1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass identifies loops where we can generate the Hexagon hardware
10 // loop instruction. The hardware loop can perform loop branches with a
11 // zero-cycle overhead.
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 // The pattern detected by this phase is due to running Strength Reduction.
19 // Criteria for hardware loops:
20 // - Countable loops (w/ ind. var for a trip count)
21 // - Assumes loops are normalized by IndVarSimplify
22 // - Try inner-most loops first
23 // - No function calls in loops.
25 //===----------------------------------------------------------------------===//
27 #include "HexagonInstrInfo.h"
28 #include "HexagonSubtarget.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
65 #define DEBUG_TYPE "hwloops"
68 static cl::opt
<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden
, cl::init(-1));
70 // Option to create preheader only for a specific function.
71 static cl::opt
<std::string
> PHFn("hexagon-hwloop-phfn", cl::Hidden
,
75 // Option to create a preheader if one doesn't exist.
76 static cl::opt
<bool> HWCreatePreheader("hexagon-hwloop-preheader",
77 cl::Hidden
, cl::init(true),
78 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
80 // Turn it off by default. If a preheader block is not created here, the
81 // software pipeliner may be unable to find a block suitable to serve as
82 // a preheader. In that case SWP will not run.
83 static cl::opt
<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
84 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Allow speculation of preheader "
87 STATISTIC(NumHWLoops
, "Number of loops converted to hardware loops");
91 FunctionPass
*createHexagonHardwareLoops();
92 void initializeHexagonHardwareLoopsPass(PassRegistry
&);
94 } // end namespace llvm
100 struct HexagonHardwareLoops
: public MachineFunctionPass
{
101 MachineLoopInfo
*MLI
;
102 MachineRegisterInfo
*MRI
;
103 MachineDominatorTree
*MDT
;
104 const HexagonInstrInfo
*TII
;
105 const HexagonRegisterInfo
*TRI
;
113 HexagonHardwareLoops() : MachineFunctionPass(ID
) {}
115 bool runOnMachineFunction(MachineFunction
&MF
) override
;
117 StringRef
getPassName() const override
{ return "Hexagon Hardware Loops"; }
119 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
120 AU
.addRequired
<MachineDominatorTree
>();
121 AU
.addRequired
<MachineLoopInfo
>();
122 MachineFunctionPass::getAnalysisUsage(AU
);
126 using LoopFeederMap
= std::map
<unsigned, MachineInstr
*>;
128 /// Kinds of comparisons in the compare instructions.
146 static Kind
getSwappedComparison(Kind Cmp
) {
147 assert ((!((Cmp
& L
) && (Cmp
& G
))) && "Malformed comparison operator");
148 if ((Cmp
& L
) || (Cmp
& G
))
149 return (Kind
)(Cmp
^ (L
|G
));
153 static Kind
getNegatedComparison(Kind Cmp
) {
154 if ((Cmp
& L
) || (Cmp
& G
))
155 return (Kind
)((Cmp
^ (L
| G
)) ^ EQ
);
156 if ((Cmp
& NE
) || (Cmp
& EQ
))
157 return (Kind
)(Cmp
^ (EQ
| NE
));
161 static bool isSigned(Kind Cmp
) {
162 return (Cmp
& (L
| G
) && !(Cmp
& U
));
165 static bool isUnsigned(Kind Cmp
) {
170 /// Find the register that contains the loop controlling
171 /// induction variable.
172 /// If successful, it will return true and set the \p Reg, \p IVBump
173 /// and \p IVOp arguments. Otherwise it will return false.
174 /// The returned induction register is the register R that follows the
175 /// following induction pattern:
177 /// R = phi ..., [ R.next, LatchBlock ]
178 /// R.next = R + #bump
179 /// if (R.next < #N) goto loop
180 /// IVBump is the immediate value added to R, and IVOp is the instruction
181 /// "R.next = R + #bump".
182 bool findInductionRegister(MachineLoop
*L
, unsigned &Reg
,
183 int64_t &IVBump
, MachineInstr
*&IVOp
) const;
185 /// Return the comparison kind for the specified opcode.
186 Comparison::Kind
getComparisonKind(unsigned CondOpc
,
187 MachineOperand
*InitialValue
,
188 const MachineOperand
*Endvalue
,
189 int64_t IVBump
) const;
191 /// Analyze the statements in a loop to determine if the loop
192 /// has a computable trip count and, if so, return a value that represents
193 /// the trip count expression.
194 CountValue
*getLoopTripCount(MachineLoop
*L
,
195 SmallVectorImpl
<MachineInstr
*> &OldInsts
);
197 /// Return the expression that represents the number of times
198 /// a loop iterates. The function takes the operands that represent the
199 /// loop start value, loop end value, and induction value. Based upon
200 /// these operands, the function attempts to compute the trip count.
201 /// If the trip count is not directly available (as an immediate value,
202 /// or a register), the function will attempt to insert computation of it
203 /// to the loop's preheader.
204 CountValue
*computeCount(MachineLoop
*Loop
, const MachineOperand
*Start
,
205 const MachineOperand
*End
, unsigned IVReg
,
206 int64_t IVBump
, Comparison::Kind Cmp
) const;
208 /// Return true if the instruction is not valid within a hardware
210 bool isInvalidLoopOperation(const MachineInstr
*MI
,
211 bool IsInnerHWLoop
) const;
213 /// Return true if the loop contains an instruction that inhibits
214 /// using the hardware loop.
215 bool containsInvalidInstruction(MachineLoop
*L
, bool IsInnerHWLoop
) const;
217 /// Given a loop, check if we can convert it to a hardware loop.
218 /// If so, then perform the conversion and return true.
219 bool convertToHardwareLoop(MachineLoop
*L
, bool &L0used
, bool &L1used
);
221 /// Return true if the instruction is now dead.
222 bool isDead(const MachineInstr
*MI
,
223 SmallVectorImpl
<MachineInstr
*> &DeadPhis
) const;
225 /// Remove the instruction if it is now dead.
226 void removeIfDead(MachineInstr
*MI
);
228 /// Make sure that the "bump" instruction executes before the
229 /// compare. We need that for the IV fixup, so that the compare
230 /// instruction would not use a bumped value that has not yet been
231 /// defined. If the instructions are out of order, try to reorder them.
232 bool orderBumpCompare(MachineInstr
*BumpI
, MachineInstr
*CmpI
);
234 /// Return true if MO and MI pair is visited only once. If visited
235 /// more than once, this indicates there is recursion. In such a case,
237 bool isLoopFeeder(MachineLoop
*L
, MachineBasicBlock
*A
, MachineInstr
*MI
,
238 const MachineOperand
*MO
,
239 LoopFeederMap
&LoopFeederPhi
) const;
241 /// Return true if the Phi may generate a value that may underflow,
243 bool phiMayWrapOrUnderflow(MachineInstr
*Phi
, const MachineOperand
*EndVal
,
244 MachineBasicBlock
*MBB
, MachineLoop
*L
,
245 LoopFeederMap
&LoopFeederPhi
) const;
247 /// Return true if the induction variable may underflow an unsigned
248 /// value in the first iteration.
249 bool loopCountMayWrapOrUnderFlow(const MachineOperand
*InitVal
,
250 const MachineOperand
*EndVal
,
251 MachineBasicBlock
*MBB
, MachineLoop
*L
,
252 LoopFeederMap
&LoopFeederPhi
) const;
254 /// Check if the given operand has a compile-time known constant
255 /// value. Return true if yes, and false otherwise. When returning true, set
256 /// Val to the corresponding constant value.
257 bool checkForImmediate(const MachineOperand
&MO
, int64_t &Val
) const;
259 /// Check if the operand has a compile-time known constant value.
260 bool isImmediate(const MachineOperand
&MO
) const {
262 return checkForImmediate(MO
, V
);
265 /// Return the immediate for the specified operand.
266 int64_t getImmediate(const MachineOperand
&MO
) const {
268 if (!checkForImmediate(MO
, V
))
269 llvm_unreachable("Invalid operand");
273 /// Reset the given machine operand to now refer to a new immediate
274 /// value. Assumes that the operand was already referencing an immediate
275 /// value, either directly, or via a register.
276 void setImmediate(MachineOperand
&MO
, int64_t Val
);
278 /// Fix the data flow of the induction variable.
279 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
282 /// where "bump" is the increment of the induction variable:
283 /// iv = iv + #const.
284 /// Due to some prior code transformations, the actual flow may look
286 /// phi -+-> bump ---> back to phi
288 /// +-> comparison-in-latch (against upper_bound-bump),
289 /// i.e. the comparison that controls the loop execution may be using
290 /// the value of the induction variable from before the increment.
292 /// Return true if the loop's flow is the desired one (i.e. it's
293 /// either been fixed, or no fixing was necessary).
294 /// Otherwise, return false. This can happen if the induction variable
295 /// couldn't be identified, or if the value in the latch's comparison
296 /// cannot be adjusted to reflect the post-bump value.
297 bool fixupInductionVariable(MachineLoop
*L
);
299 /// Given a loop, if it does not have a preheader, create one.
300 /// Return the block that is the preheader.
301 MachineBasicBlock
*createPreheaderForLoop(MachineLoop
*L
);
304 char HexagonHardwareLoops::ID
= 0;
306 int HexagonHardwareLoops::Counter
= 0;
309 /// Abstraction for a trip count of a loop. A smaller version
310 /// of the MachineOperand class without the concerns of changing the
311 /// operand representation.
314 enum CountValueType
{
330 explicit CountValue(CountValueType t
, unsigned v
, unsigned u
= 0) {
332 if (Kind
== CV_Register
) {
340 bool isReg() const { return Kind
== CV_Register
; }
341 bool isImm() const { return Kind
== CV_Immediate
; }
343 unsigned getReg() const {
344 assert(isReg() && "Wrong CountValue accessor");
345 return Contents
.R
.Reg
;
348 unsigned getSubReg() const {
349 assert(isReg() && "Wrong CountValue accessor");
350 return Contents
.R
.Sub
;
353 unsigned getImm() const {
354 assert(isImm() && "Wrong CountValue accessor");
355 return Contents
.ImmVal
;
358 void print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
= nullptr) const {
359 if (isReg()) { OS
<< printReg(Contents
.R
.Reg
, TRI
, Contents
.R
.Sub
); }
360 if (isImm()) { OS
<< Contents
.ImmVal
; }
364 } // end anonymous namespace
366 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops
, "hwloops",
367 "Hexagon Hardware Loops", false, false)
368 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
369 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
370 INITIALIZE_PASS_END(HexagonHardwareLoops
, "hwloops",
371 "Hexagon Hardware Loops", false, false)
373 FunctionPass
*llvm::createHexagonHardwareLoops() {
374 return new HexagonHardwareLoops();
377 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction
&MF
) {
378 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
379 if (skipFunction(MF
.getFunction()))
382 bool Changed
= false;
384 MLI
= &getAnalysis
<MachineLoopInfo
>();
385 MRI
= &MF
.getRegInfo();
386 MDT
= &getAnalysis
<MachineDominatorTree
>();
387 const HexagonSubtarget
&HST
= MF
.getSubtarget
<HexagonSubtarget
>();
388 TII
= HST
.getInstrInfo();
389 TRI
= HST
.getRegisterInfo();
392 if (!L
->getParentLoop()) {
395 Changed
|= convertToHardwareLoop(L
, L0Used
, L1Used
);
401 bool HexagonHardwareLoops::findInductionRegister(MachineLoop
*L
,
406 MachineBasicBlock
*Header
= L
->getHeader();
407 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
408 MachineBasicBlock
*Latch
= L
->getLoopLatch();
409 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
410 if (!Header
|| !Preheader
|| !Latch
|| !ExitingBlock
)
413 // This pair represents an induction register together with an immediate
414 // value that will be added to it in each loop iteration.
415 using RegisterBump
= std::pair
<unsigned, int64_t>;
417 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
418 // from an induction operation
420 // where bump is an immediate value.
421 using InductionMap
= std::map
<unsigned, RegisterBump
>;
425 using instr_iterator
= MachineBasicBlock::instr_iterator
;
427 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
428 I
!= E
&& I
->isPHI(); ++I
) {
429 MachineInstr
*Phi
= &*I
;
431 // Have a PHI instruction. Get the operand that corresponds to the
432 // latch block, and see if is a result of an addition of form "reg+imm",
433 // where the "reg" is defined by the PHI node we are looking at.
434 for (unsigned i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2) {
435 if (Phi
->getOperand(i
+1).getMBB() != Latch
)
438 Register PhiOpReg
= Phi
->getOperand(i
).getReg();
439 MachineInstr
*DI
= MRI
->getVRegDef(PhiOpReg
);
441 if (DI
->getDesc().isAdd()) {
442 // If the register operand to the add is the PHI we're looking at, this
443 // meets the induction pattern.
444 Register IndReg
= DI
->getOperand(1).getReg();
445 MachineOperand
&Opnd2
= DI
->getOperand(2);
447 if (MRI
->getVRegDef(IndReg
) == Phi
&& checkForImmediate(Opnd2
, V
)) {
448 Register UpdReg
= DI
->getOperand(0).getReg();
449 IndMap
.insert(std::make_pair(UpdReg
, std::make_pair(IndReg
, V
)));
455 SmallVector
<MachineOperand
,2> Cond
;
456 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
457 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
461 unsigned PredR
, PredPos
, PredRegFlags
;
462 if (!TII
->getPredReg(Cond
, PredR
, PredPos
, PredRegFlags
))
465 MachineInstr
*PredI
= MRI
->getVRegDef(PredR
);
466 if (!PredI
->isCompare())
469 unsigned CmpReg1
= 0, CmpReg2
= 0;
470 int CmpImm
= 0, CmpMask
= 0;
472 TII
->analyzeCompare(*PredI
, CmpReg1
, CmpReg2
, CmpMask
, CmpImm
);
473 // Fail if the compare was not analyzed, or it's not comparing a register
474 // with an immediate value. Not checking the mask here, since we handle
475 // the individual compare opcodes (including A4_cmpb*) later on.
479 // Exactly one of the input registers to the comparison should be among
480 // the induction registers.
481 InductionMap::iterator IndMapEnd
= IndMap
.end();
482 InductionMap::iterator F
= IndMapEnd
;
484 InductionMap::iterator F1
= IndMap
.find(CmpReg1
);
489 InductionMap::iterator F2
= IndMap
.find(CmpReg2
);
490 if (F2
!= IndMapEnd
) {
499 Reg
= F
->second
.first
;
500 IVBump
= F
->second
.second
;
501 IVOp
= MRI
->getVRegDef(F
->first
);
505 // Return the comparison kind for the specified opcode.
506 HexagonHardwareLoops::Comparison::Kind
507 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc
,
508 MachineOperand
*InitialValue
,
509 const MachineOperand
*EndValue
,
510 int64_t IVBump
) const {
511 Comparison::Kind Cmp
= (Comparison::Kind
)0;
513 case Hexagon::C2_cmpeq
:
514 case Hexagon::C2_cmpeqi
:
515 case Hexagon::C2_cmpeqp
:
516 Cmp
= Comparison::EQ
;
518 case Hexagon::C4_cmpneq
:
519 case Hexagon::C4_cmpneqi
:
520 Cmp
= Comparison::NE
;
522 case Hexagon::C2_cmplt
:
523 Cmp
= Comparison::LTs
;
525 case Hexagon::C2_cmpltu
:
526 Cmp
= Comparison::LTu
;
528 case Hexagon::C4_cmplte
:
529 case Hexagon::C4_cmpltei
:
530 Cmp
= Comparison::LEs
;
532 case Hexagon::C4_cmplteu
:
533 case Hexagon::C4_cmplteui
:
534 Cmp
= Comparison::LEu
;
536 case Hexagon::C2_cmpgt
:
537 case Hexagon::C2_cmpgti
:
538 case Hexagon::C2_cmpgtp
:
539 Cmp
= Comparison::GTs
;
541 case Hexagon::C2_cmpgtu
:
542 case Hexagon::C2_cmpgtui
:
543 case Hexagon::C2_cmpgtup
:
544 Cmp
= Comparison::GTu
;
546 case Hexagon::C2_cmpgei
:
547 Cmp
= Comparison::GEs
;
549 case Hexagon::C2_cmpgeui
:
550 Cmp
= Comparison::GEs
;
553 return (Comparison::Kind
)0;
558 /// Analyze the statements in a loop to determine if the loop has
559 /// a computable trip count and, if so, return a value that represents
560 /// the trip count expression.
562 /// This function iterates over the phi nodes in the loop to check for
563 /// induction variable patterns that are used in the calculation for
564 /// the number of time the loop is executed.
565 CountValue
*HexagonHardwareLoops::getLoopTripCount(MachineLoop
*L
,
566 SmallVectorImpl
<MachineInstr
*> &OldInsts
) {
567 MachineBasicBlock
*TopMBB
= L
->getTopBlock();
568 MachineBasicBlock::pred_iterator PI
= TopMBB
->pred_begin();
569 assert(PI
!= TopMBB
->pred_end() &&
570 "Loop must have more than one incoming edge!");
571 MachineBasicBlock
*Backedge
= *PI
++;
572 if (PI
== TopMBB
->pred_end()) // dead loop?
574 MachineBasicBlock
*Incoming
= *PI
++;
575 if (PI
!= TopMBB
->pred_end()) // multiple backedges?
578 // Make sure there is one incoming and one backedge and determine which
580 if (L
->contains(Incoming
)) {
581 if (L
->contains(Backedge
))
583 std::swap(Incoming
, Backedge
);
584 } else if (!L
->contains(Backedge
))
587 // Look for the cmp instruction to determine if we can get a useful trip
588 // count. The trip count can be either a register or an immediate. The
589 // location of the value depends upon the type (reg or imm).
590 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
597 bool FoundIV
= findInductionRegister(L
, IVReg
, IVBump
, IVOp
);
601 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
603 MachineOperand
*InitialValue
= nullptr;
604 MachineInstr
*IV_Phi
= MRI
->getVRegDef(IVReg
);
605 MachineBasicBlock
*Latch
= L
->getLoopLatch();
606 for (unsigned i
= 1, n
= IV_Phi
->getNumOperands(); i
< n
; i
+= 2) {
607 MachineBasicBlock
*MBB
= IV_Phi
->getOperand(i
+1).getMBB();
608 if (MBB
== Preheader
)
609 InitialValue
= &IV_Phi
->getOperand(i
);
610 else if (MBB
== Latch
)
611 IVReg
= IV_Phi
->getOperand(i
).getReg(); // Want IV reg after bump.
616 SmallVector
<MachineOperand
,2> Cond
;
617 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
618 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
622 MachineBasicBlock
*Header
= L
->getHeader();
623 // TB must be non-null. If FB is also non-null, one of them must be
624 // the header. Otherwise, branch to TB could be exiting the loop, and
625 // the fall through can go to the header.
626 assert (TB
&& "Exit block without a branch?");
627 if (ExitingBlock
!= Latch
&& (TB
== Latch
|| FB
== Latch
)) {
628 MachineBasicBlock
*LTB
= nullptr, *LFB
= nullptr;
629 SmallVector
<MachineOperand
,2> LCond
;
630 bool NotAnalyzed
= TII
->analyzeBranch(*Latch
, LTB
, LFB
, LCond
, false);
634 TB
= (LTB
== Header
) ? LTB
: LFB
;
636 FB
= (LTB
== Header
) ? LTB
: LFB
;
638 assert ((!FB
|| TB
== Header
|| FB
== Header
) && "Branches not to header?");
639 if (!TB
|| (FB
&& TB
!= Header
&& FB
!= Header
))
642 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
643 // to put imm(0), followed by P in the vector Cond.
644 // If TB is not the header, it means that the "not-taken" path must lead
646 bool Negated
= TII
->predOpcodeHasNot(Cond
) ^ (TB
!= Header
);
647 unsigned PredReg
, PredPos
, PredRegFlags
;
648 if (!TII
->getPredReg(Cond
, PredReg
, PredPos
, PredRegFlags
))
650 MachineInstr
*CondI
= MRI
->getVRegDef(PredReg
);
651 unsigned CondOpc
= CondI
->getOpcode();
653 unsigned CmpReg1
= 0, CmpReg2
= 0;
654 int Mask
= 0, ImmValue
= 0;
656 TII
->analyzeCompare(*CondI
, CmpReg1
, CmpReg2
, Mask
, ImmValue
);
660 // The comparison operator type determines how we compute the loop
662 OldInsts
.push_back(CondI
);
663 OldInsts
.push_back(IVOp
);
665 // Sadly, the following code gets information based on the position
666 // of the operands in the compare instruction. This has to be done
667 // this way, because the comparisons check for a specific relationship
668 // between the operands (e.g. is-less-than), rather than to find out
669 // what relationship the operands are in (as on PPC).
670 Comparison::Kind Cmp
;
671 bool isSwapped
= false;
672 const MachineOperand
&Op1
= CondI
->getOperand(1);
673 const MachineOperand
&Op2
= CondI
->getOperand(2);
674 const MachineOperand
*EndValue
= nullptr;
677 if (Op2
.isImm() || Op1
.getReg() == IVReg
)
688 Cmp
= getComparisonKind(CondOpc
, InitialValue
, EndValue
, IVBump
);
692 Cmp
= Comparison::getNegatedComparison(Cmp
);
694 Cmp
= Comparison::getSwappedComparison(Cmp
);
696 if (InitialValue
->isReg()) {
697 Register R
= InitialValue
->getReg();
698 MachineBasicBlock
*DefBB
= MRI
->getVRegDef(R
)->getParent();
699 if (!MDT
->properlyDominates(DefBB
, Header
)) {
701 if (!checkForImmediate(*InitialValue
, V
))
704 OldInsts
.push_back(MRI
->getVRegDef(R
));
706 if (EndValue
->isReg()) {
707 Register R
= EndValue
->getReg();
708 MachineBasicBlock
*DefBB
= MRI
->getVRegDef(R
)->getParent();
709 if (!MDT
->properlyDominates(DefBB
, Header
)) {
711 if (!checkForImmediate(*EndValue
, V
))
714 OldInsts
.push_back(MRI
->getVRegDef(R
));
717 return computeCount(L
, InitialValue
, EndValue
, IVReg
, IVBump
, Cmp
);
720 /// Helper function that returns the expression that represents the
721 /// number of times a loop iterates. The function takes the operands that
722 /// represent the loop start value, loop end value, and induction value.
723 /// Based upon these operands, the function attempts to compute the trip count.
724 CountValue
*HexagonHardwareLoops::computeCount(MachineLoop
*Loop
,
725 const MachineOperand
*Start
,
726 const MachineOperand
*End
,
729 Comparison::Kind Cmp
) const {
730 // Cannot handle comparison EQ, i.e. while (A == B).
731 if (Cmp
== Comparison::EQ
)
734 // Check if either the start or end values are an assignment of an immediate.
735 // If so, use the immediate value rather than the register.
736 if (Start
->isReg()) {
737 const MachineInstr
*StartValInstr
= MRI
->getVRegDef(Start
->getReg());
738 if (StartValInstr
&& (StartValInstr
->getOpcode() == Hexagon::A2_tfrsi
||
739 StartValInstr
->getOpcode() == Hexagon::A2_tfrpi
))
740 Start
= &StartValInstr
->getOperand(1);
743 const MachineInstr
*EndValInstr
= MRI
->getVRegDef(End
->getReg());
744 if (EndValInstr
&& (EndValInstr
->getOpcode() == Hexagon::A2_tfrsi
||
745 EndValInstr
->getOpcode() == Hexagon::A2_tfrpi
))
746 End
= &EndValInstr
->getOperand(1);
749 if (!Start
->isReg() && !Start
->isImm())
751 if (!End
->isReg() && !End
->isImm())
754 bool CmpLess
= Cmp
& Comparison::L
;
755 bool CmpGreater
= Cmp
& Comparison::G
;
756 bool CmpHasEqual
= Cmp
& Comparison::EQ
;
758 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
759 if (CmpLess
&& IVBump
< 0)
760 // Loop going while iv is "less" with the iv value going down. Must wrap.
763 if (CmpGreater
&& IVBump
> 0)
764 // Loop going while iv is "greater" with the iv value going up. Must wrap.
767 // Phis that may feed into the loop.
768 LoopFeederMap LoopFeederPhi
;
770 // Check if the initial value may be zero and can be decremented in the first
771 // iteration. If the value is zero, the endloop instruction will not decrement
772 // the loop counter, so we shouldn't generate a hardware loop in this case.
773 if (loopCountMayWrapOrUnderFlow(Start
, End
, Loop
->getLoopPreheader(), Loop
,
777 if (Start
->isImm() && End
->isImm()) {
778 // Both, start and end are immediates.
779 int64_t StartV
= Start
->getImm();
780 int64_t EndV
= End
->getImm();
781 int64_t Dist
= EndV
- StartV
;
785 bool Exact
= (Dist
% IVBump
) == 0;
787 if (Cmp
== Comparison::NE
) {
790 if ((Dist
< 0) ^ (IVBump
< 0))
794 // For comparisons that include the final value (i.e. include equality
795 // with the final value), we need to increase the distance by 1.
797 Dist
= Dist
> 0 ? Dist
+1 : Dist
-1;
799 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
800 // CmpGreater should imply Dist < 0. These conditions could actually
801 // fail, for example, in unreachable code (which may still appear to be
802 // reachable in the CFG).
803 if ((CmpLess
&& Dist
< 0) || (CmpGreater
&& Dist
> 0))
806 // "Normalized" distance, i.e. with the bump set to +-1.
807 int64_t Dist1
= (IVBump
> 0) ? (Dist
+ (IVBump
- 1)) / IVBump
808 : (-Dist
+ (-IVBump
- 1)) / (-IVBump
);
809 assert (Dist1
> 0 && "Fishy thing. Both operands have the same sign.");
811 uint64_t Count
= Dist1
;
813 if (Count
> 0xFFFFFFFFULL
)
816 return new CountValue(CountValue::CV_Immediate
, Count
);
819 // A general case: Start and End are some values, but the actual
820 // iteration count may not be available. If it is not, insert
821 // a computation of it into the preheader.
823 // If the induction variable bump is not a power of 2, quit.
824 // Othwerise we'd need a general integer division.
825 if (!isPowerOf2_64(std::abs(IVBump
)))
828 MachineBasicBlock
*PH
= MLI
->findLoopPreheader(Loop
, SpecPreheader
);
829 assert (PH
&& "Should have a preheader by now");
830 MachineBasicBlock::iterator InsertPos
= PH
->getFirstTerminator();
832 if (InsertPos
!= PH
->end())
833 DL
= InsertPos
->getDebugLoc();
835 // If Start is an immediate and End is a register, the trip count
836 // will be "reg - imm". Hexagon's "subtract immediate" instruction
837 // is actually "reg + -imm".
839 // If the loop IV is going downwards, i.e. if the bump is negative,
840 // then the iteration count (computed as End-Start) will need to be
841 // negated. To avoid the negation, just swap Start and End.
843 std::swap(Start
, End
);
846 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
847 // Signedness, and "including equality" are preserved.
849 bool RegToImm
= Start
->isReg() && End
->isImm(); // for (reg..imm)
850 bool RegToReg
= Start
->isReg() && End
->isReg(); // for (reg..reg)
852 int64_t StartV
= 0, EndV
= 0;
854 StartV
= Start
->getImm();
856 EndV
= End
->getImm();
859 // To compute the iteration count, we would need this computation:
860 // Count = (End - Start + (IVBump-1)) / IVBump
861 // or, when CmpHasEqual:
862 // Count = (End - Start + (IVBump-1)+1) / IVBump
863 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
864 // generating an instruction specifically to add it if we can adjust
865 // the immediate values for Start or End.
868 // Need to add 1 to the total iteration count.
871 else if (End
->isImm())
877 if (Cmp
!= Comparison::NE
) {
879 StartV
-= (IVBump
-1);
880 else if (End
->isImm())
886 unsigned R
= 0, SR
= 0;
887 if (Start
->isReg()) {
889 SR
= Start
->getSubReg();
892 SR
= End
->getSubReg();
894 const TargetRegisterClass
*RC
= MRI
->getRegClass(R
);
895 // Hardware loops cannot handle 64-bit registers. If it's a double
896 // register, it has to have a subregister.
897 if (!SR
&& RC
== &Hexagon::DoubleRegsRegClass
)
899 const TargetRegisterClass
*IntRC
= &Hexagon::IntRegsRegClass
;
901 // Compute DistR (register with the distance between Start and End).
902 unsigned DistR
, DistSR
;
904 // Avoid special case, where the start value is an imm(0).
905 if (Start
->isImm() && StartV
== 0) {
906 DistR
= End
->getReg();
907 DistSR
= End
->getSubReg();
909 const MCInstrDesc
&SubD
= RegToReg
? TII
->get(Hexagon::A2_sub
) :
910 (RegToImm
? TII
->get(Hexagon::A2_subri
) :
911 TII
->get(Hexagon::A2_addi
));
912 if (RegToReg
|| RegToImm
) {
913 Register SubR
= MRI
->createVirtualRegister(IntRC
);
914 MachineInstrBuilder SubIB
=
915 BuildMI(*PH
, InsertPos
, DL
, SubD
, SubR
);
918 SubIB
.addReg(End
->getReg(), 0, End
->getSubReg())
919 .addReg(Start
->getReg(), 0, Start
->getSubReg());
922 .addReg(Start
->getReg(), 0, Start
->getSubReg());
925 // If the loop has been unrolled, we should use the original loop count
926 // instead of recalculating the value. This will avoid additional
927 // 'Add' instruction.
928 const MachineInstr
*EndValInstr
= MRI
->getVRegDef(End
->getReg());
929 if (EndValInstr
->getOpcode() == Hexagon::A2_addi
&&
930 EndValInstr
->getOperand(1).getSubReg() == 0 &&
931 EndValInstr
->getOperand(2).getImm() == StartV
) {
932 DistR
= EndValInstr
->getOperand(1).getReg();
934 Register SubR
= MRI
->createVirtualRegister(IntRC
);
935 MachineInstrBuilder SubIB
=
936 BuildMI(*PH
, InsertPos
, DL
, SubD
, SubR
);
937 SubIB
.addReg(End
->getReg(), 0, End
->getSubReg())
945 // From DistR, compute AdjR (register with the adjusted distance).
946 unsigned AdjR
, AdjSR
;
952 // Generate CountR = ADD DistR, AdjVal
953 Register AddR
= MRI
->createVirtualRegister(IntRC
);
954 MCInstrDesc
const &AddD
= TII
->get(Hexagon::A2_addi
);
955 BuildMI(*PH
, InsertPos
, DL
, AddD
, AddR
)
956 .addReg(DistR
, 0, DistSR
)
963 // From AdjR, compute CountR (register with the final count).
964 unsigned CountR
, CountSR
;
970 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
971 unsigned Shift
= Log2_32(IVBump
);
973 // Generate NormR = LSR DistR, Shift.
974 Register LsrR
= MRI
->createVirtualRegister(IntRC
);
975 const MCInstrDesc
&LsrD
= TII
->get(Hexagon::S2_lsr_i_r
);
976 BuildMI(*PH
, InsertPos
, DL
, LsrD
, LsrR
)
977 .addReg(AdjR
, 0, AdjSR
)
984 return new CountValue(CountValue::CV_Register
, CountR
, CountSR
);
987 /// Return true if the operation is invalid within hardware loop.
988 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr
*MI
,
989 bool IsInnerHWLoop
) const {
990 // Call is not allowed because the callee may use a hardware loop except for
991 // the case when the call never returns.
992 if (MI
->getDesc().isCall())
993 return !TII
->doesNotReturn(*MI
);
995 // Check if the instruction defines a hardware loop register.
996 using namespace Hexagon
;
998 static const unsigned Regs01
[] = { LC0
, SA0
, LC1
, SA1
};
999 static const unsigned Regs1
[] = { LC1
, SA1
};
1000 auto CheckRegs
= IsInnerHWLoop
? makeArrayRef(Regs01
, array_lengthof(Regs01
))
1001 : makeArrayRef(Regs1
, array_lengthof(Regs1
));
1002 for (unsigned R
: CheckRegs
)
1003 if (MI
->modifiesRegister(R
, TRI
))
1009 /// Return true if the loop contains an instruction that inhibits
1010 /// the use of the hardware loop instruction.
1011 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop
*L
,
1012 bool IsInnerHWLoop
) const {
1013 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1014 << printMBBReference(**L
->block_begin()));
1015 for (MachineBasicBlock
*MBB
: L
->getBlocks()) {
1016 for (MachineBasicBlock::iterator
1017 MII
= MBB
->begin(), E
= MBB
->end(); MII
!= E
; ++MII
) {
1018 const MachineInstr
*MI
= &*MII
;
1019 if (isInvalidLoopOperation(MI
, IsInnerHWLoop
)) {
1020 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1029 /// Returns true if the instruction is dead. This was essentially
1030 /// copied from DeadMachineInstructionElim::isDead, but with special cases
1031 /// for inline asm, physical registers and instructions with side effects
1033 bool HexagonHardwareLoops::isDead(const MachineInstr
*MI
,
1034 SmallVectorImpl
<MachineInstr
*> &DeadPhis
) const {
1035 // Examine each operand.
1036 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1037 const MachineOperand
&MO
= MI
->getOperand(i
);
1038 if (!MO
.isReg() || !MO
.isDef())
1041 Register Reg
= MO
.getReg();
1042 if (MRI
->use_nodbg_empty(Reg
))
1045 using use_nodbg_iterator
= MachineRegisterInfo::use_nodbg_iterator
;
1047 // This instruction has users, but if the only user is the phi node for the
1048 // parent block, and the only use of that phi node is this instruction, then
1049 // this instruction is dead: both it (and the phi node) can be removed.
1050 use_nodbg_iterator I
= MRI
->use_nodbg_begin(Reg
);
1051 use_nodbg_iterator End
= MRI
->use_nodbg_end();
1052 if (std::next(I
) != End
|| !I
->getParent()->isPHI())
1055 MachineInstr
*OnePhi
= I
->getParent();
1056 for (unsigned j
= 0, f
= OnePhi
->getNumOperands(); j
!= f
; ++j
) {
1057 const MachineOperand
&OPO
= OnePhi
->getOperand(j
);
1058 if (!OPO
.isReg() || !OPO
.isDef())
1061 Register OPReg
= OPO
.getReg();
1062 use_nodbg_iterator nextJ
;
1063 for (use_nodbg_iterator J
= MRI
->use_nodbg_begin(OPReg
);
1064 J
!= End
; J
= nextJ
) {
1065 nextJ
= std::next(J
);
1066 MachineOperand
&Use
= *J
;
1067 MachineInstr
*UseMI
= Use
.getParent();
1069 // If the phi node has a user that is not MI, bail.
1074 DeadPhis
.push_back(OnePhi
);
1077 // If there are no defs with uses, the instruction is dead.
1081 void HexagonHardwareLoops::removeIfDead(MachineInstr
*MI
) {
1082 // This procedure was essentially copied from DeadMachineInstructionElim.
1084 SmallVector
<MachineInstr
*, 1> DeadPhis
;
1085 if (isDead(MI
, DeadPhis
)) {
1086 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI
);
1088 // It is possible that some DBG_VALUE instructions refer to this
1089 // instruction. Examine each def operand for such references;
1090 // if found, mark the DBG_VALUE as undef (but don't delete it).
1091 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1092 const MachineOperand
&MO
= MI
->getOperand(i
);
1093 if (!MO
.isReg() || !MO
.isDef())
1095 Register Reg
= MO
.getReg();
1096 MachineRegisterInfo::use_iterator nextI
;
1097 for (MachineRegisterInfo::use_iterator I
= MRI
->use_begin(Reg
),
1098 E
= MRI
->use_end(); I
!= E
; I
= nextI
) {
1099 nextI
= std::next(I
); // I is invalidated by the setReg
1100 MachineOperand
&Use
= *I
;
1101 MachineInstr
*UseMI
= I
->getParent();
1105 UseMI
->getOperand(0).setReg(0U);
1109 MI
->eraseFromParent();
1110 for (unsigned i
= 0; i
< DeadPhis
.size(); ++i
)
1111 DeadPhis
[i
]->eraseFromParent();
1115 /// Check if the loop is a candidate for converting to a hardware
1116 /// loop. If so, then perform the transformation.
1118 /// This function works on innermost loops first. A loop can be converted
1119 /// if it is a counting loop; either a register value or an immediate.
1121 /// The code makes several assumptions about the representation of the loop
1123 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop
*L
,
1126 // This is just for sanity.
1127 assert(L
->getHeader() && "Loop without a header?");
1129 bool Changed
= false;
1130 bool L0Used
= false;
1131 bool L1Used
= false;
1133 // Process nested loops first.
1134 for (MachineLoop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
) {
1135 Changed
|= convertToHardwareLoop(*I
, RecL0used
, RecL1used
);
1136 L0Used
|= RecL0used
;
1137 L1Used
|= RecL1used
;
1140 // If a nested loop has been converted, then we can't convert this loop.
1141 if (Changed
&& L0Used
&& L1Used
)
1148 // Flag used to track loopN instruction:
1149 // 1 - Hardware loop is being generated for the inner most loop.
1150 // 0 - Hardware loop is being generated for the outer loop.
1151 unsigned IsInnerHWLoop
= 1;
1154 LOOP_i
= Hexagon::J2_loop1i
;
1155 LOOP_r
= Hexagon::J2_loop1r
;
1156 ENDLOOP
= Hexagon::ENDLOOP1
;
1159 LOOP_i
= Hexagon::J2_loop0i
;
1160 LOOP_r
= Hexagon::J2_loop0r
;
1161 ENDLOOP
= Hexagon::ENDLOOP0
;
1165 // Stop trying after reaching the limit (if any).
1166 int Limit
= HWLoopLimit
;
1168 if (Counter
>= HWLoopLimit
)
1174 // Does the loop contain any invalid instructions?
1175 if (containsInvalidInstruction(L
, IsInnerHWLoop
))
1178 MachineBasicBlock
*LastMBB
= L
->findLoopControlBlock();
1179 // Don't generate hw loop if the loop has more than one exit.
1183 MachineBasicBlock::iterator LastI
= LastMBB
->getFirstTerminator();
1184 if (LastI
== LastMBB
->end())
1187 // Is the induction variable bump feeding the latch condition?
1188 if (!fixupInductionVariable(L
))
1191 // Ensure the loop has a preheader: the loop instruction will be
1193 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
1195 Preheader
= createPreheaderForLoop(L
);
1200 MachineBasicBlock::iterator InsertPos
= Preheader
->getFirstTerminator();
1202 SmallVector
<MachineInstr
*, 2> OldInsts
;
1203 // Are we able to determine the trip count for the loop?
1204 CountValue
*TripCount
= getLoopTripCount(L
, OldInsts
);
1208 // Is the trip count available in the preheader?
1209 if (TripCount
->isReg()) {
1210 // There will be a use of the register inserted into the preheader,
1211 // so make sure that the register is actually defined at that point.
1212 MachineInstr
*TCDef
= MRI
->getVRegDef(TripCount
->getReg());
1213 MachineBasicBlock
*BBDef
= TCDef
->getParent();
1214 if (!MDT
->dominates(BBDef
, Preheader
))
1218 // Determine the loop start.
1219 MachineBasicBlock
*TopBlock
= L
->getTopBlock();
1220 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1221 MachineBasicBlock
*LoopStart
= nullptr;
1222 if (ExitingBlock
!= L
->getLoopLatch()) {
1223 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1224 SmallVector
<MachineOperand
, 2> Cond
;
1226 if (TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false))
1229 if (L
->contains(TB
))
1231 else if (L
->contains(FB
))
1237 LoopStart
= TopBlock
;
1239 // Convert the loop to a hardware loop.
1240 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L
->dump());
1242 if (InsertPos
!= Preheader
->end())
1243 DL
= InsertPos
->getDebugLoc();
1245 if (TripCount
->isReg()) {
1246 // Create a copy of the loop count register.
1247 Register CountReg
= MRI
->createVirtualRegister(&Hexagon::IntRegsRegClass
);
1248 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(TargetOpcode::COPY
), CountReg
)
1249 .addReg(TripCount
->getReg(), 0, TripCount
->getSubReg());
1250 // Add the Loop instruction to the beginning of the loop.
1251 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_r
)).addMBB(LoopStart
)
1254 assert(TripCount
->isImm() && "Expecting immediate value for trip count");
1255 // Add the Loop immediate instruction to the beginning of the loop,
1256 // if the immediate fits in the instructions. Otherwise, we need to
1257 // create a new virtual register.
1258 int64_t CountImm
= TripCount
->getImm();
1259 if (!TII
->isValidOffset(LOOP_i
, CountImm
, TRI
)) {
1260 Register CountReg
= MRI
->createVirtualRegister(&Hexagon::IntRegsRegClass
);
1261 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(Hexagon::A2_tfrsi
), CountReg
)
1263 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_r
))
1264 .addMBB(LoopStart
).addReg(CountReg
);
1266 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_i
))
1267 .addMBB(LoopStart
).addImm(CountImm
);
1270 // Make sure the loop start always has a reference in the CFG. We need
1271 // to create a BlockAddress operand to get this mechanism to work both the
1272 // MachineBasicBlock and BasicBlock objects need the flag set.
1273 LoopStart
->setHasAddressTaken();
1274 // This line is needed to set the hasAddressTaken flag on the BasicBlock
1276 BlockAddress::get(const_cast<BasicBlock
*>(LoopStart
->getBasicBlock()));
1278 // Replace the loop branch with an endloop instruction.
1279 DebugLoc LastIDL
= LastI
->getDebugLoc();
1280 BuildMI(*LastMBB
, LastI
, LastIDL
, TII
->get(ENDLOOP
)).addMBB(LoopStart
);
1282 // The loop ends with either:
1283 // - a conditional branch followed by an unconditional branch, or
1284 // - a conditional branch to the loop start.
1285 if (LastI
->getOpcode() == Hexagon::J2_jumpt
||
1286 LastI
->getOpcode() == Hexagon::J2_jumpf
) {
1287 // Delete one and change/add an uncond. branch to out of the loop.
1288 MachineBasicBlock
*BranchTarget
= LastI
->getOperand(1).getMBB();
1289 LastI
= LastMBB
->erase(LastI
);
1290 if (!L
->contains(BranchTarget
)) {
1291 if (LastI
!= LastMBB
->end())
1292 LastI
= LastMBB
->erase(LastI
);
1293 SmallVector
<MachineOperand
, 0> Cond
;
1294 TII
->insertBranch(*LastMBB
, BranchTarget
, nullptr, Cond
, LastIDL
);
1297 // Conditional branch to loop start; just delete it.
1298 LastMBB
->erase(LastI
);
1302 // The induction operation and the comparison may now be
1303 // unneeded. If these are unneeded, then remove them.
1304 for (unsigned i
= 0; i
< OldInsts
.size(); ++i
)
1305 removeIfDead(OldInsts
[i
]);
1309 // Set RecL1used and RecL0used only after hardware loop has been
1310 // successfully generated. Doing it earlier can cause wrong loop instruction
1312 if (L0Used
) // Loop0 was already used. So, the correct loop must be loop1.
1320 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr
*BumpI
,
1321 MachineInstr
*CmpI
) {
1322 assert (BumpI
!= CmpI
&& "Bump and compare in the same instruction?");
1324 MachineBasicBlock
*BB
= BumpI
->getParent();
1325 if (CmpI
->getParent() != BB
)
1328 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1330 // Check if things are in order to begin with.
1331 for (instr_iterator
I(BumpI
), E
= BB
->instr_end(); I
!= E
; ++I
)
1336 Register PredR
= CmpI
->getOperand(0).getReg();
1337 bool FoundBump
= false;
1338 instr_iterator CmpIt
= CmpI
->getIterator(), NextIt
= std::next(CmpIt
);
1339 for (instr_iterator I
= NextIt
, E
= BB
->instr_end(); I
!= E
; ++I
) {
1340 MachineInstr
*In
= &*I
;
1341 for (unsigned i
= 0, n
= In
->getNumOperands(); i
< n
; ++i
) {
1342 MachineOperand
&MO
= In
->getOperand(i
);
1343 if (MO
.isReg() && MO
.isUse()) {
1344 if (MO
.getReg() == PredR
) // Found an intervening use of PredR.
1350 BB
->splice(++BumpI
->getIterator(), BB
, CmpI
->getIterator());
1355 assert (FoundBump
&& "Cannot determine instruction order");
1359 /// This function is required to break recursion. Visiting phis in a loop may
1360 /// result in recursion during compilation. We break the recursion by making
1361 /// sure that we visit a MachineOperand and its definition in a
1362 /// MachineInstruction only once. If we attempt to visit more than once, then
1363 /// there is recursion, and will return false.
1364 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop
*L
, MachineBasicBlock
*A
,
1366 const MachineOperand
*MO
,
1367 LoopFeederMap
&LoopFeederPhi
) const {
1368 if (LoopFeederPhi
.find(MO
->getReg()) == LoopFeederPhi
.end()) {
1369 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1370 << printMBBReference(**L
->block_begin()));
1371 // Ignore all BBs that form Loop.
1372 for (MachineBasicBlock
*MBB
: L
->getBlocks()) {
1376 MachineInstr
*Def
= MRI
->getVRegDef(MO
->getReg());
1377 LoopFeederPhi
.insert(std::make_pair(MO
->getReg(), Def
));
1380 // Already visited node.
1384 /// Return true if a Phi may generate a value that can underflow.
1385 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1386 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1387 MachineInstr
*Phi
, const MachineOperand
*EndVal
, MachineBasicBlock
*MBB
,
1388 MachineLoop
*L
, LoopFeederMap
&LoopFeederPhi
) const {
1389 assert(Phi
->isPHI() && "Expecting a Phi.");
1390 // Walk through each Phi, and its used operands. Make sure that
1391 // if there is recursion in Phi, we won't generate hardware loops.
1392 for (int i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2)
1393 if (isLoopFeeder(L
, MBB
, Phi
, &(Phi
->getOperand(i
)), LoopFeederPhi
))
1394 if (loopCountMayWrapOrUnderFlow(&(Phi
->getOperand(i
)), EndVal
,
1395 Phi
->getParent(), L
, LoopFeederPhi
))
1400 /// Return true if the induction variable can underflow in the first iteration.
1401 /// An example, is an initial unsigned value that is 0 and is decrement in the
1402 /// first itertion of a do-while loop. In this case, we cannot generate a
1403 /// hardware loop because the endloop instruction does not decrement the loop
1404 /// counter if it is <= 1. We only need to perform this analysis if the
1405 /// initial value is a register.
1407 /// This function assumes the initial value may underfow unless proven
1408 /// otherwise. If the type is signed, then we don't care because signed
1409 /// underflow is undefined. We attempt to prove the initial value is not
1410 /// zero by perfoming a crude analysis of the loop counter. This function
1411 /// checks if the initial value is used in any comparison prior to the loop
1412 /// and, if so, assumes the comparison is a range check. This is inexact,
1413 /// but will catch the simple cases.
1414 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1415 const MachineOperand
*InitVal
, const MachineOperand
*EndVal
,
1416 MachineBasicBlock
*MBB
, MachineLoop
*L
,
1417 LoopFeederMap
&LoopFeederPhi
) const {
1418 // Only check register values since they are unknown.
1419 if (!InitVal
->isReg())
1422 if (!EndVal
->isImm())
1425 // A register value that is assigned an immediate is a known value, and it
1426 // won't underflow in the first iteration.
1428 if (checkForImmediate(*InitVal
, Imm
))
1429 return (EndVal
->getImm() == Imm
);
1431 Register Reg
= InitVal
->getReg();
1433 // We don't know the value of a physical register.
1434 if (!Register::isVirtualRegister(Reg
))
1437 MachineInstr
*Def
= MRI
->getVRegDef(Reg
);
1441 // If the initial value is a Phi or copy and the operands may not underflow,
1442 // then the definition cannot be underflow either.
1443 if (Def
->isPHI() && !phiMayWrapOrUnderflow(Def
, EndVal
, Def
->getParent(),
1446 if (Def
->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def
->getOperand(1)),
1447 EndVal
, Def
->getParent(),
1451 // Iterate over the uses of the initial value. If the initial value is used
1452 // in a compare, then we assume this is a range check that ensures the loop
1453 // doesn't underflow. This is not an exact test and should be improved.
1454 for (MachineRegisterInfo::use_instr_nodbg_iterator I
= MRI
->use_instr_nodbg_begin(Reg
),
1455 E
= MRI
->use_instr_nodbg_end(); I
!= E
; ++I
) {
1456 MachineInstr
*MI
= &*I
;
1457 unsigned CmpReg1
= 0, CmpReg2
= 0;
1458 int CmpMask
= 0, CmpValue
= 0;
1460 if (!TII
->analyzeCompare(*MI
, CmpReg1
, CmpReg2
, CmpMask
, CmpValue
))
1463 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1464 SmallVector
<MachineOperand
, 2> Cond
;
1465 if (TII
->analyzeBranch(*MI
->getParent(), TBB
, FBB
, Cond
, false))
1468 Comparison::Kind Cmp
=
1469 getComparisonKind(MI
->getOpcode(), nullptr, nullptr, 0);
1472 if (TII
->predOpcodeHasNot(Cond
) ^ (TBB
!= MBB
))
1473 Cmp
= Comparison::getNegatedComparison(Cmp
);
1474 if (CmpReg2
!= 0 && CmpReg2
== Reg
)
1475 Cmp
= Comparison::getSwappedComparison(Cmp
);
1477 // Signed underflow is undefined.
1478 if (Comparison::isSigned(Cmp
))
1481 // Check if there is a comparison of the initial value. If the initial value
1482 // is greater than or not equal to another value, then assume this is a
1484 if ((Cmp
& Comparison::G
) || Cmp
== Comparison::NE
)
1488 // OK - this is a hack that needs to be improved. We really need to analyze
1489 // the instructions performed on the initial value. This works on the simplest
1491 if (!Def
->isCopy() && !Def
->isPHI())
1497 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand
&MO
,
1498 int64_t &Val
) const {
1506 // MO is a register. Check whether it is defined as an immediate value,
1507 // and if so, get the value of it in TV. That value will then need to be
1508 // processed to handle potential subregisters in MO.
1511 Register R
= MO
.getReg();
1512 if (!Register::isVirtualRegister(R
))
1514 MachineInstr
*DI
= MRI
->getVRegDef(R
);
1515 unsigned DOpc
= DI
->getOpcode();
1517 case TargetOpcode::COPY
:
1518 case Hexagon::A2_tfrsi
:
1519 case Hexagon::A2_tfrpi
:
1520 case Hexagon::CONST32
:
1521 case Hexagon::CONST64
:
1522 // Call recursively to avoid an extra check whether operand(1) is
1523 // indeed an immediate (it could be a global address, for example),
1524 // plus we can handle COPY at the same time.
1525 if (!checkForImmediate(DI
->getOperand(1), TV
))
1528 case Hexagon::A2_combineii
:
1529 case Hexagon::A4_combineir
:
1530 case Hexagon::A4_combineii
:
1531 case Hexagon::A4_combineri
:
1532 case Hexagon::A2_combinew
: {
1533 const MachineOperand
&S1
= DI
->getOperand(1);
1534 const MachineOperand
&S2
= DI
->getOperand(2);
1536 if (!checkForImmediate(S1
, V1
) || !checkForImmediate(S2
, V2
))
1538 TV
= V2
| (static_cast<uint64_t>(V1
) << 32);
1541 case TargetOpcode::REG_SEQUENCE
: {
1542 const MachineOperand
&S1
= DI
->getOperand(1);
1543 const MachineOperand
&S3
= DI
->getOperand(3);
1545 if (!checkForImmediate(S1
, V1
) || !checkForImmediate(S3
, V3
))
1547 unsigned Sub2
= DI
->getOperand(2).getImm();
1548 unsigned Sub4
= DI
->getOperand(4).getImm();
1549 if (Sub2
== Hexagon::isub_lo
&& Sub4
== Hexagon::isub_hi
)
1550 TV
= V1
| (V3
<< 32);
1551 else if (Sub2
== Hexagon::isub_hi
&& Sub4
== Hexagon::isub_lo
)
1552 TV
= V3
| (V1
<< 32);
1554 llvm_unreachable("Unexpected form of REG_SEQUENCE");
1562 // By now, we should have successfully obtained the immediate value defining
1563 // the register referenced in MO. Handle a potential use of a subregister.
1564 switch (MO
.getSubReg()) {
1565 case Hexagon::isub_lo
:
1566 Val
= TV
& 0xFFFFFFFFULL
;
1568 case Hexagon::isub_hi
:
1569 Val
= (TV
>> 32) & 0xFFFFFFFFULL
;
1578 void HexagonHardwareLoops::setImmediate(MachineOperand
&MO
, int64_t Val
) {
1585 Register R
= MO
.getReg();
1586 MachineInstr
*DI
= MRI
->getVRegDef(R
);
1588 const TargetRegisterClass
*RC
= MRI
->getRegClass(R
);
1589 Register NewR
= MRI
->createVirtualRegister(RC
);
1590 MachineBasicBlock
&B
= *DI
->getParent();
1591 DebugLoc DL
= DI
->getDebugLoc();
1592 BuildMI(B
, DI
, DL
, TII
->get(DI
->getOpcode()), NewR
).addImm(Val
);
1596 static bool isImmValidForOpcode(unsigned CmpOpc
, int64_t Imm
) {
1597 // These two instructions are not extendable.
1598 if (CmpOpc
== Hexagon::A4_cmpbeqi
)
1599 return isUInt
<8>(Imm
);
1600 if (CmpOpc
== Hexagon::A4_cmpbgti
)
1601 return isInt
<8>(Imm
);
1602 // The rest of the comparison-with-immediate instructions are extendable.
1606 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop
*L
) {
1607 MachineBasicBlock
*Header
= L
->getHeader();
1608 MachineBasicBlock
*Latch
= L
->getLoopLatch();
1609 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1611 if (!(Header
&& Latch
&& ExitingBlock
))
1614 // These data structures follow the same concept as the corresponding
1615 // ones in findInductionRegister (where some comments are).
1616 using RegisterBump
= std::pair
<unsigned, int64_t>;
1617 using RegisterInduction
= std::pair
<unsigned, RegisterBump
>;
1618 using RegisterInductionSet
= std::set
<RegisterInduction
>;
1620 // Register candidates for induction variables, with their associated bumps.
1621 RegisterInductionSet IndRegs
;
1623 // Look for induction patterns:
1624 // %1 = PHI ..., [ latch, %2 ]
1626 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1628 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1629 I
!= E
&& I
->isPHI(); ++I
) {
1630 MachineInstr
*Phi
= &*I
;
1632 // Have a PHI instruction.
1633 for (unsigned i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2) {
1634 if (Phi
->getOperand(i
+1).getMBB() != Latch
)
1637 Register PhiReg
= Phi
->getOperand(i
).getReg();
1638 MachineInstr
*DI
= MRI
->getVRegDef(PhiReg
);
1640 if (DI
->getDesc().isAdd()) {
1641 // If the register operand to the add/sub is the PHI we are looking
1642 // at, this meets the induction pattern.
1643 Register IndReg
= DI
->getOperand(1).getReg();
1644 MachineOperand
&Opnd2
= DI
->getOperand(2);
1646 if (MRI
->getVRegDef(IndReg
) == Phi
&& checkForImmediate(Opnd2
, V
)) {
1647 Register UpdReg
= DI
->getOperand(0).getReg();
1648 IndRegs
.insert(std::make_pair(UpdReg
, std::make_pair(IndReg
, V
)));
1654 if (IndRegs
.empty())
1657 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1658 SmallVector
<MachineOperand
,2> Cond
;
1659 // AnalyzeBranch returns true if it fails to analyze branch.
1660 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
1661 if (NotAnalyzed
|| Cond
.empty())
1664 if (ExitingBlock
!= Latch
&& (TB
== Latch
|| FB
== Latch
)) {
1665 MachineBasicBlock
*LTB
= nullptr, *LFB
= nullptr;
1666 SmallVector
<MachineOperand
,2> LCond
;
1667 bool NotAnalyzed
= TII
->analyzeBranch(*Latch
, LTB
, LFB
, LCond
, false);
1671 // Since latch is not the exiting block, the latch branch should be an
1672 // unconditional branch to the loop header.
1674 TB
= (LTB
== Header
) ? LTB
: LFB
;
1676 FB
= (LTB
== Header
) ? LTB
: LFB
;
1680 // The latch/exit block does not go back to the header.
1683 // FB is the header (i.e., uncond. jump to branch header)
1684 // In this case, the LoopBody -> TB should not be a back edge otherwise
1685 // it could result in an infinite loop after conversion to hw_loop.
1686 // This case can happen when the Latch has two jumps like this:
1687 // Jmp_c OuterLoopHeader <-- TB
1688 // Jmp InnerLoopHeader <-- FB
1689 if (MDT
->dominates(TB
, FB
))
1693 // Expecting a predicate register as a condition. It won't be a hardware
1694 // predicate register at this point yet, just a vreg.
1695 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1696 // into Cond, followed by the predicate register. For non-negated branches
1697 // it's just the register.
1698 unsigned CSz
= Cond
.size();
1699 if (CSz
!= 1 && CSz
!= 2)
1702 if (!Cond
[CSz
-1].isReg())
1705 Register P
= Cond
[CSz
- 1].getReg();
1706 MachineInstr
*PredDef
= MRI
->getVRegDef(P
);
1708 if (!PredDef
->isCompare())
1711 SmallSet
<unsigned,2> CmpRegs
;
1712 MachineOperand
*CmpImmOp
= nullptr;
1714 // Go over all operands to the compare and look for immediate and register
1715 // operands. Assume that if the compare has a single register use and a
1716 // single immediate operand, then the register is being compared with the
1718 for (unsigned i
= 0, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1719 MachineOperand
&MO
= PredDef
->getOperand(i
);
1721 // Skip all implicit references. In one case there was:
1722 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1723 if (MO
.isImplicit())
1726 if (!isImmediate(MO
)) {
1727 CmpRegs
.insert(MO
.getReg());
1730 // Consider the register to be the "immediate" operand.
1735 } else if (MO
.isImm()) {
1736 if (CmpImmOp
) // A second immediate argument? Confusing. Bail out.
1742 if (CmpRegs
.empty())
1745 // Check if the compared register follows the order we want. Fix if needed.
1746 for (RegisterInductionSet::iterator I
= IndRegs
.begin(), E
= IndRegs
.end();
1748 // This is a success. If the register used in the comparison is one that
1749 // we have identified as a bumped (updated) induction register, there is
1751 if (CmpRegs
.count(I
->first
))
1754 // Otherwise, if the register being compared comes out of a PHI node,
1755 // and has been recognized as following the induction pattern, and is
1756 // compared against an immediate, we can fix it.
1757 const RegisterBump
&RB
= I
->second
;
1758 if (CmpRegs
.count(RB
.first
)) {
1760 // If both operands to the compare instruction are registers, see if
1761 // it can be changed to use induction register as one of the operands.
1762 MachineInstr
*IndI
= nullptr;
1763 MachineInstr
*nonIndI
= nullptr;
1764 MachineOperand
*IndMO
= nullptr;
1765 MachineOperand
*nonIndMO
= nullptr;
1767 for (unsigned i
= 1, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1768 MachineOperand
&MO
= PredDef
->getOperand(i
);
1769 if (MO
.isReg() && MO
.getReg() == RB
.first
) {
1770 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1771 << ") = " << *(MRI
->getVRegDef(I
->first
)));
1775 IndI
= MRI
->getVRegDef(I
->first
);
1777 } else if (MO
.isReg()) {
1778 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1779 << ") = " << *(MRI
->getVRegDef(MO
.getReg())));
1783 nonIndI
= MRI
->getVRegDef(MO
.getReg());
1787 if (IndI
&& nonIndI
&&
1788 nonIndI
->getOpcode() == Hexagon::A2_addi
&&
1789 nonIndI
->getOperand(2).isImm() &&
1790 nonIndI
->getOperand(2).getImm() == - RB
.second
) {
1791 bool Order
= orderBumpCompare(IndI
, PredDef
);
1793 IndMO
->setReg(I
->first
);
1794 nonIndMO
->setReg(nonIndI
->getOperand(1).getReg());
1801 // It is not valid to do this transformation on an unsigned comparison
1802 // because it may underflow.
1803 Comparison::Kind Cmp
=
1804 getComparisonKind(PredDef
->getOpcode(), nullptr, nullptr, 0);
1805 if (!Cmp
|| Comparison::isUnsigned(Cmp
))
1808 // If the register is being compared against an immediate, try changing
1809 // the compare instruction to use induction register and adjust the
1810 // immediate operand.
1811 int64_t CmpImm
= getImmediate(*CmpImmOp
);
1812 int64_t V
= RB
.second
;
1813 // Handle Overflow (64-bit).
1814 if (((V
> 0) && (CmpImm
> INT64_MAX
- V
)) ||
1815 ((V
< 0) && (CmpImm
< INT64_MIN
- V
)))
1818 // Most comparisons of register against an immediate value allow
1819 // the immediate to be constant-extended. There are some exceptions
1820 // though. Make sure the new combination will work.
1821 if (CmpImmOp
->isImm())
1822 if (!isImmValidForOpcode(PredDef
->getOpcode(), CmpImm
))
1825 // Make sure that the compare happens after the bump. Otherwise,
1826 // after the fixup, the compare would use a yet-undefined register.
1827 MachineInstr
*BumpI
= MRI
->getVRegDef(I
->first
);
1828 bool Order
= orderBumpCompare(BumpI
, PredDef
);
1832 // Finally, fix the compare instruction.
1833 setImmediate(*CmpImmOp
, CmpImm
);
1834 for (unsigned i
= 0, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1835 MachineOperand
&MO
= PredDef
->getOperand(i
);
1836 if (MO
.isReg() && MO
.getReg() == RB
.first
) {
1837 MO
.setReg(I
->first
);
1847 /// createPreheaderForLoop - Create a preheader for a given loop.
1848 MachineBasicBlock
*HexagonHardwareLoops::createPreheaderForLoop(
1850 if (MachineBasicBlock
*TmpPH
= MLI
->findLoopPreheader(L
, SpecPreheader
))
1852 if (!HWCreatePreheader
)
1855 MachineBasicBlock
*Header
= L
->getHeader();
1856 MachineBasicBlock
*Latch
= L
->getLoopLatch();
1857 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1858 MachineFunction
*MF
= Header
->getParent();
1862 if ((!PHFn
.empty()) && (PHFn
!= MF
->getName()))
1866 if (!Latch
|| !ExitingBlock
|| Header
->hasAddressTaken())
1869 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1871 // Verify that all existing predecessors have analyzable branches
1872 // (or no branches at all).
1873 using MBBVector
= std::vector
<MachineBasicBlock
*>;
1875 MBBVector
Preds(Header
->pred_begin(), Header
->pred_end());
1876 SmallVector
<MachineOperand
,2> Tmp1
;
1877 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1879 if (TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Tmp1
, false))
1882 for (MBBVector::iterator I
= Preds
.begin(), E
= Preds
.end(); I
!= E
; ++I
) {
1883 MachineBasicBlock
*PB
= *I
;
1884 bool NotAnalyzed
= TII
->analyzeBranch(*PB
, TB
, FB
, Tmp1
, false);
1889 MachineBasicBlock
*NewPH
= MF
->CreateMachineBasicBlock();
1890 MF
->insert(Header
->getIterator(), NewPH
);
1892 if (Header
->pred_size() > 2) {
1893 // Ensure that the header has only two predecessors: the preheader and
1894 // the loop latch. Any additional predecessors of the header should
1895 // join at the newly created preheader. Inspect all PHI nodes from the
1896 // header and create appropriate corresponding PHI nodes in the preheader.
1898 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1899 I
!= E
&& I
->isPHI(); ++I
) {
1900 MachineInstr
*PN
= &*I
;
1902 const MCInstrDesc
&PD
= TII
->get(TargetOpcode::PHI
);
1903 MachineInstr
*NewPN
= MF
->CreateMachineInstr(PD
, DL
);
1904 NewPH
->insert(NewPH
->end(), NewPN
);
1906 Register PR
= PN
->getOperand(0).getReg();
1907 const TargetRegisterClass
*RC
= MRI
->getRegClass(PR
);
1908 Register NewPR
= MRI
->createVirtualRegister(RC
);
1909 NewPN
->addOperand(MachineOperand::CreateReg(NewPR
, true));
1911 // Copy all non-latch operands of a header's PHI node to the newly
1912 // created PHI node in the preheader.
1913 for (unsigned i
= 1, n
= PN
->getNumOperands(); i
< n
; i
+= 2) {
1914 Register PredR
= PN
->getOperand(i
).getReg();
1915 unsigned PredRSub
= PN
->getOperand(i
).getSubReg();
1916 MachineBasicBlock
*PredB
= PN
->getOperand(i
+1).getMBB();
1920 MachineOperand MO
= MachineOperand::CreateReg(PredR
, false);
1921 MO
.setSubReg(PredRSub
);
1922 NewPN
->addOperand(MO
);
1923 NewPN
->addOperand(MachineOperand::CreateMBB(PredB
));
1926 // Remove copied operands from the old PHI node and add the value
1927 // coming from the preheader's PHI.
1928 for (int i
= PN
->getNumOperands()-2; i
> 0; i
-= 2) {
1929 MachineBasicBlock
*PredB
= PN
->getOperand(i
+1).getMBB();
1930 if (PredB
!= Latch
) {
1931 PN
->RemoveOperand(i
+1);
1932 PN
->RemoveOperand(i
);
1935 PN
->addOperand(MachineOperand::CreateReg(NewPR
, false));
1936 PN
->addOperand(MachineOperand::CreateMBB(NewPH
));
1939 assert(Header
->pred_size() == 2);
1941 // The header has only two predecessors, but the non-latch predecessor
1942 // is not a preheader (e.g. it has other successors, etc.)
1943 // In such a case we don't need any extra PHI nodes in the new preheader,
1944 // all we need is to adjust existing PHIs in the header to now refer to
1945 // the new preheader.
1946 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1947 I
!= E
&& I
->isPHI(); ++I
) {
1948 MachineInstr
*PN
= &*I
;
1949 for (unsigned i
= 1, n
= PN
->getNumOperands(); i
< n
; i
+= 2) {
1950 MachineOperand
&MO
= PN
->getOperand(i
+1);
1951 if (MO
.getMBB() != Latch
)
1957 // "Reroute" the CFG edges to link in the new preheader.
1958 // If any of the predecessors falls through to the header, insert a branch
1959 // to the new preheader in that place.
1960 SmallVector
<MachineOperand
,1> Tmp2
;
1961 SmallVector
<MachineOperand
,1> EmptyCond
;
1965 for (MBBVector::iterator I
= Preds
.begin(), E
= Preds
.end(); I
!= E
; ++I
) {
1966 MachineBasicBlock
*PB
= *I
;
1969 bool NotAnalyzed
= TII
->analyzeBranch(*PB
, TB
, FB
, Tmp2
, false);
1970 (void)NotAnalyzed
; // suppress compiler warning
1971 assert (!NotAnalyzed
&& "Should be analyzable!");
1972 if (TB
!= Header
&& (Tmp2
.empty() || FB
!= Header
))
1973 TII
->insertBranch(*PB
, NewPH
, nullptr, EmptyCond
, DL
);
1974 PB
->ReplaceUsesOfBlockWith(Header
, NewPH
);
1978 // It can happen that the latch block will fall through into the header.
1979 // Insert an unconditional branch to the header.
1981 bool LatchNotAnalyzed
= TII
->analyzeBranch(*Latch
, TB
, FB
, Tmp2
, false);
1982 (void)LatchNotAnalyzed
; // suppress compiler warning
1983 assert (!LatchNotAnalyzed
&& "Should be analyzable!");
1985 TII
->insertBranch(*Latch
, Header
, nullptr, EmptyCond
, DL
);
1987 // Finally, the branch from the preheader to the header.
1988 TII
->insertBranch(*NewPH
, Header
, nullptr, EmptyCond
, DL
);
1989 NewPH
->addSuccessor(Header
);
1991 MachineLoop
*ParentLoop
= L
->getParentLoop();
1993 ParentLoop
->addBasicBlockToLoop(NewPH
, MLI
->getBase());
1995 // Update the dominator information with the new preheader.
1997 if (MachineDomTreeNode
*HN
= MDT
->getNode(Header
)) {
1998 if (MachineDomTreeNode
*DHN
= HN
->getIDom()) {
1999 MDT
->addNewBlock(NewPH
, DHN
->getBlock());
2000 MDT
->changeImmediateDominator(Header
, NewPH
);