[InstCombine] Signed saturation patterns
[llvm-complete.git] / lib / Target / X86 / MCTargetDesc / X86AsmBackend.cpp
blobf08fcb575bf007d08990573ba49c1d133b5af534
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/X86BaseInfo.h"
10 #include "MCTargetDesc/X86FixupKinds.h"
11 #include "llvm/ADT/StringSwitch.h"
12 #include "llvm/BinaryFormat/ELF.h"
13 #include "llvm/BinaryFormat/MachO.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCDwarf.h"
16 #include "llvm/MC/MCELFObjectWriter.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCFixupKindInfo.h"
19 #include "llvm/MC/MCInst.h"
20 #include "llvm/MC/MCMachObjectWriter.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSectionMachO.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
29 static unsigned getFixupKindSize(unsigned Kind) {
30 switch (Kind) {
31 default:
32 llvm_unreachable("invalid fixup kind!");
33 case FK_NONE:
34 return 0;
35 case FK_PCRel_1:
36 case FK_SecRel_1:
37 case FK_Data_1:
38 return 1;
39 case FK_PCRel_2:
40 case FK_SecRel_2:
41 case FK_Data_2:
42 return 2;
43 case FK_PCRel_4:
44 case X86::reloc_riprel_4byte:
45 case X86::reloc_riprel_4byte_relax:
46 case X86::reloc_riprel_4byte_relax_rex:
47 case X86::reloc_riprel_4byte_movq_load:
48 case X86::reloc_signed_4byte:
49 case X86::reloc_signed_4byte_relax:
50 case X86::reloc_global_offset_table:
51 case X86::reloc_branch_4byte_pcrel:
52 case FK_SecRel_4:
53 case FK_Data_4:
54 return 4;
55 case FK_PCRel_8:
56 case FK_SecRel_8:
57 case FK_Data_8:
58 case X86::reloc_global_offset_table8:
59 return 8;
63 namespace {
65 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
66 public:
67 X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
68 bool HasRelocationAddend, bool foobar)
69 : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
72 class X86AsmBackend : public MCAsmBackend {
73 const MCSubtargetInfo &STI;
74 public:
75 X86AsmBackend(const Target &T, const MCSubtargetInfo &STI)
76 : MCAsmBackend(support::little), STI(STI) {}
78 unsigned getNumFixupKinds() const override {
79 return X86::NumTargetFixupKinds;
82 Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
84 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
85 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
86 {"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
87 {"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
88 {"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
89 {"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
90 {"reloc_signed_4byte", 0, 32, 0},
91 {"reloc_signed_4byte_relax", 0, 32, 0},
92 {"reloc_global_offset_table", 0, 32, 0},
93 {"reloc_global_offset_table8", 0, 64, 0},
94 {"reloc_branch_4byte_pcrel", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
97 if (Kind < FirstTargetFixupKind)
98 return MCAsmBackend::getFixupKindInfo(Kind);
100 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
101 "Invalid kind!");
102 assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!");
103 return Infos[Kind - FirstTargetFixupKind];
106 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
107 const MCValue &Target) override;
109 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
110 const MCValue &Target, MutableArrayRef<char> Data,
111 uint64_t Value, bool IsResolved,
112 const MCSubtargetInfo *STI) const override {
113 unsigned Size = getFixupKindSize(Fixup.getKind());
115 assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!");
117 // Check that uppper bits are either all zeros or all ones.
118 // Specifically ignore overflow/underflow as long as the leakage is
119 // limited to the lower bits. This is to remain compatible with
120 // other assemblers.
121 assert((Size == 0 || isIntN(Size * 8 + 1, Value)) &&
122 "Value does not fit in the Fixup field");
124 for (unsigned i = 0; i != Size; ++i)
125 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
128 bool mayNeedRelaxation(const MCInst &Inst,
129 const MCSubtargetInfo &STI) const override;
131 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
132 const MCRelaxableFragment *DF,
133 const MCAsmLayout &Layout) const override;
135 void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
136 MCInst &Res) const override;
138 bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
140 } // end anonymous namespace
142 static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool is16BitMode) {
143 unsigned Op = Inst.getOpcode();
144 switch (Op) {
145 default:
146 return Op;
147 case X86::JCC_1:
148 return (is16BitMode) ? X86::JCC_2 : X86::JCC_4;
149 case X86::JMP_1:
150 return (is16BitMode) ? X86::JMP_2 : X86::JMP_4;
154 static unsigned getRelaxedOpcodeArith(const MCInst &Inst) {
155 unsigned Op = Inst.getOpcode();
156 switch (Op) {
157 default:
158 return Op;
160 // IMUL
161 case X86::IMUL16rri8: return X86::IMUL16rri;
162 case X86::IMUL16rmi8: return X86::IMUL16rmi;
163 case X86::IMUL32rri8: return X86::IMUL32rri;
164 case X86::IMUL32rmi8: return X86::IMUL32rmi;
165 case X86::IMUL64rri8: return X86::IMUL64rri32;
166 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
168 // AND
169 case X86::AND16ri8: return X86::AND16ri;
170 case X86::AND16mi8: return X86::AND16mi;
171 case X86::AND32ri8: return X86::AND32ri;
172 case X86::AND32mi8: return X86::AND32mi;
173 case X86::AND64ri8: return X86::AND64ri32;
174 case X86::AND64mi8: return X86::AND64mi32;
176 // OR
177 case X86::OR16ri8: return X86::OR16ri;
178 case X86::OR16mi8: return X86::OR16mi;
179 case X86::OR32ri8: return X86::OR32ri;
180 case X86::OR32mi8: return X86::OR32mi;
181 case X86::OR64ri8: return X86::OR64ri32;
182 case X86::OR64mi8: return X86::OR64mi32;
184 // XOR
185 case X86::XOR16ri8: return X86::XOR16ri;
186 case X86::XOR16mi8: return X86::XOR16mi;
187 case X86::XOR32ri8: return X86::XOR32ri;
188 case X86::XOR32mi8: return X86::XOR32mi;
189 case X86::XOR64ri8: return X86::XOR64ri32;
190 case X86::XOR64mi8: return X86::XOR64mi32;
192 // ADD
193 case X86::ADD16ri8: return X86::ADD16ri;
194 case X86::ADD16mi8: return X86::ADD16mi;
195 case X86::ADD32ri8: return X86::ADD32ri;
196 case X86::ADD32mi8: return X86::ADD32mi;
197 case X86::ADD64ri8: return X86::ADD64ri32;
198 case X86::ADD64mi8: return X86::ADD64mi32;
200 // ADC
201 case X86::ADC16ri8: return X86::ADC16ri;
202 case X86::ADC16mi8: return X86::ADC16mi;
203 case X86::ADC32ri8: return X86::ADC32ri;
204 case X86::ADC32mi8: return X86::ADC32mi;
205 case X86::ADC64ri8: return X86::ADC64ri32;
206 case X86::ADC64mi8: return X86::ADC64mi32;
208 // SUB
209 case X86::SUB16ri8: return X86::SUB16ri;
210 case X86::SUB16mi8: return X86::SUB16mi;
211 case X86::SUB32ri8: return X86::SUB32ri;
212 case X86::SUB32mi8: return X86::SUB32mi;
213 case X86::SUB64ri8: return X86::SUB64ri32;
214 case X86::SUB64mi8: return X86::SUB64mi32;
216 // SBB
217 case X86::SBB16ri8: return X86::SBB16ri;
218 case X86::SBB16mi8: return X86::SBB16mi;
219 case X86::SBB32ri8: return X86::SBB32ri;
220 case X86::SBB32mi8: return X86::SBB32mi;
221 case X86::SBB64ri8: return X86::SBB64ri32;
222 case X86::SBB64mi8: return X86::SBB64mi32;
224 // CMP
225 case X86::CMP16ri8: return X86::CMP16ri;
226 case X86::CMP16mi8: return X86::CMP16mi;
227 case X86::CMP32ri8: return X86::CMP32ri;
228 case X86::CMP32mi8: return X86::CMP32mi;
229 case X86::CMP64ri8: return X86::CMP64ri32;
230 case X86::CMP64mi8: return X86::CMP64mi32;
232 // PUSH
233 case X86::PUSH32i8: return X86::PUSHi32;
234 case X86::PUSH16i8: return X86::PUSHi16;
235 case X86::PUSH64i8: return X86::PUSH64i32;
239 static unsigned getRelaxedOpcode(const MCInst &Inst, bool is16BitMode) {
240 unsigned R = getRelaxedOpcodeArith(Inst);
241 if (R != Inst.getOpcode())
242 return R;
243 return getRelaxedOpcodeBranch(Inst, is16BitMode);
246 Optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name) const {
247 if (STI.getTargetTriple().isOSBinFormatELF()) {
248 if (STI.getTargetTriple().getArch() == Triple::x86_64) {
249 if (Name == "R_X86_64_NONE")
250 return FK_NONE;
251 } else {
252 if (Name == "R_386_NONE")
253 return FK_NONE;
256 return MCAsmBackend::getFixupKind(Name);
259 bool X86AsmBackend::shouldForceRelocation(const MCAssembler &,
260 const MCFixup &Fixup,
261 const MCValue &) {
262 return Fixup.getKind() == FK_NONE;
265 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst,
266 const MCSubtargetInfo &STI) const {
267 // Branches can always be relaxed in either mode.
268 if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode())
269 return true;
271 // Check if this instruction is ever relaxable.
272 if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode())
273 return false;
276 // Check if the relaxable operand has an expression. For the current set of
277 // relaxable instructions, the relaxable operand is always the last operand.
278 unsigned RelaxableOp = Inst.getNumOperands() - 1;
279 if (Inst.getOperand(RelaxableOp).isExpr())
280 return true;
282 return false;
285 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
286 uint64_t Value,
287 const MCRelaxableFragment *DF,
288 const MCAsmLayout &Layout) const {
289 // Relax if the value is too big for a (signed) i8.
290 return !isInt<8>(Value);
293 // FIXME: Can tblgen help at all here to verify there aren't other instructions
294 // we can relax?
295 void X86AsmBackend::relaxInstruction(const MCInst &Inst,
296 const MCSubtargetInfo &STI,
297 MCInst &Res) const {
298 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
299 bool is16BitMode = STI.getFeatureBits()[X86::Mode16Bit];
300 unsigned RelaxedOp = getRelaxedOpcode(Inst, is16BitMode);
302 if (RelaxedOp == Inst.getOpcode()) {
303 SmallString<256> Tmp;
304 raw_svector_ostream OS(Tmp);
305 Inst.dump_pretty(OS);
306 OS << "\n";
307 report_fatal_error("unexpected instruction to relax: " + OS.str());
310 Res = Inst;
311 Res.setOpcode(RelaxedOp);
314 /// Write a sequence of optimal nops to the output, covering \p Count
315 /// bytes.
316 /// \return - true on success, false on failure
317 bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
318 static const char Nops[10][11] = {
319 // nop
320 "\x90",
321 // xchg %ax,%ax
322 "\x66\x90",
323 // nopl (%[re]ax)
324 "\x0f\x1f\x00",
325 // nopl 0(%[re]ax)
326 "\x0f\x1f\x40\x00",
327 // nopl 0(%[re]ax,%[re]ax,1)
328 "\x0f\x1f\x44\x00\x00",
329 // nopw 0(%[re]ax,%[re]ax,1)
330 "\x66\x0f\x1f\x44\x00\x00",
331 // nopl 0L(%[re]ax)
332 "\x0f\x1f\x80\x00\x00\x00\x00",
333 // nopl 0L(%[re]ax,%[re]ax,1)
334 "\x0f\x1f\x84\x00\x00\x00\x00\x00",
335 // nopw 0L(%[re]ax,%[re]ax,1)
336 "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
337 // nopw %cs:0L(%[re]ax,%[re]ax,1)
338 "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
341 // This CPU doesn't support long nops. If needed add more.
342 // FIXME: We could generated something better than plain 0x90.
343 if (!STI.getFeatureBits()[X86::FeatureNOPL]) {
344 for (uint64_t i = 0; i < Count; ++i)
345 OS << '\x90';
346 return true;
349 // 15-bytes is the longest single NOP instruction, but 10-bytes is
350 // commonly the longest that can be efficiently decoded.
351 uint64_t MaxNopLength = 10;
352 if (STI.getFeatureBits()[X86::ProcIntelSLM])
353 MaxNopLength = 7;
354 else if (STI.getFeatureBits()[X86::FeatureFast15ByteNOP])
355 MaxNopLength = 15;
356 else if (STI.getFeatureBits()[X86::FeatureFast11ByteNOP])
357 MaxNopLength = 11;
359 // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining
360 // length.
361 do {
362 const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
363 const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
364 for (uint8_t i = 0; i < Prefixes; i++)
365 OS << '\x66';
366 const uint8_t Rest = ThisNopLength - Prefixes;
367 if (Rest != 0)
368 OS.write(Nops[Rest - 1], Rest);
369 Count -= ThisNopLength;
370 } while (Count != 0);
372 return true;
375 /* *** */
377 namespace {
379 class ELFX86AsmBackend : public X86AsmBackend {
380 public:
381 uint8_t OSABI;
382 ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI)
383 : X86AsmBackend(T, STI), OSABI(OSABI) {}
386 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
387 public:
388 ELFX86_32AsmBackend(const Target &T, uint8_t OSABI,
389 const MCSubtargetInfo &STI)
390 : ELFX86AsmBackend(T, OSABI, STI) {}
392 std::unique_ptr<MCObjectTargetWriter>
393 createObjectTargetWriter() const override {
394 return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_386);
398 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
399 public:
400 ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI,
401 const MCSubtargetInfo &STI)
402 : ELFX86AsmBackend(T, OSABI, STI) {}
404 std::unique_ptr<MCObjectTargetWriter>
405 createObjectTargetWriter() const override {
406 return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
407 ELF::EM_X86_64);
411 class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
412 public:
413 ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI,
414 const MCSubtargetInfo &STI)
415 : ELFX86AsmBackend(T, OSABI, STI) {}
417 std::unique_ptr<MCObjectTargetWriter>
418 createObjectTargetWriter() const override {
419 return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
420 ELF::EM_IAMCU);
424 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
425 public:
426 ELFX86_64AsmBackend(const Target &T, uint8_t OSABI,
427 const MCSubtargetInfo &STI)
428 : ELFX86AsmBackend(T, OSABI, STI) {}
430 std::unique_ptr<MCObjectTargetWriter>
431 createObjectTargetWriter() const override {
432 return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, ELF::EM_X86_64);
436 class WindowsX86AsmBackend : public X86AsmBackend {
437 bool Is64Bit;
439 public:
440 WindowsX86AsmBackend(const Target &T, bool is64Bit,
441 const MCSubtargetInfo &STI)
442 : X86AsmBackend(T, STI)
443 , Is64Bit(is64Bit) {
446 Optional<MCFixupKind> getFixupKind(StringRef Name) const override {
447 return StringSwitch<Optional<MCFixupKind>>(Name)
448 .Case("dir32", FK_Data_4)
449 .Case("secrel32", FK_SecRel_4)
450 .Case("secidx", FK_SecRel_2)
451 .Default(MCAsmBackend::getFixupKind(Name));
454 std::unique_ptr<MCObjectTargetWriter>
455 createObjectTargetWriter() const override {
456 return createX86WinCOFFObjectWriter(Is64Bit);
460 namespace CU {
462 /// Compact unwind encoding values.
463 enum CompactUnwindEncodings {
464 /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
465 /// the return address, then [RE]SP is moved to [RE]BP.
466 UNWIND_MODE_BP_FRAME = 0x01000000,
468 /// A frameless function with a small constant stack size.
469 UNWIND_MODE_STACK_IMMD = 0x02000000,
471 /// A frameless function with a large constant stack size.
472 UNWIND_MODE_STACK_IND = 0x03000000,
474 /// No compact unwind encoding is available.
475 UNWIND_MODE_DWARF = 0x04000000,
477 /// Mask for encoding the frame registers.
478 UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
480 /// Mask for encoding the frameless registers.
481 UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
484 } // end CU namespace
486 class DarwinX86AsmBackend : public X86AsmBackend {
487 const MCRegisterInfo &MRI;
489 /// Number of registers that can be saved in a compact unwind encoding.
490 enum { CU_NUM_SAVED_REGS = 6 };
492 mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
493 bool Is64Bit;
495 unsigned OffsetSize; ///< Offset of a "push" instruction.
496 unsigned MoveInstrSize; ///< Size of a "move" instruction.
497 unsigned StackDivide; ///< Amount to adjust stack size by.
498 protected:
499 /// Size of a "push" instruction for the given register.
500 unsigned PushInstrSize(unsigned Reg) const {
501 switch (Reg) {
502 case X86::EBX:
503 case X86::ECX:
504 case X86::EDX:
505 case X86::EDI:
506 case X86::ESI:
507 case X86::EBP:
508 case X86::RBX:
509 case X86::RBP:
510 return 1;
511 case X86::R12:
512 case X86::R13:
513 case X86::R14:
514 case X86::R15:
515 return 2;
517 return 1;
520 /// Implementation of algorithm to generate the compact unwind encoding
521 /// for the CFI instructions.
522 uint32_t
523 generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
524 if (Instrs.empty()) return 0;
526 // Reset the saved registers.
527 unsigned SavedRegIdx = 0;
528 memset(SavedRegs, 0, sizeof(SavedRegs));
530 bool HasFP = false;
532 // Encode that we are using EBP/RBP as the frame pointer.
533 uint32_t CompactUnwindEncoding = 0;
535 unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
536 unsigned InstrOffset = 0;
537 unsigned StackAdjust = 0;
538 unsigned StackSize = 0;
539 unsigned NumDefCFAOffsets = 0;
541 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
542 const MCCFIInstruction &Inst = Instrs[i];
544 switch (Inst.getOperation()) {
545 default:
546 // Any other CFI directives indicate a frame that we aren't prepared
547 // to represent via compact unwind, so just bail out.
548 return 0;
549 case MCCFIInstruction::OpDefCfaRegister: {
550 // Defines a frame pointer. E.g.
552 // movq %rsp, %rbp
553 // L0:
554 // .cfi_def_cfa_register %rbp
556 HasFP = true;
558 // If the frame pointer is other than esp/rsp, we do not have a way to
559 // generate a compact unwinding representation, so bail out.
560 if (*MRI.getLLVMRegNum(Inst.getRegister(), true) !=
561 (Is64Bit ? X86::RBP : X86::EBP))
562 return 0;
564 // Reset the counts.
565 memset(SavedRegs, 0, sizeof(SavedRegs));
566 StackAdjust = 0;
567 SavedRegIdx = 0;
568 InstrOffset += MoveInstrSize;
569 break;
571 case MCCFIInstruction::OpDefCfaOffset: {
572 // Defines a new offset for the CFA. E.g.
574 // With frame:
576 // pushq %rbp
577 // L0:
578 // .cfi_def_cfa_offset 16
580 // Without frame:
582 // subq $72, %rsp
583 // L0:
584 // .cfi_def_cfa_offset 80
586 StackSize = std::abs(Inst.getOffset()) / StackDivide;
587 ++NumDefCFAOffsets;
588 break;
590 case MCCFIInstruction::OpOffset: {
591 // Defines a "push" of a callee-saved register. E.g.
593 // pushq %r15
594 // pushq %r14
595 // pushq %rbx
596 // L0:
597 // subq $120, %rsp
598 // L1:
599 // .cfi_offset %rbx, -40
600 // .cfi_offset %r14, -32
601 // .cfi_offset %r15, -24
603 if (SavedRegIdx == CU_NUM_SAVED_REGS)
604 // If there are too many saved registers, we cannot use a compact
605 // unwind encoding.
606 return CU::UNWIND_MODE_DWARF;
608 unsigned Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
609 SavedRegs[SavedRegIdx++] = Reg;
610 StackAdjust += OffsetSize;
611 InstrOffset += PushInstrSize(Reg);
612 break;
617 StackAdjust /= StackDivide;
619 if (HasFP) {
620 if ((StackAdjust & 0xFF) != StackAdjust)
621 // Offset was too big for a compact unwind encoding.
622 return CU::UNWIND_MODE_DWARF;
624 // Get the encoding of the saved registers when we have a frame pointer.
625 uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
626 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
628 CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
629 CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
630 CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
631 } else {
632 SubtractInstrIdx += InstrOffset;
633 ++StackAdjust;
635 if ((StackSize & 0xFF) == StackSize) {
636 // Frameless stack with a small stack size.
637 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
639 // Encode the stack size.
640 CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
641 } else {
642 if ((StackAdjust & 0x7) != StackAdjust)
643 // The extra stack adjustments are too big for us to handle.
644 return CU::UNWIND_MODE_DWARF;
646 // Frameless stack with an offset too large for us to encode compactly.
647 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
649 // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
650 // instruction.
651 CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
653 // Encode any extra stack adjustments (done via push instructions).
654 CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
657 // Encode the number of registers saved. (Reverse the list first.)
658 std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
659 CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
661 // Get the encoding of the saved registers when we don't have a frame
662 // pointer.
663 uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
664 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
666 // Encode the register encoding.
667 CompactUnwindEncoding |=
668 RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
671 return CompactUnwindEncoding;
674 private:
675 /// Get the compact unwind number for a given register. The number
676 /// corresponds to the enum lists in compact_unwind_encoding.h.
677 int getCompactUnwindRegNum(unsigned Reg) const {
678 static const MCPhysReg CU32BitRegs[7] = {
679 X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
681 static const MCPhysReg CU64BitRegs[] = {
682 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
684 const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
685 for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
686 if (*CURegs == Reg)
687 return Idx;
689 return -1;
692 /// Return the registers encoded for a compact encoding with a frame
693 /// pointer.
694 uint32_t encodeCompactUnwindRegistersWithFrame() const {
695 // Encode the registers in the order they were saved --- 3-bits per
696 // register. The list of saved registers is assumed to be in reverse
697 // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
698 uint32_t RegEnc = 0;
699 for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
700 unsigned Reg = SavedRegs[i];
701 if (Reg == 0) break;
703 int CURegNum = getCompactUnwindRegNum(Reg);
704 if (CURegNum == -1) return ~0U;
706 // Encode the 3-bit register number in order, skipping over 3-bits for
707 // each register.
708 RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
711 assert((RegEnc & 0x3FFFF) == RegEnc &&
712 "Invalid compact register encoding!");
713 return RegEnc;
716 /// Create the permutation encoding used with frameless stacks. It is
717 /// passed the number of registers to be saved and an array of the registers
718 /// saved.
719 uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
720 // The saved registers are numbered from 1 to 6. In order to encode the
721 // order in which they were saved, we re-number them according to their
722 // place in the register order. The re-numbering is relative to the last
723 // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
724 // that order:
726 // Orig Re-Num
727 // ---- ------
728 // 6 6
729 // 2 2
730 // 4 3
731 // 5 3
733 for (unsigned i = 0; i < RegCount; ++i) {
734 int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
735 if (CUReg == -1) return ~0U;
736 SavedRegs[i] = CUReg;
739 // Reverse the list.
740 std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
742 uint32_t RenumRegs[CU_NUM_SAVED_REGS];
743 for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
744 unsigned Countless = 0;
745 for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
746 if (SavedRegs[j] < SavedRegs[i])
747 ++Countless;
749 RenumRegs[i] = SavedRegs[i] - Countless - 1;
752 // Take the renumbered values and encode them into a 10-bit number.
753 uint32_t permutationEncoding = 0;
754 switch (RegCount) {
755 case 6:
756 permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
757 + 6 * RenumRegs[2] + 2 * RenumRegs[3]
758 + RenumRegs[4];
759 break;
760 case 5:
761 permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
762 + 6 * RenumRegs[3] + 2 * RenumRegs[4]
763 + RenumRegs[5];
764 break;
765 case 4:
766 permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
767 + 3 * RenumRegs[4] + RenumRegs[5];
768 break;
769 case 3:
770 permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
771 + RenumRegs[5];
772 break;
773 case 2:
774 permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
775 break;
776 case 1:
777 permutationEncoding |= RenumRegs[5];
778 break;
781 assert((permutationEncoding & 0x3FF) == permutationEncoding &&
782 "Invalid compact register encoding!");
783 return permutationEncoding;
786 public:
787 DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
788 const MCSubtargetInfo &STI, bool Is64Bit)
789 : X86AsmBackend(T, STI), MRI(MRI), Is64Bit(Is64Bit) {
790 memset(SavedRegs, 0, sizeof(SavedRegs));
791 OffsetSize = Is64Bit ? 8 : 4;
792 MoveInstrSize = Is64Bit ? 3 : 2;
793 StackDivide = Is64Bit ? 8 : 4;
797 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
798 public:
799 DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
800 const MCSubtargetInfo &STI)
801 : DarwinX86AsmBackend(T, MRI, STI, false) {}
803 std::unique_ptr<MCObjectTargetWriter>
804 createObjectTargetWriter() const override {
805 return createX86MachObjectWriter(/*Is64Bit=*/false,
806 MachO::CPU_TYPE_I386,
807 MachO::CPU_SUBTYPE_I386_ALL);
810 /// Generate the compact unwind encoding for the CFI instructions.
811 uint32_t generateCompactUnwindEncoding(
812 ArrayRef<MCCFIInstruction> Instrs) const override {
813 return generateCompactUnwindEncodingImpl(Instrs);
817 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
818 const MachO::CPUSubTypeX86 Subtype;
819 public:
820 DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
821 const MCSubtargetInfo &STI, MachO::CPUSubTypeX86 st)
822 : DarwinX86AsmBackend(T, MRI, STI, true), Subtype(st) {}
824 std::unique_ptr<MCObjectTargetWriter>
825 createObjectTargetWriter() const override {
826 return createX86MachObjectWriter(/*Is64Bit=*/true, MachO::CPU_TYPE_X86_64,
827 Subtype);
830 /// Generate the compact unwind encoding for the CFI instructions.
831 uint32_t generateCompactUnwindEncoding(
832 ArrayRef<MCCFIInstruction> Instrs) const override {
833 return generateCompactUnwindEncodingImpl(Instrs);
837 } // end anonymous namespace
839 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
840 const MCSubtargetInfo &STI,
841 const MCRegisterInfo &MRI,
842 const MCTargetOptions &Options) {
843 const Triple &TheTriple = STI.getTargetTriple();
844 if (TheTriple.isOSBinFormatMachO())
845 return new DarwinX86_32AsmBackend(T, MRI, STI);
847 if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
848 return new WindowsX86AsmBackend(T, false, STI);
850 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
852 if (TheTriple.isOSIAMCU())
853 return new ELFX86_IAMCUAsmBackend(T, OSABI, STI);
855 return new ELFX86_32AsmBackend(T, OSABI, STI);
858 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
859 const MCSubtargetInfo &STI,
860 const MCRegisterInfo &MRI,
861 const MCTargetOptions &Options) {
862 const Triple &TheTriple = STI.getTargetTriple();
863 if (TheTriple.isOSBinFormatMachO()) {
864 MachO::CPUSubTypeX86 CS =
865 StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
866 .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
867 .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
868 return new DarwinX86_64AsmBackend(T, MRI, STI, CS);
871 if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
872 return new WindowsX86AsmBackend(T, true, STI);
874 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
876 if (TheTriple.getEnvironment() == Triple::GNUX32)
877 return new ELFX86_X32AsmBackend(T, OSABI, STI);
878 return new ELFX86_64AsmBackend(T, OSABI, STI);