< 26) | (Mid3
<< 12) | (Lo8
);
478 return swapHalfWords(Value
, Endian
== support::little
);
480 case ARM::fixup_arm_ldst_pcrel_12
:
481 // ARM PC-relative values are offset by 8.
484 case ARM::fixup_t2_ldst_pcrel_12
: {
485 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
488 if ((int64_t)Value
< 0) {
493 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
496 Value
|= isAdd
<< 23;
498 // Same addressing mode as fixup_arm_pcrel_10,
499 // but with 16-bit halfwords swapped.
500 if (Kind
== ARM::fixup_t2_ldst_pcrel_12
)
501 return swapHalfWords(Value
, Endian
== support::little
);
505 case ARM::fixup_arm_adr_pcrel_12
: {
506 // ARM PC-relative values are offset by 8.
508 unsigned opc
= 4; // bits {24-21}. Default to add: 0b0100
509 if ((int64_t)Value
< 0) {
513 if (ARM_AM::getSOImmVal(Value
) == -1) {
514 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
517 // Encode the immediate and shift the opcode into place.
518 return ARM_AM::getSOImmVal(Value
) | (opc
<< 21);
521 case ARM::fixup_t2_adr_pcrel_12
: {
524 if ((int64_t)Value
< 0) {
529 uint32_t out
= (opc
<< 21);
530 out
|= (Value
& 0x800) << 15;
531 out
|= (Value
& 0x700) << 4;
532 out
|= (Value
& 0x0FF);
534 return swapHalfWords(out
, Endian
== support::little
);
537 case ARM::fixup_arm_condbranch
:
538 case ARM::fixup_arm_uncondbranch
:
539 case ARM::fixup_arm_uncondbl
:
540 case ARM::fixup_arm_condbl
:
541 case ARM::fixup_arm_blx
:
542 // These values don't encode the low two bits since they're always zero.
543 // Offset by 8 just as above.
544 if (const MCSymbolRefExpr
*SRE
=
545 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
546 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
548 return 0xffffff & ((Value
- 8) >> 2);
549 case ARM::fixup_t2_uncondbranch
: {
551 if (!isInt
<25>(Value
)) {
552 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
556 Value
>>= 1; // Low bit is not encoded.
559 bool I
= Value
& 0x800000;
560 bool J1
= Value
& 0x400000;
561 bool J2
= Value
& 0x200000;
565 out
|= I
<< 26; // S bit
566 out
|= !J1
<< 13; // J1 bit
567 out
|= !J2
<< 11; // J2 bit
568 out
|= (Value
& 0x1FF800) << 5; // imm6 field
569 out
|= (Value
& 0x0007FF); // imm11 field
571 return swapHalfWords(out
, Endian
== support::little
);
573 case ARM::fixup_t2_condbranch
: {
575 if (!isInt
<21>(Value
)) {
576 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
580 Value
>>= 1; // Low bit is not encoded.
583 out
|= (Value
& 0x80000) << 7; // S bit
584 out
|= (Value
& 0x40000) >> 7; // J2 bit
585 out
|= (Value
& 0x20000) >> 4; // J1 bit
586 out
|= (Value
& 0x1F800) << 5; // imm6 field
587 out
|= (Value
& 0x007FF); // imm11 field
589 return swapHalfWords(out
, Endian
== support::little
);
591 case ARM::fixup_arm_thumb_bl
: {
592 if (!isInt
<25>(Value
- 4) ||
593 (!STI
->getFeatureBits()[ARM::FeatureThumb2
] &&
594 !STI
->getFeatureBits()[ARM::HasV8MBaselineOps
] &&
595 !STI
->getFeatureBits()[ARM::HasV6MOps
] &&
596 !isInt
<23>(Value
- 4))) {
597 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
601 // The value doesn't encode the low bit (always zero) and is offset by
602 // four. The 32-bit immediate value is encoded as
603 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
604 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
605 // The value is encoded into disjoint bit positions in the destination
606 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
607 // J = either J1 or J2 bit
609 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
611 // Note that the halfwords are stored high first, low second; so we need
612 // to transpose the fixup value here to map properly.
613 uint32_t offset
= (Value
- 4) >> 1;
614 uint32_t signBit
= (offset
& 0x800000) >> 23;
615 uint32_t I1Bit
= (offset
& 0x400000) >> 22;
616 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
617 uint32_t I2Bit
= (offset
& 0x200000) >> 21;
618 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
619 uint32_t imm10Bits
= (offset
& 0x1FF800) >> 11;
620 uint32_t imm11Bits
= (offset
& 0x000007FF);
622 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10Bits
);
623 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
624 (uint16_t)imm11Bits
);
625 return joinHalfWords(FirstHalf
, SecondHalf
, Endian
== support::little
);
627 case ARM::fixup_arm_thumb_blx
: {
628 // The value doesn't encode the low two bits (always zero) and is offset by
629 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
630 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
631 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
632 // The value is encoded into disjoint bit positions in the destination
633 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
634 // J = either J1 or J2 bit, 0 = zero.
636 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
638 // Note that the halfwords are stored high first, low second; so we need
639 // to transpose the fixup value here to map properly.
640 if (Value
% 4 != 0) {
641 Ctx
.reportError(Fixup
.getLoc(), "misaligned ARM call destination");
645 uint32_t offset
= (Value
- 4) >> 2;
646 if (const MCSymbolRefExpr
*SRE
=
647 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
648 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
650 uint32_t signBit
= (offset
& 0x400000) >> 22;
651 uint32_t I1Bit
= (offset
& 0x200000) >> 21;
652 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
653 uint32_t I2Bit
= (offset
& 0x100000) >> 20;
654 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
655 uint32_t imm10HBits
= (offset
& 0xFFC00) >> 10;
656 uint32_t imm10LBits
= (offset
& 0x3FF);
658 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10HBits
);
659 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
660 ((uint16_t)imm10LBits
) << 1);
661 return joinHalfWords(FirstHalf
, SecondHalf
, Endian
== support::little
);
663 case ARM::fixup_thumb_adr_pcrel_10
:
664 case ARM::fixup_arm_thumb_cp
:
665 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
666 // could have an error on our hands.
667 assert(STI
!= nullptr);
668 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
] && IsResolved
) {
669 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
670 if (FixupDiagnostic
) {
671 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
675 // Offset by 4, and don't encode the low two bits.
676 return ((Value
- 4) >> 2) & 0xff;
677 case ARM::fixup_arm_thumb_cb
: {
678 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
679 // so ensure that the raw value LSB is zero and it lies in [2, 130].
680 // An offset of 2 will be relaxed to a NOP.
681 if ((int64_t)Value
< 2 || Value
> 0x82 || Value
& 1) {
682 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
685 // Offset by 4 and don't encode the lower bit, which is always 0.
686 // FIXME: diagnose if no Thumb2
687 uint32_t Binary
= (Value
- 4) >> 1;
688 return ((Binary
& 0x20) << 4) | ((Binary
& 0x1f) << 3);
690 case ARM::fixup_arm_thumb_br
:
691 // Offset by 4 and don't encode the lower bit, which is always 0.
692 assert(STI
!= nullptr);
693 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
] &&
694 !STI
->getFeatureBits()[ARM::HasV8MBaselineOps
]) {
695 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
696 if (FixupDiagnostic
) {
697 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
701 return ((Value
- 4) >> 1) & 0x7ff;
702 case ARM::fixup_arm_thumb_bcc
:
703 // Offset by 4 and don't encode the lower bit, which is always 0.
704 assert(STI
!= nullptr);
705 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
]) {
706 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
707 if (FixupDiagnostic
) {
708 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
712 return ((Value
- 4) >> 1) & 0xff;
713 case ARM::fixup_arm_pcrel_10_unscaled
: {
714 Value
= Value
- 8; // ARM fixups offset by an additional word and don't
715 // need to adjust for the half-word ordering.
717 if ((int64_t)Value
< 0) {
721 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
723 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
726 Value
= (Value
& 0xf) | ((Value
& 0xf0) << 4);
727 return Value
| (isAdd
<< 23);
729 case ARM::fixup_arm_pcrel_10
:
730 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
731 // need to adjust for the half-word ordering.
733 case ARM::fixup_t2_pcrel_10
: {
734 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
737 if ((int64_t)Value
< 0) {
741 // These values don't encode the low two bits since they're always zero.
744 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
747 Value
|= isAdd
<< 23;
749 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
751 if (Kind
== ARM::fixup_t2_pcrel_10
)
752 return swapHalfWords(Value
, Endian
== support::little
);
756 case ARM::fixup_arm_pcrel_9
:
757 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
758 // need to adjust for the half-word ordering.
760 case ARM::fixup_t2_pcrel_9
: {
761 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
764 if ((int64_t)Value
< 0) {
768 // These values don't encode the low bit since it's always zero.
770 Ctx
.reportError(Fixup
.getLoc(), "invalid value for this fixup");
775 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
778 Value
|= isAdd
<< 23;
780 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
782 if (Kind
== ARM::fixup_t2_pcrel_9
)
783 return swapHalfWords(Value
, Endian
== support::little
);
787 case ARM::fixup_arm_mod_imm
:
788 Value
= ARM_AM::getSOImmVal(Value
);
790 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
794 case ARM::fixup_t2_so_imm
: {
795 Value
= ARM_AM::getT2SOImmVal(Value
);
796 if ((int64_t)Value
< 0) {
797 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
800 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
801 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
802 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
803 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
805 uint64_t EncValue
= 0;
806 EncValue
|= (Value
& 0x800) << 15;
807 EncValue
|= (Value
& 0x700) << 4;
808 EncValue
|= (Value
& 0xff);
809 return swapHalfWords(EncValue
, Endian
== support::little
);
811 case ARM::fixup_bf_branch
: {
812 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
813 if (FixupDiagnostic
) {
814 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
817 uint32_t out
= (((Value
- 4) >> 1) & 0xf) << 23;
818 return swapHalfWords(out
, Endian
== support::little
);
820 case ARM::fixup_bf_target
:
821 case ARM::fixup_bfl_target
:
822 case ARM::fixup_bfc_target
: {
823 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
824 if (FixupDiagnostic
) {
825 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
829 uint32_t HighBitMask
= (Kind
== ARM::fixup_bf_target
? 0xf800 :
830 Kind
== ARM::fixup_bfl_target
? 0x3f800 : 0x800);
831 out
|= (((Value
- 4) >> 1) & 0x1) << 11;
832 out
|= (((Value
- 4) >> 1) & 0x7fe);
833 out
|= (((Value
- 4) >> 1) & HighBitMask
) << 5;
834 return swapHalfWords(out
, Endian
== support::little
);
836 case ARM::fixup_bfcsel_else_target
: {
837 // If this is a fixup of a branch future's else target then it should be a
838 // constant MCExpr representing the distance between the branch targetted
839 // and the instruction after that same branch.
840 Value
= Target
.getConstant();
842 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
843 if (FixupDiagnostic
) {
844 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
847 uint32_t out
= ((Value
>> 2) & 1) << 17;
848 return swapHalfWords(out
, Endian
== support::little
);
851 case ARM::fixup_le
: {
852 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
853 if (FixupDiagnostic
) {
854 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
857 uint64_t real_value
= Value
- 4;
859 if (Kind
== ARM::fixup_le
)
860 real_value
= -real_value
;
861 out
|= ((real_value
>> 1) & 0x1) << 11;
862 out
|= ((real_value
>> 1) & 0x7fe);
863 return swapHalfWords(out
, Endian
== support::little
);
868 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler
&Asm
,
869 const MCFixup
&Fixup
,
870 const MCValue
&Target
) {
871 const MCSymbolRefExpr
*A
= Target
.getSymA();
872 const MCSymbol
*Sym
= A
? &A
->getSymbol() : nullptr;
873 const unsigned FixupKind
= Fixup
.getKind();
874 if (FixupKind
== FK_NONE
)
876 if (FixupKind
== ARM::fixup_arm_thumb_bl
) {
877 assert(Sym
&& "How did we resolve this?");
879 // If the symbol is external the linker will handle it.
880 // FIXME: Should we handle it as an optimization?
882 // If the symbol is out of range, produce a relocation and hope the
883 // linker can handle it. GNU AS produces an error in this case.
884 if (Sym
->isExternal())
887 // Create relocations for unconditional branches to function symbols with
888 // different execution mode in ELF binaries.
889 if (Sym
&& Sym
->isELF()) {
890 unsigned Type
= cast
<MCSymbolELF
>(Sym
)->getType();
891 if ((Type
== ELF::STT_FUNC
|| Type
== ELF::STT_GNU_IFUNC
)) {
892 if (Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_uncondbranch
))
894 if (!Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_thumb_br
||
895 FixupKind
== ARM::fixup_arm_thumb_bl
||
896 FixupKind
== ARM::fixup_t2_condbranch
||
897 FixupKind
== ARM::fixup_t2_uncondbranch
))
901 // We must always generate a relocation for BL/BLX instructions if we have
902 // a symbol to reference, as the linker relies on knowing the destination
903 // symbol's thumb-ness to get interworking right.
904 if (A
&& (FixupKind
== ARM::fixup_arm_thumb_blx
||
905 FixupKind
== ARM::fixup_arm_blx
||
906 FixupKind
== ARM::fixup_arm_uncondbl
||
907 FixupKind
== ARM::fixup_arm_condbl
))
912 /// getFixupKindNumBytes - The number of bytes the fixup may change.
913 static unsigned getFixupKindNumBytes(unsigned Kind
) {
916 llvm_unreachable("Unknown fixup kind!");
922 case ARM::fixup_arm_thumb_bcc
:
923 case ARM::fixup_arm_thumb_cp
:
924 case ARM::fixup_thumb_adr_pcrel_10
:
928 case ARM::fixup_arm_thumb_br
:
929 case ARM::fixup_arm_thumb_cb
:
930 case ARM::fixup_arm_mod_imm
:
933 case ARM::fixup_arm_pcrel_10_unscaled
:
934 case ARM::fixup_arm_ldst_pcrel_12
:
935 case ARM::fixup_arm_pcrel_10
:
936 case ARM::fixup_arm_pcrel_9
:
937 case ARM::fixup_arm_adr_pcrel_12
:
938 case ARM::fixup_arm_uncondbl
:
939 case ARM::fixup_arm_condbl
:
940 case ARM::fixup_arm_blx
:
941 case ARM::fixup_arm_condbranch
:
942 case ARM::fixup_arm_uncondbranch
:
946 case ARM::fixup_t2_ldst_pcrel_12
:
947 case ARM::fixup_t2_condbranch
:
948 case ARM::fixup_t2_uncondbranch
:
949 case ARM::fixup_t2_pcrel_10
:
950 case ARM::fixup_t2_pcrel_9
:
951 case ARM::fixup_t2_adr_pcrel_12
:
952 case ARM::fixup_arm_thumb_bl
:
953 case ARM::fixup_arm_thumb_blx
:
954 case ARM::fixup_arm_movt_hi16
:
955 case ARM::fixup_arm_movw_lo16
:
956 case ARM::fixup_t2_movt_hi16
:
957 case ARM::fixup_t2_movw_lo16
:
958 case ARM::fixup_t2_so_imm
:
959 case ARM::fixup_bf_branch
:
960 case ARM::fixup_bf_target
:
961 case ARM::fixup_bfl_target
:
962 case ARM::fixup_bfc_target
:
963 case ARM::fixup_bfcsel_else_target
:
975 /// getFixupKindContainerSizeBytes - The number of bytes of the
976 /// container involved in big endian.
977 static unsigned getFixupKindContainerSizeBytes(unsigned Kind
) {
980 llvm_unreachable("Unknown fixup kind!");
992 case ARM::fixup_arm_thumb_bcc
:
993 case ARM::fixup_arm_thumb_cp
:
994 case ARM::fixup_thumb_adr_pcrel_10
:
995 case ARM::fixup_arm_thumb_br
:
996 case ARM::fixup_arm_thumb_cb
:
997 // Instruction size is 2 bytes.
1000 case ARM::fixup_arm_pcrel_10_unscaled
:
1001 case ARM::fixup_arm_ldst_pcrel_12
:
1002 case ARM::fixup_arm_pcrel_10
:
1003 case ARM::fixup_arm_pcrel_9
:
1004 case ARM::fixup_arm_adr_pcrel_12
:
1005 case ARM::fixup_arm_uncondbl
:
1006 case ARM::fixup_arm_condbl
:
1007 case ARM::fixup_arm_blx
:
1008 case ARM::fixup_arm_condbranch
:
1009 case ARM::fixup_arm_uncondbranch
:
1010 case ARM::fixup_t2_ldst_pcrel_12
:
1011 case ARM::fixup_t2_condbranch
:
1012 case ARM::fixup_t2_uncondbranch
:
1013 case ARM::fixup_t2_pcrel_10
:
1014 case ARM::fixup_t2_adr_pcrel_12
:
1015 case ARM::fixup_arm_thumb_bl
:
1016 case ARM::fixup_arm_thumb_blx
:
1017 case ARM::fixup_arm_movt_hi16
:
1018 case ARM::fixup_arm_movw_lo16
:
1019 case ARM::fixup_t2_movt_hi16
:
1020 case ARM::fixup_t2_movw_lo16
:
1021 case ARM::fixup_arm_mod_imm
:
1022 case ARM::fixup_t2_so_imm
:
1023 case ARM::fixup_bf_branch
:
1024 case ARM::fixup_bf_target
:
1025 case ARM::fixup_bfl_target
:
1026 case ARM::fixup_bfc_target
:
1027 case ARM::fixup_bfcsel_else_target
:
1028 case ARM::fixup_wls
:
1030 // Instruction size is 4 bytes.
1035 void ARMAsmBackend::applyFixup(const MCAssembler
&Asm
, const MCFixup
&Fixup
,
1036 const MCValue
&Target
,
1037 MutableArrayRef
<char> Data
, uint64_t Value
,
1039 const MCSubtargetInfo
* STI
) const {
1040 unsigned NumBytes
= getFixupKindNumBytes(Fixup
.getKind());
1041 MCContext
&Ctx
= Asm
.getContext();
1042 Value
= adjustFixupValue(Asm
, Fixup
, Target
, Value
, IsResolved
, Ctx
, STI
);
1044 return; // Doesn't change encoding.
1046 unsigned Offset
= Fixup
.getOffset();
1047 assert(Offset
+ NumBytes
<= Data
.size() && "Invalid fixup offset!");
1049 // Used to point to big endian bytes.
1050 unsigned FullSizeBytes
;
1051 if (Endian
== support::big
) {
1052 FullSizeBytes
= getFixupKindContainerSizeBytes(Fixup
.getKind());
1053 assert((Offset
+ FullSizeBytes
) <= Data
.size() && "Invalid fixup size!");
1054 assert(NumBytes
<= FullSizeBytes
&& "Invalid fixup size!");
1057 // For each byte of the fragment that the fixup touches, mask in the bits from
1058 // the fixup value. The Value has been "split up" into the appropriate
1060 for (unsigned i
= 0; i
!= NumBytes
; ++i
) {
1061 unsigned Idx
= Endian
== support::little
? i
: (FullSizeBytes
- 1 - i
);
1062 Data
[Offset
+ Idx
] |= uint8_t((Value
>> (i
* 8)) & 0xff);
1068 /// Compact unwind encoding values.
1069 enum CompactUnwindEncodings
{
1070 UNWIND_ARM_MODE_MASK
= 0x0F000000,
1071 UNWIND_ARM_MODE_FRAME
= 0x01000000,
1072 UNWIND_ARM_MODE_FRAME_D
= 0x02000000,
1073 UNWIND_ARM_MODE_DWARF
= 0x04000000,
1075 UNWIND_ARM_FRAME_STACK_ADJUST_MASK
= 0x00C00000,
1077 UNWIND_ARM_FRAME_FIRST_PUSH_R4
= 0x00000001,
1078 UNWIND_ARM_FRAME_FIRST_PUSH_R5
= 0x00000002,
1079 UNWIND_ARM_FRAME_FIRST_PUSH_R6
= 0x00000004,
1081 UNWIND_ARM_FRAME_SECOND_PUSH_R8
= 0x00000008,
1082 UNWIND_ARM_FRAME_SECOND_PUSH_R9
= 0x00000010,
1083 UNWIND_ARM_FRAME_SECOND_PUSH_R10
= 0x00000020,
1084 UNWIND_ARM_FRAME_SECOND_PUSH_R11
= 0x00000040,
1085 UNWIND_ARM_FRAME_SECOND_PUSH_R12
= 0x00000080,
1087 UNWIND_ARM_FRAME_D_REG_COUNT_MASK
= 0x00000F00,
1089 UNWIND_ARM_DWARF_SECTION_OFFSET
= 0x00FFFFFF
1092 } // end CU namespace
1094 /// Generate compact unwind encoding for the function based on the CFI
1095 /// instructions. If the CFI instructions describe a frame that cannot be
1096 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1097 /// tells the runtime to fallback and unwind using dwarf.
1098 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1099 ArrayRef
<MCCFIInstruction
> Instrs
) const {
1100 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1101 // Only armv7k uses CFI based unwinding.
1102 if (Subtype
!= MachO::CPU_SUBTYPE_ARM_V7K
)
1104 // No .cfi directives means no frame.
1107 // Start off assuming CFA is at SP+0.
1108 unsigned CFARegister
= ARM::SP
;
1109 int CFARegisterOffset
= 0;
1110 // Mark savable registers as initially unsaved
1111 DenseMap
<unsigned, int> RegOffsets
;
1112 int FloatRegCount
= 0;
1113 // Process each .cfi directive and build up compact unwind info.
1114 for (size_t i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
1116 const MCCFIInstruction
&Inst
= Instrs
[i
];
1117 switch (Inst
.getOperation()) {
1118 case MCCFIInstruction::OpDefCfa
: // DW_CFA_def_cfa
1119 CFARegisterOffset
= -Inst
.getOffset();
1120 CFARegister
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1122 case MCCFIInstruction::OpDefCfaOffset
: // DW_CFA_def_cfa_offset
1123 CFARegisterOffset
= -Inst
.getOffset();
1125 case MCCFIInstruction::OpDefCfaRegister
: // DW_CFA_def_cfa_register
1126 CFARegister
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1128 case MCCFIInstruction::OpOffset
: // DW_CFA_offset
1129 Reg
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1130 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
1131 RegOffsets
[Reg
] = Inst
.getOffset();
1132 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
1133 RegOffsets
[Reg
] = Inst
.getOffset();
1136 DEBUG_WITH_TYPE("compact-unwind",
1137 llvm::dbgs() << ".cfi_offset on unknown register="
1138 << Inst
.getRegister() << "\n");
1139 return CU::UNWIND_ARM_MODE_DWARF
;
1142 case MCCFIInstruction::OpRelOffset
: // DW_CFA_advance_loc
1146 // Directive not convertable to compact unwind, bail out.
1147 DEBUG_WITH_TYPE("compact-unwind",
1149 << "CFI directive not compatiable with comact "
1150 "unwind encoding, opcode=" << Inst
.getOperation()
1152 return CU::UNWIND_ARM_MODE_DWARF
;
1157 // If no frame set up, return no unwind info.
1158 if ((CFARegister
== ARM::SP
) && (CFARegisterOffset
== 0))
1161 // Verify standard frame (lr/r7) was used.
1162 if (CFARegister
!= ARM::R7
) {
1163 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1165 << " instead of r7\n");
1166 return CU::UNWIND_ARM_MODE_DWARF
;
1168 int StackAdjust
= CFARegisterOffset
- 8;
1169 if (RegOffsets
.lookup(ARM::LR
) != (-4 - StackAdjust
)) {
1170 DEBUG_WITH_TYPE("compact-unwind",
1172 << "LR not saved as standard frame, StackAdjust="
1174 << ", CFARegisterOffset=" << CFARegisterOffset
1175 << ", lr save at offset=" << RegOffsets
[14] << "\n");
1176 return CU::UNWIND_ARM_MODE_DWARF
;
1178 if (RegOffsets
.lookup(ARM::R7
) != (-8 - StackAdjust
)) {
1179 DEBUG_WITH_TYPE("compact-unwind",
1180 llvm::dbgs() << "r7 not saved as standard frame\n");
1181 return CU::UNWIND_ARM_MODE_DWARF
;
1183 uint32_t CompactUnwindEncoding
= CU::UNWIND_ARM_MODE_FRAME
;
1185 // If var-args are used, there may be a stack adjust required.
1186 switch (StackAdjust
) {
1190 CompactUnwindEncoding
|= 0x00400000;
1193 CompactUnwindEncoding
|= 0x00800000;
1196 CompactUnwindEncoding
|= 0x00C00000;
1199 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1200 << ".cfi_def_cfa stack adjust ("
1201 << StackAdjust
<< ") out of range\n");
1202 return CU::UNWIND_ARM_MODE_DWARF
;
1205 // If r6 is saved, it must be right below r7.
1209 } GPRCSRegs
[] = {{ARM::R6
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6
},
1210 {ARM::R5
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5
},
1211 {ARM::R4
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4
},
1212 {ARM::R12
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12
},
1213 {ARM::R11
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11
},
1214 {ARM::R10
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10
},
1215 {ARM::R9
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9
},
1216 {ARM::R8
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8
}};
1218 int CurOffset
= -8 - StackAdjust
;
1219 for (auto CSReg
: GPRCSRegs
) {
1220 auto Offset
= RegOffsets
.find(CSReg
.Reg
);
1221 if (Offset
== RegOffsets
.end())
1224 int RegOffset
= Offset
->second
;
1225 if (RegOffset
!= CurOffset
- 4) {
1226 DEBUG_WITH_TYPE("compact-unwind",
1227 llvm::dbgs() << MRI
.getName(CSReg
.Reg
) << " saved at "
1228 << RegOffset
<< " but only supported at "
1229 << CurOffset
<< "\n");
1230 return CU::UNWIND_ARM_MODE_DWARF
;
1232 CompactUnwindEncoding
|= CSReg
.Encoding
;
1236 // If no floats saved, we are done.
1237 if (FloatRegCount
== 0)
1238 return CompactUnwindEncoding
;
1240 // Switch mode to include D register saving.
1241 CompactUnwindEncoding
&= ~CU::UNWIND_ARM_MODE_MASK
;
1242 CompactUnwindEncoding
|= CU::UNWIND_ARM_MODE_FRAME_D
;
1244 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1245 // but needs coordination with the linker and libunwind.
1246 if (FloatRegCount
> 4) {
1247 DEBUG_WITH_TYPE("compact-unwind",
1248 llvm::dbgs() << "unsupported number of D registers saved ("
1249 << FloatRegCount
<< ")\n");
1250 return CU::UNWIND_ARM_MODE_DWARF
;
1253 // Floating point registers must either be saved sequentially, or we defer to
1254 // DWARF. No gaps allowed here so check that each saved d-register is
1255 // precisely where it should be.
1256 static unsigned FPRCSRegs
[] = { ARM::D8
, ARM::D10
, ARM::D12
, ARM::D14
};
1257 for (int Idx
= FloatRegCount
- 1; Idx
>= 0; --Idx
) {
1258 auto Offset
= RegOffsets
.find(FPRCSRegs
[Idx
]);
1259 if (Offset
== RegOffsets
.end()) {
1260 DEBUG_WITH_TYPE("compact-unwind",
1261 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1262 << MRI
.getName(FPRCSRegs
[Idx
])
1264 return CU::UNWIND_ARM_MODE_DWARF
;
1265 } else if (Offset
->second
!= CurOffset
- 8) {
1266 DEBUG_WITH_TYPE("compact-unwind",
1267 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1268 << MRI
.getName(FPRCSRegs
[Idx
])
1269 << " saved at " << Offset
->second
1270 << ", expected at " << CurOffset
- 8
1272 return CU::UNWIND_ARM_MODE_DWARF
;
1277 return CompactUnwindEncoding
| ((FloatRegCount
- 1) << 8);
1280 static MachO::CPUSubTypeARM
getMachOSubTypeFromArch(StringRef Arch
) {
1281 ARM::ArchKind AK
= ARM::parseArch(Arch
);
1284 return MachO::CPU_SUBTYPE_ARM_V7
;
1285 case ARM::ArchKind::ARMV4T
:
1286 return MachO::CPU_SUBTYPE_ARM_V4T
;
1287 case ARM::ArchKind::ARMV5T
:
1288 case ARM::ArchKind::ARMV5TE
:
1289 case ARM::ArchKind::ARMV5TEJ
:
1290 return MachO::CPU_SUBTYPE_ARM_V5
;
1291 case ARM::ArchKind::ARMV6
:
1292 case ARM::ArchKind::ARMV6K
:
1293 return MachO::CPU_SUBTYPE_ARM_V6
;
1294 case ARM::ArchKind::ARMV7A
:
1295 return MachO::CPU_SUBTYPE_ARM_V7
;
1296 case ARM::ArchKind::ARMV7S
:
1297 return MachO::CPU_SUBTYPE_ARM_V7S
;
1298 case ARM::ArchKind::ARMV7K
:
1299 return MachO::CPU_SUBTYPE_ARM_V7K
;
1300 case ARM::ArchKind::ARMV6M
:
1301 return MachO::CPU_SUBTYPE_ARM_V6M
;
1302 case ARM::ArchKind::ARMV7M
:
1303 return MachO::CPU_SUBTYPE_ARM_V7M
;
1304 case ARM::ArchKind::ARMV7EM
:
1305 return MachO::CPU_SUBTYPE_ARM_V7EM
;
1309 static MCAsmBackend
*createARMAsmBackend(const Target
&T
,
1310 const MCSubtargetInfo
&STI
,
1311 const MCRegisterInfo
&MRI
,
1312 const MCTargetOptions
&Options
,
1313 support::endianness Endian
) {
1314 const Triple
&TheTriple
= STI
.getTargetTriple();
1315 switch (TheTriple
.getObjectFormat()) {
1317 llvm_unreachable("unsupported object format");
1318 case Triple::MachO
: {
1319 MachO::CPUSubTypeARM CS
= getMachOSubTypeFromArch(TheTriple
.getArchName());
1320 return new ARMAsmBackendDarwin(T
, STI
, MRI
, CS
);
1323 assert(TheTriple
.isOSWindows() && "non-Windows ARM COFF is not supported");
1324 return new ARMAsmBackendWinCOFF(T
, STI
);
1326 assert(TheTriple
.isOSBinFormatELF() && "using ELF for non-ELF target");
1327 uint8_t OSABI
= MCELFObjectTargetWriter::getOSABI(TheTriple
.getOS());
1328 return new ARMAsmBackendELF(T
, STI
, OSABI
, Endian
);
1332 MCAsmBackend
*llvm::createARMLEAsmBackend(const Target
&T
,
1333 const MCSubtargetInfo
&STI
,
1334 const MCRegisterInfo
&MRI
,
1335 const MCTargetOptions
&Options
) {
1336 return createARMAsmBackend(T
, STI
, MRI
, Options
, support::little
);
1339 MCAsmBackend
*llvm::createARMBEAsmBackend(const Target
&T
,
1340 const MCSubtargetInfo
&STI
,
1341 const MCRegisterInfo
&MRI
,
1342 const MCTargetOptions
&Options
) {
1343 return createARMAsmBackend(T
, STI
, MRI
, Options
, support::big
);