[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
blob6b10672965c92cd3fb384c6d4b84fcafeb4dcc7b
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58 "Number of record-form rotates converted to record-form andi");
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77 SOK_Int4Spill,
78 SOK_Int8Spill,
79 SOK_Float8Spill,
80 SOK_Float4Spill,
81 SOK_CRSpill,
82 SOK_CRBitSpill,
83 SOK_VRVectorSpill,
84 SOK_VSXVectorSpill,
85 SOK_VectorFloat8Spill,
86 SOK_VectorFloat4Spill,
87 SOK_VRSaveSpill,
88 SOK_QuadFloat8Spill,
89 SOK_QuadFloat4Spill,
90 SOK_QuadBitSpill,
91 SOK_SpillToVSR,
92 SOK_SPESpill,
93 SOK_LastOpcodeSpill // This must be last on the enum.
96 // Pin the vtable to this file.
97 void PPCInstrInfo::anchor() {}
99 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
100 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
101 /* CatchRetOpcode */ -1,
102 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
103 Subtarget(STI), RI(STI.getTargetMachine()) {}
105 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
106 /// this target when scheduling the DAG.
107 ScheduleHazardRecognizer *
108 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109 const ScheduleDAG *DAG) const {
110 unsigned Directive =
111 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
112 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
113 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
114 const InstrItineraryData *II =
115 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
116 return new ScoreboardHazardRecognizer(II, DAG);
119 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
122 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
123 /// to use for this target when scheduling the DAG.
124 ScheduleHazardRecognizer *
125 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
126 const ScheduleDAG *DAG) const {
127 unsigned Directive =
128 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
130 // FIXME: Leaving this as-is until we have POWER9 scheduling info
131 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
132 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
134 // Most subtargets use a PPC970 recognizer.
135 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
136 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
137 assert(DAG->TII && "No InstrInfo?");
139 return new PPCHazardRecognizer970(*DAG);
142 return new ScoreboardHazardRecognizer(II, DAG);
145 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
146 const MachineInstr &MI,
147 unsigned *PredCost) const {
148 if (!ItinData || UseOldLatencyCalc)
149 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
151 // The default implementation of getInstrLatency calls getStageLatency, but
152 // getStageLatency does not do the right thing for us. While we have
153 // itinerary, most cores are fully pipelined, and so the itineraries only
154 // express the first part of the pipeline, not every stage. Instead, we need
155 // to use the listed output operand cycle number (using operand 0 here, which
156 // is an output).
158 unsigned Latency = 1;
159 unsigned DefClass = MI.getDesc().getSchedClass();
160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161 const MachineOperand &MO = MI.getOperand(i);
162 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
163 continue;
165 int Cycle = ItinData->getOperandCycle(DefClass, i);
166 if (Cycle < 0)
167 continue;
169 Latency = std::max(Latency, (unsigned) Cycle);
172 return Latency;
175 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
176 const MachineInstr &DefMI, unsigned DefIdx,
177 const MachineInstr &UseMI,
178 unsigned UseIdx) const {
179 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
180 UseMI, UseIdx);
182 if (!DefMI.getParent())
183 return Latency;
185 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
186 Register Reg = DefMO.getReg();
188 bool IsRegCR;
189 if (Register::isVirtualRegister(Reg)) {
190 const MachineRegisterInfo *MRI =
191 &DefMI.getParent()->getParent()->getRegInfo();
192 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
193 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
194 } else {
195 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
196 PPC::CRBITRCRegClass.contains(Reg);
199 if (UseMI.isBranch() && IsRegCR) {
200 if (Latency < 0)
201 Latency = getInstrLatency(ItinData, DefMI);
203 // On some cores, there is an additional delay between writing to a condition
204 // register, and using it from a branch.
205 unsigned Directive = Subtarget.getDarwinDirective();
206 switch (Directive) {
207 default: break;
208 case PPC::DIR_7400:
209 case PPC::DIR_750:
210 case PPC::DIR_970:
211 case PPC::DIR_E5500:
212 case PPC::DIR_PWR4:
213 case PPC::DIR_PWR5:
214 case PPC::DIR_PWR5X:
215 case PPC::DIR_PWR6:
216 case PPC::DIR_PWR6X:
217 case PPC::DIR_PWR7:
218 case PPC::DIR_PWR8:
219 // FIXME: Is this needed for POWER9?
220 Latency += 2;
221 break;
225 return Latency;
228 // This function does not list all associative and commutative operations, but
229 // only those worth feeding through the machine combiner in an attempt to
230 // reduce the critical path. Mostly, this means floating-point operations,
231 // because they have high latencies (compared to other operations, such and
232 // and/or, which are also associative and commutative, but have low latencies).
233 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
234 switch (Inst.getOpcode()) {
235 // FP Add:
236 case PPC::FADD:
237 case PPC::FADDS:
238 // FP Multiply:
239 case PPC::FMUL:
240 case PPC::FMULS:
241 // Altivec Add:
242 case PPC::VADDFP:
243 // VSX Add:
244 case PPC::XSADDDP:
245 case PPC::XVADDDP:
246 case PPC::XVADDSP:
247 case PPC::XSADDSP:
248 // VSX Multiply:
249 case PPC::XSMULDP:
250 case PPC::XVMULDP:
251 case PPC::XVMULSP:
252 case PPC::XSMULSP:
253 // QPX Add:
254 case PPC::QVFADD:
255 case PPC::QVFADDS:
256 case PPC::QVFADDSs:
257 // QPX Multiply:
258 case PPC::QVFMUL:
259 case PPC::QVFMULS:
260 case PPC::QVFMULSs:
261 return true;
262 default:
263 return false;
267 bool PPCInstrInfo::getMachineCombinerPatterns(
268 MachineInstr &Root,
269 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
270 // Using the machine combiner in this way is potentially expensive, so
271 // restrict to when aggressive optimizations are desired.
272 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
273 return false;
275 // FP reassociation is only legal when we don't need strict IEEE semantics.
276 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
277 return false;
279 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
282 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
283 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
284 unsigned &SrcReg, unsigned &DstReg,
285 unsigned &SubIdx) const {
286 switch (MI.getOpcode()) {
287 default: return false;
288 case PPC::EXTSW:
289 case PPC::EXTSW_32:
290 case PPC::EXTSW_32_64:
291 SrcReg = MI.getOperand(1).getReg();
292 DstReg = MI.getOperand(0).getReg();
293 SubIdx = PPC::sub_32;
294 return true;
298 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
299 int &FrameIndex) const {
300 unsigned Opcode = MI.getOpcode();
301 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
302 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
304 if (End != std::find(OpcodesForSpill, End, Opcode)) {
305 // Check for the operands added by addFrameReference (the immediate is the
306 // offset which defaults to 0).
307 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
308 MI.getOperand(2).isFI()) {
309 FrameIndex = MI.getOperand(2).getIndex();
310 return MI.getOperand(0).getReg();
313 return 0;
316 // For opcodes with the ReMaterializable flag set, this function is called to
317 // verify the instruction is really rematable.
318 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
319 AliasAnalysis *AA) const {
320 switch (MI.getOpcode()) {
321 default:
322 // This function should only be called for opcodes with the ReMaterializable
323 // flag set.
324 llvm_unreachable("Unknown rematerializable operation!");
325 break;
326 case PPC::LI:
327 case PPC::LI8:
328 case PPC::LIS:
329 case PPC::LIS8:
330 case PPC::QVGPCI:
331 case PPC::ADDIStocHA:
332 case PPC::ADDIStocHA8:
333 case PPC::ADDItocL:
334 case PPC::LOAD_STACK_GUARD:
335 case PPC::XXLXORz:
336 case PPC::XXLXORspz:
337 case PPC::XXLXORdpz:
338 case PPC::XXLEQVOnes:
339 case PPC::V_SET0B:
340 case PPC::V_SET0H:
341 case PPC::V_SET0:
342 case PPC::V_SETALLONESB:
343 case PPC::V_SETALLONESH:
344 case PPC::V_SETALLONES:
345 case PPC::CRSET:
346 case PPC::CRUNSET:
347 return true;
349 return false;
352 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353 int &FrameIndex) const {
354 unsigned Opcode = MI.getOpcode();
355 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
356 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
358 if (End != std::find(OpcodesForSpill, End, Opcode)) {
359 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
360 MI.getOperand(2).isFI()) {
361 FrameIndex = MI.getOperand(2).getIndex();
362 return MI.getOperand(0).getReg();
365 return 0;
368 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
369 unsigned OpIdx1,
370 unsigned OpIdx2) const {
371 MachineFunction &MF = *MI.getParent()->getParent();
373 // Normal instructions can be commuted the obvious way.
374 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
375 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
376 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
377 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
378 // changing the relative order of the mask operands might change what happens
379 // to the high-bits of the mask (and, thus, the result).
381 // Cannot commute if it has a non-zero rotate count.
382 if (MI.getOperand(3).getImm() != 0)
383 return nullptr;
385 // If we have a zero rotate count, we have:
386 // M = mask(MB,ME)
387 // Op0 = (Op1 & ~M) | (Op2 & M)
388 // Change this to:
389 // M = mask((ME+1)&31, (MB-1)&31)
390 // Op0 = (Op2 & ~M) | (Op1 & M)
392 // Swap op1/op2
393 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
394 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
395 Register Reg0 = MI.getOperand(0).getReg();
396 Register Reg1 = MI.getOperand(1).getReg();
397 Register Reg2 = MI.getOperand(2).getReg();
398 unsigned SubReg1 = MI.getOperand(1).getSubReg();
399 unsigned SubReg2 = MI.getOperand(2).getSubReg();
400 bool Reg1IsKill = MI.getOperand(1).isKill();
401 bool Reg2IsKill = MI.getOperand(2).isKill();
402 bool ChangeReg0 = false;
403 // If machine instrs are no longer in two-address forms, update
404 // destination register as well.
405 if (Reg0 == Reg1) {
406 // Must be two address instruction!
407 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
408 "Expecting a two-address instruction!");
409 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
410 Reg2IsKill = false;
411 ChangeReg0 = true;
414 // Masks.
415 unsigned MB = MI.getOperand(4).getImm();
416 unsigned ME = MI.getOperand(5).getImm();
418 // We can't commute a trivial mask (there is no way to represent an all-zero
419 // mask).
420 if (MB == 0 && ME == 31)
421 return nullptr;
423 if (NewMI) {
424 // Create a new instruction.
425 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
426 bool Reg0IsDead = MI.getOperand(0).isDead();
427 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
428 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
429 .addReg(Reg2, getKillRegState(Reg2IsKill))
430 .addReg(Reg1, getKillRegState(Reg1IsKill))
431 .addImm((ME + 1) & 31)
432 .addImm((MB - 1) & 31);
435 if (ChangeReg0) {
436 MI.getOperand(0).setReg(Reg2);
437 MI.getOperand(0).setSubReg(SubReg2);
439 MI.getOperand(2).setReg(Reg1);
440 MI.getOperand(1).setReg(Reg2);
441 MI.getOperand(2).setSubReg(SubReg1);
442 MI.getOperand(1).setSubReg(SubReg2);
443 MI.getOperand(2).setIsKill(Reg1IsKill);
444 MI.getOperand(1).setIsKill(Reg2IsKill);
446 // Swap the mask around.
447 MI.getOperand(4).setImm((ME + 1) & 31);
448 MI.getOperand(5).setImm((MB - 1) & 31);
449 return &MI;
452 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
453 unsigned &SrcOpIdx1,
454 unsigned &SrcOpIdx2) const {
455 // For VSX A-Type FMA instructions, it is the first two operands that can be
456 // commuted, however, because the non-encoded tied input operand is listed
457 // first, the operands to swap are actually the second and third.
459 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
460 if (AltOpc == -1)
461 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
463 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
464 // and SrcOpIdx2.
465 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
468 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
469 MachineBasicBlock::iterator MI) const {
470 // This function is used for scheduling, and the nop wanted here is the type
471 // that terminates dispatch groups on the POWER cores.
472 unsigned Directive = Subtarget.getDarwinDirective();
473 unsigned Opcode;
474 switch (Directive) {
475 default: Opcode = PPC::NOP; break;
476 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
477 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
478 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
479 // FIXME: Update when POWER9 scheduling model is ready.
480 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
483 DebugLoc DL;
484 BuildMI(MBB, MI, DL, get(Opcode));
487 /// Return the noop instruction to use for a noop.
488 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
489 NopInst.setOpcode(PPC::NOP);
492 // Branch analysis.
493 // Note: If the condition register is set to CTR or CTR8 then this is a
494 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
495 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
496 MachineBasicBlock *&TBB,
497 MachineBasicBlock *&FBB,
498 SmallVectorImpl<MachineOperand> &Cond,
499 bool AllowModify) const {
500 bool isPPC64 = Subtarget.isPPC64();
502 // If the block has no terminators, it just falls into the block after it.
503 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
504 if (I == MBB.end())
505 return false;
507 if (!isUnpredicatedTerminator(*I))
508 return false;
510 if (AllowModify) {
511 // If the BB ends with an unconditional branch to the fallthrough BB,
512 // we eliminate the branch instruction.
513 if (I->getOpcode() == PPC::B &&
514 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
515 I->eraseFromParent();
517 // We update iterator after deleting the last branch.
518 I = MBB.getLastNonDebugInstr();
519 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
520 return false;
524 // Get the last instruction in the block.
525 MachineInstr &LastInst = *I;
527 // If there is only one terminator instruction, process it.
528 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
529 if (LastInst.getOpcode() == PPC::B) {
530 if (!LastInst.getOperand(0).isMBB())
531 return true;
532 TBB = LastInst.getOperand(0).getMBB();
533 return false;
534 } else if (LastInst.getOpcode() == PPC::BCC) {
535 if (!LastInst.getOperand(2).isMBB())
536 return true;
537 // Block ends with fall-through condbranch.
538 TBB = LastInst.getOperand(2).getMBB();
539 Cond.push_back(LastInst.getOperand(0));
540 Cond.push_back(LastInst.getOperand(1));
541 return false;
542 } else if (LastInst.getOpcode() == PPC::BC) {
543 if (!LastInst.getOperand(1).isMBB())
544 return true;
545 // Block ends with fall-through condbranch.
546 TBB = LastInst.getOperand(1).getMBB();
547 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
548 Cond.push_back(LastInst.getOperand(0));
549 return false;
550 } else if (LastInst.getOpcode() == PPC::BCn) {
551 if (!LastInst.getOperand(1).isMBB())
552 return true;
553 // Block ends with fall-through condbranch.
554 TBB = LastInst.getOperand(1).getMBB();
555 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
556 Cond.push_back(LastInst.getOperand(0));
557 return false;
558 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
559 LastInst.getOpcode() == PPC::BDNZ) {
560 if (!LastInst.getOperand(0).isMBB())
561 return true;
562 if (DisableCTRLoopAnal)
563 return true;
564 TBB = LastInst.getOperand(0).getMBB();
565 Cond.push_back(MachineOperand::CreateImm(1));
566 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
567 true));
568 return false;
569 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
570 LastInst.getOpcode() == PPC::BDZ) {
571 if (!LastInst.getOperand(0).isMBB())
572 return true;
573 if (DisableCTRLoopAnal)
574 return true;
575 TBB = LastInst.getOperand(0).getMBB();
576 Cond.push_back(MachineOperand::CreateImm(0));
577 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
578 true));
579 return false;
582 // Otherwise, don't know what this is.
583 return true;
586 // Get the instruction before it if it's a terminator.
587 MachineInstr &SecondLastInst = *I;
589 // If there are three terminators, we don't know what sort of block this is.
590 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
591 return true;
593 // If the block ends with PPC::B and PPC:BCC, handle it.
594 if (SecondLastInst.getOpcode() == PPC::BCC &&
595 LastInst.getOpcode() == PPC::B) {
596 if (!SecondLastInst.getOperand(2).isMBB() ||
597 !LastInst.getOperand(0).isMBB())
598 return true;
599 TBB = SecondLastInst.getOperand(2).getMBB();
600 Cond.push_back(SecondLastInst.getOperand(0));
601 Cond.push_back(SecondLastInst.getOperand(1));
602 FBB = LastInst.getOperand(0).getMBB();
603 return false;
604 } else if (SecondLastInst.getOpcode() == PPC::BC &&
605 LastInst.getOpcode() == PPC::B) {
606 if (!SecondLastInst.getOperand(1).isMBB() ||
607 !LastInst.getOperand(0).isMBB())
608 return true;
609 TBB = SecondLastInst.getOperand(1).getMBB();
610 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
611 Cond.push_back(SecondLastInst.getOperand(0));
612 FBB = LastInst.getOperand(0).getMBB();
613 return false;
614 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
615 LastInst.getOpcode() == PPC::B) {
616 if (!SecondLastInst.getOperand(1).isMBB() ||
617 !LastInst.getOperand(0).isMBB())
618 return true;
619 TBB = SecondLastInst.getOperand(1).getMBB();
620 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
621 Cond.push_back(SecondLastInst.getOperand(0));
622 FBB = LastInst.getOperand(0).getMBB();
623 return false;
624 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
625 SecondLastInst.getOpcode() == PPC::BDNZ) &&
626 LastInst.getOpcode() == PPC::B) {
627 if (!SecondLastInst.getOperand(0).isMBB() ||
628 !LastInst.getOperand(0).isMBB())
629 return true;
630 if (DisableCTRLoopAnal)
631 return true;
632 TBB = SecondLastInst.getOperand(0).getMBB();
633 Cond.push_back(MachineOperand::CreateImm(1));
634 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
635 true));
636 FBB = LastInst.getOperand(0).getMBB();
637 return false;
638 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
639 SecondLastInst.getOpcode() == PPC::BDZ) &&
640 LastInst.getOpcode() == PPC::B) {
641 if (!SecondLastInst.getOperand(0).isMBB() ||
642 !LastInst.getOperand(0).isMBB())
643 return true;
644 if (DisableCTRLoopAnal)
645 return true;
646 TBB = SecondLastInst.getOperand(0).getMBB();
647 Cond.push_back(MachineOperand::CreateImm(0));
648 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
649 true));
650 FBB = LastInst.getOperand(0).getMBB();
651 return false;
654 // If the block ends with two PPC:Bs, handle it. The second one is not
655 // executed, so remove it.
656 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
657 if (!SecondLastInst.getOperand(0).isMBB())
658 return true;
659 TBB = SecondLastInst.getOperand(0).getMBB();
660 I = LastInst;
661 if (AllowModify)
662 I->eraseFromParent();
663 return false;
666 // Otherwise, can't handle this.
667 return true;
670 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
671 int *BytesRemoved) const {
672 assert(!BytesRemoved && "code size not handled");
674 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
675 if (I == MBB.end())
676 return 0;
678 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
682 return 0;
684 // Remove the branch.
685 I->eraseFromParent();
687 I = MBB.end();
689 if (I == MBB.begin()) return 1;
690 --I;
691 if (I->getOpcode() != PPC::BCC &&
692 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
693 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
694 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
695 return 1;
697 // Remove the branch.
698 I->eraseFromParent();
699 return 2;
702 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
703 MachineBasicBlock *TBB,
704 MachineBasicBlock *FBB,
705 ArrayRef<MachineOperand> Cond,
706 const DebugLoc &DL,
707 int *BytesAdded) const {
708 // Shouldn't be a fall through.
709 assert(TBB && "insertBranch must not be told to insert a fallthrough");
710 assert((Cond.size() == 2 || Cond.size() == 0) &&
711 "PPC branch conditions have two components!");
712 assert(!BytesAdded && "code size not handled");
714 bool isPPC64 = Subtarget.isPPC64();
716 // One-way branch.
717 if (!FBB) {
718 if (Cond.empty()) // Unconditional branch
719 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
720 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
721 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
722 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
723 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
724 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
725 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
726 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
727 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
728 else // Conditional branch
729 BuildMI(&MBB, DL, get(PPC::BCC))
730 .addImm(Cond[0].getImm())
731 .add(Cond[1])
732 .addMBB(TBB);
733 return 1;
736 // Two-way Conditional Branch.
737 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
738 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
739 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
740 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
741 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
742 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
743 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
744 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
745 else
746 BuildMI(&MBB, DL, get(PPC::BCC))
747 .addImm(Cond[0].getImm())
748 .add(Cond[1])
749 .addMBB(TBB);
750 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
751 return 2;
754 // Select analysis.
755 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
756 ArrayRef<MachineOperand> Cond,
757 unsigned TrueReg, unsigned FalseReg,
758 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
759 if (Cond.size() != 2)
760 return false;
762 // If this is really a bdnz-like condition, then it cannot be turned into a
763 // select.
764 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
765 return false;
767 // Check register classes.
768 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
769 const TargetRegisterClass *RC =
770 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
771 if (!RC)
772 return false;
774 // isel is for regular integer GPRs only.
775 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
776 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
777 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
778 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
779 return false;
781 // FIXME: These numbers are for the A2, how well they work for other cores is
782 // an open question. On the A2, the isel instruction has a 2-cycle latency
783 // but single-cycle throughput. These numbers are used in combination with
784 // the MispredictPenalty setting from the active SchedMachineModel.
785 CondCycles = 1;
786 TrueCycles = 1;
787 FalseCycles = 1;
789 return true;
792 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
793 MachineBasicBlock::iterator MI,
794 const DebugLoc &dl, unsigned DestReg,
795 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
796 unsigned FalseReg) const {
797 assert(Cond.size() == 2 &&
798 "PPC branch conditions have two components!");
800 // Get the register classes.
801 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
802 const TargetRegisterClass *RC =
803 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
804 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
806 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
807 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
808 assert((Is64Bit ||
809 PPC::GPRCRegClass.hasSubClassEq(RC) ||
810 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
811 "isel is for regular integer GPRs only");
813 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
814 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
816 unsigned SubIdx = 0;
817 bool SwapOps = false;
818 switch (SelectPred) {
819 case PPC::PRED_EQ:
820 case PPC::PRED_EQ_MINUS:
821 case PPC::PRED_EQ_PLUS:
822 SubIdx = PPC::sub_eq; SwapOps = false; break;
823 case PPC::PRED_NE:
824 case PPC::PRED_NE_MINUS:
825 case PPC::PRED_NE_PLUS:
826 SubIdx = PPC::sub_eq; SwapOps = true; break;
827 case PPC::PRED_LT:
828 case PPC::PRED_LT_MINUS:
829 case PPC::PRED_LT_PLUS:
830 SubIdx = PPC::sub_lt; SwapOps = false; break;
831 case PPC::PRED_GE:
832 case PPC::PRED_GE_MINUS:
833 case PPC::PRED_GE_PLUS:
834 SubIdx = PPC::sub_lt; SwapOps = true; break;
835 case PPC::PRED_GT:
836 case PPC::PRED_GT_MINUS:
837 case PPC::PRED_GT_PLUS:
838 SubIdx = PPC::sub_gt; SwapOps = false; break;
839 case PPC::PRED_LE:
840 case PPC::PRED_LE_MINUS:
841 case PPC::PRED_LE_PLUS:
842 SubIdx = PPC::sub_gt; SwapOps = true; break;
843 case PPC::PRED_UN:
844 case PPC::PRED_UN_MINUS:
845 case PPC::PRED_UN_PLUS:
846 SubIdx = PPC::sub_un; SwapOps = false; break;
847 case PPC::PRED_NU:
848 case PPC::PRED_NU_MINUS:
849 case PPC::PRED_NU_PLUS:
850 SubIdx = PPC::sub_un; SwapOps = true; break;
851 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
852 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
855 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
856 SecondReg = SwapOps ? TrueReg : FalseReg;
858 // The first input register of isel cannot be r0. If it is a member
859 // of a register class that can be r0, then copy it first (the
860 // register allocator should eliminate the copy).
861 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
862 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
863 const TargetRegisterClass *FirstRC =
864 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
865 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
866 unsigned OldFirstReg = FirstReg;
867 FirstReg = MRI.createVirtualRegister(FirstRC);
868 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
869 .addReg(OldFirstReg);
872 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
873 .addReg(FirstReg).addReg(SecondReg)
874 .addReg(Cond[1].getReg(), 0, SubIdx);
877 static unsigned getCRBitValue(unsigned CRBit) {
878 unsigned Ret = 4;
879 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
880 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
881 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
882 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
883 Ret = 3;
884 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
885 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
886 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
887 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
888 Ret = 2;
889 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
890 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
891 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
892 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
893 Ret = 1;
894 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
895 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
896 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
897 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
898 Ret = 0;
900 assert(Ret != 4 && "Invalid CR bit register");
901 return Ret;
904 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
905 MachineBasicBlock::iterator I,
906 const DebugLoc &DL, unsigned DestReg,
907 unsigned SrcReg, bool KillSrc) const {
908 // We can end up with self copies and similar things as a result of VSX copy
909 // legalization. Promote them here.
910 const TargetRegisterInfo *TRI = &getRegisterInfo();
911 if (PPC::F8RCRegClass.contains(DestReg) &&
912 PPC::VSRCRegClass.contains(SrcReg)) {
913 unsigned SuperReg =
914 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
916 if (VSXSelfCopyCrash && SrcReg == SuperReg)
917 llvm_unreachable("nop VSX copy");
919 DestReg = SuperReg;
920 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
921 PPC::VSRCRegClass.contains(DestReg)) {
922 unsigned SuperReg =
923 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
925 if (VSXSelfCopyCrash && DestReg == SuperReg)
926 llvm_unreachable("nop VSX copy");
928 SrcReg = SuperReg;
931 // Different class register copy
932 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
933 PPC::GPRCRegClass.contains(DestReg)) {
934 unsigned CRReg = getCRFromCRBit(SrcReg);
935 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
936 getKillRegState(KillSrc);
937 // Rotate the CR bit in the CR fields to be the least significant bit and
938 // then mask with 0x1 (MB = ME = 31).
939 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
940 .addReg(DestReg, RegState::Kill)
941 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
942 .addImm(31)
943 .addImm(31);
944 return;
945 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
946 PPC::G8RCRegClass.contains(DestReg)) {
947 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
948 getKillRegState(KillSrc);
949 return;
950 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
951 PPC::GPRCRegClass.contains(DestReg)) {
952 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
953 getKillRegState(KillSrc);
954 return;
955 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
956 PPC::VSFRCRegClass.contains(DestReg)) {
957 assert(Subtarget.hasDirectMove() &&
958 "Subtarget doesn't support directmove, don't know how to copy.");
959 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
960 NumGPRtoVSRSpill++;
961 getKillRegState(KillSrc);
962 return;
963 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
964 PPC::G8RCRegClass.contains(DestReg)) {
965 assert(Subtarget.hasDirectMove() &&
966 "Subtarget doesn't support directmove, don't know how to copy.");
967 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
968 getKillRegState(KillSrc);
969 return;
970 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
971 PPC::GPRCRegClass.contains(DestReg)) {
972 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
973 getKillRegState(KillSrc);
974 return;
975 } else if (PPC::GPRCRegClass.contains(SrcReg) &&
976 PPC::SPERCRegClass.contains(DestReg)) {
977 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
978 getKillRegState(KillSrc);
979 return;
982 unsigned Opc;
983 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
984 Opc = PPC::OR;
985 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
986 Opc = PPC::OR8;
987 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
988 Opc = PPC::FMR;
989 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
990 Opc = PPC::MCRF;
991 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
992 Opc = PPC::VOR;
993 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
994 // There are two different ways this can be done:
995 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
996 // issue in VSU pipeline 0.
997 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
998 // can go to either pipeline.
999 // We'll always use xxlor here, because in practically all cases where
1000 // copies are generated, they are close enough to some use that the
1001 // lower-latency form is preferable.
1002 Opc = PPC::XXLOR;
1003 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1004 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1005 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1006 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1007 Opc = PPC::QVFMR;
1008 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1009 Opc = PPC::QVFMRs;
1010 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1011 Opc = PPC::QVFMRb;
1012 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1013 Opc = PPC::CROR;
1014 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1015 Opc = PPC::EVOR;
1016 else
1017 llvm_unreachable("Impossible reg-to-reg copy");
1019 const MCInstrDesc &MCID = get(Opc);
1020 if (MCID.getNumOperands() == 3)
1021 BuildMI(MBB, I, DL, MCID, DestReg)
1022 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1023 else
1024 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1028 const TargetRegisterClass *RC)
1029 const {
1030 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1031 int OpcodeIndex = 0;
1033 if (RC != nullptr) {
1034 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1035 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1036 OpcodeIndex = SOK_Int4Spill;
1037 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1038 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1039 OpcodeIndex = SOK_Int8Spill;
1040 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1041 OpcodeIndex = SOK_Float8Spill;
1042 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1043 OpcodeIndex = SOK_Float4Spill;
1044 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1045 OpcodeIndex = SOK_SPESpill;
1046 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1047 OpcodeIndex = SOK_CRSpill;
1048 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1049 OpcodeIndex = SOK_CRBitSpill;
1050 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1051 OpcodeIndex = SOK_VRVectorSpill;
1052 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1053 OpcodeIndex = SOK_VSXVectorSpill;
1054 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1055 OpcodeIndex = SOK_VectorFloat8Spill;
1056 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1057 OpcodeIndex = SOK_VectorFloat4Spill;
1058 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1059 OpcodeIndex = SOK_VRSaveSpill;
1060 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1061 OpcodeIndex = SOK_QuadFloat8Spill;
1062 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1063 OpcodeIndex = SOK_QuadFloat4Spill;
1064 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1065 OpcodeIndex = SOK_QuadBitSpill;
1066 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1067 OpcodeIndex = SOK_SpillToVSR;
1068 } else {
1069 llvm_unreachable("Unknown regclass!");
1071 } else {
1072 if (PPC::GPRCRegClass.contains(Reg) ||
1073 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1074 OpcodeIndex = SOK_Int4Spill;
1075 } else if (PPC::G8RCRegClass.contains(Reg) ||
1076 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1077 OpcodeIndex = SOK_Int8Spill;
1078 } else if (PPC::F8RCRegClass.contains(Reg)) {
1079 OpcodeIndex = SOK_Float8Spill;
1080 } else if (PPC::F4RCRegClass.contains(Reg)) {
1081 OpcodeIndex = SOK_Float4Spill;
1082 } else if (PPC::SPERCRegClass.contains(Reg)) {
1083 OpcodeIndex = SOK_SPESpill;
1084 } else if (PPC::CRRCRegClass.contains(Reg)) {
1085 OpcodeIndex = SOK_CRSpill;
1086 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1087 OpcodeIndex = SOK_CRBitSpill;
1088 } else if (PPC::VRRCRegClass.contains(Reg)) {
1089 OpcodeIndex = SOK_VRVectorSpill;
1090 } else if (PPC::VSRCRegClass.contains(Reg)) {
1091 OpcodeIndex = SOK_VSXVectorSpill;
1092 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1093 OpcodeIndex = SOK_VectorFloat8Spill;
1094 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1095 OpcodeIndex = SOK_VectorFloat4Spill;
1096 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1097 OpcodeIndex = SOK_VRSaveSpill;
1098 } else if (PPC::QFRCRegClass.contains(Reg)) {
1099 OpcodeIndex = SOK_QuadFloat8Spill;
1100 } else if (PPC::QSRCRegClass.contains(Reg)) {
1101 OpcodeIndex = SOK_QuadFloat4Spill;
1102 } else if (PPC::QBRCRegClass.contains(Reg)) {
1103 OpcodeIndex = SOK_QuadBitSpill;
1104 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1105 OpcodeIndex = SOK_SpillToVSR;
1106 } else {
1107 llvm_unreachable("Unknown regclass!");
1110 return OpcodesForSpill[OpcodeIndex];
1113 unsigned
1114 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1115 const TargetRegisterClass *RC) const {
1116 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1117 int OpcodeIndex = 0;
1119 if (RC != nullptr) {
1120 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1121 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1122 OpcodeIndex = SOK_Int4Spill;
1123 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1124 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1125 OpcodeIndex = SOK_Int8Spill;
1126 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1127 OpcodeIndex = SOK_Float8Spill;
1128 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1129 OpcodeIndex = SOK_Float4Spill;
1130 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1131 OpcodeIndex = SOK_SPESpill;
1132 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1133 OpcodeIndex = SOK_CRSpill;
1134 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1135 OpcodeIndex = SOK_CRBitSpill;
1136 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1137 OpcodeIndex = SOK_VRVectorSpill;
1138 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1139 OpcodeIndex = SOK_VSXVectorSpill;
1140 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1141 OpcodeIndex = SOK_VectorFloat8Spill;
1142 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1143 OpcodeIndex = SOK_VectorFloat4Spill;
1144 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1145 OpcodeIndex = SOK_VRSaveSpill;
1146 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1147 OpcodeIndex = SOK_QuadFloat8Spill;
1148 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1149 OpcodeIndex = SOK_QuadFloat4Spill;
1150 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1151 OpcodeIndex = SOK_QuadBitSpill;
1152 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1153 OpcodeIndex = SOK_SpillToVSR;
1154 } else {
1155 llvm_unreachable("Unknown regclass!");
1157 } else {
1158 if (PPC::GPRCRegClass.contains(Reg) ||
1159 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1160 OpcodeIndex = SOK_Int4Spill;
1161 } else if (PPC::G8RCRegClass.contains(Reg) ||
1162 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1163 OpcodeIndex = SOK_Int8Spill;
1164 } else if (PPC::F8RCRegClass.contains(Reg)) {
1165 OpcodeIndex = SOK_Float8Spill;
1166 } else if (PPC::F4RCRegClass.contains(Reg)) {
1167 OpcodeIndex = SOK_Float4Spill;
1168 } else if (PPC::SPERCRegClass.contains(Reg)) {
1169 OpcodeIndex = SOK_SPESpill;
1170 } else if (PPC::CRRCRegClass.contains(Reg)) {
1171 OpcodeIndex = SOK_CRSpill;
1172 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1173 OpcodeIndex = SOK_CRBitSpill;
1174 } else if (PPC::VRRCRegClass.contains(Reg)) {
1175 OpcodeIndex = SOK_VRVectorSpill;
1176 } else if (PPC::VSRCRegClass.contains(Reg)) {
1177 OpcodeIndex = SOK_VSXVectorSpill;
1178 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1179 OpcodeIndex = SOK_VectorFloat8Spill;
1180 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1181 OpcodeIndex = SOK_VectorFloat4Spill;
1182 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1183 OpcodeIndex = SOK_VRSaveSpill;
1184 } else if (PPC::QFRCRegClass.contains(Reg)) {
1185 OpcodeIndex = SOK_QuadFloat8Spill;
1186 } else if (PPC::QSRCRegClass.contains(Reg)) {
1187 OpcodeIndex = SOK_QuadFloat4Spill;
1188 } else if (PPC::QBRCRegClass.contains(Reg)) {
1189 OpcodeIndex = SOK_QuadBitSpill;
1190 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1191 OpcodeIndex = SOK_SpillToVSR;
1192 } else {
1193 llvm_unreachable("Unknown regclass!");
1196 return OpcodesForSpill[OpcodeIndex];
1199 void PPCInstrInfo::StoreRegToStackSlot(
1200 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1201 const TargetRegisterClass *RC,
1202 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1203 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1204 DebugLoc DL;
1206 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1207 FuncInfo->setHasSpills();
1209 NewMIs.push_back(addFrameReference(
1210 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1211 FrameIdx));
1213 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1214 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1215 FuncInfo->setSpillsCR();
1217 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1218 FuncInfo->setSpillsVRSAVE();
1220 if (isXFormMemOp(Opcode))
1221 FuncInfo->setHasNonRISpills();
1224 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1225 MachineBasicBlock::iterator MI,
1226 unsigned SrcReg, bool isKill,
1227 int FrameIdx,
1228 const TargetRegisterClass *RC,
1229 const TargetRegisterInfo *TRI) const {
1230 MachineFunction &MF = *MBB.getParent();
1231 SmallVector<MachineInstr *, 4> NewMIs;
1233 // We need to avoid a situation in which the value from a VRRC register is
1234 // spilled using an Altivec instruction and reloaded into a VSRC register
1235 // using a VSX instruction. The issue with this is that the VSX
1236 // load/store instructions swap the doublewords in the vector and the Altivec
1237 // ones don't. The register classes on the spill/reload may be different if
1238 // the register is defined using an Altivec instruction and is then used by a
1239 // VSX instruction.
1240 RC = updatedRC(RC);
1242 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1244 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1245 MBB.insert(MI, NewMIs[i]);
1247 const MachineFrameInfo &MFI = MF.getFrameInfo();
1248 MachineMemOperand *MMO = MF.getMachineMemOperand(
1249 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1250 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1251 MFI.getObjectAlignment(FrameIdx));
1252 NewMIs.back()->addMemOperand(MF, MMO);
1255 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1256 unsigned DestReg, int FrameIdx,
1257 const TargetRegisterClass *RC,
1258 SmallVectorImpl<MachineInstr *> &NewMIs)
1259 const {
1260 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1261 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1262 FrameIdx));
1263 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1265 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1266 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1267 FuncInfo->setSpillsCR();
1269 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1270 FuncInfo->setSpillsVRSAVE();
1272 if (isXFormMemOp(Opcode))
1273 FuncInfo->setHasNonRISpills();
1276 void
1277 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1278 MachineBasicBlock::iterator MI,
1279 unsigned DestReg, int FrameIdx,
1280 const TargetRegisterClass *RC,
1281 const TargetRegisterInfo *TRI) const {
1282 MachineFunction &MF = *MBB.getParent();
1283 SmallVector<MachineInstr*, 4> NewMIs;
1284 DebugLoc DL;
1285 if (MI != MBB.end()) DL = MI->getDebugLoc();
1287 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1288 FuncInfo->setHasSpills();
1290 // We need to avoid a situation in which the value from a VRRC register is
1291 // spilled using an Altivec instruction and reloaded into a VSRC register
1292 // using a VSX instruction. The issue with this is that the VSX
1293 // load/store instructions swap the doublewords in the vector and the Altivec
1294 // ones don't. The register classes on the spill/reload may be different if
1295 // the register is defined using an Altivec instruction and is then used by a
1296 // VSX instruction.
1297 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1298 RC = &PPC::VSRCRegClass;
1300 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1302 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1303 MBB.insert(MI, NewMIs[i]);
1305 const MachineFrameInfo &MFI = MF.getFrameInfo();
1306 MachineMemOperand *MMO = MF.getMachineMemOperand(
1307 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1308 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1309 MFI.getObjectAlignment(FrameIdx));
1310 NewMIs.back()->addMemOperand(MF, MMO);
1313 bool PPCInstrInfo::
1314 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1315 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1316 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1317 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1318 else
1319 // Leave the CR# the same, but invert the condition.
1320 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1321 return false;
1324 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1325 unsigned Reg, MachineRegisterInfo *MRI) const {
1326 // For some instructions, it is legal to fold ZERO into the RA register field.
1327 // A zero immediate should always be loaded with a single li.
1328 unsigned DefOpc = DefMI.getOpcode();
1329 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1330 return false;
1331 if (!DefMI.getOperand(1).isImm())
1332 return false;
1333 if (DefMI.getOperand(1).getImm() != 0)
1334 return false;
1336 // Note that we cannot here invert the arguments of an isel in order to fold
1337 // a ZERO into what is presented as the second argument. All we have here
1338 // is the condition bit, and that might come from a CR-logical bit operation.
1340 const MCInstrDesc &UseMCID = UseMI.getDesc();
1342 // Only fold into real machine instructions.
1343 if (UseMCID.isPseudo())
1344 return false;
1346 unsigned UseIdx;
1347 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1348 if (UseMI.getOperand(UseIdx).isReg() &&
1349 UseMI.getOperand(UseIdx).getReg() == Reg)
1350 break;
1352 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1353 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1355 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1357 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1358 // register (which might also be specified as a pointer class kind).
1359 if (UseInfo->isLookupPtrRegClass()) {
1360 if (UseInfo->RegClass /* Kind */ != 1)
1361 return false;
1362 } else {
1363 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1364 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1365 return false;
1368 // Make sure this is not tied to an output register (or otherwise
1369 // constrained). This is true for ST?UX registers, for example, which
1370 // are tied to their output registers.
1371 if (UseInfo->Constraints != 0)
1372 return false;
1374 unsigned ZeroReg;
1375 if (UseInfo->isLookupPtrRegClass()) {
1376 bool isPPC64 = Subtarget.isPPC64();
1377 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1378 } else {
1379 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1380 PPC::ZERO8 : PPC::ZERO;
1383 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1384 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1386 if (DeleteDef)
1387 DefMI.eraseFromParent();
1389 return true;
1392 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1393 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1394 I != IE; ++I)
1395 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1396 return true;
1397 return false;
1400 // We should make sure that, if we're going to predicate both sides of a
1401 // condition (a diamond), that both sides don't define the counter register. We
1402 // can predicate counter-decrement-based branches, but while that predicates
1403 // the branching, it does not predicate the counter decrement. If we tried to
1404 // merge the triangle into one predicated block, we'd decrement the counter
1405 // twice.
1406 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1407 unsigned NumT, unsigned ExtraT,
1408 MachineBasicBlock &FMBB,
1409 unsigned NumF, unsigned ExtraF,
1410 BranchProbability Probability) const {
1411 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1415 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1416 // The predicated branches are identified by their type, not really by the
1417 // explicit presence of a predicate. Furthermore, some of them can be
1418 // predicated more than once. Because if conversion won't try to predicate
1419 // any instruction which already claims to be predicated (by returning true
1420 // here), always return false. In doing so, we let isPredicable() be the
1421 // final word on whether not the instruction can be (further) predicated.
1423 return false;
1426 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1427 if (!MI.isTerminator())
1428 return false;
1430 // Conditional branch is a special case.
1431 if (MI.isBranch() && !MI.isBarrier())
1432 return true;
1434 return !isPredicated(MI);
1437 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1438 ArrayRef<MachineOperand> Pred) const {
1439 unsigned OpC = MI.getOpcode();
1440 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1441 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1442 bool isPPC64 = Subtarget.isPPC64();
1443 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1444 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1445 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1446 MI.setDesc(get(PPC::BCLR));
1447 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1448 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1449 MI.setDesc(get(PPC::BCLRn));
1450 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1451 } else {
1452 MI.setDesc(get(PPC::BCCLR));
1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1454 .addImm(Pred[0].getImm())
1455 .add(Pred[1]);
1458 return true;
1459 } else if (OpC == PPC::B) {
1460 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1461 bool isPPC64 = Subtarget.isPPC64();
1462 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1463 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1464 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1465 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1466 MI.RemoveOperand(0);
1468 MI.setDesc(get(PPC::BC));
1469 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1470 .add(Pred[1])
1471 .addMBB(MBB);
1472 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1474 MI.RemoveOperand(0);
1476 MI.setDesc(get(PPC::BCn));
1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1478 .add(Pred[1])
1479 .addMBB(MBB);
1480 } else {
1481 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1482 MI.RemoveOperand(0);
1484 MI.setDesc(get(PPC::BCC));
1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1486 .addImm(Pred[0].getImm())
1487 .add(Pred[1])
1488 .addMBB(MBB);
1491 return true;
1492 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1493 OpC == PPC::BCTRL8) {
1494 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1495 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1497 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1498 bool isPPC64 = Subtarget.isPPC64();
1500 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1501 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1502 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1503 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1504 return true;
1505 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1506 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1507 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1508 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1509 return true;
1512 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1513 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1514 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1515 .addImm(Pred[0].getImm())
1516 .add(Pred[1]);
1517 return true;
1520 return false;
1523 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1524 ArrayRef<MachineOperand> Pred2) const {
1525 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1526 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1528 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1529 return false;
1530 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1531 return false;
1533 // P1 can only subsume P2 if they test the same condition register.
1534 if (Pred1[1].getReg() != Pred2[1].getReg())
1535 return false;
1537 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1538 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1540 if (P1 == P2)
1541 return true;
1543 // Does P1 subsume P2, e.g. GE subsumes GT.
1544 if (P1 == PPC::PRED_LE &&
1545 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1546 return true;
1547 if (P1 == PPC::PRED_GE &&
1548 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1549 return true;
1551 return false;
1554 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1555 std::vector<MachineOperand> &Pred) const {
1556 // Note: At the present time, the contents of Pred from this function is
1557 // unused by IfConversion. This implementation follows ARM by pushing the
1558 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1559 // predicate, instructions defining CTR or CTR8 are also included as
1560 // predicate-defining instructions.
1562 const TargetRegisterClass *RCs[] =
1563 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1564 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1566 bool Found = false;
1567 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1568 const MachineOperand &MO = MI.getOperand(i);
1569 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1570 const TargetRegisterClass *RC = RCs[c];
1571 if (MO.isReg()) {
1572 if (MO.isDef() && RC->contains(MO.getReg())) {
1573 Pred.push_back(MO);
1574 Found = true;
1576 } else if (MO.isRegMask()) {
1577 for (TargetRegisterClass::iterator I = RC->begin(),
1578 IE = RC->end(); I != IE; ++I)
1579 if (MO.clobbersPhysReg(*I)) {
1580 Pred.push_back(MO);
1581 Found = true;
1587 return Found;
1590 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1591 unsigned OpC = MI.getOpcode();
1592 switch (OpC) {
1593 default:
1594 return false;
1595 case PPC::B:
1596 case PPC::BLR:
1597 case PPC::BLR8:
1598 case PPC::BCTR:
1599 case PPC::BCTR8:
1600 case PPC::BCTRL:
1601 case PPC::BCTRL8:
1602 return true;
1606 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1607 unsigned &SrcReg2, int &Mask,
1608 int &Value) const {
1609 unsigned Opc = MI.getOpcode();
1611 switch (Opc) {
1612 default: return false;
1613 case PPC::CMPWI:
1614 case PPC::CMPLWI:
1615 case PPC::CMPDI:
1616 case PPC::CMPLDI:
1617 SrcReg = MI.getOperand(1).getReg();
1618 SrcReg2 = 0;
1619 Value = MI.getOperand(2).getImm();
1620 Mask = 0xFFFF;
1621 return true;
1622 case PPC::CMPW:
1623 case PPC::CMPLW:
1624 case PPC::CMPD:
1625 case PPC::CMPLD:
1626 case PPC::FCMPUS:
1627 case PPC::FCMPUD:
1628 SrcReg = MI.getOperand(1).getReg();
1629 SrcReg2 = MI.getOperand(2).getReg();
1630 Value = 0;
1631 Mask = 0;
1632 return true;
1636 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1637 unsigned SrcReg2, int Mask, int Value,
1638 const MachineRegisterInfo *MRI) const {
1639 if (DisableCmpOpt)
1640 return false;
1642 int OpC = CmpInstr.getOpcode();
1643 Register CRReg = CmpInstr.getOperand(0).getReg();
1645 // FP record forms set CR1 based on the exception status bits, not a
1646 // comparison with zero.
1647 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1648 return false;
1650 const TargetRegisterInfo *TRI = &getRegisterInfo();
1651 // The record forms set the condition register based on a signed comparison
1652 // with zero (so says the ISA manual). This is not as straightforward as it
1653 // seems, however, because this is always a 64-bit comparison on PPC64, even
1654 // for instructions that are 32-bit in nature (like slw for example).
1655 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1656 // for equality checks (as those don't depend on the sign). On PPC64,
1657 // we are restricted to equality for unsigned 64-bit comparisons and for
1658 // signed 32-bit comparisons the applicability is more restricted.
1659 bool isPPC64 = Subtarget.isPPC64();
1660 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1661 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1662 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1664 // Look through copies unless that gets us to a physical register.
1665 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1666 if (Register::isVirtualRegister(ActualSrc))
1667 SrcReg = ActualSrc;
1669 // Get the unique definition of SrcReg.
1670 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1671 if (!MI) return false;
1673 bool equalityOnly = false;
1674 bool noSub = false;
1675 if (isPPC64) {
1676 if (is32BitSignedCompare) {
1677 // We can perform this optimization only if MI is sign-extending.
1678 if (isSignExtended(*MI))
1679 noSub = true;
1680 else
1681 return false;
1682 } else if (is32BitUnsignedCompare) {
1683 // We can perform this optimization, equality only, if MI is
1684 // zero-extending.
1685 if (isZeroExtended(*MI)) {
1686 noSub = true;
1687 equalityOnly = true;
1688 } else
1689 return false;
1690 } else
1691 equalityOnly = is64BitUnsignedCompare;
1692 } else
1693 equalityOnly = is32BitUnsignedCompare;
1695 if (equalityOnly) {
1696 // We need to check the uses of the condition register in order to reject
1697 // non-equality comparisons.
1698 for (MachineRegisterInfo::use_instr_iterator
1699 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1700 I != IE; ++I) {
1701 MachineInstr *UseMI = &*I;
1702 if (UseMI->getOpcode() == PPC::BCC) {
1703 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1704 unsigned PredCond = PPC::getPredicateCondition(Pred);
1705 // We ignore hint bits when checking for non-equality comparisons.
1706 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1707 return false;
1708 } else if (UseMI->getOpcode() == PPC::ISEL ||
1709 UseMI->getOpcode() == PPC::ISEL8) {
1710 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1711 if (SubIdx != PPC::sub_eq)
1712 return false;
1713 } else
1714 return false;
1718 MachineBasicBlock::iterator I = CmpInstr;
1720 // Scan forward to find the first use of the compare.
1721 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1722 ++I) {
1723 bool FoundUse = false;
1724 for (MachineRegisterInfo::use_instr_iterator
1725 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1726 J != JE; ++J)
1727 if (&*J == &*I) {
1728 FoundUse = true;
1729 break;
1732 if (FoundUse)
1733 break;
1736 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1737 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1739 // There are two possible candidates which can be changed to set CR[01].
1740 // One is MI, the other is a SUB instruction.
1741 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1742 MachineInstr *Sub = nullptr;
1743 if (SrcReg2 != 0)
1744 // MI is not a candidate for CMPrr.
1745 MI = nullptr;
1746 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1747 // same BB as the comparison. This is to allow the check below to avoid calls
1748 // (and other explicit clobbers); instead we should really check for these
1749 // more explicitly (in at least a few predecessors).
1750 else if (MI->getParent() != CmpInstr.getParent())
1751 return false;
1752 else if (Value != 0) {
1753 // The record-form instructions set CR bit based on signed comparison
1754 // against 0. We try to convert a compare against 1 or -1 into a compare
1755 // against 0 to exploit record-form instructions. For example, we change
1756 // the condition "greater than -1" into "greater than or equal to 0"
1757 // and "less than 1" into "less than or equal to 0".
1759 // Since we optimize comparison based on a specific branch condition,
1760 // we don't optimize if condition code is used by more than once.
1761 if (equalityOnly || !MRI->hasOneUse(CRReg))
1762 return false;
1764 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1765 if (UseMI->getOpcode() != PPC::BCC)
1766 return false;
1768 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1769 unsigned PredCond = PPC::getPredicateCondition(Pred);
1770 unsigned PredHint = PPC::getPredicateHint(Pred);
1771 int16_t Immed = (int16_t)Value;
1773 // When modifying the condition in the predicate, we propagate hint bits
1774 // from the original predicate to the new one.
1775 if (Immed == -1 && PredCond == PPC::PRED_GT)
1776 // We convert "greater than -1" into "greater than or equal to 0",
1777 // since we are assuming signed comparison by !equalityOnly
1778 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1779 else if (Immed == -1 && PredCond == PPC::PRED_LE)
1780 // We convert "less than or equal to -1" into "less than 0".
1781 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1782 else if (Immed == 1 && PredCond == PPC::PRED_LT)
1783 // We convert "less than 1" into "less than or equal to 0".
1784 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1785 else if (Immed == 1 && PredCond == PPC::PRED_GE)
1786 // We convert "greater than or equal to 1" into "greater than 0".
1787 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1788 else
1789 return false;
1791 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1794 // Search for Sub.
1795 --I;
1797 // Get ready to iterate backward from CmpInstr.
1798 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1800 for (; I != E && !noSub; --I) {
1801 const MachineInstr &Instr = *I;
1802 unsigned IOpC = Instr.getOpcode();
1804 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1805 Instr.readsRegister(PPC::CR0, TRI)))
1806 // This instruction modifies or uses the record condition register after
1807 // the one we want to change. While we could do this transformation, it
1808 // would likely not be profitable. This transformation removes one
1809 // instruction, and so even forcing RA to generate one move probably
1810 // makes it unprofitable.
1811 return false;
1813 // Check whether CmpInstr can be made redundant by the current instruction.
1814 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1815 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1816 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1817 ((Instr.getOperand(1).getReg() == SrcReg &&
1818 Instr.getOperand(2).getReg() == SrcReg2) ||
1819 (Instr.getOperand(1).getReg() == SrcReg2 &&
1820 Instr.getOperand(2).getReg() == SrcReg))) {
1821 Sub = &*I;
1822 break;
1825 if (I == B)
1826 // The 'and' is below the comparison instruction.
1827 return false;
1830 // Return false if no candidates exist.
1831 if (!MI && !Sub)
1832 return false;
1834 // The single candidate is called MI.
1835 if (!MI) MI = Sub;
1837 int NewOpC = -1;
1838 int MIOpC = MI->getOpcode();
1839 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1840 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1841 NewOpC = MIOpC;
1842 else {
1843 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1844 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1845 NewOpC = MIOpC;
1848 // FIXME: On the non-embedded POWER architectures, only some of the record
1849 // forms are fast, and we should use only the fast ones.
1851 // The defining instruction has a record form (or is already a record
1852 // form). It is possible, however, that we'll need to reverse the condition
1853 // code of the users.
1854 if (NewOpC == -1)
1855 return false;
1857 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1858 // needs to be updated to be based on SUB. Push the condition code
1859 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1860 // condition code of these operands will be modified.
1861 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1862 // comparison against 0, which may modify predicate.
1863 bool ShouldSwap = false;
1864 if (Sub && Value == 0) {
1865 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1866 Sub->getOperand(2).getReg() == SrcReg;
1868 // The operands to subf are the opposite of sub, so only in the fixed-point
1869 // case, invert the order.
1870 ShouldSwap = !ShouldSwap;
1873 if (ShouldSwap)
1874 for (MachineRegisterInfo::use_instr_iterator
1875 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1876 I != IE; ++I) {
1877 MachineInstr *UseMI = &*I;
1878 if (UseMI->getOpcode() == PPC::BCC) {
1879 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1880 unsigned PredCond = PPC::getPredicateCondition(Pred);
1881 assert((!equalityOnly ||
1882 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1883 "Invalid predicate for equality-only optimization");
1884 (void)PredCond; // To suppress warning in release build.
1885 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1886 PPC::getSwappedPredicate(Pred)));
1887 } else if (UseMI->getOpcode() == PPC::ISEL ||
1888 UseMI->getOpcode() == PPC::ISEL8) {
1889 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1890 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1891 "Invalid CR bit for equality-only optimization");
1893 if (NewSubReg == PPC::sub_lt)
1894 NewSubReg = PPC::sub_gt;
1895 else if (NewSubReg == PPC::sub_gt)
1896 NewSubReg = PPC::sub_lt;
1898 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1899 NewSubReg));
1900 } else // We need to abort on a user we don't understand.
1901 return false;
1903 assert(!(Value != 0 && ShouldSwap) &&
1904 "Non-zero immediate support and ShouldSwap"
1905 "may conflict in updating predicate");
1907 // Create a new virtual register to hold the value of the CR set by the
1908 // record-form instruction. If the instruction was not previously in
1909 // record form, then set the kill flag on the CR.
1910 CmpInstr.eraseFromParent();
1912 MachineBasicBlock::iterator MII = MI;
1913 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1914 get(TargetOpcode::COPY), CRReg)
1915 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1917 // Even if CR0 register were dead before, it is alive now since the
1918 // instruction we just built uses it.
1919 MI->clearRegisterDeads(PPC::CR0);
1921 if (MIOpC != NewOpC) {
1922 // We need to be careful here: we're replacing one instruction with
1923 // another, and we need to make sure that we get all of the right
1924 // implicit uses and defs. On the other hand, the caller may be holding
1925 // an iterator to this instruction, and so we can't delete it (this is
1926 // specifically the case if this is the instruction directly after the
1927 // compare).
1929 // Rotates are expensive instructions. If we're emitting a record-form
1930 // rotate that can just be an andi/andis, we should just emit that.
1931 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1932 Register GPRRes = MI->getOperand(0).getReg();
1933 int64_t SH = MI->getOperand(2).getImm();
1934 int64_t MB = MI->getOperand(3).getImm();
1935 int64_t ME = MI->getOperand(4).getImm();
1936 // We can only do this if both the start and end of the mask are in the
1937 // same halfword.
1938 bool MBInLoHWord = MB >= 16;
1939 bool MEInLoHWord = ME >= 16;
1940 uint64_t Mask = ~0LLU;
1942 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1943 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1944 // The mask value needs to shift right 16 if we're emitting andis.
1945 Mask >>= MBInLoHWord ? 0 : 16;
1946 NewOpC = MIOpC == PPC::RLWINM ?
1947 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1948 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1949 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1950 (ME - MB + 1 == SH) && (MB >= 16)) {
1951 // If we are rotating by the exact number of bits as are in the mask
1952 // and the mask is in the least significant bits of the register,
1953 // that's just an andis. (as long as the GPR result has no uses).
1954 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1955 Mask >>= 16;
1956 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1958 // If we've set the mask, we can transform.
1959 if (Mask != ~0LLU) {
1960 MI->RemoveOperand(4);
1961 MI->RemoveOperand(3);
1962 MI->getOperand(2).setImm(Mask);
1963 NumRcRotatesConvertedToRcAnd++;
1965 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1966 int64_t MB = MI->getOperand(3).getImm();
1967 if (MB >= 48) {
1968 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1969 NewOpC = PPC::ANDIo8;
1970 MI->RemoveOperand(3);
1971 MI->getOperand(2).setImm(Mask);
1972 NumRcRotatesConvertedToRcAnd++;
1976 const MCInstrDesc &NewDesc = get(NewOpC);
1977 MI->setDesc(NewDesc);
1979 if (NewDesc.ImplicitDefs)
1980 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1981 *ImpDefs; ++ImpDefs)
1982 if (!MI->definesRegister(*ImpDefs))
1983 MI->addOperand(*MI->getParent()->getParent(),
1984 MachineOperand::CreateReg(*ImpDefs, true, true));
1985 if (NewDesc.ImplicitUses)
1986 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1987 *ImpUses; ++ImpUses)
1988 if (!MI->readsRegister(*ImpUses))
1989 MI->addOperand(*MI->getParent()->getParent(),
1990 MachineOperand::CreateReg(*ImpUses, false, true));
1992 assert(MI->definesRegister(PPC::CR0) &&
1993 "Record-form instruction does not define cr0?");
1995 // Modify the condition code of operands in OperandsToUpdate.
1996 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1997 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1998 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1999 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2001 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2002 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2004 return true;
2007 /// GetInstSize - Return the number of bytes of code the specified
2008 /// instruction may be. This returns the maximum number of bytes.
2010 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2011 unsigned Opcode = MI.getOpcode();
2013 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2014 const MachineFunction *MF = MI.getParent()->getParent();
2015 const char *AsmStr = MI.getOperand(0).getSymbolName();
2016 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2017 } else if (Opcode == TargetOpcode::STACKMAP) {
2018 StackMapOpers Opers(&MI);
2019 return Opers.getNumPatchBytes();
2020 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2021 PatchPointOpers Opers(&MI);
2022 return Opers.getNumPatchBytes();
2023 } else {
2024 return get(Opcode).getSize();
2028 std::pair<unsigned, unsigned>
2029 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2030 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2031 return std::make_pair(TF & Mask, TF & ~Mask);
2034 ArrayRef<std::pair<unsigned, const char *>>
2035 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2036 using namespace PPCII;
2037 static const std::pair<unsigned, const char *> TargetFlags[] = {
2038 {MO_LO, "ppc-lo"},
2039 {MO_HA, "ppc-ha"},
2040 {MO_TPREL_LO, "ppc-tprel-lo"},
2041 {MO_TPREL_HA, "ppc-tprel-ha"},
2042 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2043 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2044 {MO_TOC_LO, "ppc-toc-lo"},
2045 {MO_TLS, "ppc-tls"}};
2046 return makeArrayRef(TargetFlags);
2049 ArrayRef<std::pair<unsigned, const char *>>
2050 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2051 using namespace PPCII;
2052 static const std::pair<unsigned, const char *> TargetFlags[] = {
2053 {MO_PLT, "ppc-plt"},
2054 {MO_PIC_FLAG, "ppc-pic"},
2055 {MO_NLP_FLAG, "ppc-nlp"},
2056 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2057 return makeArrayRef(TargetFlags);
2060 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2061 // The VSX versions have the advantage of a full 64-register target whereas
2062 // the FP ones have the advantage of lower latency and higher throughput. So
2063 // what we are after is using the faster instructions in low register pressure
2064 // situations and using the larger register file in high register pressure
2065 // situations.
2066 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2067 unsigned UpperOpcode, LowerOpcode;
2068 switch (MI.getOpcode()) {
2069 case PPC::DFLOADf32:
2070 UpperOpcode = PPC::LXSSP;
2071 LowerOpcode = PPC::LFS;
2072 break;
2073 case PPC::DFLOADf64:
2074 UpperOpcode = PPC::LXSD;
2075 LowerOpcode = PPC::LFD;
2076 break;
2077 case PPC::DFSTOREf32:
2078 UpperOpcode = PPC::STXSSP;
2079 LowerOpcode = PPC::STFS;
2080 break;
2081 case PPC::DFSTOREf64:
2082 UpperOpcode = PPC::STXSD;
2083 LowerOpcode = PPC::STFD;
2084 break;
2085 case PPC::XFLOADf32:
2086 UpperOpcode = PPC::LXSSPX;
2087 LowerOpcode = PPC::LFSX;
2088 break;
2089 case PPC::XFLOADf64:
2090 UpperOpcode = PPC::LXSDX;
2091 LowerOpcode = PPC::LFDX;
2092 break;
2093 case PPC::XFSTOREf32:
2094 UpperOpcode = PPC::STXSSPX;
2095 LowerOpcode = PPC::STFSX;
2096 break;
2097 case PPC::XFSTOREf64:
2098 UpperOpcode = PPC::STXSDX;
2099 LowerOpcode = PPC::STFDX;
2100 break;
2101 case PPC::LIWAX:
2102 UpperOpcode = PPC::LXSIWAX;
2103 LowerOpcode = PPC::LFIWAX;
2104 break;
2105 case PPC::LIWZX:
2106 UpperOpcode = PPC::LXSIWZX;
2107 LowerOpcode = PPC::LFIWZX;
2108 break;
2109 case PPC::STIWX:
2110 UpperOpcode = PPC::STXSIWX;
2111 LowerOpcode = PPC::STFIWX;
2112 break;
2113 default:
2114 llvm_unreachable("Unknown Operation!");
2117 Register TargetReg = MI.getOperand(0).getReg();
2118 unsigned Opcode;
2119 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2120 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2121 Opcode = LowerOpcode;
2122 else
2123 Opcode = UpperOpcode;
2124 MI.setDesc(get(Opcode));
2125 return true;
2128 static bool isAnImmediateOperand(const MachineOperand &MO) {
2129 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2132 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2133 auto &MBB = *MI.getParent();
2134 auto DL = MI.getDebugLoc();
2136 switch (MI.getOpcode()) {
2137 case TargetOpcode::LOAD_STACK_GUARD: {
2138 assert(Subtarget.isTargetLinux() &&
2139 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2140 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2141 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2142 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2143 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2144 .addImm(Offset)
2145 .addReg(Reg);
2146 return true;
2148 case PPC::DFLOADf32:
2149 case PPC::DFLOADf64:
2150 case PPC::DFSTOREf32:
2151 case PPC::DFSTOREf64: {
2152 assert(Subtarget.hasP9Vector() &&
2153 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2154 assert(MI.getOperand(2).isReg() &&
2155 isAnImmediateOperand(MI.getOperand(1)) &&
2156 "D-form op must have register and immediate operands");
2157 return expandVSXMemPseudo(MI);
2159 case PPC::XFLOADf32:
2160 case PPC::XFSTOREf32:
2161 case PPC::LIWAX:
2162 case PPC::LIWZX:
2163 case PPC::STIWX: {
2164 assert(Subtarget.hasP8Vector() &&
2165 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2166 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2167 "X-form op must have register and register operands");
2168 return expandVSXMemPseudo(MI);
2170 case PPC::XFLOADf64:
2171 case PPC::XFSTOREf64: {
2172 assert(Subtarget.hasVSX() &&
2173 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2174 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2175 "X-form op must have register and register operands");
2176 return expandVSXMemPseudo(MI);
2178 case PPC::SPILLTOVSR_LD: {
2179 Register TargetReg = MI.getOperand(0).getReg();
2180 if (PPC::VSFRCRegClass.contains(TargetReg)) {
2181 MI.setDesc(get(PPC::DFLOADf64));
2182 return expandPostRAPseudo(MI);
2184 else
2185 MI.setDesc(get(PPC::LD));
2186 return true;
2188 case PPC::SPILLTOVSR_ST: {
2189 Register SrcReg = MI.getOperand(0).getReg();
2190 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2191 NumStoreSPILLVSRRCAsVec++;
2192 MI.setDesc(get(PPC::DFSTOREf64));
2193 return expandPostRAPseudo(MI);
2194 } else {
2195 NumStoreSPILLVSRRCAsGpr++;
2196 MI.setDesc(get(PPC::STD));
2198 return true;
2200 case PPC::SPILLTOVSR_LDX: {
2201 Register TargetReg = MI.getOperand(0).getReg();
2202 if (PPC::VSFRCRegClass.contains(TargetReg))
2203 MI.setDesc(get(PPC::LXSDX));
2204 else
2205 MI.setDesc(get(PPC::LDX));
2206 return true;
2208 case PPC::SPILLTOVSR_STX: {
2209 Register SrcReg = MI.getOperand(0).getReg();
2210 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2211 NumStoreSPILLVSRRCAsVec++;
2212 MI.setDesc(get(PPC::STXSDX));
2213 } else {
2214 NumStoreSPILLVSRRCAsGpr++;
2215 MI.setDesc(get(PPC::STDX));
2217 return true;
2220 case PPC::CFENCE8: {
2221 auto Val = MI.getOperand(0).getReg();
2222 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2223 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2224 .addImm(PPC::PRED_NE_MINUS)
2225 .addReg(PPC::CR7)
2226 .addImm(1);
2227 MI.setDesc(get(PPC::ISYNC));
2228 MI.RemoveOperand(0);
2229 return true;
2232 return false;
2235 // Essentially a compile-time implementation of a compare->isel sequence.
2236 // It takes two constants to compare, along with the true/false registers
2237 // and the comparison type (as a subreg to a CR field) and returns one
2238 // of the true/false registers, depending on the comparison results.
2239 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2240 unsigned TrueReg, unsigned FalseReg,
2241 unsigned CRSubReg) {
2242 // Signed comparisons. The immediates are assumed to be sign-extended.
2243 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2244 switch (CRSubReg) {
2245 default: llvm_unreachable("Unknown integer comparison type.");
2246 case PPC::sub_lt:
2247 return Imm1 < Imm2 ? TrueReg : FalseReg;
2248 case PPC::sub_gt:
2249 return Imm1 > Imm2 ? TrueReg : FalseReg;
2250 case PPC::sub_eq:
2251 return Imm1 == Imm2 ? TrueReg : FalseReg;
2254 // Unsigned comparisons.
2255 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2256 switch (CRSubReg) {
2257 default: llvm_unreachable("Unknown integer comparison type.");
2258 case PPC::sub_lt:
2259 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2260 case PPC::sub_gt:
2261 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2262 case PPC::sub_eq:
2263 return Imm1 == Imm2 ? TrueReg : FalseReg;
2266 return PPC::NoRegister;
2269 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2270 unsigned OpNo,
2271 int64_t Imm) const {
2272 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2273 // Replace the REG with the Immediate.
2274 Register InUseReg = MI.getOperand(OpNo).getReg();
2275 MI.getOperand(OpNo).ChangeToImmediate(Imm);
2277 if (MI.implicit_operands().empty())
2278 return;
2280 // We need to make sure that the MI didn't have any implicit use
2281 // of this REG any more.
2282 const TargetRegisterInfo *TRI = &getRegisterInfo();
2283 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2284 if (UseOpIdx >= 0) {
2285 MachineOperand &MO = MI.getOperand(UseOpIdx);
2286 if (MO.isImplicit())
2287 // The operands must always be in the following order:
2288 // - explicit reg defs,
2289 // - other explicit operands (reg uses, immediates, etc.),
2290 // - implicit reg defs
2291 // - implicit reg uses
2292 // Therefore, removing the implicit operand won't change the explicit
2293 // operands layout.
2294 MI.RemoveOperand(UseOpIdx);
2298 // Replace an instruction with one that materializes a constant (and sets
2299 // CR0 if the original instruction was a record-form instruction).
2300 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2301 const LoadImmediateInfo &LII) const {
2302 // Remove existing operands.
2303 int OperandToKeep = LII.SetCR ? 1 : 0;
2304 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2305 MI.RemoveOperand(i);
2307 // Replace the instruction.
2308 if (LII.SetCR) {
2309 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2310 // Set the immediate.
2311 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2312 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2313 return;
2315 else
2316 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2318 // Set the immediate.
2319 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2320 .addImm(LII.Imm);
2323 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
2324 bool &SeenIntermediateUse) const {
2325 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
2326 "Should be called after register allocation.");
2327 const TargetRegisterInfo *TRI = &getRegisterInfo();
2328 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2329 It++;
2330 SeenIntermediateUse = false;
2331 for (; It != E; ++It) {
2332 if (It->modifiesRegister(Reg, TRI))
2333 return &*It;
2334 if (It->readsRegister(Reg, TRI))
2335 SeenIntermediateUse = true;
2337 return nullptr;
2340 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2341 MachineInstr &MI,
2342 unsigned &OpNoForForwarding,
2343 bool &SeenIntermediateUse) const {
2344 OpNoForForwarding = ~0U;
2345 MachineInstr *DefMI = nullptr;
2346 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2347 const TargetRegisterInfo *TRI = &getRegisterInfo();
2348 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2349 // within the basic block to see if the register is defined using an LI/LI8.
2350 if (MRI->isSSA()) {
2351 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2352 if (!MI.getOperand(i).isReg())
2353 continue;
2354 Register Reg = MI.getOperand(i).getReg();
2355 if (!Register::isVirtualRegister(Reg))
2356 continue;
2357 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2358 if (Register::isVirtualRegister(TrueReg)) {
2359 DefMI = MRI->getVRegDef(TrueReg);
2360 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2361 OpNoForForwarding = i;
2362 break;
2366 } else {
2367 // Looking back through the definition for each operand could be expensive,
2368 // so exit early if this isn't an instruction that either has an immediate
2369 // form or is already an immediate form that we can handle.
2370 ImmInstrInfo III;
2371 unsigned Opc = MI.getOpcode();
2372 bool ConvertibleImmForm =
2373 Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2374 Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2375 Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2376 Opc == PPC::ORI || Opc == PPC::ORI8 ||
2377 Opc == PPC::XORI || Opc == PPC::XORI8 ||
2378 Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2379 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2380 Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2381 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2382 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2383 ? isVFRegister(MI.getOperand(0).getReg())
2384 : false;
2385 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2386 return nullptr;
2388 // Don't convert or %X, %Y, %Y since that's just a register move.
2389 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2390 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2391 return nullptr;
2392 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2393 MachineOperand &MO = MI.getOperand(i);
2394 SeenIntermediateUse = false;
2395 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2396 Register Reg = MI.getOperand(i).getReg();
2397 // If we see another use of this reg between the def and the MI,
2398 // we want to flat it so the def isn't deleted.
2399 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
2400 if (DefMI) {
2401 // Is this register defined by some form of add-immediate (including
2402 // load-immediate) within this basic block?
2403 switch (DefMI->getOpcode()) {
2404 default:
2405 break;
2406 case PPC::LI:
2407 case PPC::LI8:
2408 case PPC::ADDItocL:
2409 case PPC::ADDI:
2410 case PPC::ADDI8:
2411 OpNoForForwarding = i;
2412 return DefMI;
2418 return OpNoForForwarding == ~0U ? nullptr : DefMI;
2421 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2422 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2423 // Power 8
2424 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2425 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2426 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2427 PPC::SPILLTOVSR_ST, PPC::EVSTDD},
2428 // Power 9
2429 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2430 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2431 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2432 PPC::SPILLTOVSR_ST}};
2434 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2437 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2438 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2439 // Power 8
2440 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2441 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2442 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2443 PPC::SPILLTOVSR_LD, PPC::EVLDD},
2444 // Power 9
2445 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2446 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2447 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2448 PPC::SPILLTOVSR_LD}};
2450 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2453 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2454 unsigned RegNo) const {
2455 const MachineRegisterInfo &MRI =
2456 StartMI.getParent()->getParent()->getRegInfo();
2457 if (MRI.isSSA())
2458 return;
2460 // Instructions between [StartMI, EndMI] should be in same basic block.
2461 assert((StartMI.getParent() == EndMI.getParent()) &&
2462 "Instructions are not in same basic block");
2464 bool IsKillSet = false;
2466 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2467 MachineOperand &MO = MI.getOperand(Index);
2468 if (MO.isReg() && MO.isUse() && MO.isKill() &&
2469 getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2470 MO.setIsKill(false);
2473 // Set killed flag for EndMI.
2474 // No need to do anything if EndMI defines RegNo.
2475 int UseIndex =
2476 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2477 if (UseIndex != -1) {
2478 EndMI.getOperand(UseIndex).setIsKill(true);
2479 IsKillSet = true;
2480 // Clear killed flag for other EndMI operands related to RegNo. In some
2481 // upexpected cases, killed may be set multiple times for same register
2482 // operand in same MI.
2483 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2484 if (i != UseIndex)
2485 clearOperandKillInfo(EndMI, i);
2488 // Walking the inst in reverse order (EndMI -> StartMI].
2489 MachineBasicBlock::reverse_iterator It = EndMI;
2490 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2491 // EndMI has been handled above, skip it here.
2492 It++;
2493 MachineOperand *MO = nullptr;
2494 for (; It != E; ++It) {
2495 // Skip insturctions which could not be a def/use of RegNo.
2496 if (It->isDebugInstr() || It->isPosition())
2497 continue;
2499 // Clear killed flag for all It operands related to RegNo. In some
2500 // upexpected cases, killed may be set multiple times for same register
2501 // operand in same MI.
2502 for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2503 clearOperandKillInfo(*It, i);
2505 // If killed is not set, set killed for its last use or set dead for its def
2506 // if no use found.
2507 if (!IsKillSet) {
2508 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2509 // Use found, set it killed.
2510 IsKillSet = true;
2511 MO->setIsKill(true);
2512 continue;
2513 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2514 &getRegisterInfo()))) {
2515 // No use found, set dead for its def.
2516 assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2517 MO->setIsDead(true);
2518 break;
2522 if ((&*It) == &StartMI)
2523 break;
2525 // Ensure RegMo liveness is killed after EndMI.
2526 assert((IsKillSet || (MO && MO->isDead())) &&
2527 "RegNo should be killed or dead");
2530 // If this instruction has an immediate form and one of its operands is a
2531 // result of a load-immediate or an add-immediate, convert it to
2532 // the immediate form if the constant is in range.
2533 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2534 MachineInstr **KilledDef) const {
2535 MachineFunction *MF = MI.getParent()->getParent();
2536 MachineRegisterInfo *MRI = &MF->getRegInfo();
2537 bool PostRA = !MRI->isSSA();
2538 bool SeenIntermediateUse = true;
2539 unsigned ForwardingOperand = ~0U;
2540 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2541 SeenIntermediateUse);
2542 if (!DefMI)
2543 return false;
2544 assert(ForwardingOperand < MI.getNumOperands() &&
2545 "The forwarding operand needs to be valid at this point");
2546 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2547 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2548 Register ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2549 if (KilledDef && KillFwdDefMI)
2550 *KilledDef = DefMI;
2552 ImmInstrInfo III;
2553 bool IsVFReg = MI.getOperand(0).isReg()
2554 ? isVFRegister(MI.getOperand(0).getReg())
2555 : false;
2556 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2557 // If this is a reg+reg instruction that has a reg+imm form,
2558 // and one of the operands is produced by an add-immediate,
2559 // try to convert it.
2560 if (HasImmForm &&
2561 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2562 KillFwdDefMI))
2563 return true;
2565 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2566 !DefMI->getOperand(1).isImm())
2567 return false;
2569 int64_t Immediate = DefMI->getOperand(1).getImm();
2570 // Sign-extend to 64-bits.
2571 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2572 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2574 // If this is a reg+reg instruction that has a reg+imm form,
2575 // and one of the operands is produced by LI, convert it now.
2576 if (HasImmForm)
2577 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2579 bool ReplaceWithLI = false;
2580 bool Is64BitLI = false;
2581 int64_t NewImm = 0;
2582 bool SetCR = false;
2583 unsigned Opc = MI.getOpcode();
2584 switch (Opc) {
2585 default: return false;
2587 // FIXME: Any branches conditional on such a comparison can be made
2588 // unconditional. At this time, this happens too infrequently to be worth
2589 // the implementation effort, but if that ever changes, we could convert
2590 // such a pattern here.
2591 case PPC::CMPWI:
2592 case PPC::CMPLWI:
2593 case PPC::CMPDI:
2594 case PPC::CMPLDI: {
2595 // Doing this post-RA would require dataflow analysis to reliably find uses
2596 // of the CR register set by the compare.
2597 // No need to fixup killed/dead flag since this transformation is only valid
2598 // before RA.
2599 if (PostRA)
2600 return false;
2601 // If a compare-immediate is fed by an immediate and is itself an input of
2602 // an ISEL (the most common case) into a COPY of the correct register.
2603 bool Changed = false;
2604 Register DefReg = MI.getOperand(0).getReg();
2605 int64_t Comparand = MI.getOperand(2).getImm();
2606 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2607 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2609 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2610 unsigned UseOpc = CompareUseMI.getOpcode();
2611 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2612 continue;
2613 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2614 Register TrueReg = CompareUseMI.getOperand(1).getReg();
2615 Register FalseReg = CompareUseMI.getOperand(2).getReg();
2616 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2617 FalseReg, CRSubReg);
2618 if (RegToCopy == PPC::NoRegister)
2619 continue;
2620 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2621 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2622 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2623 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2624 CompareUseMI.RemoveOperand(3);
2625 CompareUseMI.RemoveOperand(2);
2626 continue;
2628 LLVM_DEBUG(
2629 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2630 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2631 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2632 // Convert to copy and remove unneeded operands.
2633 CompareUseMI.setDesc(get(PPC::COPY));
2634 CompareUseMI.RemoveOperand(3);
2635 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2636 CmpIselsConverted++;
2637 Changed = true;
2638 LLVM_DEBUG(CompareUseMI.dump());
2640 if (Changed)
2641 return true;
2642 // This may end up incremented multiple times since this function is called
2643 // during a fixed-point transformation, but it is only meant to indicate the
2644 // presence of this opportunity.
2645 MissedConvertibleImmediateInstrs++;
2646 return false;
2649 // Immediate forms - may simply be convertable to an LI.
2650 case PPC::ADDI:
2651 case PPC::ADDI8: {
2652 // Does the sum fit in a 16-bit signed field?
2653 int64_t Addend = MI.getOperand(2).getImm();
2654 if (isInt<16>(Addend + SExtImm)) {
2655 ReplaceWithLI = true;
2656 Is64BitLI = Opc == PPC::ADDI8;
2657 NewImm = Addend + SExtImm;
2658 break;
2660 return false;
2662 case PPC::RLDICL:
2663 case PPC::RLDICLo:
2664 case PPC::RLDICL_32:
2665 case PPC::RLDICL_32_64: {
2666 // Use APInt's rotate function.
2667 int64_t SH = MI.getOperand(2).getImm();
2668 int64_t MB = MI.getOperand(3).getImm();
2669 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2670 64 : 32, SExtImm, true);
2671 InVal = InVal.rotl(SH);
2672 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2673 InVal &= Mask;
2674 // Can't replace negative values with an LI as that will sign-extend
2675 // and not clear the left bits. If we're setting the CR bit, we will use
2676 // ANDIo which won't sign extend, so that's safe.
2677 if (isUInt<15>(InVal.getSExtValue()) ||
2678 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2679 ReplaceWithLI = true;
2680 Is64BitLI = Opc != PPC::RLDICL_32;
2681 NewImm = InVal.getSExtValue();
2682 SetCR = Opc == PPC::RLDICLo;
2683 break;
2685 return false;
2687 case PPC::RLWINM:
2688 case PPC::RLWINM8:
2689 case PPC::RLWINMo:
2690 case PPC::RLWINM8o: {
2691 int64_t SH = MI.getOperand(2).getImm();
2692 int64_t MB = MI.getOperand(3).getImm();
2693 int64_t ME = MI.getOperand(4).getImm();
2694 APInt InVal(32, SExtImm, true);
2695 InVal = InVal.rotl(SH);
2696 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2697 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2698 InVal &= Mask;
2699 // Can't replace negative values with an LI as that will sign-extend
2700 // and not clear the left bits. If we're setting the CR bit, we will use
2701 // ANDIo which won't sign extend, so that's safe.
2702 bool ValueFits = isUInt<15>(InVal.getSExtValue());
2703 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2704 isUInt<16>(InVal.getSExtValue()));
2705 if (ValueFits) {
2706 ReplaceWithLI = true;
2707 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2708 NewImm = InVal.getSExtValue();
2709 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2710 break;
2712 return false;
2714 case PPC::ORI:
2715 case PPC::ORI8:
2716 case PPC::XORI:
2717 case PPC::XORI8: {
2718 int64_t LogicalImm = MI.getOperand(2).getImm();
2719 int64_t Result = 0;
2720 if (Opc == PPC::ORI || Opc == PPC::ORI8)
2721 Result = LogicalImm | SExtImm;
2722 else
2723 Result = LogicalImm ^ SExtImm;
2724 if (isInt<16>(Result)) {
2725 ReplaceWithLI = true;
2726 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2727 NewImm = Result;
2728 break;
2730 return false;
2734 if (ReplaceWithLI) {
2735 // We need to be careful with CR-setting instructions we're replacing.
2736 if (SetCR) {
2737 // We don't know anything about uses when we're out of SSA, so only
2738 // replace if the new immediate will be reproduced.
2739 bool ImmChanged = (SExtImm & NewImm) != NewImm;
2740 if (PostRA && ImmChanged)
2741 return false;
2743 if (!PostRA) {
2744 // If the defining load-immediate has no other uses, we can just replace
2745 // the immediate with the new immediate.
2746 if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2747 DefMI->getOperand(1).setImm(NewImm);
2749 // If we're not using the GPR result of the CR-setting instruction, we
2750 // just need to and with zero/non-zero depending on the new immediate.
2751 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2752 if (NewImm) {
2753 assert(Immediate && "Transformation converted zero to non-zero?");
2754 NewImm = Immediate;
2757 else if (ImmChanged)
2758 return false;
2762 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2763 LLVM_DEBUG(MI.dump());
2764 LLVM_DEBUG(dbgs() << "Fed by:\n");
2765 LLVM_DEBUG(DefMI->dump());
2766 LoadImmediateInfo LII;
2767 LII.Imm = NewImm;
2768 LII.Is64Bit = Is64BitLI;
2769 LII.SetCR = SetCR;
2770 // If we're setting the CR, the original load-immediate must be kept (as an
2771 // operand to ANDIo/ANDI8o).
2772 if (KilledDef && SetCR)
2773 *KilledDef = nullptr;
2774 replaceInstrWithLI(MI, LII);
2776 // Fixup killed/dead flag after transformation.
2777 // Pattern:
2778 // ForwardingOperandReg = LI imm1
2779 // y = op2 imm2, ForwardingOperandReg(killed)
2780 if (IsForwardingOperandKilled)
2781 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2783 LLVM_DEBUG(dbgs() << "With:\n");
2784 LLVM_DEBUG(MI.dump());
2785 return true;
2787 return false;
2790 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2791 ImmInstrInfo &III, bool PostRA) const {
2792 // The vast majority of the instructions would need their operand 2 replaced
2793 // with an immediate when switching to the reg+imm form. A marked exception
2794 // are the update form loads/stores for which a constant operand 2 would need
2795 // to turn into a displacement and move operand 1 to the operand 2 position.
2796 III.ImmOpNo = 2;
2797 III.OpNoForForwarding = 2;
2798 III.ImmWidth = 16;
2799 III.ImmMustBeMultipleOf = 1;
2800 III.TruncateImmTo = 0;
2801 III.IsSummingOperands = false;
2802 switch (Opc) {
2803 default: return false;
2804 case PPC::ADD4:
2805 case PPC::ADD8:
2806 III.SignedImm = true;
2807 III.ZeroIsSpecialOrig = 0;
2808 III.ZeroIsSpecialNew = 1;
2809 III.IsCommutative = true;
2810 III.IsSummingOperands = true;
2811 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2812 break;
2813 case PPC::ADDC:
2814 case PPC::ADDC8:
2815 III.SignedImm = true;
2816 III.ZeroIsSpecialOrig = 0;
2817 III.ZeroIsSpecialNew = 0;
2818 III.IsCommutative = true;
2819 III.IsSummingOperands = true;
2820 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2821 break;
2822 case PPC::ADDCo:
2823 III.SignedImm = true;
2824 III.ZeroIsSpecialOrig = 0;
2825 III.ZeroIsSpecialNew = 0;
2826 III.IsCommutative = true;
2827 III.IsSummingOperands = true;
2828 III.ImmOpcode = PPC::ADDICo;
2829 break;
2830 case PPC::SUBFC:
2831 case PPC::SUBFC8:
2832 III.SignedImm = true;
2833 III.ZeroIsSpecialOrig = 0;
2834 III.ZeroIsSpecialNew = 0;
2835 III.IsCommutative = false;
2836 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2837 break;
2838 case PPC::CMPW:
2839 case PPC::CMPD:
2840 III.SignedImm = true;
2841 III.ZeroIsSpecialOrig = 0;
2842 III.ZeroIsSpecialNew = 0;
2843 III.IsCommutative = false;
2844 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2845 break;
2846 case PPC::CMPLW:
2847 case PPC::CMPLD:
2848 III.SignedImm = false;
2849 III.ZeroIsSpecialOrig = 0;
2850 III.ZeroIsSpecialNew = 0;
2851 III.IsCommutative = false;
2852 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2853 break;
2854 case PPC::ANDo:
2855 case PPC::AND8o:
2856 case PPC::OR:
2857 case PPC::OR8:
2858 case PPC::XOR:
2859 case PPC::XOR8:
2860 III.SignedImm = false;
2861 III.ZeroIsSpecialOrig = 0;
2862 III.ZeroIsSpecialNew = 0;
2863 III.IsCommutative = true;
2864 switch(Opc) {
2865 default: llvm_unreachable("Unknown opcode");
2866 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2867 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2868 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2869 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2870 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2871 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2873 break;
2874 case PPC::RLWNM:
2875 case PPC::RLWNM8:
2876 case PPC::RLWNMo:
2877 case PPC::RLWNM8o:
2878 case PPC::SLW:
2879 case PPC::SLW8:
2880 case PPC::SLWo:
2881 case PPC::SLW8o:
2882 case PPC::SRW:
2883 case PPC::SRW8:
2884 case PPC::SRWo:
2885 case PPC::SRW8o:
2886 case PPC::SRAW:
2887 case PPC::SRAWo:
2888 III.SignedImm = false;
2889 III.ZeroIsSpecialOrig = 0;
2890 III.ZeroIsSpecialNew = 0;
2891 III.IsCommutative = false;
2892 // This isn't actually true, but the instructions ignore any of the
2893 // upper bits, so any immediate loaded with an LI is acceptable.
2894 // This does not apply to shift right algebraic because a value
2895 // out of range will produce a -1/0.
2896 III.ImmWidth = 16;
2897 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2898 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2899 III.TruncateImmTo = 5;
2900 else
2901 III.TruncateImmTo = 6;
2902 switch(Opc) {
2903 default: llvm_unreachable("Unknown opcode");
2904 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2905 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2906 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2907 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2908 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2909 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2910 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2911 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2912 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2913 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2914 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2915 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2916 case PPC::SRAW:
2917 III.ImmWidth = 5;
2918 III.TruncateImmTo = 0;
2919 III.ImmOpcode = PPC::SRAWI;
2920 break;
2921 case PPC::SRAWo:
2922 III.ImmWidth = 5;
2923 III.TruncateImmTo = 0;
2924 III.ImmOpcode = PPC::SRAWIo;
2925 break;
2927 break;
2928 case PPC::RLDCL:
2929 case PPC::RLDCLo:
2930 case PPC::RLDCR:
2931 case PPC::RLDCRo:
2932 case PPC::SLD:
2933 case PPC::SLDo:
2934 case PPC::SRD:
2935 case PPC::SRDo:
2936 case PPC::SRAD:
2937 case PPC::SRADo:
2938 III.SignedImm = false;
2939 III.ZeroIsSpecialOrig = 0;
2940 III.ZeroIsSpecialNew = 0;
2941 III.IsCommutative = false;
2942 // This isn't actually true, but the instructions ignore any of the
2943 // upper bits, so any immediate loaded with an LI is acceptable.
2944 // This does not apply to shift right algebraic because a value
2945 // out of range will produce a -1/0.
2946 III.ImmWidth = 16;
2947 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2948 Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2949 III.TruncateImmTo = 6;
2950 else
2951 III.TruncateImmTo = 7;
2952 switch(Opc) {
2953 default: llvm_unreachable("Unknown opcode");
2954 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2955 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2956 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2957 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2958 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2959 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2960 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2961 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2962 case PPC::SRAD:
2963 III.ImmWidth = 6;
2964 III.TruncateImmTo = 0;
2965 III.ImmOpcode = PPC::SRADI;
2966 break;
2967 case PPC::SRADo:
2968 III.ImmWidth = 6;
2969 III.TruncateImmTo = 0;
2970 III.ImmOpcode = PPC::SRADIo;
2971 break;
2973 break;
2974 // Loads and stores:
2975 case PPC::LBZX:
2976 case PPC::LBZX8:
2977 case PPC::LHZX:
2978 case PPC::LHZX8:
2979 case PPC::LHAX:
2980 case PPC::LHAX8:
2981 case PPC::LWZX:
2982 case PPC::LWZX8:
2983 case PPC::LWAX:
2984 case PPC::LDX:
2985 case PPC::LFSX:
2986 case PPC::LFDX:
2987 case PPC::STBX:
2988 case PPC::STBX8:
2989 case PPC::STHX:
2990 case PPC::STHX8:
2991 case PPC::STWX:
2992 case PPC::STWX8:
2993 case PPC::STDX:
2994 case PPC::STFSX:
2995 case PPC::STFDX:
2996 III.SignedImm = true;
2997 III.ZeroIsSpecialOrig = 1;
2998 III.ZeroIsSpecialNew = 2;
2999 III.IsCommutative = true;
3000 III.IsSummingOperands = true;
3001 III.ImmOpNo = 1;
3002 III.OpNoForForwarding = 2;
3003 switch(Opc) {
3004 default: llvm_unreachable("Unknown opcode");
3005 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3006 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3007 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3008 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3009 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3010 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3011 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3012 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3013 case PPC::LWAX:
3014 III.ImmOpcode = PPC::LWA;
3015 III.ImmMustBeMultipleOf = 4;
3016 break;
3017 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3018 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3019 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3020 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3021 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3022 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3023 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3024 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3025 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3026 case PPC::STDX:
3027 III.ImmOpcode = PPC::STD;
3028 III.ImmMustBeMultipleOf = 4;
3029 break;
3030 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3031 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3033 break;
3034 case PPC::LBZUX:
3035 case PPC::LBZUX8:
3036 case PPC::LHZUX:
3037 case PPC::LHZUX8:
3038 case PPC::LHAUX:
3039 case PPC::LHAUX8:
3040 case PPC::LWZUX:
3041 case PPC::LWZUX8:
3042 case PPC::LDUX:
3043 case PPC::LFSUX:
3044 case PPC::LFDUX:
3045 case PPC::STBUX:
3046 case PPC::STBUX8:
3047 case PPC::STHUX:
3048 case PPC::STHUX8:
3049 case PPC::STWUX:
3050 case PPC::STWUX8:
3051 case PPC::STDUX:
3052 case PPC::STFSUX:
3053 case PPC::STFDUX:
3054 III.SignedImm = true;
3055 III.ZeroIsSpecialOrig = 2;
3056 III.ZeroIsSpecialNew = 3;
3057 III.IsCommutative = false;
3058 III.IsSummingOperands = true;
3059 III.ImmOpNo = 2;
3060 III.OpNoForForwarding = 3;
3061 switch(Opc) {
3062 default: llvm_unreachable("Unknown opcode");
3063 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3064 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3065 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3066 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3067 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3068 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3069 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3070 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3071 case PPC::LDUX:
3072 III.ImmOpcode = PPC::LDU;
3073 III.ImmMustBeMultipleOf = 4;
3074 break;
3075 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3076 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3077 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3078 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3079 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3080 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3081 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3082 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3083 case PPC::STDUX:
3084 III.ImmOpcode = PPC::STDU;
3085 III.ImmMustBeMultipleOf = 4;
3086 break;
3087 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3088 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3090 break;
3091 // Power9 and up only. For some of these, the X-Form version has access to all
3092 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3093 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3094 // into or stored from is one of the VR registers.
3095 case PPC::LXVX:
3096 case PPC::LXSSPX:
3097 case PPC::LXSDX:
3098 case PPC::STXVX:
3099 case PPC::STXSSPX:
3100 case PPC::STXSDX:
3101 case PPC::XFLOADf32:
3102 case PPC::XFLOADf64:
3103 case PPC::XFSTOREf32:
3104 case PPC::XFSTOREf64:
3105 if (!Subtarget.hasP9Vector())
3106 return false;
3107 III.SignedImm = true;
3108 III.ZeroIsSpecialOrig = 1;
3109 III.ZeroIsSpecialNew = 2;
3110 III.IsCommutative = true;
3111 III.IsSummingOperands = true;
3112 III.ImmOpNo = 1;
3113 III.OpNoForForwarding = 2;
3114 III.ImmMustBeMultipleOf = 4;
3115 switch(Opc) {
3116 default: llvm_unreachable("Unknown opcode");
3117 case PPC::LXVX:
3118 III.ImmOpcode = PPC::LXV;
3119 III.ImmMustBeMultipleOf = 16;
3120 break;
3121 case PPC::LXSSPX:
3122 if (PostRA) {
3123 if (IsVFReg)
3124 III.ImmOpcode = PPC::LXSSP;
3125 else {
3126 III.ImmOpcode = PPC::LFS;
3127 III.ImmMustBeMultipleOf = 1;
3129 break;
3131 LLVM_FALLTHROUGH;
3132 case PPC::XFLOADf32:
3133 III.ImmOpcode = PPC::DFLOADf32;
3134 break;
3135 case PPC::LXSDX:
3136 if (PostRA) {
3137 if (IsVFReg)
3138 III.ImmOpcode = PPC::LXSD;
3139 else {
3140 III.ImmOpcode = PPC::LFD;
3141 III.ImmMustBeMultipleOf = 1;
3143 break;
3145 LLVM_FALLTHROUGH;
3146 case PPC::XFLOADf64:
3147 III.ImmOpcode = PPC::DFLOADf64;
3148 break;
3149 case PPC::STXVX:
3150 III.ImmOpcode = PPC::STXV;
3151 III.ImmMustBeMultipleOf = 16;
3152 break;
3153 case PPC::STXSSPX:
3154 if (PostRA) {
3155 if (IsVFReg)
3156 III.ImmOpcode = PPC::STXSSP;
3157 else {
3158 III.ImmOpcode = PPC::STFS;
3159 III.ImmMustBeMultipleOf = 1;
3161 break;
3163 LLVM_FALLTHROUGH;
3164 case PPC::XFSTOREf32:
3165 III.ImmOpcode = PPC::DFSTOREf32;
3166 break;
3167 case PPC::STXSDX:
3168 if (PostRA) {
3169 if (IsVFReg)
3170 III.ImmOpcode = PPC::STXSD;
3171 else {
3172 III.ImmOpcode = PPC::STFD;
3173 III.ImmMustBeMultipleOf = 1;
3175 break;
3177 LLVM_FALLTHROUGH;
3178 case PPC::XFSTOREf64:
3179 III.ImmOpcode = PPC::DFSTOREf64;
3180 break;
3182 break;
3184 return true;
3187 // Utility function for swaping two arbitrary operands of an instruction.
3188 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3189 assert(Op1 != Op2 && "Cannot swap operand with itself.");
3191 unsigned MaxOp = std::max(Op1, Op2);
3192 unsigned MinOp = std::min(Op1, Op2);
3193 MachineOperand MOp1 = MI.getOperand(MinOp);
3194 MachineOperand MOp2 = MI.getOperand(MaxOp);
3195 MI.RemoveOperand(std::max(Op1, Op2));
3196 MI.RemoveOperand(std::min(Op1, Op2));
3198 // If the operands we are swapping are the two at the end (the common case)
3199 // we can just remove both and add them in the opposite order.
3200 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3201 MI.addOperand(MOp2);
3202 MI.addOperand(MOp1);
3203 } else {
3204 // Store all operands in a temporary vector, remove them and re-add in the
3205 // right order.
3206 SmallVector<MachineOperand, 2> MOps;
3207 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3208 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3209 MOps.push_back(MI.getOperand(i));
3210 MI.RemoveOperand(i);
3212 // MOp2 needs to be added next.
3213 MI.addOperand(MOp2);
3214 // Now add the rest.
3215 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3216 if (i == MaxOp)
3217 MI.addOperand(MOp1);
3218 else {
3219 MI.addOperand(MOps.back());
3220 MOps.pop_back();
3226 // Check if the 'MI' that has the index OpNoForForwarding
3227 // meets the requirement described in the ImmInstrInfo.
3228 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3229 const ImmInstrInfo &III,
3230 unsigned OpNoForForwarding
3231 ) const {
3232 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3233 // would not work pre-RA, we can only do the check post RA.
3234 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3235 if (MRI.isSSA())
3236 return false;
3238 // Cannot do the transform if MI isn't summing the operands.
3239 if (!III.IsSummingOperands)
3240 return false;
3242 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3243 if (!III.ZeroIsSpecialOrig)
3244 return false;
3246 // We cannot do the transform if the operand we are trying to replace
3247 // isn't the same as the operand the instruction allows.
3248 if (OpNoForForwarding != III.OpNoForForwarding)
3249 return false;
3251 // Check if the instruction we are trying to transform really has
3252 // the special zero register as its operand.
3253 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3254 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3255 return false;
3257 // This machine instruction is convertible if it is,
3258 // 1. summing the operands.
3259 // 2. one of the operands is special zero register.
3260 // 3. the operand we are trying to replace is allowed by the MI.
3261 return true;
3264 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3265 // accordingly.
3266 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3267 const ImmInstrInfo &III,
3268 MachineOperand *&ImmMO,
3269 MachineOperand *&RegMO) const {
3270 unsigned Opc = DefMI.getOpcode();
3271 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3272 return false;
3274 assert(DefMI.getNumOperands() >= 3 &&
3275 "Add inst must have at least three operands");
3276 RegMO = &DefMI.getOperand(1);
3277 ImmMO = &DefMI.getOperand(2);
3279 // This DefMI is elgible for forwarding if it is:
3280 // 1. add inst
3281 // 2. one of the operands is Imm/CPI/Global.
3282 return isAnImmediateOperand(*ImmMO);
3285 bool PPCInstrInfo::isRegElgibleForForwarding(
3286 const MachineOperand &RegMO, const MachineInstr &DefMI,
3287 const MachineInstr &MI, bool KillDefMI,
3288 bool &IsFwdFeederRegKilled) const {
3289 // x = addi y, imm
3290 // ...
3291 // z = lfdx 0, x -> z = lfd imm(y)
3292 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3293 // of "y" between the DEF of "x" and "z".
3294 // The query is only valid post RA.
3295 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3296 if (MRI.isSSA())
3297 return false;
3299 Register Reg = RegMO.getReg();
3301 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3302 MachineBasicBlock::const_reverse_iterator It = MI;
3303 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3304 It++;
3305 for (; It != E; ++It) {
3306 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3307 return false;
3308 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3309 IsFwdFeederRegKilled = true;
3310 // Made it to DefMI without encountering a clobber.
3311 if ((&*It) == &DefMI)
3312 break;
3314 assert((&*It) == &DefMI && "DefMI is missing");
3316 // If DefMI also defines the register to be forwarded, we can only forward it
3317 // if DefMI is being erased.
3318 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3319 return KillDefMI;
3321 return true;
3324 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3325 const MachineInstr &DefMI,
3326 const ImmInstrInfo &III,
3327 int64_t &Imm) const {
3328 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3329 if (DefMI.getOpcode() == PPC::ADDItocL) {
3330 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3331 // However, we know that, it is 16-bit width, and has the alignment of 4.
3332 // Check if the instruction met the requirement.
3333 if (III.ImmMustBeMultipleOf > 4 ||
3334 III.TruncateImmTo || III.ImmWidth != 16)
3335 return false;
3337 // Going from XForm to DForm loads means that the displacement needs to be
3338 // not just an immediate but also a multiple of 4, or 16 depending on the
3339 // load. A DForm load cannot be represented if it is a multiple of say 2.
3340 // XForm loads do not have this restriction.
3341 if (ImmMO.isGlobal() &&
3342 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3343 return false;
3345 return true;
3348 if (ImmMO.isImm()) {
3349 // It is Imm, we need to check if the Imm fit the range.
3350 int64_t Immediate = ImmMO.getImm();
3351 // Sign-extend to 64-bits.
3352 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3353 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3355 if (Imm % III.ImmMustBeMultipleOf)
3356 return false;
3357 if (III.TruncateImmTo)
3358 Imm &= ((1 << III.TruncateImmTo) - 1);
3359 if (III.SignedImm) {
3360 APInt ActualValue(64, Imm, true);
3361 if (!ActualValue.isSignedIntN(III.ImmWidth))
3362 return false;
3363 } else {
3364 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3365 if ((uint64_t)Imm > UnsignedMax)
3366 return false;
3369 else
3370 return false;
3372 // This ImmMO is forwarded if it meets the requriement describle
3373 // in ImmInstrInfo
3374 return true;
3377 // If an X-Form instruction is fed by an add-immediate and one of its operands
3378 // is the literal zero, attempt to forward the source of the add-immediate to
3379 // the corresponding D-Form instruction with the displacement coming from
3380 // the immediate being added.
3381 bool PPCInstrInfo::transformToImmFormFedByAdd(
3382 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3383 MachineInstr &DefMI, bool KillDefMI) const {
3384 // RegMO ImmMO
3385 // | |
3386 // x = addi reg, imm <----- DefMI
3387 // y = op 0 , x <----- MI
3388 // |
3389 // OpNoForForwarding
3390 // Check if the MI meet the requirement described in the III.
3391 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3392 return false;
3394 // Check if the DefMI meet the requirement
3395 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3396 MachineOperand *ImmMO = nullptr;
3397 MachineOperand *RegMO = nullptr;
3398 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3399 return false;
3400 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3402 // As we get the Imm operand now, we need to check if the ImmMO meet
3403 // the requirement described in the III. If yes set the Imm.
3404 int64_t Imm = 0;
3405 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3406 return false;
3408 bool IsFwdFeederRegKilled = false;
3409 // Check if the RegMO can be forwarded to MI.
3410 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3411 IsFwdFeederRegKilled))
3412 return false;
3414 // Get killed info in case fixup needed after transformation.
3415 unsigned ForwardKilledOperandReg = ~0U;
3416 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3417 bool PostRA = !MRI.isSSA();
3418 if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3419 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3421 // We know that, the MI and DefMI both meet the pattern, and
3422 // the Imm also meet the requirement with the new Imm-form.
3423 // It is safe to do the transformation now.
3424 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3425 LLVM_DEBUG(MI.dump());
3426 LLVM_DEBUG(dbgs() << "Fed by:\n");
3427 LLVM_DEBUG(DefMI.dump());
3429 // Update the base reg first.
3430 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3431 false, false,
3432 RegMO->isKill());
3434 // Then, update the imm.
3435 if (ImmMO->isImm()) {
3436 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3437 // directly.
3438 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3440 else {
3441 // Otherwise, it is Constant Pool Index(CPI) or Global,
3442 // which is relocation in fact. We need to replace the special zero
3443 // register with ImmMO.
3444 // Before that, we need to fixup the target flags for imm.
3445 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3446 if (DefMI.getOpcode() == PPC::ADDItocL)
3447 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3449 // MI didn't have the interface such as MI.setOperand(i) though
3450 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3451 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3452 // and, add the ImmMO, then, move back all the operands behind ZERO.
3453 SmallVector<MachineOperand, 2> MOps;
3454 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3455 MOps.push_back(MI.getOperand(i));
3456 MI.RemoveOperand(i);
3459 // Remove the last MO in the list, which is ZERO operand in fact.
3460 MOps.pop_back();
3461 // Add the imm operand.
3462 MI.addOperand(*ImmMO);
3463 // Now add the rest back.
3464 for (auto &MO : MOps)
3465 MI.addOperand(MO);
3468 // Update the opcode.
3469 MI.setDesc(get(III.ImmOpcode));
3471 // Fix up killed/dead flag after transformation.
3472 // Pattern 1:
3473 // x = ADD KilledFwdFeederReg, imm
3474 // n = opn KilledFwdFeederReg(killed), regn
3475 // y = XOP 0, x
3476 // Pattern 2:
3477 // x = ADD reg(killed), imm
3478 // y = XOP 0, x
3479 if (IsFwdFeederRegKilled || RegMO->isKill())
3480 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3481 // Pattern 3:
3482 // ForwardKilledOperandReg = ADD reg, imm
3483 // y = XOP 0, ForwardKilledOperandReg(killed)
3484 if (ForwardKilledOperandReg != ~0U)
3485 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3487 LLVM_DEBUG(dbgs() << "With:\n");
3488 LLVM_DEBUG(MI.dump());
3490 return true;
3493 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3494 const ImmInstrInfo &III,
3495 unsigned ConstantOpNo,
3496 MachineInstr &DefMI,
3497 int64_t Imm) const {
3498 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3499 bool PostRA = !MRI.isSSA();
3500 // Exit early if we can't convert this.
3501 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3502 return false;
3503 if (Imm % III.ImmMustBeMultipleOf)
3504 return false;
3505 if (III.TruncateImmTo)
3506 Imm &= ((1 << III.TruncateImmTo) - 1);
3507 if (III.SignedImm) {
3508 APInt ActualValue(64, Imm, true);
3509 if (!ActualValue.isSignedIntN(III.ImmWidth))
3510 return false;
3511 } else {
3512 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3513 if ((uint64_t)Imm > UnsignedMax)
3514 return false;
3517 // If we're post-RA, the instructions don't agree on whether register zero is
3518 // special, we can transform this as long as the register operand that will
3519 // end up in the location where zero is special isn't R0.
3520 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3521 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3522 III.ZeroIsSpecialNew + 1;
3523 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3524 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3525 // If R0 is in the operand where zero is special for the new instruction,
3526 // it is unsafe to transform if the constant operand isn't that operand.
3527 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3528 ConstantOpNo != III.ZeroIsSpecialNew)
3529 return false;
3530 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3531 ConstantOpNo != PosForOrigZero)
3532 return false;
3535 // Get killed info in case fixup needed after transformation.
3536 unsigned ForwardKilledOperandReg = ~0U;
3537 if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3538 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3540 unsigned Opc = MI.getOpcode();
3541 bool SpecialShift32 =
3542 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3543 bool SpecialShift64 =
3544 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3545 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3546 Opc == PPC::SLDo || Opc == PPC::SRDo;
3547 bool RightShift =
3548 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3550 MI.setDesc(get(III.ImmOpcode));
3551 if (ConstantOpNo == III.OpNoForForwarding) {
3552 // Converting shifts to immediate form is a bit tricky since they may do
3553 // one of three things:
3554 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3555 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3556 // setting CR0)
3557 // 3. If the shift amount is in [1, OpSize), it's just a shift
3558 if (SpecialShift32 || SpecialShift64) {
3559 LoadImmediateInfo LII;
3560 LII.Imm = 0;
3561 LII.SetCR = SetCR;
3562 LII.Is64Bit = SpecialShift64;
3563 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3564 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3565 replaceInstrWithLI(MI, LII);
3566 // Shifts by zero don't change the value. If we don't need to set CR0,
3567 // just convert this to a COPY. Can't do this post-RA since we've already
3568 // cleaned up the copies.
3569 else if (!SetCR && ShAmt == 0 && !PostRA) {
3570 MI.RemoveOperand(2);
3571 MI.setDesc(get(PPC::COPY));
3572 } else {
3573 // The 32 bit and 64 bit instructions are quite different.
3574 if (SpecialShift32) {
3575 // Left shifts use (N, 0, 31-N).
3576 // Right shifts use (32-N, N, 31) if 0 < N < 32.
3577 // use (0, 0, 31) if N == 0.
3578 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
3579 uint64_t MB = RightShift ? ShAmt : 0;
3580 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3581 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3582 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3583 .addImm(ME);
3584 } else {
3585 // Left shifts use (N, 63-N).
3586 // Right shifts use (64-N, N) if 0 < N < 64.
3587 // use (0, 0) if N == 0.
3588 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
3589 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3590 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3591 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3594 } else
3595 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3597 // Convert commutative instructions (switch the operands and convert the
3598 // desired one to an immediate.
3599 else if (III.IsCommutative) {
3600 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3601 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3602 } else
3603 llvm_unreachable("Should have exited early!");
3605 // For instructions for which the constant register replaces a different
3606 // operand than where the immediate goes, we need to swap them.
3607 if (III.OpNoForForwarding != III.ImmOpNo)
3608 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3610 // If the special R0/X0 register index are different for original instruction
3611 // and new instruction, we need to fix up the register class in new
3612 // instruction.
3613 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3614 if (III.ZeroIsSpecialNew) {
3615 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3616 // need to fix up register class.
3617 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3618 if (Register::isVirtualRegister(RegToModify)) {
3619 const TargetRegisterClass *NewRC =
3620 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3621 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3622 MRI.setRegClass(RegToModify, NewRC);
3627 // Fix up killed/dead flag after transformation.
3628 // Pattern:
3629 // ForwardKilledOperandReg = LI imm
3630 // y = XOP reg, ForwardKilledOperandReg(killed)
3631 if (ForwardKilledOperandReg != ~0U)
3632 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3633 return true;
3636 const TargetRegisterClass *
3637 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3638 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3639 return &PPC::VSRCRegClass;
3640 return RC;
3643 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3644 return PPC::getRecordFormOpcode(Opcode);
3647 // This function returns true if the machine instruction
3648 // always outputs a value by sign-extending a 32 bit value,
3649 // i.e. 0 to 31-th bits are same as 32-th bit.
3650 static bool isSignExtendingOp(const MachineInstr &MI) {
3651 int Opcode = MI.getOpcode();
3652 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3653 Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
3654 Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
3655 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
3656 Opcode == PPC::LWA || Opcode == PPC::LWAX ||
3657 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3658 Opcode == PPC::LHA || Opcode == PPC::LHAX ||
3659 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
3660 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3661 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3662 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3663 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3664 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3665 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3666 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3667 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3668 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
3669 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
3670 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
3671 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
3672 Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3673 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3674 Opcode == PPC::EXTSB8_32_64)
3675 return true;
3677 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3678 return true;
3680 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3681 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
3682 MI.getOperand(3).getImm() > 0 &&
3683 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3684 return true;
3686 return false;
3689 // This function returns true if the machine instruction
3690 // always outputs zeros in higher 32 bits.
3691 static bool isZeroExtendingOp(const MachineInstr &MI) {
3692 int Opcode = MI.getOpcode();
3693 // The 16-bit immediate is sign-extended in li/lis.
3694 // If the most significant bit is zero, all higher bits are zero.
3695 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3696 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3697 int64_t Imm = MI.getOperand(1).getImm();
3698 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3699 return true;
3702 // We have some variations of rotate-and-mask instructions
3703 // that clear higher 32-bits.
3704 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3705 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
3706 Opcode == PPC::RLDICL_32_64) &&
3707 MI.getOperand(3).getImm() >= 32)
3708 return true;
3710 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3711 MI.getOperand(3).getImm() >= 32 &&
3712 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3713 return true;
3715 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3716 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
3717 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3718 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3719 return true;
3721 // There are other instructions that clear higher 32-bits.
3722 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
3723 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
3724 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3725 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
3726 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
3727 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3728 Opcode == PPC::SLW || Opcode == PPC::SLWo ||
3729 Opcode == PPC::SRW || Opcode == PPC::SRWo ||
3730 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
3731 Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
3732 Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
3733 Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3734 Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
3735 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
3736 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3737 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3738 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3739 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3740 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
3741 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
3742 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3743 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3744 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3745 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3746 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3747 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
3748 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
3749 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
3750 Opcode == PPC::MFVSRWZ)
3751 return true;
3753 return false;
3756 // This function returns true if the input MachineInstr is a TOC save
3757 // instruction.
3758 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3759 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3760 return false;
3761 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3762 unsigned StackOffset = MI.getOperand(1).getImm();
3763 Register StackReg = MI.getOperand(2).getReg();
3764 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3765 return true;
3767 return false;
3770 // We limit the max depth to track incoming values of PHIs or binary ops
3771 // (e.g. AND) to avoid excessive cost.
3772 const unsigned MAX_DEPTH = 1;
3774 bool
3775 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3776 const unsigned Depth) const {
3777 const MachineFunction *MF = MI.getParent()->getParent();
3778 const MachineRegisterInfo *MRI = &MF->getRegInfo();
3780 // If we know this instruction returns sign- or zero-extended result,
3781 // return true.
3782 if (SignExt ? isSignExtendingOp(MI):
3783 isZeroExtendingOp(MI))
3784 return true;
3786 switch (MI.getOpcode()) {
3787 case PPC::COPY: {
3788 Register SrcReg = MI.getOperand(1).getReg();
3790 // In both ELFv1 and v2 ABI, method parameters and the return value
3791 // are sign- or zero-extended.
3792 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3793 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3794 // We check the ZExt/SExt flags for a method parameter.
3795 if (MI.getParent()->getBasicBlock() ==
3796 &MF->getFunction().getEntryBlock()) {
3797 Register VReg = MI.getOperand(0).getReg();
3798 if (MF->getRegInfo().isLiveIn(VReg))
3799 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3800 FuncInfo->isLiveInZExt(VReg);
3803 // For a method return value, we check the ZExt/SExt flags in attribute.
3804 // We assume the following code sequence for method call.
3805 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3806 // BL8_NOP @func,...
3807 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3808 // %5 = COPY %x3; G8RC:%5
3809 if (SrcReg == PPC::X3) {
3810 const MachineBasicBlock *MBB = MI.getParent();
3811 MachineBasicBlock::const_instr_iterator II =
3812 MachineBasicBlock::const_instr_iterator(&MI);
3813 if (II != MBB->instr_begin() &&
3814 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3815 const MachineInstr &CallMI = *(--II);
3816 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3817 const Function *CalleeFn =
3818 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3819 if (!CalleeFn)
3820 return false;
3821 const IntegerType *IntTy =
3822 dyn_cast<IntegerType>(CalleeFn->getReturnType());
3823 const AttributeSet &Attrs =
3824 CalleeFn->getAttributes().getRetAttributes();
3825 if (IntTy && IntTy->getBitWidth() <= 32)
3826 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3827 Attribute::ZExt);
3833 // If this is a copy from another register, we recursively check source.
3834 if (!Register::isVirtualRegister(SrcReg))
3835 return false;
3836 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3837 if (SrcMI != NULL)
3838 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3840 return false;
3843 case PPC::ANDIo:
3844 case PPC::ANDISo:
3845 case PPC::ORI:
3846 case PPC::ORIS:
3847 case PPC::XORI:
3848 case PPC::XORIS:
3849 case PPC::ANDIo8:
3850 case PPC::ANDISo8:
3851 case PPC::ORI8:
3852 case PPC::ORIS8:
3853 case PPC::XORI8:
3854 case PPC::XORIS8: {
3855 // logical operation with 16-bit immediate does not change the upper bits.
3856 // So, we track the operand register as we do for register copy.
3857 Register SrcReg = MI.getOperand(1).getReg();
3858 if (!Register::isVirtualRegister(SrcReg))
3859 return false;
3860 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3861 if (SrcMI != NULL)
3862 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3864 return false;
3867 // If all incoming values are sign-/zero-extended,
3868 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3869 case PPC::OR:
3870 case PPC::OR8:
3871 case PPC::ISEL:
3872 case PPC::PHI: {
3873 if (Depth >= MAX_DEPTH)
3874 return false;
3876 // The input registers for PHI are operand 1, 3, ...
3877 // The input registers for others are operand 1 and 2.
3878 unsigned E = 3, D = 1;
3879 if (MI.getOpcode() == PPC::PHI) {
3880 E = MI.getNumOperands();
3881 D = 2;
3884 for (unsigned I = 1; I != E; I += D) {
3885 if (MI.getOperand(I).isReg()) {
3886 Register SrcReg = MI.getOperand(I).getReg();
3887 if (!Register::isVirtualRegister(SrcReg))
3888 return false;
3889 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3890 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3891 return false;
3893 else
3894 return false;
3896 return true;
3899 // If at least one of the incoming values of an AND is zero extended
3900 // then the output is also zero-extended. If both of the incoming values
3901 // are sign-extended then the output is also sign extended.
3902 case PPC::AND:
3903 case PPC::AND8: {
3904 if (Depth >= MAX_DEPTH)
3905 return false;
3907 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3909 Register SrcReg1 = MI.getOperand(1).getReg();
3910 Register SrcReg2 = MI.getOperand(2).getReg();
3912 if (!Register::isVirtualRegister(SrcReg1) ||
3913 !Register::isVirtualRegister(SrcReg2))
3914 return false;
3916 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3917 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3918 if (!MISrc1 || !MISrc2)
3919 return false;
3921 if(SignExt)
3922 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3923 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3924 else
3925 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3926 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3929 default:
3930 break;
3932 return false;
3935 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3936 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3939 namespace {
3940 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
3941 MachineInstr *Loop, *EndLoop, *LoopCount;
3942 MachineFunction *MF;
3943 const TargetInstrInfo *TII;
3944 int64_t TripCount;
3946 public:
3947 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
3948 MachineInstr *LoopCount)
3949 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
3950 MF(Loop->getParent()->getParent()),
3951 TII(MF->getSubtarget().getInstrInfo()) {
3952 // Inspect the Loop instruction up-front, as it may be deleted when we call
3953 // createTripCountGreaterCondition.
3954 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
3955 TripCount = LoopCount->getOperand(1).getImm();
3956 else
3957 TripCount = -1;
3960 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
3961 // Only ignore the terminator.
3962 return MI == EndLoop;
3965 Optional<bool>
3966 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
3967 SmallVectorImpl<MachineOperand> &Cond) override {
3968 if (TripCount == -1) {
3969 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3970 // so we don't need to generate any thing here.
3971 Cond.push_back(MachineOperand::CreateImm(0));
3972 Cond.push_back(MachineOperand::CreateReg(
3973 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
3974 true));
3975 return {};
3978 return TripCount > TC;
3981 void setPreheader(MachineBasicBlock *NewPreheader) override {
3982 // Do nothing. We want the LOOP setup instruction to stay in the *old*
3983 // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
3986 void adjustTripCount(int TripCountAdjust) override {
3987 // If the loop trip count is a compile-time value, then just change the
3988 // value.
3989 if (LoopCount->getOpcode() == PPC::LI8 ||
3990 LoopCount->getOpcode() == PPC::LI) {
3991 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
3992 LoopCount->getOperand(1).setImm(TripCount);
3993 return;
3996 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3997 // so we don't need to generate any thing here.
4000 void disposed() override {
4001 Loop->eraseFromParent();
4002 // Ensure the loop setup instruction is deleted too.
4003 LoopCount->eraseFromParent();
4006 } // namespace
4008 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4009 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
4010 // We really "analyze" only hardware loops right now.
4011 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
4012 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
4013 if (Preheader == LoopBB)
4014 Preheader = *std::next(LoopBB->pred_begin());
4015 MachineFunction *MF = Preheader->getParent();
4017 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
4018 SmallPtrSet<MachineBasicBlock *, 8> Visited;
4019 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
4020 Register LoopCountReg = LoopInst->getOperand(0).getReg();
4021 MachineRegisterInfo &MRI = MF->getRegInfo();
4022 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
4023 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
4026 return nullptr;
4029 MachineInstr *PPCInstrInfo::findLoopInstr(
4030 MachineBasicBlock &PreHeader,
4031 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
4033 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
4035 // The loop set-up instruction should be in preheader
4036 for (auto &I : PreHeader.instrs())
4037 if (I.getOpcode() == LOOPi)
4038 return &I;
4039 return nullptr;
4042 // Return true if get the base operand, byte offset of an instruction and the
4043 // memory width. Width is the size of memory that is being loaded/stored.
4044 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4045 const MachineInstr &LdSt,
4046 const MachineOperand *&BaseReg,
4047 int64_t &Offset,
4048 unsigned &Width,
4049 const TargetRegisterInfo *TRI) const {
4050 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4052 // Handle only loads/stores with base register followed by immediate offset.
4053 if (LdSt.getNumExplicitOperands() != 3)
4054 return false;
4055 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4056 return false;
4058 if (!LdSt.hasOneMemOperand())
4059 return false;
4061 Width = (*LdSt.memoperands_begin())->getSize();
4062 Offset = LdSt.getOperand(1).getImm();
4063 BaseReg = &LdSt.getOperand(2);
4064 return true;
4067 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4068 const MachineInstr &MIa, const MachineInstr &MIb) const {
4069 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4070 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4072 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4073 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4074 return false;
4076 // Retrieve the base register, offset from the base register and width. Width
4077 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
4078 // base registers are identical, and the offset of a lower memory access +
4079 // the width doesn't overlap the offset of a higher memory access,
4080 // then the memory accesses are different.
4081 const TargetRegisterInfo *TRI = &getRegisterInfo();
4082 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4083 int64_t OffsetA = 0, OffsetB = 0;
4084 unsigned int WidthA = 0, WidthB = 0;
4085 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4086 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4087 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4088 int LowOffset = std::min(OffsetA, OffsetB);
4089 int HighOffset = std::max(OffsetA, OffsetB);
4090 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4091 if (LowOffset + LowWidth <= HighOffset)
4092 return true;
4095 return false;