Fold a binary operator with constant operands when expanding code for a SCEV.
[llvm-complete.git] / runtime / GCCLibraries / libc / qsort.c
blob2949b7848b0b678faa08ada407c5714f9cdbe4eb
1 //===-- qsort.c - The qsort function for the LLVM libc Library ----*- C -*-===//
2 //
3 // This code is a modified form of the qsort() function from the GNU C
4 // library.
5 //
6 // Modifications:
7 // 2003/05/29 - Code disabled for compilation. Line wrapping changed.
8 //
9 //===----------------------------------------------------------------------===//
11 /* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc.
12 This file is part of the GNU C Library.
13 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
15 The GNU C Library is free software; you can redistribute it and/or
16 modify it under the terms of the GNU Lesser General Public
17 License as published by the Free Software Foundation; either
18 version 2.1 of the License, or (at your option) any later version.
20 The GNU C Library is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 Lesser General Public License for more details.
25 You should have received a copy of the GNU Lesser General Public
26 License along with the GNU C Library; if not, write to the Free
27 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
28 02111-1307 USA. */
30 /* If you consider tuning this algorithm, you should consult first:
31 Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
32 Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
34 #if 0
36 #include <limits.h>
37 #include <stdlib.h>
38 #include <string.h>
40 /* Byte-wise swap two items of size SIZE. */
41 #define SWAP(a, b, size) \
42 do \
43 { \
44 register size_t __size = (size); \
45 register char *__a = (a), *__b = (b); \
46 do \
47 { \
48 char __tmp = *__a; \
49 *__a++ = *__b; \
50 *__b++ = __tmp; \
51 } while (--__size > 0); \
52 } while (0)
54 /* Discontinue quicksort algorithm when partition gets below this size.
55 This particular magic number was chosen to work best on a Sun 4/260. */
56 #define MAX_THRESH 4
58 /* Stack node declarations used to store unfulfilled partition obligations. */
59 typedef struct
61 char *lo;
62 char *hi;
63 } stack_node;
65 /* The next 4 #defines implement a very fast in-line stack abstraction. */
66 /* The stack needs log (total_elements) entries (we could even subtract
67 log(MAX_THRESH)). Since total_elements has type size_t, we get as
68 upper bound for log (total_elements):
69 bits per byte (CHAR_BIT) * sizeof(size_t). */
70 #define STACK_SIZE (CHAR_BIT * sizeof(size_t))
71 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
72 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
73 #define STACK_NOT_EMPTY (stack < top)
76 /* Order size using quicksort. This implementation incorporates
77 four optimizations discussed in Sedgewick:
79 1. Non-recursive, using an explicit stack of pointer that store the
80 next array partition to sort. To save time, this maximum amount
81 of space required to store an array of SIZE_MAX is allocated on the
82 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
83 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
84 Pretty cheap, actually.
86 2. Chose the pivot element using a median-of-three decision tree.
87 This reduces the probability of selecting a bad pivot value and
88 eliminates certain extraneous comparisons.
90 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
91 insertion sort to order the MAX_THRESH items within each partition.
92 This is a big win, since insertion sort is faster for small, mostly
93 sorted array segments.
95 4. The larger of the two sub-partitions is always pushed onto the
96 stack first, with the algorithm then concentrating on the
97 smaller partition. This *guarantees* no more than log (total_elems)
98 stack size is needed (actually O(1) in this case)! */
100 typedef int(*__compar_fn_t)(const void *, const void *);
101 void
102 qsort (void *const pbase, size_t total_elems, size_t size,
103 __compar_fn_t cmp)
105 register char *base_ptr = (char *) pbase;
107 const size_t max_thresh = MAX_THRESH * size;
109 if (total_elems == 0)
110 /* Avoid lossage with unsigned arithmetic below. */
111 return;
113 if (total_elems > MAX_THRESH)
115 char *lo = base_ptr;
116 char *hi = &lo[size * (total_elems - 1)];
117 stack_node stack[STACK_SIZE];
118 stack_node *top = stack + 1;
120 while (STACK_NOT_EMPTY)
122 char *left_ptr;
123 char *right_ptr;
125 /* Select median value from among LO, MID, and HI. Rearrange
126 LO and HI so the three values are sorted. This lowers the
127 probability of picking a pathological pivot value and
128 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
129 the while loops. */
131 char *mid = lo + size * ((hi - lo) / size >> 1);
133 if ((*cmp) ((void *) mid, (void *) lo) < 0)
134 SWAP (mid, lo, size);
135 if ((*cmp) ((void *) hi, (void *) mid) < 0)
136 SWAP (mid, hi, size);
137 else
138 goto jump_over;
139 if ((*cmp) ((void *) mid, (void *) lo) < 0)
140 SWAP (mid, lo, size);
141 jump_over:;
143 left_ptr = lo + size;
144 right_ptr = hi - size;
146 /* Here's the famous ``collapse the walls'' section of quicksort.
147 Gotta like those tight inner loops! They are the main reason
148 that this algorithm runs much faster than others. */
151 while ((*cmp) ((void *) left_ptr, (void *) mid) < 0)
152 left_ptr += size;
154 while ((*cmp) ((void *) mid, (void *) right_ptr) < 0)
155 right_ptr -= size;
157 if (left_ptr < right_ptr)
159 SWAP (left_ptr, right_ptr, size);
160 if (mid == left_ptr)
161 mid = right_ptr;
162 else if (mid == right_ptr)
163 mid = left_ptr;
164 left_ptr += size;
165 right_ptr -= size;
167 else if (left_ptr == right_ptr)
169 left_ptr += size;
170 right_ptr -= size;
171 break;
174 while (left_ptr <= right_ptr);
176 /* Set up pointers for next iteration. First determine whether
177 left and right partitions are below the threshold size. If so,
178 ignore one or both. Otherwise, push the larger partition's
179 bounds on the stack and continue sorting the smaller one. */
181 if ((size_t) (right_ptr - lo) <= max_thresh)
183 if ((size_t) (hi - left_ptr) <= max_thresh)
184 /* Ignore both small partitions. */
185 POP (lo, hi);
186 else
187 /* Ignore small left partition. */
188 lo = left_ptr;
190 else if ((size_t) (hi - left_ptr) <= max_thresh)
191 /* Ignore small right partition. */
192 hi = right_ptr;
193 else if ((right_ptr - lo) > (hi - left_ptr))
195 /* Push larger left partition indices. */
196 PUSH (lo, right_ptr);
197 lo = left_ptr;
199 else
201 /* Push larger right partition indices. */
202 PUSH (left_ptr, hi);
203 hi = right_ptr;
208 /* Once the BASE_PTR array is partially sorted by quicksort the rest
209 is completely sorted using insertion sort, since this is efficient
210 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
211 of the array to sort, and END_PTR points at the very last element in
212 the array (*not* one beyond it!). */
214 #define min(x, y) ((x) < (y) ? (x) : (y))
217 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
218 char *tmp_ptr = base_ptr;
219 char *thresh = min(end_ptr, base_ptr + max_thresh);
220 register char *run_ptr;
222 /* Find smallest element in first threshold and place it at the
223 array's beginning. This is the smallest array element,
224 and the operation speeds up insertion sort's inner loop. */
226 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
227 if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
228 tmp_ptr = run_ptr;
230 if (tmp_ptr != base_ptr)
231 SWAP (tmp_ptr, base_ptr, size);
233 /* Insertion sort, running from left-hand-side up to right-hand-side. */
235 run_ptr = base_ptr + size;
236 while ((run_ptr += size) <= end_ptr)
238 tmp_ptr = run_ptr - size;
239 while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
240 tmp_ptr -= size;
242 tmp_ptr += size;
243 if (tmp_ptr != run_ptr)
245 char *trav;
247 trav = run_ptr + size;
248 while (--trav >= run_ptr)
250 char c = *trav;
251 char *hi, *lo;
253 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
254 *hi = *lo;
255 *hi = c;
261 #endif