[InstCombine] Signed saturation patterns
[llvm-complete.git] / test / CodeGen / X86 / GlobalISel / add-ext.ll
blob68354a3ec21855cc9917e2446f3ae814d00bb62b
1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2 ; RUN: llc < %s -mtriple=x86_64-unknown-unknown -global-isel | FileCheck %s
4 ; The fundamental problem: an add separated from other arithmetic by a sign or
5 ; zero extension can't be combined with the later instructions. However, if the
6 ; first add is 'nsw' or 'nuw' respectively, then we can promote the extension
7 ; ahead of that add to allow optimizations.
9 define i64 @add_nsw_consts(i32 %i) {
10 ; CHECK-LABEL: add_nsw_consts:
11 ; CHECK:       # %bb.0:
12 ; CHECK-NEXT:    addl $5, %edi
13 ; CHECK-NEXT:    movslq %edi, %rax
14 ; CHECK-NEXT:    addq $7, %rax
15 ; CHECK-NEXT:    retq
17   %add = add nsw i32 %i, 5
18   %ext = sext i32 %add to i64
19   %idx = add i64 %ext, 7
20   ret i64 %idx
23 ; An x86 bonus: If we promote the sext ahead of the 'add nsw',
24 ; we allow LEA formation and eliminate an add instruction.
26 define i64 @add_nsw_sext_add(i32 %i, i64 %x) {
27 ; CHECK-LABEL: add_nsw_sext_add:
28 ; CHECK:       # %bb.0:
29 ; CHECK-NEXT:    addl $5, %edi
30 ; CHECK-NEXT:    movslq %edi, %rax
31 ; CHECK-NEXT:    addq %rsi, %rax
32 ; CHECK-NEXT:    retq
34   %add = add nsw i32 %i, 5
35   %ext = sext i32 %add to i64
36   %idx = add i64 %x, %ext
37   ret i64 %idx
40 ; Throw in a scale (left shift) because an LEA can do that too.
41 ; Use a negative constant (LEA displacement) to verify that's handled correctly.
43 define i64 @add_nsw_sext_lsh_add(i32 %i, i64 %x) {
44 ; CHECK-LABEL: add_nsw_sext_lsh_add:
45 ; CHECK:       # %bb.0:
46 ; CHECK-NEXT:    addl $-5, %edi
47 ; CHECK-NEXT:    movslq %edi, %rax
48 ; CHECK-NEXT:    movq $3, %rcx
49 ; CHECK-NEXT:    shlq %cl, %rax
50 ; CHECK-NEXT:    addq %rsi, %rax
51 ; CHECK-NEXT:    retq
53   %add = add nsw i32 %i, -5
54   %ext = sext i32 %add to i64
55   %shl = shl i64 %ext, 3
56   %idx = add i64 %x, %shl
57   ret i64 %idx
60 ; Don't promote the sext if it has no users. The wider add instruction needs an
61 ; extra byte to encode.
63 define i64 @add_nsw_sext(i32 %i, i64 %x) {
64 ; CHECK-LABEL: add_nsw_sext:
65 ; CHECK:       # %bb.0:
66 ; CHECK-NEXT:    addl $5, %edi
67 ; CHECK-NEXT:    movslq %edi, %rax
68 ; CHECK-NEXT:    retq
70   %add = add nsw i32 %i, 5
71   %ext = sext i32 %add to i64
72   ret i64 %ext
75 ; The typical use case: a 64-bit system where an 'int' is used as an index into an array.
77 define i8* @gep8(i32 %i, i8* %x) {
78 ; CHECK-LABEL: gep8:
79 ; CHECK:       # %bb.0:
80 ; CHECK-NEXT:    addl $5, %edi
81 ; CHECK-NEXT:    movslq %edi, %rax
82 ; CHECK-NEXT:    addq %rsi, %rax
83 ; CHECK-NEXT:    retq
85   %add = add nsw i32 %i, 5
86   %ext = sext i32 %add to i64
87   %idx = getelementptr i8, i8* %x, i64 %ext
88   ret i8* %idx
91 define i16* @gep16(i32 %i, i16* %x) {
92 ; CHECK-LABEL: gep16:
93 ; CHECK:       # %bb.0:
94 ; CHECK-NEXT:    addl $-5, %edi
95 ; CHECK-NEXT:    movslq %edi, %rax
96 ; CHECK-NEXT:    movq $2, %rcx
97 ; CHECK-NEXT:    imulq %rax, %rcx
98 ; CHECK-NEXT:    leaq (%rsi,%rcx), %rax
99 ; CHECK-NEXT:    retq
101   %add = add nsw i32 %i, -5
102   %ext = sext i32 %add to i64
103   %idx = getelementptr i16, i16* %x, i64 %ext
104   ret i16* %idx
107 define i32* @gep32(i32 %i, i32* %x) {
108 ; CHECK-LABEL: gep32:
109 ; CHECK:       # %bb.0:
110 ; CHECK-NEXT:    addl $5, %edi
111 ; CHECK-NEXT:    movslq %edi, %rax
112 ; CHECK-NEXT:    movq $4, %rcx
113 ; CHECK-NEXT:    imulq %rax, %rcx
114 ; CHECK-NEXT:    leaq (%rsi,%rcx), %rax
115 ; CHECK-NEXT:    retq
117   %add = add nsw i32 %i, 5
118   %ext = sext i32 %add to i64
119   %idx = getelementptr i32, i32* %x, i64 %ext
120   ret i32* %idx
123 define i64* @gep64(i32 %i, i64* %x) {
124 ; CHECK-LABEL: gep64:
125 ; CHECK:       # %bb.0:
126 ; CHECK-NEXT:    addl $-5, %edi
127 ; CHECK-NEXT:    movslq %edi, %rax
128 ; CHECK-NEXT:    movq $8, %rcx
129 ; CHECK-NEXT:    imulq %rax, %rcx
130 ; CHECK-NEXT:    leaq (%rsi,%rcx), %rax
131 ; CHECK-NEXT:    retq
133   %add = add nsw i32 %i, -5
134   %ext = sext i32 %add to i64
135   %idx = getelementptr i64, i64* %x, i64 %ext
136   ret i64* %idx
139 ; LEA can't scale by 16, but the adds can still be combined into an LEA.
141 define i128* @gep128(i32 %i, i128* %x) {
142 ; CHECK-LABEL: gep128:
143 ; CHECK:       # %bb.0:
144 ; CHECK-NEXT:    addl $5, %edi
145 ; CHECK-NEXT:    movslq %edi, %rax
146 ; CHECK-NEXT:    movq $16, %rcx
147 ; CHECK-NEXT:    imulq %rax, %rcx
148 ; CHECK-NEXT:    leaq (%rsi,%rcx), %rax
149 ; CHECK-NEXT:    retq
151   %add = add nsw i32 %i, 5
152   %ext = sext i32 %add to i64
153   %idx = getelementptr i128, i128* %x, i64 %ext
154   ret i128* %idx
157 ; A bigger win can be achieved when there is more than one use of the
158 ; sign extended value. In this case, we can eliminate sign extension
159 ; instructions plus use more efficient addressing modes for memory ops.
161 define void @PR20134(i32* %a, i32 %i) {
162 ; CHECK-LABEL: PR20134:
163 ; CHECK:       # %bb.0:
164 ; CHECK-NEXT:    # kill: def $esi killed $esi def $rsi
165 ; CHECK-NEXT:    leal 1(%rsi), %eax
166 ; CHECK-NEXT:    cltq
167 ; CHECK-NEXT:    movq $4, %rcx
168 ; CHECK-NEXT:    imulq %rcx, %rax
169 ; CHECK-NEXT:    addq %rdi, %rax
170 ; CHECK-NEXT:    leal 2(%rsi), %edx
171 ; CHECK-NEXT:    movslq %edx, %rdx
172 ; CHECK-NEXT:    imulq %rcx, %rdx
173 ; CHECK-NEXT:    addq %rdi, %rdx
174 ; CHECK-NEXT:    movl (%rdx), %edx
175 ; CHECK-NEXT:    addl (%rax), %edx
176 ; CHECK-NEXT:    movslq %esi, %rax
177 ; CHECK-NEXT:    imulq %rcx, %rax
178 ; CHECK-NEXT:    addq %rdi, %rax
179 ; CHECK-NEXT:    movl %edx, (%rax)
180 ; CHECK-NEXT:    retq
182   %add1 = add nsw i32 %i, 1
183   %idx1 = sext i32 %add1 to i64
184   %gep1 = getelementptr i32, i32* %a, i64 %idx1
185   %load1 = load i32, i32* %gep1, align 4
187   %add2 = add nsw i32 %i, 2
188   %idx2 = sext i32 %add2 to i64
189   %gep2 = getelementptr i32, i32* %a, i64 %idx2
190   %load2 = load i32, i32* %gep2, align 4
192   %add3 = add i32 %load1, %load2
193   %idx3 = sext i32 %i to i64
194   %gep3 = getelementptr i32, i32* %a, i64 %idx3
195   store i32 %add3, i32* %gep3, align 4
196   ret void
199 ; The same as @PR20134 but sign extension is replaced with zero extension
200 define void @PR20134_zext(i32* %a, i32 %i) {
201 ; CHECK-LABEL: PR20134_zext:
202 ; CHECK:       # %bb.0:
203 ; CHECK-NEXT:    # kill: def $esi killed $esi def $rsi
204 ; CHECK-NEXT:    leal 1(%rsi), %eax
205 ; CHECK-NEXT:    movl %eax, %eax
206 ; CHECK-NEXT:    movq $4, %rcx
207 ; CHECK-NEXT:    imulq %rcx, %rax
208 ; CHECK-NEXT:    addq %rdi, %rax
209 ; CHECK-NEXT:    leal 2(%rsi), %edx
210 ; CHECK-NEXT:    movl %edx, %edx
211 ; CHECK-NEXT:    imulq %rcx, %rdx
212 ; CHECK-NEXT:    addq %rdi, %rdx
213 ; CHECK-NEXT:    movl (%rdx), %edx
214 ; CHECK-NEXT:    addl (%rax), %edx
215 ; CHECK-NEXT:    movl %esi, %eax
216 ; CHECK-NEXT:    imulq %rcx, %rax
217 ; CHECK-NEXT:    addq %rdi, %rax
218 ; CHECK-NEXT:    movl %edx, (%rax)
219 ; CHECK-NEXT:    retq
221   %add1 = add nuw i32 %i, 1
222   %idx1 = zext i32 %add1 to i64
223   %gep1 = getelementptr i32, i32* %a, i64 %idx1
224   %load1 = load i32, i32* %gep1, align 4
226   %add2 = add nuw i32 %i, 2
227   %idx2 = zext i32 %add2 to i64
228   %gep2 = getelementptr i32, i32* %a, i64 %idx2
229   %load2 = load i32, i32* %gep2, align 4
231   %add3 = add i32 %load1, %load2
232   %idx3 = zext i32 %i to i64
233   %gep3 = getelementptr i32, i32* %a, i64 %idx3
234   store i32 %add3, i32* %gep3, align 4
235   ret void