[InstCombine] Signed saturation patterns
[llvm-complete.git] / utils / TableGen / CodeGenSchedule.cpp
blobf12d7d484a8eaa9db1ae176c1543e7e526cfa816
1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
31 using namespace llvm;
33 #define DEBUG_TYPE "subtarget-emitter"
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37 for (unsigned Idx : V)
38 dbgs() << Idx << ", ";
40 #endif
42 namespace {
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
47 ArrayRef<SMLoc> Loc) override {
48 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54 const CodeGenTarget &Target;
55 InstRegexOp(const CodeGenTarget &t): Target(t) {}
57 /// Remove any text inside of parentheses from S.
58 static std::string removeParens(llvm::StringRef S) {
59 std::string Result;
60 unsigned Paren = 0;
61 // NB: We don't care about escaped parens here.
62 for (char C : S) {
63 switch (C) {
64 case '(':
65 ++Paren;
66 break;
67 case ')':
68 --Paren;
69 break;
70 default:
71 if (Paren == 0)
72 Result += C;
75 return Result;
78 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
79 ArrayRef<SMLoc> Loc) override {
80 ArrayRef<const CodeGenInstruction *> Instructions =
81 Target.getInstructionsByEnumValue();
83 unsigned NumGeneric = Target.getNumFixedInstructions();
84 unsigned NumPseudos = Target.getNumPseudoInstructions();
85 auto Generics = Instructions.slice(0, NumGeneric);
86 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
89 for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
90 StringInit *SI = dyn_cast<StringInit>(Arg);
91 if (!SI)
92 PrintFatalError(Loc, "instregex requires pattern string: " +
93 Expr->getAsString());
94 StringRef Original = SI->getValue();
96 // Extract a prefix that we can binary search on.
97 static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
98 auto FirstMeta = Original.find_first_of(RegexMetachars);
100 // Look for top-level | or ?. We cannot optimize them to binary search.
101 if (removeParens(Original).find_first_of("|?") != std::string::npos)
102 FirstMeta = 0;
104 Optional<Regex> Regexpr = None;
105 StringRef Prefix = Original.substr(0, FirstMeta);
106 StringRef PatStr = Original.substr(FirstMeta);
107 if (!PatStr.empty()) {
108 // For the rest use a python-style prefix match.
109 std::string pat = PatStr;
110 if (pat[0] != '^') {
111 pat.insert(0, "^(");
112 pat.insert(pat.end(), ')');
114 Regexpr = Regex(pat);
117 int NumMatches = 0;
119 // The generic opcodes are unsorted, handle them manually.
120 for (auto *Inst : Generics) {
121 StringRef InstName = Inst->TheDef->getName();
122 if (InstName.startswith(Prefix) &&
123 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
124 Elts.insert(Inst->TheDef);
125 NumMatches++;
129 // Target instructions are split into two ranges: pseudo instructions
130 // first, than non-pseudos. Each range is in lexicographical order
131 // sorted by name. Find the sub-ranges that start with our prefix.
132 struct Comp {
133 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
134 return LHS->TheDef->getName() < RHS;
136 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
137 return LHS < RHS->TheDef->getName() &&
138 !RHS->TheDef->getName().startswith(LHS);
141 auto Range1 =
142 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
143 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
144 Prefix, Comp());
146 // For these ranges we know that instruction names start with the prefix.
147 // Check if there's a regex that needs to be checked.
148 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
149 StringRef InstName = Inst->TheDef->getName();
150 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
151 Elts.insert(Inst->TheDef);
152 NumMatches++;
155 std::for_each(Range1.first, Range1.second, HandleNonGeneric);
156 std::for_each(Range2.first, Range2.second, HandleNonGeneric);
158 if (0 == NumMatches)
159 PrintFatalError(Loc, "instregex has no matches: " + Original);
164 } // end anonymous namespace
166 /// CodeGenModels ctor interprets machine model records and populates maps.
167 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
168 const CodeGenTarget &TGT):
169 Records(RK), Target(TGT) {
171 Sets.addFieldExpander("InstRW", "Instrs");
173 // Allow Set evaluation to recognize the dags used in InstRW records:
174 // (instrs Op1, Op1...)
175 Sets.addOperator("instrs", std::make_unique<InstrsOp>());
176 Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
178 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
179 // that are explicitly referenced in tablegen records. Resources associated
180 // with each processor will be derived later. Populate ProcModelMap with the
181 // CodeGenProcModel instances.
182 collectProcModels();
184 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
185 // defined, and populate SchedReads and SchedWrites vectors. Implicit
186 // SchedReadWrites that represent sequences derived from expanded variant will
187 // be inferred later.
188 collectSchedRW();
190 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
191 // required by an instruction definition, and populate SchedClassIdxMap. Set
192 // NumItineraryClasses to the number of explicit itinerary classes referenced
193 // by instructions. Set NumInstrSchedClasses to the number of itinerary
194 // classes plus any classes implied by instructions that derive from class
195 // Sched and provide SchedRW list. This does not infer any new classes from
196 // SchedVariant.
197 collectSchedClasses();
199 // Find instruction itineraries for each processor. Sort and populate
200 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
201 // all itinerary classes to be discovered.
202 collectProcItins();
204 // Find ItinRW records for each processor and itinerary class.
205 // (For per-operand resources mapped to itinerary classes).
206 collectProcItinRW();
208 // Find UnsupportedFeatures records for each processor.
209 // (For per-operand resources mapped to itinerary classes).
210 collectProcUnsupportedFeatures();
212 // Infer new SchedClasses from SchedVariant.
213 inferSchedClasses();
215 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
216 // ProcResourceDefs.
217 LLVM_DEBUG(
218 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
219 collectProcResources();
221 // Collect optional processor description.
222 collectOptionalProcessorInfo();
224 // Check MCInstPredicate definitions.
225 checkMCInstPredicates();
227 // Check STIPredicate definitions.
228 checkSTIPredicates();
230 // Find STIPredicate definitions for each processor model, and construct
231 // STIPredicateFunction objects.
232 collectSTIPredicates();
234 checkCompleteness();
237 void CodeGenSchedModels::checkSTIPredicates() const {
238 DenseMap<StringRef, const Record *> Declarations;
240 // There cannot be multiple declarations with the same name.
241 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
242 for (const Record *R : Decls) {
243 StringRef Name = R->getValueAsString("Name");
244 const auto It = Declarations.find(Name);
245 if (It == Declarations.end()) {
246 Declarations[Name] = R;
247 continue;
250 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
251 PrintNote(It->second->getLoc(), "Previous declaration was here.");
252 PrintFatalError(R->getLoc(), "Invalid STIPredicateDecl found.");
255 // Disallow InstructionEquivalenceClasses with an empty instruction list.
256 const RecVec Defs =
257 Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
258 for (const Record *R : Defs) {
259 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
260 if (Opcodes.empty()) {
261 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
262 "defined with an empty opcode list.");
267 // Used by function `processSTIPredicate` to construct a mask of machine
268 // instruction operands.
269 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
270 APInt OperandMask;
271 if (Indices.empty())
272 return OperandMask;
274 int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
275 assert(MaxIndex >= 0 && "Invalid negative indices in input!");
276 OperandMask = OperandMask.zext(MaxIndex + 1);
277 for (const int64_t Index : Indices) {
278 assert(Index >= 0 && "Invalid negative indices!");
279 OperandMask.setBit(Index);
282 return OperandMask;
285 static void
286 processSTIPredicate(STIPredicateFunction &Fn,
287 const DenseMap<Record *, unsigned> &ProcModelMap) {
288 DenseMap<const Record *, unsigned> Opcode2Index;
289 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
290 std::vector<OpcodeMapPair> OpcodeMappings;
291 std::vector<std::pair<APInt, APInt>> OpcodeMasks;
293 DenseMap<const Record *, unsigned> Predicate2Index;
294 unsigned NumUniquePredicates = 0;
296 // Number unique predicates and opcodes used by InstructionEquivalenceClass
297 // definitions. Each unique opcode will be associated with an OpcodeInfo
298 // object.
299 for (const Record *Def : Fn.getDefinitions()) {
300 RecVec Classes = Def->getValueAsListOfDefs("Classes");
301 for (const Record *EC : Classes) {
302 const Record *Pred = EC->getValueAsDef("Predicate");
303 if (Predicate2Index.find(Pred) == Predicate2Index.end())
304 Predicate2Index[Pred] = NumUniquePredicates++;
306 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
307 for (const Record *Opcode : Opcodes) {
308 if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
309 Opcode2Index[Opcode] = OpcodeMappings.size();
310 OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
316 // Initialize vector `OpcodeMasks` with default values. We want to keep track
317 // of which processors "use" which opcodes. We also want to be able to
318 // identify predicates that are used by different processors for a same
319 // opcode.
320 // This information is used later on by this algorithm to sort OpcodeMapping
321 // elements based on their processor and predicate sets.
322 OpcodeMasks.resize(OpcodeMappings.size());
323 APInt DefaultProcMask(ProcModelMap.size(), 0);
324 APInt DefaultPredMask(NumUniquePredicates, 0);
325 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
326 MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
328 // Construct a OpcodeInfo object for every unique opcode declared by an
329 // InstructionEquivalenceClass definition.
330 for (const Record *Def : Fn.getDefinitions()) {
331 RecVec Classes = Def->getValueAsListOfDefs("Classes");
332 const Record *SchedModel = Def->getValueAsDef("SchedModel");
333 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
334 APInt ProcMask(ProcModelMap.size(), 0);
335 ProcMask.setBit(ProcIndex);
337 for (const Record *EC : Classes) {
338 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
340 std::vector<int64_t> OpIndices =
341 EC->getValueAsListOfInts("OperandIndices");
342 APInt OperandMask = constructOperandMask(OpIndices);
344 const Record *Pred = EC->getValueAsDef("Predicate");
345 APInt PredMask(NumUniquePredicates, 0);
346 PredMask.setBit(Predicate2Index[Pred]);
348 for (const Record *Opcode : Opcodes) {
349 unsigned OpcodeIdx = Opcode2Index[Opcode];
350 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
351 std::string Message =
352 "Opcode " + Opcode->getName().str() +
353 " used by multiple InstructionEquivalenceClass definitions.";
354 PrintFatalError(EC->getLoc(), Message);
356 OpcodeMasks[OpcodeIdx].first |= ProcMask;
357 OpcodeMasks[OpcodeIdx].second |= PredMask;
358 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
360 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
365 // Sort OpcodeMappings elements based on their CPU and predicate masks.
366 // As a last resort, order elements by opcode identifier.
367 llvm::sort(OpcodeMappings,
368 [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
369 unsigned LhsIdx = Opcode2Index[Lhs.first];
370 unsigned RhsIdx = Opcode2Index[Rhs.first];
371 const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
372 const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
374 auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
375 unsigned LhsCountPopulation = Lhs.countPopulation();
376 unsigned RhsCountPopulation = Rhs.countPopulation();
377 return ((LhsCountPopulation < RhsCountPopulation) ||
378 ((LhsCountPopulation == RhsCountPopulation) &&
379 (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
382 if (LhsMasks.first != RhsMasks.first)
383 return LessThan(LhsMasks.first, RhsMasks.first);
385 if (LhsMasks.second != RhsMasks.second)
386 return LessThan(LhsMasks.second, RhsMasks.second);
388 return LhsIdx < RhsIdx;
391 // Now construct opcode groups. Groups are used by the SubtargetEmitter when
392 // expanding the body of a STIPredicate function. In particular, each opcode
393 // group is expanded into a sequence of labels in a switch statement.
394 // It identifies opcodes for which different processors define same predicates
395 // and same opcode masks.
396 for (OpcodeMapPair &Info : OpcodeMappings)
397 Fn.addOpcode(Info.first, std::move(Info.second));
400 void CodeGenSchedModels::collectSTIPredicates() {
401 // Map STIPredicateDecl records to elements of vector
402 // CodeGenSchedModels::STIPredicates.
403 DenseMap<const Record *, unsigned> Decl2Index;
405 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
406 for (const Record *R : RV) {
407 const Record *Decl = R->getValueAsDef("Declaration");
409 const auto It = Decl2Index.find(Decl);
410 if (It == Decl2Index.end()) {
411 Decl2Index[Decl] = STIPredicates.size();
412 STIPredicateFunction Predicate(Decl);
413 Predicate.addDefinition(R);
414 STIPredicates.emplace_back(std::move(Predicate));
415 continue;
418 STIPredicateFunction &PreviousDef = STIPredicates[It->second];
419 PreviousDef.addDefinition(R);
422 for (STIPredicateFunction &Fn : STIPredicates)
423 processSTIPredicate(Fn, ProcModelMap);
426 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
427 const llvm::APInt &OperandMask,
428 const Record *Predicate) {
429 auto It = llvm::find_if(
430 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
431 return P.Predicate == Predicate && P.OperandMask == OperandMask;
433 if (It == Predicates.end()) {
434 Predicates.emplace_back(CpuMask, OperandMask, Predicate);
435 return;
437 It->ProcModelMask |= CpuMask;
440 void CodeGenSchedModels::checkMCInstPredicates() const {
441 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
442 if (MCPredicates.empty())
443 return;
445 // A target cannot have multiple TIIPredicate definitions with a same name.
446 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
447 for (const Record *TIIPred : MCPredicates) {
448 StringRef Name = TIIPred->getValueAsString("FunctionName");
449 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
450 if (It == TIIPredicates.end()) {
451 TIIPredicates[Name] = TIIPred;
452 continue;
455 PrintError(TIIPred->getLoc(),
456 "TIIPredicate " + Name + " is multiply defined.");
457 PrintNote(It->second->getLoc(),
458 " Previous definition of " + Name + " was here.");
459 PrintFatalError(TIIPred->getLoc(),
460 "Found conflicting definitions of TIIPredicate.");
464 void CodeGenSchedModels::collectRetireControlUnits() {
465 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
467 for (Record *RCU : Units) {
468 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
469 if (PM.RetireControlUnit) {
470 PrintError(RCU->getLoc(),
471 "Expected a single RetireControlUnit definition");
472 PrintNote(PM.RetireControlUnit->getLoc(),
473 "Previous definition of RetireControlUnit was here");
475 PM.RetireControlUnit = RCU;
479 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
480 RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
482 for (Record *Queue : Queues) {
483 CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
484 if (Queue->isSubClassOf("LoadQueue")) {
485 if (PM.LoadQueue) {
486 PrintError(Queue->getLoc(),
487 "Expected a single LoadQueue definition");
488 PrintNote(PM.LoadQueue->getLoc(),
489 "Previous definition of LoadQueue was here");
492 PM.LoadQueue = Queue;
495 if (Queue->isSubClassOf("StoreQueue")) {
496 if (PM.StoreQueue) {
497 PrintError(Queue->getLoc(),
498 "Expected a single StoreQueue definition");
499 PrintNote(PM.LoadQueue->getLoc(),
500 "Previous definition of StoreQueue was here");
503 PM.StoreQueue = Queue;
508 /// Collect optional processor information.
509 void CodeGenSchedModels::collectOptionalProcessorInfo() {
510 // Find register file definitions for each processor.
511 collectRegisterFiles();
513 // Collect processor RetireControlUnit descriptors if available.
514 collectRetireControlUnits();
516 // Collect information about load/store queues.
517 collectLoadStoreQueueInfo();
519 checkCompleteness();
522 /// Gather all processor models.
523 void CodeGenSchedModels::collectProcModels() {
524 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
525 llvm::sort(ProcRecords, LessRecordFieldName());
527 // Reserve space because we can. Reallocation would be ok.
528 ProcModels.reserve(ProcRecords.size()+1);
530 // Use idx=0 for NoModel/NoItineraries.
531 Record *NoModelDef = Records.getDef("NoSchedModel");
532 Record *NoItinsDef = Records.getDef("NoItineraries");
533 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
534 ProcModelMap[NoModelDef] = 0;
536 // For each processor, find a unique machine model.
537 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
538 for (Record *ProcRecord : ProcRecords)
539 addProcModel(ProcRecord);
542 /// Get a unique processor model based on the defined MachineModel and
543 /// ProcessorItineraries.
544 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
545 Record *ModelKey = getModelOrItinDef(ProcDef);
546 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
547 return;
549 std::string Name = ModelKey->getName();
550 if (ModelKey->isSubClassOf("SchedMachineModel")) {
551 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
552 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
554 else {
555 // An itinerary is defined without a machine model. Infer a new model.
556 if (!ModelKey->getValueAsListOfDefs("IID").empty())
557 Name = Name + "Model";
558 ProcModels.emplace_back(ProcModels.size(), Name,
559 ProcDef->getValueAsDef("SchedModel"), ModelKey);
561 LLVM_DEBUG(ProcModels.back().dump());
564 // Recursively find all reachable SchedReadWrite records.
565 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
566 SmallPtrSet<Record*, 16> &RWSet) {
567 if (!RWSet.insert(RWDef).second)
568 return;
569 RWDefs.push_back(RWDef);
570 // Reads don't currently have sequence records, but it can be added later.
571 if (RWDef->isSubClassOf("WriteSequence")) {
572 RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
573 for (Record *WSRec : Seq)
574 scanSchedRW(WSRec, RWDefs, RWSet);
576 else if (RWDef->isSubClassOf("SchedVariant")) {
577 // Visit each variant (guarded by a different predicate).
578 RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
579 for (Record *Variant : Vars) {
580 // Visit each RW in the sequence selected by the current variant.
581 RecVec Selected = Variant->getValueAsListOfDefs("Selected");
582 for (Record *SelDef : Selected)
583 scanSchedRW(SelDef, RWDefs, RWSet);
588 // Collect and sort all SchedReadWrites reachable via tablegen records.
589 // More may be inferred later when inferring new SchedClasses from variants.
590 void CodeGenSchedModels::collectSchedRW() {
591 // Reserve idx=0 for invalid writes/reads.
592 SchedWrites.resize(1);
593 SchedReads.resize(1);
595 SmallPtrSet<Record*, 16> RWSet;
597 // Find all SchedReadWrites referenced by instruction defs.
598 RecVec SWDefs, SRDefs;
599 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
600 Record *SchedDef = Inst->TheDef;
601 if (SchedDef->isValueUnset("SchedRW"))
602 continue;
603 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
604 for (Record *RW : RWs) {
605 if (RW->isSubClassOf("SchedWrite"))
606 scanSchedRW(RW, SWDefs, RWSet);
607 else {
608 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
609 scanSchedRW(RW, SRDefs, RWSet);
613 // Find all ReadWrites referenced by InstRW.
614 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
615 for (Record *InstRWDef : InstRWDefs) {
616 // For all OperandReadWrites.
617 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
618 for (Record *RWDef : RWDefs) {
619 if (RWDef->isSubClassOf("SchedWrite"))
620 scanSchedRW(RWDef, SWDefs, RWSet);
621 else {
622 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
623 scanSchedRW(RWDef, SRDefs, RWSet);
627 // Find all ReadWrites referenced by ItinRW.
628 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
629 for (Record *ItinRWDef : ItinRWDefs) {
630 // For all OperandReadWrites.
631 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
632 for (Record *RWDef : RWDefs) {
633 if (RWDef->isSubClassOf("SchedWrite"))
634 scanSchedRW(RWDef, SWDefs, RWSet);
635 else {
636 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
637 scanSchedRW(RWDef, SRDefs, RWSet);
641 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
642 // for the loop below that initializes Alias vectors.
643 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
644 llvm::sort(AliasDefs, LessRecord());
645 for (Record *ADef : AliasDefs) {
646 Record *MatchDef = ADef->getValueAsDef("MatchRW");
647 Record *AliasDef = ADef->getValueAsDef("AliasRW");
648 if (MatchDef->isSubClassOf("SchedWrite")) {
649 if (!AliasDef->isSubClassOf("SchedWrite"))
650 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
651 scanSchedRW(AliasDef, SWDefs, RWSet);
653 else {
654 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
655 if (!AliasDef->isSubClassOf("SchedRead"))
656 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
657 scanSchedRW(AliasDef, SRDefs, RWSet);
660 // Sort and add the SchedReadWrites directly referenced by instructions or
661 // itinerary resources. Index reads and writes in separate domains.
662 llvm::sort(SWDefs, LessRecord());
663 for (Record *SWDef : SWDefs) {
664 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
665 SchedWrites.emplace_back(SchedWrites.size(), SWDef);
667 llvm::sort(SRDefs, LessRecord());
668 for (Record *SRDef : SRDefs) {
669 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
670 SchedReads.emplace_back(SchedReads.size(), SRDef);
672 // Initialize WriteSequence vectors.
673 for (CodeGenSchedRW &CGRW : SchedWrites) {
674 if (!CGRW.IsSequence)
675 continue;
676 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
677 /*IsRead=*/false);
679 // Initialize Aliases vectors.
680 for (Record *ADef : AliasDefs) {
681 Record *AliasDef = ADef->getValueAsDef("AliasRW");
682 getSchedRW(AliasDef).IsAlias = true;
683 Record *MatchDef = ADef->getValueAsDef("MatchRW");
684 CodeGenSchedRW &RW = getSchedRW(MatchDef);
685 if (RW.IsAlias)
686 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
687 RW.Aliases.push_back(ADef);
689 LLVM_DEBUG(
690 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
691 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
692 dbgs() << WIdx << ": ";
693 SchedWrites[WIdx].dump();
694 dbgs() << '\n';
695 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
696 ++RIdx) {
697 dbgs() << RIdx << ": ";
698 SchedReads[RIdx].dump();
699 dbgs() << '\n';
700 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
701 for (Record *RWDef
702 : RWDefs) {
703 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
704 StringRef Name = RWDef->getName();
705 if (Name != "NoWrite" && Name != "ReadDefault")
706 dbgs() << "Unused SchedReadWrite " << Name << '\n';
711 /// Compute a SchedWrite name from a sequence of writes.
712 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
713 std::string Name("(");
714 for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
715 if (I != Seq.begin())
716 Name += '_';
717 Name += getSchedRW(*I, IsRead).Name;
719 Name += ')';
720 return Name;
723 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
724 bool IsRead) const {
725 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
726 const auto I = find_if(
727 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
728 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
731 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
732 for (const CodeGenSchedRW &Read : SchedReads) {
733 Record *ReadDef = Read.TheDef;
734 if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
735 continue;
737 RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
738 if (is_contained(ValidWrites, WriteDef)) {
739 return true;
742 return false;
745 static void splitSchedReadWrites(const RecVec &RWDefs,
746 RecVec &WriteDefs, RecVec &ReadDefs) {
747 for (Record *RWDef : RWDefs) {
748 if (RWDef->isSubClassOf("SchedWrite"))
749 WriteDefs.push_back(RWDef);
750 else {
751 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
752 ReadDefs.push_back(RWDef);
757 // Split the SchedReadWrites defs and call findRWs for each list.
758 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
759 IdxVec &Writes, IdxVec &Reads) const {
760 RecVec WriteDefs;
761 RecVec ReadDefs;
762 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
763 findRWs(WriteDefs, Writes, false);
764 findRWs(ReadDefs, Reads, true);
767 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
768 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
769 bool IsRead) const {
770 for (Record *RWDef : RWDefs) {
771 unsigned Idx = getSchedRWIdx(RWDef, IsRead);
772 assert(Idx && "failed to collect SchedReadWrite");
773 RWs.push_back(Idx);
777 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
778 bool IsRead) const {
779 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
780 if (!SchedRW.IsSequence) {
781 RWSeq.push_back(RWIdx);
782 return;
784 int Repeat =
785 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
786 for (int i = 0; i < Repeat; ++i) {
787 for (unsigned I : SchedRW.Sequence) {
788 expandRWSequence(I, RWSeq, IsRead);
793 // Expand a SchedWrite as a sequence following any aliases that coincide with
794 // the given processor model.
795 void CodeGenSchedModels::expandRWSeqForProc(
796 unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
797 const CodeGenProcModel &ProcModel) const {
799 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
800 Record *AliasDef = nullptr;
801 for (const Record *Rec : SchedWrite.Aliases) {
802 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
803 if (Rec->getValueInit("SchedModel")->isComplete()) {
804 Record *ModelDef = Rec->getValueAsDef("SchedModel");
805 if (&getProcModel(ModelDef) != &ProcModel)
806 continue;
808 if (AliasDef)
809 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
810 "defined for processor " + ProcModel.ModelName +
811 " Ensure only one SchedAlias exists per RW.");
812 AliasDef = AliasRW.TheDef;
814 if (AliasDef) {
815 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
816 RWSeq, IsRead,ProcModel);
817 return;
819 if (!SchedWrite.IsSequence) {
820 RWSeq.push_back(RWIdx);
821 return;
823 int Repeat =
824 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
825 for (int I = 0, E = Repeat; I < E; ++I) {
826 for (unsigned Idx : SchedWrite.Sequence) {
827 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
832 // Find the existing SchedWrite that models this sequence of writes.
833 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
834 bool IsRead) {
835 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
837 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
838 return makeArrayRef(RW.Sequence) == Seq;
840 // Index zero reserved for invalid RW.
841 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
844 /// Add this ReadWrite if it doesn't already exist.
845 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
846 bool IsRead) {
847 assert(!Seq.empty() && "cannot insert empty sequence");
848 if (Seq.size() == 1)
849 return Seq.back();
851 unsigned Idx = findRWForSequence(Seq, IsRead);
852 if (Idx)
853 return Idx;
855 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
856 unsigned RWIdx = RWVec.size();
857 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
858 RWVec.push_back(SchedRW);
859 return RWIdx;
862 /// Visit all the instruction definitions for this target to gather and
863 /// enumerate the itinerary classes. These are the explicitly specified
864 /// SchedClasses. More SchedClasses may be inferred.
865 void CodeGenSchedModels::collectSchedClasses() {
867 // NoItinerary is always the first class at Idx=0
868 assert(SchedClasses.empty() && "Expected empty sched class");
869 SchedClasses.emplace_back(0, "NoInstrModel",
870 Records.getDef("NoItinerary"));
871 SchedClasses.back().ProcIndices.push_back(0);
873 // Create a SchedClass for each unique combination of itinerary class and
874 // SchedRW list.
875 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
876 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
877 IdxVec Writes, Reads;
878 if (!Inst->TheDef->isValueUnset("SchedRW"))
879 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
881 // ProcIdx == 0 indicates the class applies to all processors.
882 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
883 InstrClassMap[Inst->TheDef] = SCIdx;
885 // Create classes for InstRW defs.
886 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
887 llvm::sort(InstRWDefs, LessRecord());
888 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
889 for (Record *RWDef : InstRWDefs)
890 createInstRWClass(RWDef);
892 NumInstrSchedClasses = SchedClasses.size();
894 bool EnableDump = false;
895 LLVM_DEBUG(EnableDump = true);
896 if (!EnableDump)
897 return;
899 LLVM_DEBUG(
900 dbgs()
901 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
902 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
903 StringRef InstName = Inst->TheDef->getName();
904 unsigned SCIdx = getSchedClassIdx(*Inst);
905 if (!SCIdx) {
906 LLVM_DEBUG({
907 if (!Inst->hasNoSchedulingInfo)
908 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
910 continue;
912 CodeGenSchedClass &SC = getSchedClass(SCIdx);
913 if (SC.ProcIndices[0] != 0)
914 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
915 "must not be subtarget specific.");
917 IdxVec ProcIndices;
918 if (SC.ItinClassDef->getName() != "NoItinerary") {
919 ProcIndices.push_back(0);
920 dbgs() << "Itinerary for " << InstName << ": "
921 << SC.ItinClassDef->getName() << '\n';
923 if (!SC.Writes.empty()) {
924 ProcIndices.push_back(0);
925 LLVM_DEBUG({
926 dbgs() << "SchedRW machine model for " << InstName;
927 for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
928 ++WI)
929 dbgs() << " " << SchedWrites[*WI].Name;
930 for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
931 dbgs() << " " << SchedReads[*RI].Name;
932 dbgs() << '\n';
935 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
936 for (Record *RWDef : RWDefs) {
937 const CodeGenProcModel &ProcModel =
938 getProcModel(RWDef->getValueAsDef("SchedModel"));
939 ProcIndices.push_back(ProcModel.Index);
940 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
941 << InstName);
942 IdxVec Writes;
943 IdxVec Reads;
944 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
945 Writes, Reads);
946 LLVM_DEBUG({
947 for (unsigned WIdx : Writes)
948 dbgs() << " " << SchedWrites[WIdx].Name;
949 for (unsigned RIdx : Reads)
950 dbgs() << " " << SchedReads[RIdx].Name;
951 dbgs() << '\n';
954 // If ProcIndices contains zero, the class applies to all processors.
955 LLVM_DEBUG({
956 if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
957 for (const CodeGenProcModel &PM : ProcModels) {
958 if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
959 dbgs() << "No machine model for " << Inst->TheDef->getName()
960 << " on processor " << PM.ModelName << '\n';
967 // Get the SchedClass index for an instruction.
968 unsigned
969 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
970 return InstrClassMap.lookup(Inst.TheDef);
973 std::string
974 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
975 ArrayRef<unsigned> OperWrites,
976 ArrayRef<unsigned> OperReads) {
978 std::string Name;
979 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
980 Name = ItinClassDef->getName();
981 for (unsigned Idx : OperWrites) {
982 if (!Name.empty())
983 Name += '_';
984 Name += SchedWrites[Idx].Name;
986 for (unsigned Idx : OperReads) {
987 Name += '_';
988 Name += SchedReads[Idx].Name;
990 return Name;
993 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
995 std::string Name;
996 for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
997 if (I != InstDefs.begin())
998 Name += '_';
999 Name += (*I)->getName();
1001 return Name;
1004 /// Add an inferred sched class from an itinerary class and per-operand list of
1005 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1006 /// processors that may utilize this class.
1007 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1008 ArrayRef<unsigned> OperWrites,
1009 ArrayRef<unsigned> OperReads,
1010 ArrayRef<unsigned> ProcIndices) {
1011 assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1013 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1014 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1017 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1018 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1019 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1020 IdxVec PI;
1021 std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1022 SchedClasses[Idx].ProcIndices.end(),
1023 ProcIndices.begin(), ProcIndices.end(),
1024 std::back_inserter(PI));
1025 SchedClasses[Idx].ProcIndices = std::move(PI);
1026 return Idx;
1028 Idx = SchedClasses.size();
1029 SchedClasses.emplace_back(Idx,
1030 createSchedClassName(ItinClassDef, OperWrites,
1031 OperReads),
1032 ItinClassDef);
1033 CodeGenSchedClass &SC = SchedClasses.back();
1034 SC.Writes = OperWrites;
1035 SC.Reads = OperReads;
1036 SC.ProcIndices = ProcIndices;
1038 return Idx;
1041 // Create classes for each set of opcodes that are in the same InstReadWrite
1042 // definition across all processors.
1043 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1044 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1045 // intersects with an existing class via a previous InstRWDef. Instrs that do
1046 // not intersect with an existing class refer back to their former class as
1047 // determined from ItinDef or SchedRW.
1048 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1049 // Sort Instrs into sets.
1050 const RecVec *InstDefs = Sets.expand(InstRWDef);
1051 if (InstDefs->empty())
1052 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1054 for (Record *InstDef : *InstDefs) {
1055 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1056 if (Pos == InstrClassMap.end())
1057 PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1058 unsigned SCIdx = Pos->second;
1059 ClassInstrs[SCIdx].push_back(InstDef);
1061 // For each set of Instrs, create a new class if necessary, and map or remap
1062 // the Instrs to it.
1063 for (auto &Entry : ClassInstrs) {
1064 unsigned OldSCIdx = Entry.first;
1065 ArrayRef<Record*> InstDefs = Entry.second;
1066 // If the all instrs in the current class are accounted for, then leave
1067 // them mapped to their old class.
1068 if (OldSCIdx) {
1069 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1070 if (!RWDefs.empty()) {
1071 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1072 unsigned OrigNumInstrs =
1073 count_if(*OrigInstDefs, [&](Record *OIDef) {
1074 return InstrClassMap[OIDef] == OldSCIdx;
1076 if (OrigNumInstrs == InstDefs.size()) {
1077 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1078 "expected a generic SchedClass");
1079 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1080 // Make sure we didn't already have a InstRW containing this
1081 // instruction on this model.
1082 for (Record *RWD : RWDefs) {
1083 if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1084 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1085 for (Record *Inst : InstDefs) {
1086 PrintFatalError
1087 (InstRWDef->getLoc(),
1088 "Overlapping InstRW definition for \"" +
1089 Inst->getName() +
1090 "\" also matches previous \"" +
1091 RWD->getValue("Instrs")->getValue()->getAsString() +
1092 "\".");
1096 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1097 << SchedClasses[OldSCIdx].Name << " on "
1098 << RWModelDef->getName() << "\n");
1099 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1100 continue;
1104 unsigned SCIdx = SchedClasses.size();
1105 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1106 CodeGenSchedClass &SC = SchedClasses.back();
1107 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1108 << InstRWDef->getValueAsDef("SchedModel")->getName()
1109 << "\n");
1111 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1112 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1113 SC.Writes = SchedClasses[OldSCIdx].Writes;
1114 SC.Reads = SchedClasses[OldSCIdx].Reads;
1115 SC.ProcIndices.push_back(0);
1116 // If we had an old class, copy it's InstRWs to this new class.
1117 if (OldSCIdx) {
1118 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1119 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1120 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1121 for (Record *InstDef : InstDefs) {
1122 PrintFatalError
1123 (InstRWDef->getLoc(),
1124 "Overlapping InstRW definition for \"" +
1125 InstDef->getName() +
1126 "\" also matches previous \"" +
1127 OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1128 "\".");
1131 assert(OldRWDef != InstRWDef &&
1132 "SchedClass has duplicate InstRW def");
1133 SC.InstRWs.push_back(OldRWDef);
1136 // Map each Instr to this new class.
1137 for (Record *InstDef : InstDefs)
1138 InstrClassMap[InstDef] = SCIdx;
1139 SC.InstRWs.push_back(InstRWDef);
1143 // True if collectProcItins found anything.
1144 bool CodeGenSchedModels::hasItineraries() const {
1145 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1146 if (PM.hasItineraries())
1147 return true;
1148 return false;
1151 // Gather the processor itineraries.
1152 void CodeGenSchedModels::collectProcItins() {
1153 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1154 for (CodeGenProcModel &ProcModel : ProcModels) {
1155 if (!ProcModel.hasItineraries())
1156 continue;
1158 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1159 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1161 // Populate ItinDefList with Itinerary records.
1162 ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1164 // Insert each itinerary data record in the correct position within
1165 // the processor model's ItinDefList.
1166 for (Record *ItinData : ItinRecords) {
1167 const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1168 bool FoundClass = false;
1170 for (const CodeGenSchedClass &SC :
1171 make_range(schedClassBegin(), schedClassEnd())) {
1172 // Multiple SchedClasses may share an itinerary. Update all of them.
1173 if (SC.ItinClassDef == ItinDef) {
1174 ProcModel.ItinDefList[SC.Index] = ItinData;
1175 FoundClass = true;
1178 if (!FoundClass) {
1179 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1180 << " missing class for itinerary "
1181 << ItinDef->getName() << '\n');
1184 // Check for missing itinerary entries.
1185 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1186 LLVM_DEBUG(
1187 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1188 if (!ProcModel.ItinDefList[i])
1189 dbgs() << ProcModel.ItinsDef->getName()
1190 << " missing itinerary for class " << SchedClasses[i].Name
1191 << '\n';
1196 // Gather the read/write types for each itinerary class.
1197 void CodeGenSchedModels::collectProcItinRW() {
1198 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1199 llvm::sort(ItinRWDefs, LessRecord());
1200 for (Record *RWDef : ItinRWDefs) {
1201 if (!RWDef->getValueInit("SchedModel")->isComplete())
1202 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1203 Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1204 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1205 if (I == ProcModelMap.end()) {
1206 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1207 + ModelDef->getName());
1209 ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1213 // Gather the unsupported features for processor models.
1214 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1215 for (CodeGenProcModel &ProcModel : ProcModels) {
1216 for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
1217 ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
1222 /// Infer new classes from existing classes. In the process, this may create new
1223 /// SchedWrites from sequences of existing SchedWrites.
1224 void CodeGenSchedModels::inferSchedClasses() {
1225 LLVM_DEBUG(
1226 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1227 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1229 // Visit all existing classes and newly created classes.
1230 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1231 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1233 if (SchedClasses[Idx].ItinClassDef)
1234 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1235 if (!SchedClasses[Idx].InstRWs.empty())
1236 inferFromInstRWs(Idx);
1237 if (!SchedClasses[Idx].Writes.empty()) {
1238 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1239 Idx, SchedClasses[Idx].ProcIndices);
1241 assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1242 "too many SchedVariants");
1246 /// Infer classes from per-processor itinerary resources.
1247 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1248 unsigned FromClassIdx) {
1249 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1250 const CodeGenProcModel &PM = ProcModels[PIdx];
1251 // For all ItinRW entries.
1252 bool HasMatch = false;
1253 for (const Record *Rec : PM.ItinRWDefs) {
1254 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1255 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1256 continue;
1257 if (HasMatch)
1258 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1259 + ItinClassDef->getName()
1260 + " in ItinResources for " + PM.ModelName);
1261 HasMatch = true;
1262 IdxVec Writes, Reads;
1263 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1264 inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1269 /// Infer classes from per-processor InstReadWrite definitions.
1270 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1271 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1272 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1273 Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1274 const RecVec *InstDefs = Sets.expand(Rec);
1275 RecIter II = InstDefs->begin(), IE = InstDefs->end();
1276 for (; II != IE; ++II) {
1277 if (InstrClassMap[*II] == SCIdx)
1278 break;
1280 // If this class no longer has any instructions mapped to it, it has become
1281 // irrelevant.
1282 if (II == IE)
1283 continue;
1284 IdxVec Writes, Reads;
1285 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1286 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1287 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1291 namespace {
1293 // Helper for substituteVariantOperand.
1294 struct TransVariant {
1295 Record *VarOrSeqDef; // Variant or sequence.
1296 unsigned RWIdx; // Index of this variant or sequence's matched type.
1297 unsigned ProcIdx; // Processor model index or zero for any.
1298 unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1300 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1301 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1304 // Associate a predicate with the SchedReadWrite that it guards.
1305 // RWIdx is the index of the read/write variant.
1306 struct PredCheck {
1307 bool IsRead;
1308 unsigned RWIdx;
1309 Record *Predicate;
1311 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1314 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1315 struct PredTransition {
1316 // A predicate term is a conjunction of PredChecks.
1317 SmallVector<PredCheck, 4> PredTerm;
1318 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1319 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1320 SmallVector<unsigned, 4> ProcIndices;
1323 // Encapsulate a set of partially constructed transitions.
1324 // The results are built by repeated calls to substituteVariants.
1325 class PredTransitions {
1326 CodeGenSchedModels &SchedModels;
1328 public:
1329 std::vector<PredTransition> TransVec;
1331 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1333 void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1334 bool IsRead, unsigned StartIdx);
1336 void substituteVariants(const PredTransition &Trans);
1338 #ifndef NDEBUG
1339 void dump() const;
1340 #endif
1342 private:
1343 bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
1344 void getIntersectingVariants(
1345 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1346 std::vector<TransVariant> &IntersectingVariants);
1347 void pushVariant(const TransVariant &VInfo, bool IsRead);
1350 } // end anonymous namespace
1352 // Return true if this predicate is mutually exclusive with a PredTerm. This
1353 // degenerates into checking if the predicate is mutually exclusive with any
1354 // predicate in the Term's conjunction.
1356 // All predicates associated with a given SchedRW are considered mutually
1357 // exclusive. This should work even if the conditions expressed by the
1358 // predicates are not exclusive because the predicates for a given SchedWrite
1359 // are always checked in the order they are defined in the .td file. Later
1360 // conditions implicitly negate any prior condition.
1361 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1362 ArrayRef<PredCheck> Term) {
1363 for (const PredCheck &PC: Term) {
1364 if (PC.Predicate == PredDef)
1365 return false;
1367 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1368 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1369 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1370 if (any_of(Variants, [PredDef](const Record *R) {
1371 return R->getValueAsDef("Predicate") == PredDef;
1373 return true;
1375 return false;
1378 static bool hasAliasedVariants(const CodeGenSchedRW &RW,
1379 CodeGenSchedModels &SchedModels) {
1380 if (RW.HasVariants)
1381 return true;
1383 for (Record *Alias : RW.Aliases) {
1384 const CodeGenSchedRW &AliasRW =
1385 SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
1386 if (AliasRW.HasVariants)
1387 return true;
1388 if (AliasRW.IsSequence) {
1389 IdxVec ExpandedRWs;
1390 SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
1391 for (unsigned SI : ExpandedRWs) {
1392 if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
1393 SchedModels))
1394 return true;
1398 return false;
1401 static bool hasVariant(ArrayRef<PredTransition> Transitions,
1402 CodeGenSchedModels &SchedModels) {
1403 for (const PredTransition &PTI : Transitions) {
1404 for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
1405 for (unsigned WI : WSI)
1406 if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
1407 return true;
1409 for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
1410 for (unsigned RI : RSI)
1411 if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
1412 return true;
1414 return false;
1417 // Populate IntersectingVariants with any variants or aliased sequences of the
1418 // given SchedRW whose processor indices and predicates are not mutually
1419 // exclusive with the given transition.
1420 void PredTransitions::getIntersectingVariants(
1421 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1422 std::vector<TransVariant> &IntersectingVariants) {
1424 bool GenericRW = false;
1426 std::vector<TransVariant> Variants;
1427 if (SchedRW.HasVariants) {
1428 unsigned VarProcIdx = 0;
1429 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1430 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1431 VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1433 // Push each variant. Assign TransVecIdx later.
1434 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1435 for (Record *VarDef : VarDefs)
1436 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1437 if (VarProcIdx == 0)
1438 GenericRW = true;
1440 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1441 AI != AE; ++AI) {
1442 // If either the SchedAlias itself or the SchedReadWrite that it aliases
1443 // to is defined within a processor model, constrain all variants to
1444 // that processor.
1445 unsigned AliasProcIdx = 0;
1446 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1447 Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1448 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1450 const CodeGenSchedRW &AliasRW =
1451 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1453 if (AliasRW.HasVariants) {
1454 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1455 for (Record *VD : VarDefs)
1456 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1458 if (AliasRW.IsSequence)
1459 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1460 if (AliasProcIdx == 0)
1461 GenericRW = true;
1463 for (TransVariant &Variant : Variants) {
1464 // Don't expand variants if the processor models don't intersect.
1465 // A zero processor index means any processor.
1466 SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
1467 if (ProcIndices[0] && Variant.ProcIdx) {
1468 unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
1469 Variant.ProcIdx);
1470 if (!Cnt)
1471 continue;
1472 if (Cnt > 1) {
1473 const CodeGenProcModel &PM =
1474 *(SchedModels.procModelBegin() + Variant.ProcIdx);
1475 PrintFatalError(Variant.VarOrSeqDef->getLoc(),
1476 "Multiple variants defined for processor " +
1477 PM.ModelName +
1478 " Ensure only one SchedAlias exists per RW.");
1481 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1482 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1483 if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
1484 continue;
1486 if (IntersectingVariants.empty()) {
1487 // The first variant builds on the existing transition.
1488 Variant.TransVecIdx = TransIdx;
1489 IntersectingVariants.push_back(Variant);
1491 else {
1492 // Push another copy of the current transition for more variants.
1493 Variant.TransVecIdx = TransVec.size();
1494 IntersectingVariants.push_back(Variant);
1495 TransVec.push_back(TransVec[TransIdx]);
1498 if (GenericRW && IntersectingVariants.empty()) {
1499 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1500 "a matching predicate on any processor");
1504 // Push the Reads/Writes selected by this variant onto the PredTransition
1505 // specified by VInfo.
1506 void PredTransitions::
1507 pushVariant(const TransVariant &VInfo, bool IsRead) {
1508 PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1510 // If this operand transition is reached through a processor-specific alias,
1511 // then the whole transition is specific to this processor.
1512 if (VInfo.ProcIdx != 0)
1513 Trans.ProcIndices.assign(1, VInfo.ProcIdx);
1515 IdxVec SelectedRWs;
1516 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1517 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1518 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1519 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1520 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1522 else {
1523 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1524 "variant must be a SchedVariant or aliased WriteSequence");
1525 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1528 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1530 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1531 ? Trans.ReadSequences : Trans.WriteSequences;
1532 if (SchedRW.IsVariadic) {
1533 unsigned OperIdx = RWSequences.size()-1;
1534 // Make N-1 copies of this transition's last sequence.
1535 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1536 RWSequences[OperIdx]);
1537 // Push each of the N elements of the SelectedRWs onto a copy of the last
1538 // sequence (split the current operand into N operands).
1539 // Note that write sequences should be expanded within this loop--the entire
1540 // sequence belongs to a single operand.
1541 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1542 RWI != RWE; ++RWI, ++OperIdx) {
1543 IdxVec ExpandedRWs;
1544 if (IsRead)
1545 ExpandedRWs.push_back(*RWI);
1546 else
1547 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1548 RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
1549 ExpandedRWs.begin(), ExpandedRWs.end());
1551 assert(OperIdx == RWSequences.size() && "missed a sequence");
1553 else {
1554 // Push this transition's expanded sequence onto this transition's last
1555 // sequence (add to the current operand's sequence).
1556 SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1557 IdxVec ExpandedRWs;
1558 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1559 RWI != RWE; ++RWI) {
1560 if (IsRead)
1561 ExpandedRWs.push_back(*RWI);
1562 else
1563 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1565 Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
1569 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1570 // operand. StartIdx is an index into TransVec where partial results
1571 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1572 // of TransVec.
1573 void PredTransitions::substituteVariantOperand(
1574 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1576 // Visit each original RW within the current sequence.
1577 for (SmallVectorImpl<unsigned>::const_iterator
1578 RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
1579 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
1580 // Push this RW on all partial PredTransitions or distribute variants.
1581 // New PredTransitions may be pushed within this loop which should not be
1582 // revisited (TransEnd must be loop invariant).
1583 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1584 TransIdx != TransEnd; ++TransIdx) {
1585 // In the common case, push RW onto the current operand's sequence.
1586 if (!hasAliasedVariants(SchedRW, SchedModels)) {
1587 if (IsRead)
1588 TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
1589 else
1590 TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
1591 continue;
1593 // Distribute this partial PredTransition across intersecting variants.
1594 // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1595 std::vector<TransVariant> IntersectingVariants;
1596 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1597 // Now expand each variant on top of its copy of the transition.
1598 for (std::vector<TransVariant>::const_iterator
1599 IVI = IntersectingVariants.begin(),
1600 IVE = IntersectingVariants.end();
1601 IVI != IVE; ++IVI) {
1602 pushVariant(*IVI, IsRead);
1608 // For each variant of a Read/Write in Trans, substitute the sequence of
1609 // Read/Writes guarded by the variant. This is exponential in the number of
1610 // variant Read/Writes, but in practice detection of mutually exclusive
1611 // predicates should result in linear growth in the total number variants.
1613 // This is one step in a breadth-first search of nested variants.
1614 void PredTransitions::substituteVariants(const PredTransition &Trans) {
1615 // Build up a set of partial results starting at the back of
1616 // PredTransitions. Remember the first new transition.
1617 unsigned StartIdx = TransVec.size();
1618 TransVec.emplace_back();
1619 TransVec.back().PredTerm = Trans.PredTerm;
1620 TransVec.back().ProcIndices = Trans.ProcIndices;
1622 // Visit each original write sequence.
1623 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1624 WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
1625 WSI != WSE; ++WSI) {
1626 // Push a new (empty) write sequence onto all partial Transitions.
1627 for (std::vector<PredTransition>::iterator I =
1628 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1629 I->WriteSequences.emplace_back();
1631 substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
1633 // Visit each original read sequence.
1634 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
1635 RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
1636 RSI != RSE; ++RSI) {
1637 // Push a new (empty) read sequence onto all partial Transitions.
1638 for (std::vector<PredTransition>::iterator I =
1639 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1640 I->ReadSequences.emplace_back();
1642 substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
1646 // Create a new SchedClass for each variant found by inferFromRW. Pass
1647 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1648 unsigned FromClassIdx,
1649 CodeGenSchedModels &SchedModels) {
1650 // For each PredTransition, create a new CodeGenSchedTransition, which usually
1651 // requires creating a new SchedClass.
1652 for (ArrayRef<PredTransition>::iterator
1653 I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
1654 IdxVec OperWritesVariant;
1655 transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
1656 [&SchedModels](ArrayRef<unsigned> WS) {
1657 return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
1659 IdxVec OperReadsVariant;
1660 transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
1661 [&SchedModels](ArrayRef<unsigned> RS) {
1662 return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
1664 CodeGenSchedTransition SCTrans;
1665 SCTrans.ToClassIdx =
1666 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1667 OperReadsVariant, I->ProcIndices);
1668 SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
1669 // The final PredTerm is unique set of predicates guarding the transition.
1670 RecVec Preds;
1671 transform(I->PredTerm, std::back_inserter(Preds),
1672 [](const PredCheck &P) {
1673 return P.Predicate;
1675 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1676 SCTrans.PredTerm = std::move(Preds);
1677 SchedModels.getSchedClass(FromClassIdx)
1678 .Transitions.push_back(std::move(SCTrans));
1682 // Create new SchedClasses for the given ReadWrite list. If any of the
1683 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1684 // of the ReadWrite list, following Aliases if necessary.
1685 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1686 ArrayRef<unsigned> OperReads,
1687 unsigned FromClassIdx,
1688 ArrayRef<unsigned> ProcIndices) {
1689 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1690 dbgs() << ") ");
1692 // Create a seed transition with an empty PredTerm and the expanded sequences
1693 // of SchedWrites for the current SchedClass.
1694 std::vector<PredTransition> LastTransitions;
1695 LastTransitions.emplace_back();
1696 LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
1697 ProcIndices.end());
1699 for (unsigned WriteIdx : OperWrites) {
1700 IdxVec WriteSeq;
1701 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1702 LastTransitions[0].WriteSequences.emplace_back();
1703 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1704 Seq.append(WriteSeq.begin(), WriteSeq.end());
1705 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1707 LLVM_DEBUG(dbgs() << " Reads: ");
1708 for (unsigned ReadIdx : OperReads) {
1709 IdxVec ReadSeq;
1710 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1711 LastTransitions[0].ReadSequences.emplace_back();
1712 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1713 Seq.append(ReadSeq.begin(), ReadSeq.end());
1714 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1716 LLVM_DEBUG(dbgs() << '\n');
1718 // Collect all PredTransitions for individual operands.
1719 // Iterate until no variant writes remain.
1720 while (hasVariant(LastTransitions, *this)) {
1721 PredTransitions Transitions(*this);
1722 for (const PredTransition &Trans : LastTransitions)
1723 Transitions.substituteVariants(Trans);
1724 LLVM_DEBUG(Transitions.dump());
1725 LastTransitions.swap(Transitions.TransVec);
1727 // If the first transition has no variants, nothing to do.
1728 if (LastTransitions[0].PredTerm.empty())
1729 return;
1731 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1732 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1733 inferFromTransitions(LastTransitions, FromClassIdx, *this);
1736 // Check if any processor resource group contains all resource records in
1737 // SubUnits.
1738 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1739 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1740 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1741 continue;
1742 RecVec SuperUnits =
1743 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1744 RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1745 for ( ; RI != RE; ++RI) {
1746 if (!is_contained(SuperUnits, *RI)) {
1747 break;
1750 if (RI == RE)
1751 return true;
1753 return false;
1756 // Verify that overlapping groups have a common supergroup.
1757 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1758 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1759 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1760 continue;
1761 RecVec CheckUnits =
1762 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1763 for (unsigned j = i+1; j < e; ++j) {
1764 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1765 continue;
1766 RecVec OtherUnits =
1767 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1768 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1769 OtherUnits.begin(), OtherUnits.end())
1770 != CheckUnits.end()) {
1771 // CheckUnits and OtherUnits overlap
1772 OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
1773 CheckUnits.end());
1774 if (!hasSuperGroup(OtherUnits, PM)) {
1775 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1776 "proc resource group overlaps with "
1777 + PM.ProcResourceDefs[j]->getName()
1778 + " but no supergroup contains both.");
1785 // Collect all the RegisterFile definitions available in this target.
1786 void CodeGenSchedModels::collectRegisterFiles() {
1787 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1789 // RegisterFiles is the vector of CodeGenRegisterFile.
1790 for (Record *RF : RegisterFileDefs) {
1791 // For each register file definition, construct a CodeGenRegisterFile object
1792 // and add it to the appropriate scheduling model.
1793 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1794 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1795 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1796 CGRF.MaxMovesEliminatedPerCycle =
1797 RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1798 CGRF.AllowZeroMoveEliminationOnly =
1799 RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1801 // Now set the number of physical registers as well as the cost of registers
1802 // in each register class.
1803 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1804 if (!CGRF.NumPhysRegs) {
1805 PrintFatalError(RF->getLoc(),
1806 "Invalid RegisterFile with zero physical registers");
1809 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1810 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1811 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1812 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1813 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1815 bool AllowMoveElim = false;
1816 if (MoveElimInfo->size() > I) {
1817 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1818 AllowMoveElim = Val->getValue();
1821 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1826 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1827 void CodeGenSchedModels::collectProcResources() {
1828 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1829 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1831 // Add any subtarget-specific SchedReadWrites that are directly associated
1832 // with processor resources. Refer to the parent SchedClass's ProcIndices to
1833 // determine which processors they apply to.
1834 for (const CodeGenSchedClass &SC :
1835 make_range(schedClassBegin(), schedClassEnd())) {
1836 if (SC.ItinClassDef) {
1837 collectItinProcResources(SC.ItinClassDef);
1838 continue;
1841 // This class may have a default ReadWrite list which can be overriden by
1842 // InstRW definitions.
1843 for (Record *RW : SC.InstRWs) {
1844 Record *RWModelDef = RW->getValueAsDef("SchedModel");
1845 unsigned PIdx = getProcModel(RWModelDef).Index;
1846 IdxVec Writes, Reads;
1847 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1848 collectRWResources(Writes, Reads, PIdx);
1851 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1853 // Add resources separately defined by each subtarget.
1854 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1855 for (Record *WR : WRDefs) {
1856 Record *ModelDef = WR->getValueAsDef("SchedModel");
1857 addWriteRes(WR, getProcModel(ModelDef).Index);
1859 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1860 for (Record *SWR : SWRDefs) {
1861 Record *ModelDef = SWR->getValueAsDef("SchedModel");
1862 addWriteRes(SWR, getProcModel(ModelDef).Index);
1864 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1865 for (Record *RA : RADefs) {
1866 Record *ModelDef = RA->getValueAsDef("SchedModel");
1867 addReadAdvance(RA, getProcModel(ModelDef).Index);
1869 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1870 for (Record *SRA : SRADefs) {
1871 if (SRA->getValueInit("SchedModel")->isComplete()) {
1872 Record *ModelDef = SRA->getValueAsDef("SchedModel");
1873 addReadAdvance(SRA, getProcModel(ModelDef).Index);
1876 // Add ProcResGroups that are defined within this processor model, which may
1877 // not be directly referenced but may directly specify a buffer size.
1878 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1879 for (Record *PRG : ProcResGroups) {
1880 if (!PRG->getValueInit("SchedModel")->isComplete())
1881 continue;
1882 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1883 if (!is_contained(PM.ProcResourceDefs, PRG))
1884 PM.ProcResourceDefs.push_back(PRG);
1886 // Add ProcResourceUnits unconditionally.
1887 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1888 if (!PRU->getValueInit("SchedModel")->isComplete())
1889 continue;
1890 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1891 if (!is_contained(PM.ProcResourceDefs, PRU))
1892 PM.ProcResourceDefs.push_back(PRU);
1894 // Finalize each ProcModel by sorting the record arrays.
1895 for (CodeGenProcModel &PM : ProcModels) {
1896 llvm::sort(PM.WriteResDefs, LessRecord());
1897 llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1898 llvm::sort(PM.ProcResourceDefs, LessRecord());
1899 LLVM_DEBUG(
1900 PM.dump();
1901 dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
1902 RE = PM.WriteResDefs.end();
1903 RI != RE; ++RI) {
1904 if ((*RI)->isSubClassOf("WriteRes"))
1905 dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
1906 else
1907 dbgs() << (*RI)->getName() << " ";
1908 } dbgs() << "\nReadAdvanceDefs: ";
1909 for (RecIter RI = PM.ReadAdvanceDefs.begin(),
1910 RE = PM.ReadAdvanceDefs.end();
1911 RI != RE; ++RI) {
1912 if ((*RI)->isSubClassOf("ReadAdvance"))
1913 dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
1914 else
1915 dbgs() << (*RI)->getName() << " ";
1916 } dbgs()
1917 << "\nProcResourceDefs: ";
1918 for (RecIter RI = PM.ProcResourceDefs.begin(),
1919 RE = PM.ProcResourceDefs.end();
1920 RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
1921 << '\n');
1922 verifyProcResourceGroups(PM);
1925 ProcResourceDefs.clear();
1926 ProcResGroups.clear();
1929 void CodeGenSchedModels::checkCompleteness() {
1930 bool Complete = true;
1931 bool HadCompleteModel = false;
1932 for (const CodeGenProcModel &ProcModel : procModels()) {
1933 const bool HasItineraries = ProcModel.hasItineraries();
1934 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1935 continue;
1936 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1937 if (Inst->hasNoSchedulingInfo)
1938 continue;
1939 if (ProcModel.isUnsupported(*Inst))
1940 continue;
1941 unsigned SCIdx = getSchedClassIdx(*Inst);
1942 if (!SCIdx) {
1943 if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
1944 PrintError(Inst->TheDef->getLoc(),
1945 "No schedule information for instruction '" +
1946 Inst->TheDef->getName() + "' in SchedMachineModel '" +
1947 ProcModel.ModelDef->getName() + "'");
1948 Complete = false;
1950 continue;
1953 const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1954 if (!SC.Writes.empty())
1955 continue;
1956 if (HasItineraries && SC.ItinClassDef != nullptr &&
1957 SC.ItinClassDef->getName() != "NoItinerary")
1958 continue;
1960 const RecVec &InstRWs = SC.InstRWs;
1961 auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1962 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1964 if (I == InstRWs.end()) {
1965 PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1966 "' lacks information for '" +
1967 Inst->TheDef->getName() + "'");
1968 Complete = false;
1971 HadCompleteModel = true;
1973 if (!Complete) {
1974 errs() << "\n\nIncomplete schedule models found.\n"
1975 << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
1976 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
1977 << "- Instructions should usually have Sched<[...]> as a superclass, "
1978 "you may temporarily use an empty list.\n"
1979 << "- Instructions related to unsupported features can be excluded with "
1980 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1981 "processor model.\n\n";
1982 PrintFatalError("Incomplete schedule model");
1986 // Collect itinerary class resources for each processor.
1987 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
1988 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1989 const CodeGenProcModel &PM = ProcModels[PIdx];
1990 // For all ItinRW entries.
1991 bool HasMatch = false;
1992 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
1993 II != IE; ++II) {
1994 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
1995 if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
1996 continue;
1997 if (HasMatch)
1998 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
1999 + ItinClassDef->getName()
2000 + " in ItinResources for " + PM.ModelName);
2001 HasMatch = true;
2002 IdxVec Writes, Reads;
2003 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2004 collectRWResources(Writes, Reads, PIdx);
2009 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2010 ArrayRef<unsigned> ProcIndices) {
2011 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2012 if (SchedRW.TheDef) {
2013 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2014 for (unsigned Idx : ProcIndices)
2015 addWriteRes(SchedRW.TheDef, Idx);
2017 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2018 for (unsigned Idx : ProcIndices)
2019 addReadAdvance(SchedRW.TheDef, Idx);
2022 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
2023 AI != AE; ++AI) {
2024 IdxVec AliasProcIndices;
2025 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
2026 AliasProcIndices.push_back(
2027 getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
2029 else
2030 AliasProcIndices = ProcIndices;
2031 const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
2032 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2034 IdxVec ExpandedRWs;
2035 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2036 for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
2037 SI != SE; ++SI) {
2038 collectRWResources(*SI, IsRead, AliasProcIndices);
2043 // Collect resources for a set of read/write types and processor indices.
2044 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2045 ArrayRef<unsigned> Reads,
2046 ArrayRef<unsigned> ProcIndices) {
2047 for (unsigned Idx : Writes)
2048 collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2050 for (unsigned Idx : Reads)
2051 collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2054 // Find the processor's resource units for this kind of resource.
2055 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2056 const CodeGenProcModel &PM,
2057 ArrayRef<SMLoc> Loc) const {
2058 if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2059 return ProcResKind;
2061 Record *ProcUnitDef = nullptr;
2062 assert(!ProcResourceDefs.empty());
2063 assert(!ProcResGroups.empty());
2065 for (Record *ProcResDef : ProcResourceDefs) {
2066 if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2067 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2068 if (ProcUnitDef) {
2069 PrintFatalError(Loc,
2070 "Multiple ProcessorResourceUnits associated with "
2071 + ProcResKind->getName());
2073 ProcUnitDef = ProcResDef;
2076 for (Record *ProcResGroup : ProcResGroups) {
2077 if (ProcResGroup == ProcResKind
2078 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2079 if (ProcUnitDef) {
2080 PrintFatalError(Loc,
2081 "Multiple ProcessorResourceUnits associated with "
2082 + ProcResKind->getName());
2084 ProcUnitDef = ProcResGroup;
2087 if (!ProcUnitDef) {
2088 PrintFatalError(Loc,
2089 "No ProcessorResources associated with "
2090 + ProcResKind->getName());
2092 return ProcUnitDef;
2095 // Iteratively add a resource and its super resources.
2096 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2097 CodeGenProcModel &PM,
2098 ArrayRef<SMLoc> Loc) {
2099 while (true) {
2100 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2102 // See if this ProcResource is already associated with this processor.
2103 if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2104 return;
2106 PM.ProcResourceDefs.push_back(ProcResUnits);
2107 if (ProcResUnits->isSubClassOf("ProcResGroup"))
2108 return;
2110 if (!ProcResUnits->getValueInit("Super")->isComplete())
2111 return;
2113 ProcResKind = ProcResUnits->getValueAsDef("Super");
2117 // Add resources for a SchedWrite to this processor if they don't exist.
2118 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2119 assert(PIdx && "don't add resources to an invalid Processor model");
2121 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2122 if (is_contained(WRDefs, ProcWriteResDef))
2123 return;
2124 WRDefs.push_back(ProcWriteResDef);
2126 // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2127 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2128 for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
2129 WritePRI != WritePRE; ++WritePRI) {
2130 addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
2134 // Add resources for a ReadAdvance to this processor if they don't exist.
2135 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2136 unsigned PIdx) {
2137 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2138 if (is_contained(RADefs, ProcReadAdvanceDef))
2139 return;
2140 RADefs.push_back(ProcReadAdvanceDef);
2143 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2144 RecIter PRPos = find(ProcResourceDefs, PRDef);
2145 if (PRPos == ProcResourceDefs.end())
2146 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2147 "the ProcResources list for " + ModelName);
2148 // Idx=0 is reserved for invalid.
2149 return 1 + (PRPos - ProcResourceDefs.begin());
2152 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2153 for (const Record *TheDef : UnsupportedFeaturesDefs) {
2154 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2155 if (TheDef->getName() == PredDef->getName())
2156 return true;
2159 return false;
2162 #ifndef NDEBUG
2163 void CodeGenProcModel::dump() const {
2164 dbgs() << Index << ": " << ModelName << " "
2165 << (ModelDef ? ModelDef->getName() : "inferred") << " "
2166 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2169 void CodeGenSchedRW::dump() const {
2170 dbgs() << Name << (IsVariadic ? " (V) " : " ");
2171 if (IsSequence) {
2172 dbgs() << "(";
2173 dumpIdxVec(Sequence);
2174 dbgs() << ")";
2178 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2179 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2180 << " Writes: ";
2181 for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2182 SchedModels->getSchedWrite(Writes[i]).dump();
2183 if (i < N-1) {
2184 dbgs() << '\n';
2185 dbgs().indent(10);
2188 dbgs() << "\n Reads: ";
2189 for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2190 SchedModels->getSchedRead(Reads[i]).dump();
2191 if (i < N-1) {
2192 dbgs() << '\n';
2193 dbgs().indent(10);
2196 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
2197 if (!Transitions.empty()) {
2198 dbgs() << "\n Transitions for Proc ";
2199 for (const CodeGenSchedTransition &Transition : Transitions) {
2200 dumpIdxVec(Transition.ProcIndices);
2205 void PredTransitions::dump() const {
2206 dbgs() << "Expanded Variants:\n";
2207 for (std::vector<PredTransition>::const_iterator
2208 TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
2209 dbgs() << "{";
2210 for (SmallVectorImpl<PredCheck>::const_iterator
2211 PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
2212 PCI != PCE; ++PCI) {
2213 if (PCI != TI->PredTerm.begin())
2214 dbgs() << ", ";
2215 dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
2216 << ":" << PCI->Predicate->getName();
2218 dbgs() << "},\n => {";
2219 for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
2220 WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
2221 WSI != WSE; ++WSI) {
2222 dbgs() << "(";
2223 for (SmallVectorImpl<unsigned>::const_iterator
2224 WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
2225 if (WI != WSI->begin())
2226 dbgs() << ", ";
2227 dbgs() << SchedModels.getSchedWrite(*WI).Name;
2229 dbgs() << "),";
2231 dbgs() << "}\n";
2234 #endif // NDEBUG