1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SystemZSelectionDAGInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZTargetMachine.h"
14 #include "llvm/CodeGen/SelectionDAG.h"
18 #define DEBUG_TYPE "systemz-selectiondag-info"
20 // Decide whether it is best to use a loop or straight-line code for
21 // a block operation of Size bytes with source address Src and destination
22 // address Dest. Sequence is the opcode to use for straight-line code
23 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP).
24 // Return the chain for the completed operation.
25 static SDValue
emitMemMem(SelectionDAG
&DAG
, const SDLoc
&DL
, unsigned Sequence
,
26 unsigned Loop
, SDValue Chain
, SDValue Dst
,
27 SDValue Src
, uint64_t Size
) {
28 EVT PtrVT
= Src
.getValueType();
29 // The heuristic we use is to prefer loops for anything that would
30 // require 7 or more MVCs. With these kinds of sizes there isn't
31 // much to choose between straight-line code and looping code,
32 // since the time will be dominated by the MVCs themselves.
33 // However, the loop has 4 or 5 instructions (depending on whether
34 // the base addresses can be proved equal), so there doesn't seem
35 // much point using a loop for 5 * 256 bytes or fewer. Anything in
36 // the range (5 * 256, 6 * 256) will need another instruction after
37 // the loop, so it doesn't seem worth using a loop then either.
38 // The next value up, 6 * 256, can be implemented in the same
39 // number of straight-line MVCs as 6 * 256 - 1.
41 return DAG
.getNode(Loop
, DL
, MVT::Other
, Chain
, Dst
, Src
,
42 DAG
.getConstant(Size
, DL
, PtrVT
),
43 DAG
.getConstant(Size
/ 256, DL
, PtrVT
));
44 return DAG
.getNode(Sequence
, DL
, MVT::Other
, Chain
, Dst
, Src
,
45 DAG
.getConstant(Size
, DL
, PtrVT
));
48 SDValue
SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy(
49 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Dst
, SDValue Src
,
50 SDValue Size
, unsigned Align
, bool IsVolatile
, bool AlwaysInline
,
51 MachinePointerInfo DstPtrInfo
, MachinePointerInfo SrcPtrInfo
) const {
55 if (auto *CSize
= dyn_cast
<ConstantSDNode
>(Size
))
56 return emitMemMem(DAG
, DL
, SystemZISD::MVC
, SystemZISD::MVC_LOOP
,
57 Chain
, Dst
, Src
, CSize
->getZExtValue());
61 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by
62 // Chain, Dst, ByteVal and Size. These cases are expected to use
63 // MVI, MVHHI, MVHI and MVGHI respectively.
64 static SDValue
memsetStore(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
,
65 SDValue Dst
, uint64_t ByteVal
, uint64_t Size
,
66 unsigned Align
, MachinePointerInfo DstPtrInfo
) {
67 uint64_t StoreVal
= ByteVal
;
68 for (unsigned I
= 1; I
< Size
; ++I
)
69 StoreVal
|= ByteVal
<< (I
* 8);
71 Chain
, DL
, DAG
.getConstant(StoreVal
, DL
, MVT::getIntegerVT(Size
* 8)),
72 Dst
, DstPtrInfo
, Align
);
75 SDValue
SystemZSelectionDAGInfo::EmitTargetCodeForMemset(
76 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Dst
,
77 SDValue Byte
, SDValue Size
, unsigned Align
, bool IsVolatile
,
78 MachinePointerInfo DstPtrInfo
) const {
79 EVT PtrVT
= Dst
.getValueType();
84 if (auto *CSize
= dyn_cast
<ConstantSDNode
>(Size
)) {
85 uint64_t Bytes
= CSize
->getZExtValue();
88 if (auto *CByte
= dyn_cast
<ConstantSDNode
>(Byte
)) {
89 // Handle cases that can be done using at most two of
90 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be
91 // used if ByteVal is all zeros or all ones; in other casees,
92 // we can move at most 2 halfwords.
93 uint64_t ByteVal
= CByte
->getZExtValue();
94 if (ByteVal
== 0 || ByteVal
== 255 ?
95 Bytes
<= 16 && countPopulation(Bytes
) <= 2 :
97 unsigned Size1
= Bytes
== 16 ? 8 : 1 << findLastSet(Bytes
);
98 unsigned Size2
= Bytes
- Size1
;
99 SDValue Chain1
= memsetStore(DAG
, DL
, Chain
, Dst
, ByteVal
, Size1
,
103 Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Dst
,
104 DAG
.getConstant(Size1
, DL
, PtrVT
));
105 DstPtrInfo
= DstPtrInfo
.getWithOffset(Size1
);
106 SDValue Chain2
= memsetStore(DAG
, DL
, Chain
, Dst
, ByteVal
, Size2
,
107 std::min(Align
, Size1
), DstPtrInfo
);
108 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chain1
, Chain2
);
111 // Handle one and two bytes using STC.
113 SDValue Chain1
= DAG
.getStore(Chain
, DL
, Byte
, Dst
, DstPtrInfo
, Align
);
116 SDValue Dst2
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Dst
,
117 DAG
.getConstant(1, DL
, PtrVT
));
119 DAG
.getStore(Chain
, DL
, Byte
, Dst2
, DstPtrInfo
.getWithOffset(1),
120 /* Alignment = */ 1);
121 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chain1
, Chain2
);
124 assert(Bytes
>= 2 && "Should have dealt with 0- and 1-byte cases already");
126 // Handle the special case of a memset of 0, which can use XC.
127 auto *CByte
= dyn_cast
<ConstantSDNode
>(Byte
);
128 if (CByte
&& CByte
->getZExtValue() == 0)
129 return emitMemMem(DAG
, DL
, SystemZISD::XC
, SystemZISD::XC_LOOP
,
130 Chain
, Dst
, Dst
, Bytes
);
132 // Copy the byte to the first location and then use MVC to copy
134 Chain
= DAG
.getStore(Chain
, DL
, Byte
, Dst
, DstPtrInfo
, Align
);
135 SDValue DstPlus1
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Dst
,
136 DAG
.getConstant(1, DL
, PtrVT
));
137 return emitMemMem(DAG
, DL
, SystemZISD::MVC
, SystemZISD::MVC_LOOP
,
138 Chain
, DstPlus1
, Dst
, Bytes
- 1);
143 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size),
144 // deciding whether to use a loop or straight-line code.
145 static SDValue
emitCLC(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
,
146 SDValue Src1
, SDValue Src2
, uint64_t Size
) {
147 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::Other
);
148 EVT PtrVT
= Src1
.getValueType();
149 // A two-CLC sequence is a clear win over a loop, not least because it
150 // needs only one branch. A three-CLC sequence needs the same number
151 // of branches as a loop (i.e. 2), but is shorter. That brings us to
152 // lengths greater than 768 bytes. It seems relatively likely that
153 // a difference will be found within the first 768 bytes, so we just
154 // optimize for the smallest number of branch instructions, in order
155 // to avoid polluting the prediction buffer too much. A loop only ever
156 // needs 2 branches, whereas a straight-line sequence would need 3 or more.
158 return DAG
.getNode(SystemZISD::CLC_LOOP
, DL
, VTs
, Chain
, Src1
, Src2
,
159 DAG
.getConstant(Size
, DL
, PtrVT
),
160 DAG
.getConstant(Size
/ 256, DL
, PtrVT
));
161 return DAG
.getNode(SystemZISD::CLC
, DL
, VTs
, Chain
, Src1
, Src2
,
162 DAG
.getConstant(Size
, DL
, PtrVT
));
165 // Convert the current CC value into an integer that is 0 if CC == 0,
166 // greater than zero if CC == 1 and less than zero if CC >= 2.
167 // The sequence starts with IPM, which puts CC into bits 29 and 28
168 // of an integer and clears bits 30 and 31.
169 static SDValue
addIPMSequence(const SDLoc
&DL
, SDValue CCReg
,
171 SDValue IPM
= DAG
.getNode(SystemZISD::IPM
, DL
, MVT::i32
, CCReg
);
172 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, IPM
,
173 DAG
.getConstant(30 - SystemZ::IPM_CC
, DL
, MVT::i32
));
174 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, MVT::i32
, SHL
,
175 DAG
.getConstant(30, DL
, MVT::i32
));
179 std::pair
<SDValue
, SDValue
> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(
180 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Src1
,
181 SDValue Src2
, SDValue Size
, MachinePointerInfo Op1PtrInfo
,
182 MachinePointerInfo Op2PtrInfo
) const {
183 if (auto *CSize
= dyn_cast
<ConstantSDNode
>(Size
)) {
184 uint64_t Bytes
= CSize
->getZExtValue();
185 assert(Bytes
> 0 && "Caller should have handled 0-size case");
186 // Swap operands to invert CC == 1 vs. CC == 2 cases.
187 SDValue CCReg
= emitCLC(DAG
, DL
, Chain
, Src2
, Src1
, Bytes
);
188 Chain
= CCReg
.getValue(1);
189 return std::make_pair(addIPMSequence(DL
, CCReg
, DAG
), Chain
);
191 return std::make_pair(SDValue(), SDValue());
194 std::pair
<SDValue
, SDValue
> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr(
195 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Src
,
196 SDValue Char
, SDValue Length
, MachinePointerInfo SrcPtrInfo
) const {
197 // Use SRST to find the character. End is its address on success.
198 EVT PtrVT
= Src
.getValueType();
199 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::i32
, MVT::Other
);
200 Length
= DAG
.getZExtOrTrunc(Length
, DL
, PtrVT
);
201 Char
= DAG
.getZExtOrTrunc(Char
, DL
, MVT::i32
);
202 Char
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Char
,
203 DAG
.getConstant(255, DL
, MVT::i32
));
204 SDValue Limit
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Src
, Length
);
205 SDValue End
= DAG
.getNode(SystemZISD::SEARCH_STRING
, DL
, VTs
, Chain
,
207 SDValue CCReg
= End
.getValue(1);
208 Chain
= End
.getValue(2);
210 // Now select between End and null, depending on whether the character
213 End
, DAG
.getConstant(0, DL
, PtrVT
),
214 DAG
.getTargetConstant(SystemZ::CCMASK_SRST
, DL
, MVT::i32
),
215 DAG
.getTargetConstant(SystemZ::CCMASK_SRST_FOUND
, DL
, MVT::i32
), CCReg
};
216 End
= DAG
.getNode(SystemZISD::SELECT_CCMASK
, DL
, PtrVT
, Ops
);
217 return std::make_pair(End
, Chain
);
220 std::pair
<SDValue
, SDValue
> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy(
221 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Dest
,
222 SDValue Src
, MachinePointerInfo DestPtrInfo
, MachinePointerInfo SrcPtrInfo
,
223 bool isStpcpy
) const {
224 SDVTList VTs
= DAG
.getVTList(Dest
.getValueType(), MVT::Other
);
225 SDValue EndDest
= DAG
.getNode(SystemZISD::STPCPY
, DL
, VTs
, Chain
, Dest
, Src
,
226 DAG
.getConstant(0, DL
, MVT::i32
));
227 return std::make_pair(isStpcpy
? EndDest
: Dest
, EndDest
.getValue(1));
230 std::pair
<SDValue
, SDValue
> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp(
231 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Src1
,
232 SDValue Src2
, MachinePointerInfo Op1PtrInfo
,
233 MachinePointerInfo Op2PtrInfo
) const {
234 SDVTList VTs
= DAG
.getVTList(Src1
.getValueType(), MVT::i32
, MVT::Other
);
235 // Swap operands to invert CC == 1 vs. CC == 2 cases.
236 SDValue Unused
= DAG
.getNode(SystemZISD::STRCMP
, DL
, VTs
, Chain
, Src2
, Src1
,
237 DAG
.getConstant(0, DL
, MVT::i32
));
238 SDValue CCReg
= Unused
.getValue(1);
239 Chain
= Unused
.getValue(2);
240 return std::make_pair(addIPMSequence(DL
, CCReg
, DAG
), Chain
);
243 // Search from Src for a null character, stopping once Src reaches Limit.
244 // Return a pair of values, the first being the number of nonnull characters
245 // and the second being the out chain.
247 // This can be used for strlen by setting Limit to 0.
248 static std::pair
<SDValue
, SDValue
> getBoundedStrlen(SelectionDAG
&DAG
,
250 SDValue Chain
, SDValue Src
,
252 EVT PtrVT
= Src
.getValueType();
253 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::i32
, MVT::Other
);
254 SDValue End
= DAG
.getNode(SystemZISD::SEARCH_STRING
, DL
, VTs
, Chain
,
255 Limit
, Src
, DAG
.getConstant(0, DL
, MVT::i32
));
256 Chain
= End
.getValue(2);
257 SDValue Len
= DAG
.getNode(ISD::SUB
, DL
, PtrVT
, End
, Src
);
258 return std::make_pair(Len
, Chain
);
261 std::pair
<SDValue
, SDValue
> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen(
262 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Src
,
263 MachinePointerInfo SrcPtrInfo
) const {
264 EVT PtrVT
= Src
.getValueType();
265 return getBoundedStrlen(DAG
, DL
, Chain
, Src
, DAG
.getConstant(0, DL
, PtrVT
));
268 std::pair
<SDValue
, SDValue
> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen(
269 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Chain
, SDValue Src
,
270 SDValue MaxLength
, MachinePointerInfo SrcPtrInfo
) const {
271 EVT PtrVT
= Src
.getValueType();
272 MaxLength
= DAG
.getZExtOrTrunc(MaxLength
, DL
, PtrVT
);
273 SDValue Limit
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Src
, MaxLength
);
274 return getBoundedStrlen(DAG
, DL
, Chain
, Src
, Limit
);