1 //===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // This describes the calling conventions for Mips architecture.
9 //===----------------------------------------------------------------------===//
11 /// CCIfSubtarget - Match if the current subtarget has a feature F.
12 class CCIfSubtarget<string F, CCAction A, string Invert = "">
13 : CCIf<!strconcat(Invert,
14 "static_cast<const MipsSubtarget&>"
15 "(State.getMachineFunction().getSubtarget()).",
19 // The inverse of CCIfSubtarget
20 class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
22 /// Match if the original argument (before lowering) was a float.
23 /// For example, this is true for i32's that were lowered from soft-float.
24 class CCIfOrigArgWasNotFloat<CCAction A>
25 : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
28 /// Match if the original argument (before lowering) was a 128-bit float (i.e.
30 class CCIfOrigArgWasF128<CCAction A>
31 : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
33 /// Match if this specific argument is a vararg.
34 /// This is slightly different fro CCIfIsVarArg which matches if any argument is
36 class CCIfArgIsVarArg<CCAction A>
37 : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
39 /// Match if the return was a floating point vector.
40 class CCIfOrigArgWasNotVectorFloat<CCAction A>
41 : CCIf<"!static_cast<MipsCCState *>(&State)"
42 "->WasOriginalRetVectorFloat(ValNo)", A>;
44 /// Match if the special calling conv is the specified value.
45 class CCIfSpecialCallingConv<string CC, CCAction A>
46 : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
47 "MipsCCState::" # CC, A>;
49 // For soft-float, f128 values are returned in A0_64 rather than V1_64.
50 def RetCC_F128SoftFloat : CallingConv<[
51 CCAssignToReg<[V0_64, A0_64]>
54 // For hard-float, f128 values are returned as a pair of f64's rather than a
56 def RetCC_F128HardFloat : CallingConv<[
57 CCBitConvertToType<f64>,
59 // Contrary to the ABI documentation, a struct containing a long double is
60 // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
61 // match the de facto ABI as implemented by GCC.
62 CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
64 CCAssignToReg<[D0_64, D2_64]>
67 // Handle F128 specially since we can't identify the original type during the
68 // tablegen-erated code.
69 def RetCC_F128 : CallingConv<[
70 CCIfSubtarget<"useSoftFloat()",
71 CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
72 CCIfSubtargetNot<"useSoftFloat()",
73 CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
76 //===----------------------------------------------------------------------===//
77 // Mips O32 Calling Convention
78 //===----------------------------------------------------------------------===//
80 def CC_MipsO32 : CallingConv<[
81 // Promote i8/i16 arguments to i32.
82 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
84 // Integer values get stored in stack slots that are 4 bytes in
85 // size and 4-byte aligned.
86 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
88 // Integer values get stored in stack slots that are 8 bytes in
89 // size and 8-byte aligned.
90 CCIfType<[f64], CCAssignToStack<8, 8>>
93 // Only the return rules are defined here for O32. The rules for argument
94 // passing are defined in MipsISelLowering.cpp.
95 def RetCC_MipsO32 : CallingConv<[
96 // Promote i1/i8/i16 return values to i32.
97 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
99 // i32 are returned in registers V0, V1, A0, A1, unless the original return
100 // type was a vector of floats.
101 CCIfOrigArgWasNotVectorFloat<CCIfType<[i32],
102 CCAssignToReg<[V0, V1, A0, A1]>>>,
104 // f32 are returned in registers F0, F2
105 CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
107 // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
108 // in D0 and D1 in FP32bit mode.
109 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
110 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
113 def CC_MipsO32_FP32 : CustomCallingConv;
114 def CC_MipsO32_FP64 : CustomCallingConv;
116 def CC_MipsO32_FP : CallingConv<[
117 CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
118 CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
121 //===----------------------------------------------------------------------===//
122 // Mips N32/64 Calling Convention
123 //===----------------------------------------------------------------------===//
125 def CC_MipsN_SoftFloat : CallingConv<[
126 CCAssignToRegWithShadow<[A0, A1, A2, A3,
128 [D12_64, D13_64, D14_64, D15_64,
129 D16_64, D17_64, D18_64, D19_64]>,
130 CCAssignToStack<4, 8>
133 def CC_MipsN : CallingConv<[
134 CCIfType<[i8, i16, i32, i64],
135 CCIfSubtargetNot<"isLittle()",
136 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
138 // All integers (except soft-float integers) are promoted to 64-bit.
139 CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
141 // The only i32's we have left are soft-float arguments.
142 CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
144 // Integer arguments are passed in integer registers.
145 CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
146 T0_64, T1_64, T2_64, T3_64],
147 [D12_64, D13_64, D14_64, D15_64,
148 D16_64, D17_64, D18_64, D19_64]>>,
150 // f32 arguments are passed in single precision FP registers.
151 CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
153 [A0_64, A1_64, A2_64, A3_64,
154 T0_64, T1_64, T2_64, T3_64]>>,
156 // f64 arguments are passed in double precision FP registers.
157 CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
158 D16_64, D17_64, D18_64, D19_64],
159 [A0_64, A1_64, A2_64, A3_64,
160 T0_64, T1_64, T2_64, T3_64]>>,
162 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
163 CCIfType<[f32], CCAssignToStack<4, 8>>,
164 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
167 // N32/64 variable arguments.
168 // All arguments are passed in integer registers.
169 def CC_MipsN_VarArg : CallingConv<[
170 CCIfType<[i8, i16, i32, i64],
171 CCIfSubtargetNot<"isLittle()",
172 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
174 // All integers are promoted to 64-bit.
175 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
177 CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
179 CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
180 T0_64, T1_64, T2_64, T3_64]>>,
182 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
183 CCIfType<[f32], CCAssignToStack<4, 8>>,
184 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
187 def RetCC_MipsN : CallingConv<[
188 // f128 needs to be handled similarly to f32 and f64. However, f128 is not
189 // legal and is lowered to i128 which is further lowered to a pair of i64's.
190 // This presents us with a problem for the calling convention since hard-float
191 // still needs to pass them in FPU registers, and soft-float needs to use $v0,
192 // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
193 // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
194 // whether the result was originally an f128 into the tablegen-erated code.
196 // f128 should only occur for the N64 ABI where long double is 128-bit. On
197 // N32, long double is equivalent to double.
198 CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
200 // Aggregate returns are positioned at the lowest address in the slot for
201 // both little and big-endian targets. When passing in registers, this
202 // requires that big-endian targets shift the value into the upper bits.
203 CCIfSubtarget<"isLittle()",
204 CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
205 CCIfSubtargetNot<"isLittle()",
206 CCIfType<[i8, i16, i32, i64],
207 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
209 // i64 are returned in registers V0_64, V1_64
210 CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
212 // f32 are returned in registers F0, F2
213 CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
215 // f64 are returned in registers D0, D2
216 CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
219 //===----------------------------------------------------------------------===//
220 // Mips FastCC Calling Convention
221 //===----------------------------------------------------------------------===//
222 def CC_MipsO32_FastCC : CallingConv<[
223 // f64 arguments are passed in double-precision floating pointer registers.
224 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
225 CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
227 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
228 CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
229 D4_64, D5_64, D6_64, D7_64,
230 D8_64, D9_64, D10_64, D11_64,
231 D12_64, D13_64, D14_64, D15_64,
232 D16_64, D17_64, D18_64,
234 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
235 CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
236 D8_64, D10_64, D12_64, D14_64,
239 // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
240 CCIfType<[f64], CCAssignToStack<8, 8>>
243 def CC_MipsN_FastCC : CallingConv<[
244 // Integer arguments are passed in integer registers.
245 CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
246 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
249 // f64 arguments are passed in double-precision floating pointer registers.
250 CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
251 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
252 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
255 // Stack parameter slots for i64 and f64 are 64-bit doublewords and
257 CCIfType<[i64, f64], CCAssignToStack<8, 8>>
260 def CC_Mips_FastCC : CallingConv<[
261 // Handles byval parameters.
262 CCIfByVal<CCPassByVal<4, 4>>,
264 // Promote i8/i16 arguments to i32.
265 CCIfType<[i8, i16], CCPromoteToType<i32>>,
267 // Integer arguments are passed in integer registers. All scratch registers,
268 // except for AT, V0 and T9, are available to be used as argument registers.
269 CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
270 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
272 // In NaCl, T6, T7 and T8 are reserved and not available as argument
273 // registers for fastcc. T6 contains the mask for sandboxing control flow
274 // (indirect jumps and calls). T7 contains the mask for sandboxing memory
275 // accesses (loads and stores). T8 contains the thread pointer.
276 CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
277 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
279 // f32 arguments are passed in single-precision floating pointer registers.
280 CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
281 CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
282 F14, F15, F16, F17, F18, F19]>>>,
284 // Don't use odd numbered single-precision registers for -mno-odd-spreg.
285 CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
286 CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
288 // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
289 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
291 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
292 CCDelegateTo<CC_MipsN_FastCC>
295 //===----------------------------------------------------------------------===//
296 // Mips Calling Convention Dispatch
297 //===----------------------------------------------------------------------===//
299 def RetCC_Mips : CallingConv<[
300 CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
301 CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
302 CCDelegateTo<RetCC_MipsO32>
305 def CC_Mips_ByVal : CallingConv<[
306 CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
307 CCIfByVal<CCPassByVal<8, 8>>
310 def CC_Mips16RetHelper : CallingConv<[
311 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
313 // Integer arguments are passed in integer registers.
314 CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
317 def CC_Mips_FixedArg : CallingConv<[
318 // Mips16 needs special handling on some functions.
319 CCIf<"State.getCallingConv() != CallingConv::Fast",
320 CCIfSpecialCallingConv<"Mips16RetHelperConv",
321 CCDelegateTo<CC_Mips16RetHelper>>>,
323 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
325 // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
326 // f128 is not legal and is lowered to i128 which is further lowered to a pair
328 // This presents us with a problem for the calling convention since hard-float
329 // still needs to pass them in FPU registers. We therefore resort to a
330 // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
331 // whether the argument was originally an f128 into the tablegen-erated code.
333 // f128 should only occur for the N64 ABI where long double is 128-bit. On
334 // N32, long double is equivalent to double.
336 CCIfSubtargetNot<"useSoftFloat()",
337 CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
339 CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
341 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
342 CCDelegateTo<CC_MipsN>
345 def CC_Mips_VarArg : CallingConv<[
346 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
348 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
349 CCDelegateTo<CC_MipsN_VarArg>
352 def CC_Mips : CallingConv<[
353 CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
354 CCDelegateTo<CC_Mips_FixedArg>
357 //===----------------------------------------------------------------------===//
358 // Callee-saved register lists.
359 //===----------------------------------------------------------------------===//
361 def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
362 (sequence "S%u", 7, 0))>;
364 def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
365 (sequence "S%u", 7, 0))> {
366 let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
369 def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
370 (sequence "S%u", 7, 0))>;
373 CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
374 (sequence "S%u", 7, 0))>;
376 def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
377 D30_64, RA_64, FP_64, GP_64,
378 (sequence "S%u_64", 7, 0))>;
380 def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
381 GP_64, (sequence "S%u_64", 7, 0))>;
383 def CSR_Mips16RetHelper :
384 CalleeSavedRegs<(add V0, V1, FP,
385 (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
386 (sequence "D%u", 15, 10))>;
388 def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
389 (sequence "S%u", 7, 0),
390 (sequence "V%u", 1, 0),
391 (sequence "T%u", 9, 0),
394 def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
395 (sequence "S%u", 7, 0),
396 (sequence "V%u", 1, 0),
397 (sequence "T%u", 9, 0),
398 RA, FP, GP, AT, LO0, HI0)>;
400 def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
401 (sequence "V%u_64", 1, 0),
402 (sequence "S%u_64", 7, 0),
403 (sequence "T%u_64", 9, 0),
404 RA_64, FP_64, GP_64, AT_64)>;
406 def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
407 (sequence "S%u_64", 7, 0),
408 (sequence "T%u_64", 9, 0),
409 (sequence "V%u_64", 1, 0),
410 RA_64, FP_64, GP_64, AT_64,