1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a register stacking pass.
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
20 //===----------------------------------------------------------------------===//
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
41 #define DEBUG_TYPE "wasm-reg-stackify"
44 class WebAssemblyRegStackify final
: public MachineFunctionPass
{
45 StringRef
getPassName() const override
{
46 return "WebAssembly Register Stackify";
49 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
51 AU
.addRequired
<AAResultsWrapperPass
>();
52 AU
.addRequired
<MachineDominatorTree
>();
53 AU
.addRequired
<LiveIntervals
>();
54 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
55 AU
.addPreserved
<SlotIndexes
>();
56 AU
.addPreserved
<LiveIntervals
>();
57 AU
.addPreservedID(LiveVariablesID
);
58 AU
.addPreserved
<MachineDominatorTree
>();
59 MachineFunctionPass::getAnalysisUsage(AU
);
62 bool runOnMachineFunction(MachineFunction
&MF
) override
;
65 static char ID
; // Pass identification, replacement for typeid
66 WebAssemblyRegStackify() : MachineFunctionPass(ID
) {}
68 } // end anonymous namespace
70 char WebAssemblyRegStackify::ID
= 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify
, DEBUG_TYPE
,
72 "Reorder instructions to use the WebAssembly value stack",
75 FunctionPass
*llvm::createWebAssemblyRegStackify() {
76 return new WebAssemblyRegStackify();
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
82 static void imposeStackOrdering(MachineInstr
*MI
) {
83 // Write the opaque VALUE_STACK register.
84 if (!MI
->definesRegister(WebAssembly::VALUE_STACK
))
85 MI
->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK
,
89 // Also read the opaque VALUE_STACK register.
90 if (!MI
->readsRegister(WebAssembly::VALUE_STACK
))
91 MI
->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK
,
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
98 static void convertImplicitDefToConstZero(MachineInstr
*MI
,
99 MachineRegisterInfo
&MRI
,
100 const TargetInstrInfo
*TII
,
102 LiveIntervals
&LIS
) {
103 assert(MI
->getOpcode() == TargetOpcode::IMPLICIT_DEF
);
105 const auto *RegClass
= MRI
.getRegClass(MI
->getOperand(0).getReg());
106 if (RegClass
== &WebAssembly::I32RegClass
) {
107 MI
->setDesc(TII
->get(WebAssembly::CONST_I32
));
108 MI
->addOperand(MachineOperand::CreateImm(0));
109 } else if (RegClass
== &WebAssembly::I64RegClass
) {
110 MI
->setDesc(TII
->get(WebAssembly::CONST_I64
));
111 MI
->addOperand(MachineOperand::CreateImm(0));
112 } else if (RegClass
== &WebAssembly::F32RegClass
) {
113 MI
->setDesc(TII
->get(WebAssembly::CONST_F32
));
114 auto *Val
= cast
<ConstantFP
>(Constant::getNullValue(
115 Type::getFloatTy(MF
.getFunction().getContext())));
116 MI
->addOperand(MachineOperand::CreateFPImm(Val
));
117 } else if (RegClass
== &WebAssembly::F64RegClass
) {
118 MI
->setDesc(TII
->get(WebAssembly::CONST_F64
));
119 auto *Val
= cast
<ConstantFP
>(Constant::getNullValue(
120 Type::getDoubleTy(MF
.getFunction().getContext())));
121 MI
->addOperand(MachineOperand::CreateFPImm(Val
));
122 } else if (RegClass
== &WebAssembly::V128RegClass
) {
123 Register TempReg
= MRI
.createVirtualRegister(&WebAssembly::I32RegClass
);
124 MI
->setDesc(TII
->get(WebAssembly::SPLAT_v4i32
));
125 MI
->addOperand(MachineOperand::CreateReg(TempReg
, false));
126 MachineInstr
*Const
= BuildMI(*MI
->getParent(), MI
, MI
->getDebugLoc(),
127 TII
->get(WebAssembly::CONST_I32
), TempReg
)
129 LIS
.InsertMachineInstrInMaps(*Const
);
131 llvm_unreachable("Unexpected reg class");
135 // Determine whether a call to the callee referenced by
136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
138 static void queryCallee(const MachineInstr
&MI
, unsigned CalleeOpNo
, bool &Read
,
139 bool &Write
, bool &Effects
, bool &StackPointer
) {
140 // All calls can use the stack pointer.
143 const MachineOperand
&MO
= MI
.getOperand(CalleeOpNo
);
145 const Constant
*GV
= MO
.getGlobal();
146 if (const auto *GA
= dyn_cast
<GlobalAlias
>(GV
))
147 if (!GA
->isInterposable())
148 GV
= GA
->getAliasee();
150 if (const auto *F
= dyn_cast
<Function
>(GV
)) {
151 if (!F
->doesNotThrow())
153 if (F
->doesNotAccessMemory())
155 if (F
->onlyReadsMemory()) {
168 // Determine whether MI reads memory, writes memory, has side effects,
169 // and/or uses the stack pointer value.
170 static void query(const MachineInstr
&MI
, AliasAnalysis
&AA
, bool &Read
,
171 bool &Write
, bool &Effects
, bool &StackPointer
) {
172 assert(!MI
.isTerminator());
174 if (MI
.isDebugInstr() || MI
.isPosition())
178 if (MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad(&AA
))
184 } else if (MI
.hasOrderedMemoryRef()) {
185 switch (MI
.getOpcode()) {
186 case WebAssembly::DIV_S_I32
:
187 case WebAssembly::DIV_S_I64
:
188 case WebAssembly::REM_S_I32
:
189 case WebAssembly::REM_S_I64
:
190 case WebAssembly::DIV_U_I32
:
191 case WebAssembly::DIV_U_I64
:
192 case WebAssembly::REM_U_I32
:
193 case WebAssembly::REM_U_I64
:
194 case WebAssembly::I32_TRUNC_S_F32
:
195 case WebAssembly::I64_TRUNC_S_F32
:
196 case WebAssembly::I32_TRUNC_S_F64
:
197 case WebAssembly::I64_TRUNC_S_F64
:
198 case WebAssembly::I32_TRUNC_U_F32
:
199 case WebAssembly::I64_TRUNC_U_F32
:
200 case WebAssembly::I32_TRUNC_U_F64
:
201 case WebAssembly::I64_TRUNC_U_F64
:
202 // These instruction have hasUnmodeledSideEffects() returning true
203 // because they trap on overflow and invalid so they can't be arbitrarily
204 // moved, however hasOrderedMemoryRef() interprets this plus their lack
205 // of memoperands as having a potential unknown memory reference.
208 // Record volatile accesses, unless it's a call, as calls are handled
218 // Check for side effects.
219 if (MI
.hasUnmodeledSideEffects()) {
220 switch (MI
.getOpcode()) {
221 case WebAssembly::DIV_S_I32
:
222 case WebAssembly::DIV_S_I64
:
223 case WebAssembly::REM_S_I32
:
224 case WebAssembly::REM_S_I64
:
225 case WebAssembly::DIV_U_I32
:
226 case WebAssembly::DIV_U_I64
:
227 case WebAssembly::REM_U_I32
:
228 case WebAssembly::REM_U_I64
:
229 case WebAssembly::I32_TRUNC_S_F32
:
230 case WebAssembly::I64_TRUNC_S_F32
:
231 case WebAssembly::I32_TRUNC_S_F64
:
232 case WebAssembly::I64_TRUNC_S_F64
:
233 case WebAssembly::I32_TRUNC_U_F32
:
234 case WebAssembly::I64_TRUNC_U_F32
:
235 case WebAssembly::I32_TRUNC_U_F64
:
236 case WebAssembly::I64_TRUNC_U_F64
:
237 // These instructions have hasUnmodeledSideEffects() returning true
238 // because they trap on overflow and invalid so they can't be arbitrarily
239 // moved, however in the specific case of register stackifying, it is safe
240 // to move them because overflow and invalid are Undefined Behavior.
248 // Check for writes to __stack_pointer global.
249 if (MI
.getOpcode() == WebAssembly::GLOBAL_SET_I32
&&
250 strcmp(MI
.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
255 unsigned CalleeOpNo
= WebAssembly::getCalleeOpNo(MI
.getOpcode());
256 queryCallee(MI
, CalleeOpNo
, Read
, Write
, Effects
, StackPointer
);
260 // Test whether Def is safe and profitable to rematerialize.
261 static bool shouldRematerialize(const MachineInstr
&Def
, AliasAnalysis
&AA
,
262 const WebAssemblyInstrInfo
*TII
) {
263 return Def
.isAsCheapAsAMove() && TII
->isTriviallyReMaterializable(Def
, &AA
);
266 // Identify the definition for this register at this point. This is a
267 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
268 // LiveIntervals to handle complex cases.
269 static MachineInstr
*getVRegDef(unsigned Reg
, const MachineInstr
*Insert
,
270 const MachineRegisterInfo
&MRI
,
271 const LiveIntervals
&LIS
) {
272 // Most registers are in SSA form here so we try a quick MRI query first.
273 if (MachineInstr
*Def
= MRI
.getUniqueVRegDef(Reg
))
276 // MRI doesn't know what the Def is. Try asking LIS.
277 if (const VNInfo
*ValNo
= LIS
.getInterval(Reg
).getVNInfoBefore(
278 LIS
.getInstructionIndex(*Insert
)))
279 return LIS
.getInstructionFromIndex(ValNo
->def
);
284 // Test whether Reg, as defined at Def, has exactly one use. This is a
285 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
286 // to handle complex cases.
287 static bool hasOneUse(unsigned Reg
, MachineInstr
*Def
, MachineRegisterInfo
&MRI
,
288 MachineDominatorTree
&MDT
, LiveIntervals
&LIS
) {
289 // Most registers are in SSA form here so we try a quick MRI query first.
290 if (MRI
.hasOneUse(Reg
))
294 const LiveInterval
&LI
= LIS
.getInterval(Reg
);
295 const VNInfo
*DefVNI
=
296 LI
.getVNInfoAt(LIS
.getInstructionIndex(*Def
).getRegSlot());
298 for (auto &I
: MRI
.use_nodbg_operands(Reg
)) {
299 const auto &Result
= LI
.Query(LIS
.getInstructionIndex(*I
.getParent()));
300 if (Result
.valueIn() == DefVNI
) {
301 if (!Result
.isKill())
311 // Test whether it's safe to move Def to just before Insert.
312 // TODO: Compute memory dependencies in a way that doesn't require always
313 // walking the block.
314 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
316 static bool isSafeToMove(const MachineInstr
*Def
, const MachineInstr
*Insert
,
317 AliasAnalysis
&AA
, const MachineRegisterInfo
&MRI
) {
318 assert(Def
->getParent() == Insert
->getParent());
320 // 'catch' and 'extract_exception' should be the first instruction of a BB and
322 if (Def
->getOpcode() == WebAssembly::CATCH
||
323 Def
->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32
) {
324 const MachineBasicBlock
*MBB
= Def
->getParent();
325 auto NextI
= std::next(MachineBasicBlock::const_iterator(Def
));
326 for (auto E
= MBB
->end(); NextI
!= E
&& NextI
->isDebugInstr(); ++NextI
)
332 // Check for register dependencies.
333 SmallVector
<unsigned, 4> MutableRegisters
;
334 for (const MachineOperand
&MO
: Def
->operands()) {
335 if (!MO
.isReg() || MO
.isUndef())
337 Register Reg
= MO
.getReg();
339 // If the register is dead here and at Insert, ignore it.
340 if (MO
.isDead() && Insert
->definesRegister(Reg
) &&
341 !Insert
->readsRegister(Reg
))
344 if (Register::isPhysicalRegister(Reg
)) {
345 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
346 // from moving down, and we've already checked for that.
347 if (Reg
== WebAssembly::ARGUMENTS
)
349 // If the physical register is never modified, ignore it.
350 if (!MRI
.isPhysRegModified(Reg
))
352 // Otherwise, it's a physical register with unknown liveness.
356 // If one of the operands isn't in SSA form, it has different values at
357 // different times, and we need to make sure we don't move our use across
359 if (!MO
.isDef() && !MRI
.hasOneDef(Reg
))
360 MutableRegisters
.push_back(Reg
);
363 bool Read
= false, Write
= false, Effects
= false, StackPointer
= false;
364 query(*Def
, AA
, Read
, Write
, Effects
, StackPointer
);
366 // If the instruction does not access memory and has no side effects, it has
367 // no additional dependencies.
368 bool HasMutableRegisters
= !MutableRegisters
.empty();
369 if (!Read
&& !Write
&& !Effects
&& !StackPointer
&& !HasMutableRegisters
)
372 // Scan through the intervening instructions between Def and Insert.
373 MachineBasicBlock::const_iterator
D(Def
), I(Insert
);
374 for (--I
; I
!= D
; --I
) {
375 bool InterveningRead
= false;
376 bool InterveningWrite
= false;
377 bool InterveningEffects
= false;
378 bool InterveningStackPointer
= false;
379 query(*I
, AA
, InterveningRead
, InterveningWrite
, InterveningEffects
,
380 InterveningStackPointer
);
381 if (Effects
&& InterveningEffects
)
383 if (Read
&& InterveningWrite
)
385 if (Write
&& (InterveningRead
|| InterveningWrite
))
387 if (StackPointer
&& InterveningStackPointer
)
390 for (unsigned Reg
: MutableRegisters
)
391 for (const MachineOperand
&MO
: I
->operands())
392 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
)
399 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
400 static bool oneUseDominatesOtherUses(unsigned Reg
, const MachineOperand
&OneUse
,
401 const MachineBasicBlock
&MBB
,
402 const MachineRegisterInfo
&MRI
,
403 const MachineDominatorTree
&MDT
,
405 WebAssemblyFunctionInfo
&MFI
) {
406 const LiveInterval
&LI
= LIS
.getInterval(Reg
);
408 const MachineInstr
*OneUseInst
= OneUse
.getParent();
409 VNInfo
*OneUseVNI
= LI
.getVNInfoBefore(LIS
.getInstructionIndex(*OneUseInst
));
411 for (const MachineOperand
&Use
: MRI
.use_nodbg_operands(Reg
)) {
415 const MachineInstr
*UseInst
= Use
.getParent();
416 VNInfo
*UseVNI
= LI
.getVNInfoBefore(LIS
.getInstructionIndex(*UseInst
));
418 if (UseVNI
!= OneUseVNI
)
421 if (UseInst
== OneUseInst
) {
422 // Another use in the same instruction. We need to ensure that the one
423 // selected use happens "before" it.
427 // Test that the use is dominated by the one selected use.
428 while (!MDT
.dominates(OneUseInst
, UseInst
)) {
429 // Actually, dominating is over-conservative. Test that the use would
430 // happen after the one selected use in the stack evaluation order.
432 // This is needed as a consequence of using implicit local.gets for
433 // uses and implicit local.sets for defs.
434 if (UseInst
->getDesc().getNumDefs() == 0)
436 const MachineOperand
&MO
= UseInst
->getOperand(0);
439 Register DefReg
= MO
.getReg();
440 if (!Register::isVirtualRegister(DefReg
) ||
441 !MFI
.isVRegStackified(DefReg
))
443 assert(MRI
.hasOneNonDBGUse(DefReg
));
444 const MachineOperand
&NewUse
= *MRI
.use_nodbg_begin(DefReg
);
445 const MachineInstr
*NewUseInst
= NewUse
.getParent();
446 if (NewUseInst
== OneUseInst
) {
447 if (&OneUse
> &NewUse
)
451 UseInst
= NewUseInst
;
458 /// Get the appropriate tee opcode for the given register class.
459 static unsigned getTeeOpcode(const TargetRegisterClass
*RC
) {
460 if (RC
== &WebAssembly::I32RegClass
)
461 return WebAssembly::TEE_I32
;
462 if (RC
== &WebAssembly::I64RegClass
)
463 return WebAssembly::TEE_I64
;
464 if (RC
== &WebAssembly::F32RegClass
)
465 return WebAssembly::TEE_F32
;
466 if (RC
== &WebAssembly::F64RegClass
)
467 return WebAssembly::TEE_F64
;
468 if (RC
== &WebAssembly::V128RegClass
)
469 return WebAssembly::TEE_V128
;
470 llvm_unreachable("Unexpected register class");
473 // Shrink LI to its uses, cleaning up LI.
474 static void shrinkToUses(LiveInterval
&LI
, LiveIntervals
&LIS
) {
475 if (LIS
.shrinkToUses(&LI
)) {
476 SmallVector
<LiveInterval
*, 4> SplitLIs
;
477 LIS
.splitSeparateComponents(LI
, SplitLIs
);
481 /// A single-use def in the same block with no intervening memory or register
482 /// dependencies; move the def down and nest it with the current instruction.
483 static MachineInstr
*moveForSingleUse(unsigned Reg
, MachineOperand
&Op
,
484 MachineInstr
*Def
, MachineBasicBlock
&MBB
,
485 MachineInstr
*Insert
, LiveIntervals
&LIS
,
486 WebAssemblyFunctionInfo
&MFI
,
487 MachineRegisterInfo
&MRI
) {
488 LLVM_DEBUG(dbgs() << "Move for single use: "; Def
->dump());
490 WebAssemblyDebugValueManager
DefDIs(Def
);
491 MBB
.splice(Insert
, &MBB
, Def
);
493 LIS
.handleMove(*Def
);
495 if (MRI
.hasOneDef(Reg
) && MRI
.hasOneUse(Reg
)) {
496 // No one else is using this register for anything so we can just stackify
498 MFI
.stackifyVReg(Reg
);
500 // The register may have unrelated uses or defs; create a new register for
501 // just our one def and use so that we can stackify it.
502 Register NewReg
= MRI
.createVirtualRegister(MRI
.getRegClass(Reg
));
503 Def
->getOperand(0).setReg(NewReg
);
506 // Tell LiveIntervals about the new register.
507 LIS
.createAndComputeVirtRegInterval(NewReg
);
509 // Tell LiveIntervals about the changes to the old register.
510 LiveInterval
&LI
= LIS
.getInterval(Reg
);
511 LI
.removeSegment(LIS
.getInstructionIndex(*Def
).getRegSlot(),
512 LIS
.getInstructionIndex(*Op
.getParent()).getRegSlot(),
513 /*RemoveDeadValNo=*/true);
515 MFI
.stackifyVReg(NewReg
);
517 DefDIs
.updateReg(NewReg
);
519 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def
->dump());
522 imposeStackOrdering(Def
);
526 /// A trivially cloneable instruction; clone it and nest the new copy with the
527 /// current instruction.
528 static MachineInstr
*rematerializeCheapDef(
529 unsigned Reg
, MachineOperand
&Op
, MachineInstr
&Def
, MachineBasicBlock
&MBB
,
530 MachineBasicBlock::instr_iterator Insert
, LiveIntervals
&LIS
,
531 WebAssemblyFunctionInfo
&MFI
, MachineRegisterInfo
&MRI
,
532 const WebAssemblyInstrInfo
*TII
, const WebAssemblyRegisterInfo
*TRI
) {
533 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def
.dump());
534 LLVM_DEBUG(dbgs() << " - for use in "; Op
.getParent()->dump());
536 WebAssemblyDebugValueManager
DefDIs(&Def
);
538 Register NewReg
= MRI
.createVirtualRegister(MRI
.getRegClass(Reg
));
539 TII
->reMaterialize(MBB
, Insert
, NewReg
, 0, Def
, *TRI
);
541 MachineInstr
*Clone
= &*std::prev(Insert
);
542 LIS
.InsertMachineInstrInMaps(*Clone
);
543 LIS
.createAndComputeVirtRegInterval(NewReg
);
544 MFI
.stackifyVReg(NewReg
);
545 imposeStackOrdering(Clone
);
547 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone
->dump());
549 // Shrink the interval.
550 bool IsDead
= MRI
.use_empty(Reg
);
552 LiveInterval
&LI
= LIS
.getInterval(Reg
);
553 shrinkToUses(LI
, LIS
);
554 IsDead
= !LI
.liveAt(LIS
.getInstructionIndex(Def
).getDeadSlot());
557 // If that was the last use of the original, delete the original.
558 // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
560 LLVM_DEBUG(dbgs() << " - Deleting original\n");
561 SlotIndex Idx
= LIS
.getInstructionIndex(Def
).getRegSlot();
562 LIS
.removePhysRegDefAt(WebAssembly::ARGUMENTS
, Idx
);
563 LIS
.removeInterval(Reg
);
564 LIS
.RemoveMachineInstrFromMaps(Def
);
565 Def
.eraseFromParent();
567 DefDIs
.move(&*Insert
);
568 DefDIs
.updateReg(NewReg
);
570 DefDIs
.clone(&*Insert
, NewReg
);
576 /// A multiple-use def in the same block with no intervening memory or register
577 /// dependencies; move the def down, nest it with the current instruction, and
578 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
581 /// Reg = INST ... // Def
582 /// INST ..., Reg, ... // Insert
583 /// INST ..., Reg, ...
584 /// INST ..., Reg, ...
588 /// DefReg = INST ... // Def (to become the new Insert)
589 /// TeeReg, Reg = TEE_... DefReg
590 /// INST ..., TeeReg, ... // Insert
591 /// INST ..., Reg, ...
592 /// INST ..., Reg, ...
594 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
596 static MachineInstr
*moveAndTeeForMultiUse(
597 unsigned Reg
, MachineOperand
&Op
, MachineInstr
*Def
, MachineBasicBlock
&MBB
,
598 MachineInstr
*Insert
, LiveIntervals
&LIS
, WebAssemblyFunctionInfo
&MFI
,
599 MachineRegisterInfo
&MRI
, const WebAssemblyInstrInfo
*TII
) {
600 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def
->dump());
602 WebAssemblyDebugValueManager
DefDIs(Def
);
604 // Move Def into place.
605 MBB
.splice(Insert
, &MBB
, Def
);
606 LIS
.handleMove(*Def
);
608 // Create the Tee and attach the registers.
609 const auto *RegClass
= MRI
.getRegClass(Reg
);
610 Register TeeReg
= MRI
.createVirtualRegister(RegClass
);
611 Register DefReg
= MRI
.createVirtualRegister(RegClass
);
612 MachineOperand
&DefMO
= Def
->getOperand(0);
613 MachineInstr
*Tee
= BuildMI(MBB
, Insert
, Insert
->getDebugLoc(),
614 TII
->get(getTeeOpcode(RegClass
)), TeeReg
)
615 .addReg(Reg
, RegState::Define
)
616 .addReg(DefReg
, getUndefRegState(DefMO
.isDead()));
618 DefMO
.setReg(DefReg
);
619 SlotIndex TeeIdx
= LIS
.InsertMachineInstrInMaps(*Tee
).getRegSlot();
620 SlotIndex DefIdx
= LIS
.getInstructionIndex(*Def
).getRegSlot();
624 // Tell LiveIntervals we moved the original vreg def from Def to Tee.
625 LiveInterval
&LI
= LIS
.getInterval(Reg
);
626 LiveInterval::iterator I
= LI
.FindSegmentContaining(DefIdx
);
627 VNInfo
*ValNo
= LI
.getVNInfoAt(DefIdx
);
630 shrinkToUses(LI
, LIS
);
632 // Finish stackifying the new regs.
633 LIS
.createAndComputeVirtRegInterval(TeeReg
);
634 LIS
.createAndComputeVirtRegInterval(DefReg
);
635 MFI
.stackifyVReg(DefReg
);
636 MFI
.stackifyVReg(TeeReg
);
637 imposeStackOrdering(Def
);
638 imposeStackOrdering(Tee
);
640 DefDIs
.clone(Tee
, DefReg
);
641 DefDIs
.clone(Insert
, TeeReg
);
643 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def
->dump());
644 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee
->dump());
649 /// A stack for walking the tree of instructions being built, visiting the
650 /// MachineOperands in DFS order.
651 class TreeWalkerState
{
652 using mop_iterator
= MachineInstr::mop_iterator
;
653 using mop_reverse_iterator
= std::reverse_iterator
<mop_iterator
>;
654 using RangeTy
= iterator_range
<mop_reverse_iterator
>;
655 SmallVector
<RangeTy
, 4> Worklist
;
658 explicit TreeWalkerState(MachineInstr
*Insert
) {
659 const iterator_range
<mop_iterator
> &Range
= Insert
->explicit_uses();
660 if (Range
.begin() != Range
.end())
661 Worklist
.push_back(reverse(Range
));
664 bool done() const { return Worklist
.empty(); }
666 MachineOperand
&pop() {
667 RangeTy
&Range
= Worklist
.back();
668 MachineOperand
&Op
= *Range
.begin();
669 Range
= drop_begin(Range
, 1);
670 if (Range
.begin() == Range
.end())
672 assert((Worklist
.empty() ||
673 Worklist
.back().begin() != Worklist
.back().end()) &&
674 "Empty ranges shouldn't remain in the worklist");
678 /// Push Instr's operands onto the stack to be visited.
679 void pushOperands(MachineInstr
*Instr
) {
680 const iterator_range
<mop_iterator
> &Range(Instr
->explicit_uses());
681 if (Range
.begin() != Range
.end())
682 Worklist
.push_back(reverse(Range
));
685 /// Some of Instr's operands are on the top of the stack; remove them and
686 /// re-insert them starting from the beginning (because we've commuted them).
687 void resetTopOperands(MachineInstr
*Instr
) {
688 assert(hasRemainingOperands(Instr
) &&
689 "Reseting operands should only be done when the instruction has "
690 "an operand still on the stack");
691 Worklist
.back() = reverse(Instr
->explicit_uses());
694 /// Test whether Instr has operands remaining to be visited at the top of
696 bool hasRemainingOperands(const MachineInstr
*Instr
) const {
697 if (Worklist
.empty())
699 const RangeTy
&Range
= Worklist
.back();
700 return Range
.begin() != Range
.end() && Range
.begin()->getParent() == Instr
;
703 /// Test whether the given register is present on the stack, indicating an
704 /// operand in the tree that we haven't visited yet. Moving a definition of
705 /// Reg to a point in the tree after that would change its value.
707 /// This is needed as a consequence of using implicit local.gets for
708 /// uses and implicit local.sets for defs.
709 bool isOnStack(unsigned Reg
) const {
710 for (const RangeTy
&Range
: Worklist
)
711 for (const MachineOperand
&MO
: Range
)
712 if (MO
.isReg() && MO
.getReg() == Reg
)
718 /// State to keep track of whether commuting is in flight or whether it's been
719 /// tried for the current instruction and didn't work.
720 class CommutingState
{
721 /// There are effectively three states: the initial state where we haven't
722 /// started commuting anything and we don't know anything yet, the tentative
723 /// state where we've commuted the operands of the current instruction and are
724 /// revisiting it, and the declined state where we've reverted the operands
725 /// back to their original order and will no longer commute it further.
726 bool TentativelyCommuting
= false;
727 bool Declined
= false;
729 /// During the tentative state, these hold the operand indices of the commuted
731 unsigned Operand0
, Operand1
;
734 /// Stackification for an operand was not successful due to ordering
735 /// constraints. If possible, and if we haven't already tried it and declined
736 /// it, commute Insert's operands and prepare to revisit it.
737 void maybeCommute(MachineInstr
*Insert
, TreeWalkerState
&TreeWalker
,
738 const WebAssemblyInstrInfo
*TII
) {
739 if (TentativelyCommuting
) {
741 "Don't decline commuting until you've finished trying it");
742 // Commuting didn't help. Revert it.
743 TII
->commuteInstruction(*Insert
, /*NewMI=*/false, Operand0
, Operand1
);
744 TentativelyCommuting
= false;
746 } else if (!Declined
&& TreeWalker
.hasRemainingOperands(Insert
)) {
747 Operand0
= TargetInstrInfo::CommuteAnyOperandIndex
;
748 Operand1
= TargetInstrInfo::CommuteAnyOperandIndex
;
749 if (TII
->findCommutedOpIndices(*Insert
, Operand0
, Operand1
)) {
750 // Tentatively commute the operands and try again.
751 TII
->commuteInstruction(*Insert
, /*NewMI=*/false, Operand0
, Operand1
);
752 TreeWalker
.resetTopOperands(Insert
);
753 TentativelyCommuting
= true;
759 /// Stackification for some operand was successful. Reset to the default
762 TentativelyCommuting
= false;
766 } // end anonymous namespace
768 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction
&MF
) {
769 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
770 "********** Function: "
771 << MF
.getName() << '\n');
773 bool Changed
= false;
774 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
775 WebAssemblyFunctionInfo
&MFI
= *MF
.getInfo
<WebAssemblyFunctionInfo
>();
776 const auto *TII
= MF
.getSubtarget
<WebAssemblySubtarget
>().getInstrInfo();
777 const auto *TRI
= MF
.getSubtarget
<WebAssemblySubtarget
>().getRegisterInfo();
778 AliasAnalysis
&AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
779 auto &MDT
= getAnalysis
<MachineDominatorTree
>();
780 auto &LIS
= getAnalysis
<LiveIntervals
>();
782 // Walk the instructions from the bottom up. Currently we don't look past
783 // block boundaries, and the blocks aren't ordered so the block visitation
784 // order isn't significant, but we may want to change this in the future.
785 for (MachineBasicBlock
&MBB
: MF
) {
786 // Don't use a range-based for loop, because we modify the list as we're
787 // iterating over it and the end iterator may change.
788 for (auto MII
= MBB
.rbegin(); MII
!= MBB
.rend(); ++MII
) {
789 MachineInstr
*Insert
= &*MII
;
790 // Don't nest anything inside an inline asm, because we don't have
791 // constraints for $push inputs.
792 if (Insert
->isInlineAsm())
795 // Ignore debugging intrinsics.
796 if (Insert
->isDebugValue())
799 // Iterate through the inputs in reverse order, since we'll be pulling
800 // operands off the stack in LIFO order.
801 CommutingState Commuting
;
802 TreeWalkerState
TreeWalker(Insert
);
803 while (!TreeWalker
.done()) {
804 MachineOperand
&Op
= TreeWalker
.pop();
806 // We're only interested in explicit virtual register operands.
810 Register Reg
= Op
.getReg();
811 assert(Op
.isUse() && "explicit_uses() should only iterate over uses");
812 assert(!Op
.isImplicit() &&
813 "explicit_uses() should only iterate over explicit operands");
814 if (Register::isPhysicalRegister(Reg
))
817 // Identify the definition for this register at this point.
818 MachineInstr
*Def
= getVRegDef(Reg
, Insert
, MRI
, LIS
);
822 // Don't nest an INLINE_ASM def into anything, because we don't have
823 // constraints for $pop outputs.
824 if (Def
->isInlineAsm())
827 // Argument instructions represent live-in registers and not real
829 if (WebAssembly::isArgument(Def
->getOpcode()))
832 // Currently catch's return value register cannot be stackified, because
833 // the wasm LLVM backend currently does not support live-in values
834 // entering blocks, which is a part of multi-value proposal.
836 // Once we support live-in values of wasm blocks, this can be:
837 // catch ; push exnref value onto stack
838 // block exnref -> i32
839 // br_on_exn $__cpp_exception ; pop the exnref value
842 // But because we don't support it yet, the catch instruction's dst
843 // register should be assigned to a local to be propagated across
844 // 'block' boundary now.
846 // TODO Fix this once we support the multi-value proposal.
847 if (Def
->getOpcode() == WebAssembly::CATCH
)
850 // Decide which strategy to take. Prefer to move a single-use value
851 // over cloning it, and prefer cloning over introducing a tee.
852 // For moving, we require the def to be in the same block as the use;
853 // this makes things simpler (LiveIntervals' handleMove function only
854 // supports intra-block moves) and it's MachineSink's job to catch all
855 // the sinking opportunities anyway.
856 bool SameBlock
= Def
->getParent() == &MBB
;
857 bool CanMove
= SameBlock
&& isSafeToMove(Def
, Insert
, AA
, MRI
) &&
858 !TreeWalker
.isOnStack(Reg
);
859 if (CanMove
&& hasOneUse(Reg
, Def
, MRI
, MDT
, LIS
)) {
860 Insert
= moveForSingleUse(Reg
, Op
, Def
, MBB
, Insert
, LIS
, MFI
, MRI
);
861 } else if (shouldRematerialize(*Def
, AA
, TII
)) {
863 rematerializeCheapDef(Reg
, Op
, *Def
, MBB
, Insert
->getIterator(),
864 LIS
, MFI
, MRI
, TII
, TRI
);
865 } else if (CanMove
&&
866 oneUseDominatesOtherUses(Reg
, Op
, MBB
, MRI
, MDT
, LIS
, MFI
)) {
867 Insert
= moveAndTeeForMultiUse(Reg
, Op
, Def
, MBB
, Insert
, LIS
, MFI
,
870 // We failed to stackify the operand. If the problem was ordering
871 // constraints, Commuting may be able to help.
872 if (!CanMove
&& SameBlock
)
873 Commuting
.maybeCommute(Insert
, TreeWalker
, TII
);
874 // Proceed to the next operand.
878 // If the instruction we just stackified is an IMPLICIT_DEF, convert it
879 // to a constant 0 so that the def is explicit, and the push/pop
880 // correspondence is maintained.
881 if (Insert
->getOpcode() == TargetOpcode::IMPLICIT_DEF
)
882 convertImplicitDefToConstZero(Insert
, MRI
, TII
, MF
, LIS
);
884 // We stackified an operand. Add the defining instruction's operands to
885 // the worklist stack now to continue to build an ever deeper tree.
887 TreeWalker
.pushOperands(Insert
);
890 // If we stackified any operands, skip over the tree to start looking for
891 // the next instruction we can build a tree on.
892 if (Insert
!= &*MII
) {
893 imposeStackOrdering(&*MII
);
894 MII
= MachineBasicBlock::iterator(Insert
).getReverse();
900 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
901 // that it never looks like a use-before-def.
903 MF
.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK
);
904 for (MachineBasicBlock
&MBB
: MF
)
905 MBB
.addLiveIn(WebAssembly::VALUE_STACK
);
909 // Verify that pushes and pops are performed in LIFO order.
910 SmallVector
<unsigned, 0> Stack
;
911 for (MachineBasicBlock
&MBB
: MF
) {
912 for (MachineInstr
&MI
: MBB
) {
913 if (MI
.isDebugInstr())
915 for (MachineOperand
&MO
: reverse(MI
.explicit_operands())) {
918 Register Reg
= MO
.getReg();
920 if (MFI
.isVRegStackified(Reg
)) {
922 Stack
.push_back(Reg
);
924 assert(Stack
.pop_back_val() == Reg
&&
925 "Register stack pop should be paired with a push");
929 // TODO: Generalize this code to support keeping values on the stack across
930 // basic block boundaries.
931 assert(Stack
.empty() &&
932 "Register stack pushes and pops should be balanced");