[lit] Improve lit.Run class
[llvm-complete.git] / examples / Kaleidoscope / BuildingAJIT / Chapter4 / toy.cpp
blobbfd57e621cdaaf80670e200a524c095c249f66b7
1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/Error.h"
14 #include "llvm/Support/ErrorHandling.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "KaleidoscopeJIT.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <cctype>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstdlib>
24 #include <map>
25 #include <memory>
26 #include <string>
27 #include <utility>
28 #include <vector>
30 using namespace llvm;
31 using namespace llvm::orc;
33 //===----------------------------------------------------------------------===//
34 // Lexer
35 //===----------------------------------------------------------------------===//
37 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
38 // of these for known things.
39 enum Token {
40 tok_eof = -1,
42 // commands
43 tok_def = -2,
44 tok_extern = -3,
46 // primary
47 tok_identifier = -4,
48 tok_number = -5,
50 // control
51 tok_if = -6,
52 tok_then = -7,
53 tok_else = -8,
54 tok_for = -9,
55 tok_in = -10,
57 // operators
58 tok_binary = -11,
59 tok_unary = -12,
61 // var definition
62 tok_var = -13
65 static std::string IdentifierStr; // Filled in if tok_identifier
66 static double NumVal; // Filled in if tok_number
68 /// gettok - Return the next token from standard input.
69 static int gettok() {
70 static int LastChar = ' ';
72 // Skip any whitespace.
73 while (isspace(LastChar))
74 LastChar = getchar();
76 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
77 IdentifierStr = LastChar;
78 while (isalnum((LastChar = getchar())))
79 IdentifierStr += LastChar;
81 if (IdentifierStr == "def")
82 return tok_def;
83 if (IdentifierStr == "extern")
84 return tok_extern;
85 if (IdentifierStr == "if")
86 return tok_if;
87 if (IdentifierStr == "then")
88 return tok_then;
89 if (IdentifierStr == "else")
90 return tok_else;
91 if (IdentifierStr == "for")
92 return tok_for;
93 if (IdentifierStr == "in")
94 return tok_in;
95 if (IdentifierStr == "binary")
96 return tok_binary;
97 if (IdentifierStr == "unary")
98 return tok_unary;
99 if (IdentifierStr == "var")
100 return tok_var;
101 return tok_identifier;
104 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
105 std::string NumStr;
106 do {
107 NumStr += LastChar;
108 LastChar = getchar();
109 } while (isdigit(LastChar) || LastChar == '.');
111 NumVal = strtod(NumStr.c_str(), nullptr);
112 return tok_number;
115 if (LastChar == '#') {
116 // Comment until end of line.
118 LastChar = getchar();
119 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
121 if (LastChar != EOF)
122 return gettok();
125 // Check for end of file. Don't eat the EOF.
126 if (LastChar == EOF)
127 return tok_eof;
129 // Otherwise, just return the character as its ascii value.
130 int ThisChar = LastChar;
131 LastChar = getchar();
132 return ThisChar;
135 //===----------------------------------------------------------------------===//
136 // Abstract Syntax Tree (aka Parse Tree)
137 //===----------------------------------------------------------------------===//
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
142 virtual ~ExprAST() = default;
144 virtual Value *codegen() = 0;
147 /// NumberExprAST - Expression class for numeric literals like "1.0".
148 class NumberExprAST : public ExprAST {
149 double Val;
151 public:
152 NumberExprAST(double Val) : Val(Val) {}
154 Value *codegen() override;
157 /// VariableExprAST - Expression class for referencing a variable, like "a".
158 class VariableExprAST : public ExprAST {
159 std::string Name;
161 public:
162 VariableExprAST(const std::string &Name) : Name(Name) {}
164 Value *codegen() override;
165 const std::string &getName() const { return Name; }
168 /// UnaryExprAST - Expression class for a unary operator.
169 class UnaryExprAST : public ExprAST {
170 char Opcode;
171 std::unique_ptr<ExprAST> Operand;
173 public:
174 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
175 : Opcode(Opcode), Operand(std::move(Operand)) {}
177 Value *codegen() override;
180 /// BinaryExprAST - Expression class for a binary operator.
181 class BinaryExprAST : public ExprAST {
182 char Op;
183 std::unique_ptr<ExprAST> LHS, RHS;
185 public:
186 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
187 std::unique_ptr<ExprAST> RHS)
188 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
190 Value *codegen() override;
193 /// CallExprAST - Expression class for function calls.
194 class CallExprAST : public ExprAST {
195 std::string Callee;
196 std::vector<std::unique_ptr<ExprAST>> Args;
198 public:
199 CallExprAST(const std::string &Callee,
200 std::vector<std::unique_ptr<ExprAST>> Args)
201 : Callee(Callee), Args(std::move(Args)) {}
203 Value *codegen() override;
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST : public ExprAST {
208 std::unique_ptr<ExprAST> Cond, Then, Else;
210 public:
211 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
212 std::unique_ptr<ExprAST> Else)
213 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
215 Value *codegen() override;
218 /// ForExprAST - Expression class for for/in.
219 class ForExprAST : public ExprAST {
220 std::string VarName;
221 std::unique_ptr<ExprAST> Start, End, Step, Body;
223 public:
224 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
225 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
226 std::unique_ptr<ExprAST> Body)
227 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
228 Step(std::move(Step)), Body(std::move(Body)) {}
230 Value *codegen() override;
233 /// VarExprAST - Expression class for var/in
234 class VarExprAST : public ExprAST {
235 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
236 std::unique_ptr<ExprAST> Body;
238 public:
239 VarExprAST(
240 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
241 std::unique_ptr<ExprAST> Body)
242 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
244 Value *codegen() override;
247 /// PrototypeAST - This class represents the "prototype" for a function,
248 /// which captures its name, and its argument names (thus implicitly the number
249 /// of arguments the function takes), as well as if it is an operator.
250 class PrototypeAST {
251 std::string Name;
252 std::vector<std::string> Args;
253 bool IsOperator;
254 unsigned Precedence; // Precedence if a binary op.
256 public:
257 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
258 bool IsOperator = false, unsigned Prec = 0)
259 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
260 Precedence(Prec) {}
262 Function *codegen();
263 const std::string &getName() const { return Name; }
265 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
266 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
268 char getOperatorName() const {
269 assert(isUnaryOp() || isBinaryOp());
270 return Name[Name.size() - 1];
273 unsigned getBinaryPrecedence() const { return Precedence; }
276 //===----------------------------------------------------------------------===//
277 // Parser
278 //===----------------------------------------------------------------------===//
280 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
281 /// token the parser is looking at. getNextToken reads another token from the
282 /// lexer and updates CurTok with its results.
283 static int CurTok;
284 static int getNextToken() { return CurTok = gettok(); }
286 /// BinopPrecedence - This holds the precedence for each binary operator that is
287 /// defined.
288 static std::map<char, int> BinopPrecedence;
290 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
291 static int GetTokPrecedence() {
292 if (!isascii(CurTok))
293 return -1;
295 // Make sure it's a declared binop.
296 int TokPrec = BinopPrecedence[CurTok];
297 if (TokPrec <= 0)
298 return -1;
299 return TokPrec;
302 /// LogError* - These are little helper functions for error handling.
303 std::unique_ptr<ExprAST> LogError(const char *Str) {
304 fprintf(stderr, "Error: %s\n", Str);
305 return nullptr;
308 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
309 LogError(Str);
310 return nullptr;
313 static std::unique_ptr<ExprAST> ParseExpression();
315 /// numberexpr ::= number
316 static std::unique_ptr<ExprAST> ParseNumberExpr() {
317 auto Result = std::make_unique<NumberExprAST>(NumVal);
318 getNextToken(); // consume the number
319 return std::move(Result);
322 /// parenexpr ::= '(' expression ')'
323 static std::unique_ptr<ExprAST> ParseParenExpr() {
324 getNextToken(); // eat (.
325 auto V = ParseExpression();
326 if (!V)
327 return nullptr;
329 if (CurTok != ')')
330 return LogError("expected ')'");
331 getNextToken(); // eat ).
332 return V;
335 /// identifierexpr
336 /// ::= identifier
337 /// ::= identifier '(' expression* ')'
338 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
339 std::string IdName = IdentifierStr;
341 getNextToken(); // eat identifier.
343 if (CurTok != '(') // Simple variable ref.
344 return std::make_unique<VariableExprAST>(IdName);
346 // Call.
347 getNextToken(); // eat (
348 std::vector<std::unique_ptr<ExprAST>> Args;
349 if (CurTok != ')') {
350 while (true) {
351 if (auto Arg = ParseExpression())
352 Args.push_back(std::move(Arg));
353 else
354 return nullptr;
356 if (CurTok == ')')
357 break;
359 if (CurTok != ',')
360 return LogError("Expected ')' or ',' in argument list");
361 getNextToken();
365 // Eat the ')'.
366 getNextToken();
368 return std::make_unique<CallExprAST>(IdName, std::move(Args));
371 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
372 static std::unique_ptr<ExprAST> ParseIfExpr() {
373 getNextToken(); // eat the if.
375 // condition.
376 auto Cond = ParseExpression();
377 if (!Cond)
378 return nullptr;
380 if (CurTok != tok_then)
381 return LogError("expected then");
382 getNextToken(); // eat the then
384 auto Then = ParseExpression();
385 if (!Then)
386 return nullptr;
388 if (CurTok != tok_else)
389 return LogError("expected else");
391 getNextToken();
393 auto Else = ParseExpression();
394 if (!Else)
395 return nullptr;
397 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
398 std::move(Else));
401 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
402 static std::unique_ptr<ExprAST> ParseForExpr() {
403 getNextToken(); // eat the for.
405 if (CurTok != tok_identifier)
406 return LogError("expected identifier after for");
408 std::string IdName = IdentifierStr;
409 getNextToken(); // eat identifier.
411 if (CurTok != '=')
412 return LogError("expected '=' after for");
413 getNextToken(); // eat '='.
415 auto Start = ParseExpression();
416 if (!Start)
417 return nullptr;
418 if (CurTok != ',')
419 return LogError("expected ',' after for start value");
420 getNextToken();
422 auto End = ParseExpression();
423 if (!End)
424 return nullptr;
426 // The step value is optional.
427 std::unique_ptr<ExprAST> Step;
428 if (CurTok == ',') {
429 getNextToken();
430 Step = ParseExpression();
431 if (!Step)
432 return nullptr;
435 if (CurTok != tok_in)
436 return LogError("expected 'in' after for");
437 getNextToken(); // eat 'in'.
439 auto Body = ParseExpression();
440 if (!Body)
441 return nullptr;
443 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
444 std::move(Step), std::move(Body));
447 /// varexpr ::= 'var' identifier ('=' expression)?
448 // (',' identifier ('=' expression)?)* 'in' expression
449 static std::unique_ptr<ExprAST> ParseVarExpr() {
450 getNextToken(); // eat the var.
452 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
454 // At least one variable name is required.
455 if (CurTok != tok_identifier)
456 return LogError("expected identifier after var");
458 while (true) {
459 std::string Name = IdentifierStr;
460 getNextToken(); // eat identifier.
462 // Read the optional initializer.
463 std::unique_ptr<ExprAST> Init = nullptr;
464 if (CurTok == '=') {
465 getNextToken(); // eat the '='.
467 Init = ParseExpression();
468 if (!Init)
469 return nullptr;
472 VarNames.push_back(std::make_pair(Name, std::move(Init)));
474 // End of var list, exit loop.
475 if (CurTok != ',')
476 break;
477 getNextToken(); // eat the ','.
479 if (CurTok != tok_identifier)
480 return LogError("expected identifier list after var");
483 // At this point, we have to have 'in'.
484 if (CurTok != tok_in)
485 return LogError("expected 'in' keyword after 'var'");
486 getNextToken(); // eat 'in'.
488 auto Body = ParseExpression();
489 if (!Body)
490 return nullptr;
492 return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
495 /// primary
496 /// ::= identifierexpr
497 /// ::= numberexpr
498 /// ::= parenexpr
499 /// ::= ifexpr
500 /// ::= forexpr
501 /// ::= varexpr
502 static std::unique_ptr<ExprAST> ParsePrimary() {
503 switch (CurTok) {
504 default:
505 return LogError("unknown token when expecting an expression");
506 case tok_identifier:
507 return ParseIdentifierExpr();
508 case tok_number:
509 return ParseNumberExpr();
510 case '(':
511 return ParseParenExpr();
512 case tok_if:
513 return ParseIfExpr();
514 case tok_for:
515 return ParseForExpr();
516 case tok_var:
517 return ParseVarExpr();
521 /// unary
522 /// ::= primary
523 /// ::= '!' unary
524 static std::unique_ptr<ExprAST> ParseUnary() {
525 // If the current token is not an operator, it must be a primary expr.
526 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
527 return ParsePrimary();
529 // If this is a unary operator, read it.
530 int Opc = CurTok;
531 getNextToken();
532 if (auto Operand = ParseUnary())
533 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
534 return nullptr;
537 /// binoprhs
538 /// ::= ('+' unary)*
539 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
540 std::unique_ptr<ExprAST> LHS) {
541 // If this is a binop, find its precedence.
542 while (true) {
543 int TokPrec = GetTokPrecedence();
545 // If this is a binop that binds at least as tightly as the current binop,
546 // consume it, otherwise we are done.
547 if (TokPrec < ExprPrec)
548 return LHS;
550 // Okay, we know this is a binop.
551 int BinOp = CurTok;
552 getNextToken(); // eat binop
554 // Parse the unary expression after the binary operator.
555 auto RHS = ParseUnary();
556 if (!RHS)
557 return nullptr;
559 // If BinOp binds less tightly with RHS than the operator after RHS, let
560 // the pending operator take RHS as its LHS.
561 int NextPrec = GetTokPrecedence();
562 if (TokPrec < NextPrec) {
563 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
564 if (!RHS)
565 return nullptr;
568 // Merge LHS/RHS.
569 LHS =
570 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
574 /// expression
575 /// ::= unary binoprhs
577 static std::unique_ptr<ExprAST> ParseExpression() {
578 auto LHS = ParseUnary();
579 if (!LHS)
580 return nullptr;
582 return ParseBinOpRHS(0, std::move(LHS));
585 /// prototype
586 /// ::= id '(' id* ')'
587 /// ::= binary LETTER number? (id, id)
588 /// ::= unary LETTER (id)
589 static std::unique_ptr<PrototypeAST> ParsePrototype() {
590 std::string FnName;
592 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
593 unsigned BinaryPrecedence = 30;
595 switch (CurTok) {
596 default:
597 return LogErrorP("Expected function name in prototype");
598 case tok_identifier:
599 FnName = IdentifierStr;
600 Kind = 0;
601 getNextToken();
602 break;
603 case tok_unary:
604 getNextToken();
605 if (!isascii(CurTok))
606 return LogErrorP("Expected unary operator");
607 FnName = "unary";
608 FnName += (char)CurTok;
609 Kind = 1;
610 getNextToken();
611 break;
612 case tok_binary:
613 getNextToken();
614 if (!isascii(CurTok))
615 return LogErrorP("Expected binary operator");
616 FnName = "binary";
617 FnName += (char)CurTok;
618 Kind = 2;
619 getNextToken();
621 // Read the precedence if present.
622 if (CurTok == tok_number) {
623 if (NumVal < 1 || NumVal > 100)
624 return LogErrorP("Invalid precedecnce: must be 1..100");
625 BinaryPrecedence = (unsigned)NumVal;
626 getNextToken();
628 break;
631 if (CurTok != '(')
632 return LogErrorP("Expected '(' in prototype");
634 std::vector<std::string> ArgNames;
635 while (getNextToken() == tok_identifier)
636 ArgNames.push_back(IdentifierStr);
637 if (CurTok != ')')
638 return LogErrorP("Expected ')' in prototype");
640 // success.
641 getNextToken(); // eat ')'.
643 // Verify right number of names for operator.
644 if (Kind && ArgNames.size() != Kind)
645 return LogErrorP("Invalid number of operands for operator");
647 return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
648 BinaryPrecedence);
651 /// definition ::= 'def' prototype expression
652 static std::unique_ptr<FunctionAST> ParseDefinition() {
653 getNextToken(); // eat def.
654 auto Proto = ParsePrototype();
655 if (!Proto)
656 return nullptr;
658 if (auto E = ParseExpression())
659 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
660 return nullptr;
663 /// toplevelexpr ::= expression
664 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
665 if (auto E = ParseExpression()) {
666 // Make an anonymous proto.
667 auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
668 std::vector<std::string>());
669 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
671 return nullptr;
674 /// external ::= 'extern' prototype
675 static std::unique_ptr<PrototypeAST> ParseExtern() {
676 getNextToken(); // eat extern.
677 return ParsePrototype();
680 //===----------------------------------------------------------------------===//
681 // Code Generation
682 //===----------------------------------------------------------------------===//
684 static LLVMContext TheContext;
685 static IRBuilder<> Builder(TheContext);
686 static std::unique_ptr<Module> TheModule;
687 static std::map<std::string, AllocaInst *> NamedValues;
688 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
689 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
690 static ExitOnError ExitOnErr;
692 Value *LogErrorV(const char *Str) {
693 LogError(Str);
694 return nullptr;
697 Function *getFunction(std::string Name) {
698 // First, see if the function has already been added to the current module.
699 if (auto *F = TheModule->getFunction(Name))
700 return F;
702 // If not, check whether we can codegen the declaration from some existing
703 // prototype.
704 auto FI = FunctionProtos.find(Name);
705 if (FI != FunctionProtos.end())
706 return FI->second->codegen();
708 // If no existing prototype exists, return null.
709 return nullptr;
712 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
713 /// the function. This is used for mutable variables etc.
714 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
715 const std::string &VarName) {
716 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
717 TheFunction->getEntryBlock().begin());
718 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
721 Value *NumberExprAST::codegen() {
722 return ConstantFP::get(TheContext, APFloat(Val));
725 Value *VariableExprAST::codegen() {
726 // Look this variable up in the function.
727 Value *V = NamedValues[Name];
728 if (!V)
729 return LogErrorV("Unknown variable name");
731 // Load the value.
732 return Builder.CreateLoad(V, Name.c_str());
735 Value *UnaryExprAST::codegen() {
736 Value *OperandV = Operand->codegen();
737 if (!OperandV)
738 return nullptr;
740 Function *F = getFunction(std::string("unary") + Opcode);
741 if (!F)
742 return LogErrorV("Unknown unary operator");
744 return Builder.CreateCall(F, OperandV, "unop");
747 Value *BinaryExprAST::codegen() {
748 // Special case '=' because we don't want to emit the LHS as an expression.
749 if (Op == '=') {
750 // Assignment requires the LHS to be an identifier.
751 // This assume we're building without RTTI because LLVM builds that way by
752 // default. If you build LLVM with RTTI this can be changed to a
753 // dynamic_cast for automatic error checking.
754 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
755 if (!LHSE)
756 return LogErrorV("destination of '=' must be a variable");
757 // Codegen the RHS.
758 Value *Val = RHS->codegen();
759 if (!Val)
760 return nullptr;
762 // Look up the name.
763 Value *Variable = NamedValues[LHSE->getName()];
764 if (!Variable)
765 return LogErrorV("Unknown variable name");
767 Builder.CreateStore(Val, Variable);
768 return Val;
771 Value *L = LHS->codegen();
772 Value *R = RHS->codegen();
773 if (!L || !R)
774 return nullptr;
776 switch (Op) {
777 case '+':
778 return Builder.CreateFAdd(L, R, "addtmp");
779 case '-':
780 return Builder.CreateFSub(L, R, "subtmp");
781 case '*':
782 return Builder.CreateFMul(L, R, "multmp");
783 case '<':
784 L = Builder.CreateFCmpULT(L, R, "cmptmp");
785 // Convert bool 0/1 to double 0.0 or 1.0
786 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
787 default:
788 break;
791 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
792 // a call to it.
793 Function *F = getFunction(std::string("binary") + Op);
794 assert(F && "binary operator not found!");
796 Value *Ops[] = {L, R};
797 return Builder.CreateCall(F, Ops, "binop");
800 Value *CallExprAST::codegen() {
801 // Look up the name in the global module table.
802 Function *CalleeF = getFunction(Callee);
803 if (!CalleeF)
804 return LogErrorV("Unknown function referenced");
806 // If argument mismatch error.
807 if (CalleeF->arg_size() != Args.size())
808 return LogErrorV("Incorrect # arguments passed");
810 std::vector<Value *> ArgsV;
811 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
812 ArgsV.push_back(Args[i]->codegen());
813 if (!ArgsV.back())
814 return nullptr;
817 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
820 Value *IfExprAST::codegen() {
821 Value *CondV = Cond->codegen();
822 if (!CondV)
823 return nullptr;
825 // Convert condition to a bool by comparing equal to 0.0.
826 CondV = Builder.CreateFCmpONE(
827 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
829 Function *TheFunction = Builder.GetInsertBlock()->getParent();
831 // Create blocks for the then and else cases. Insert the 'then' block at the
832 // end of the function.
833 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
834 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
835 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
837 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
839 // Emit then value.
840 Builder.SetInsertPoint(ThenBB);
842 Value *ThenV = Then->codegen();
843 if (!ThenV)
844 return nullptr;
846 Builder.CreateBr(MergeBB);
847 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
848 ThenBB = Builder.GetInsertBlock();
850 // Emit else block.
851 TheFunction->getBasicBlockList().push_back(ElseBB);
852 Builder.SetInsertPoint(ElseBB);
854 Value *ElseV = Else->codegen();
855 if (!ElseV)
856 return nullptr;
858 Builder.CreateBr(MergeBB);
859 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
860 ElseBB = Builder.GetInsertBlock();
862 // Emit merge block.
863 TheFunction->getBasicBlockList().push_back(MergeBB);
864 Builder.SetInsertPoint(MergeBB);
865 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
867 PN->addIncoming(ThenV, ThenBB);
868 PN->addIncoming(ElseV, ElseBB);
869 return PN;
872 // Output for-loop as:
873 // var = alloca double
874 // ...
875 // start = startexpr
876 // store start -> var
877 // goto loop
878 // loop:
879 // ...
880 // bodyexpr
881 // ...
882 // loopend:
883 // step = stepexpr
884 // endcond = endexpr
886 // curvar = load var
887 // nextvar = curvar + step
888 // store nextvar -> var
889 // br endcond, loop, endloop
890 // outloop:
891 Value *ForExprAST::codegen() {
892 Function *TheFunction = Builder.GetInsertBlock()->getParent();
894 // Create an alloca for the variable in the entry block.
895 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
897 // Emit the start code first, without 'variable' in scope.
898 Value *StartVal = Start->codegen();
899 if (!StartVal)
900 return nullptr;
902 // Store the value into the alloca.
903 Builder.CreateStore(StartVal, Alloca);
905 // Make the new basic block for the loop header, inserting after current
906 // block.
907 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
909 // Insert an explicit fall through from the current block to the LoopBB.
910 Builder.CreateBr(LoopBB);
912 // Start insertion in LoopBB.
913 Builder.SetInsertPoint(LoopBB);
915 // Within the loop, the variable is defined equal to the PHI node. If it
916 // shadows an existing variable, we have to restore it, so save it now.
917 AllocaInst *OldVal = NamedValues[VarName];
918 NamedValues[VarName] = Alloca;
920 // Emit the body of the loop. This, like any other expr, can change the
921 // current BB. Note that we ignore the value computed by the body, but don't
922 // allow an error.
923 if (!Body->codegen())
924 return nullptr;
926 // Emit the step value.
927 Value *StepVal = nullptr;
928 if (Step) {
929 StepVal = Step->codegen();
930 if (!StepVal)
931 return nullptr;
932 } else {
933 // If not specified, use 1.0.
934 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
937 // Compute the end condition.
938 Value *EndCond = End->codegen();
939 if (!EndCond)
940 return nullptr;
942 // Reload, increment, and restore the alloca. This handles the case where
943 // the body of the loop mutates the variable.
944 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
945 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
946 Builder.CreateStore(NextVar, Alloca);
948 // Convert condition to a bool by comparing equal to 0.0.
949 EndCond = Builder.CreateFCmpONE(
950 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
952 // Create the "after loop" block and insert it.
953 BasicBlock *AfterBB =
954 BasicBlock::Create(TheContext, "afterloop", TheFunction);
956 // Insert the conditional branch into the end of LoopEndBB.
957 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
959 // Any new code will be inserted in AfterBB.
960 Builder.SetInsertPoint(AfterBB);
962 // Restore the unshadowed variable.
963 if (OldVal)
964 NamedValues[VarName] = OldVal;
965 else
966 NamedValues.erase(VarName);
968 // for expr always returns 0.0.
969 return Constant::getNullValue(Type::getDoubleTy(TheContext));
972 Value *VarExprAST::codegen() {
973 std::vector<AllocaInst *> OldBindings;
975 Function *TheFunction = Builder.GetInsertBlock()->getParent();
977 // Register all variables and emit their initializer.
978 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
979 const std::string &VarName = VarNames[i].first;
980 ExprAST *Init = VarNames[i].second.get();
982 // Emit the initializer before adding the variable to scope, this prevents
983 // the initializer from referencing the variable itself, and permits stuff
984 // like this:
985 // var a = 1 in
986 // var a = a in ... # refers to outer 'a'.
987 Value *InitVal;
988 if (Init) {
989 InitVal = Init->codegen();
990 if (!InitVal)
991 return nullptr;
992 } else { // If not specified, use 0.0.
993 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
996 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
997 Builder.CreateStore(InitVal, Alloca);
999 // Remember the old variable binding so that we can restore the binding when
1000 // we unrecurse.
1001 OldBindings.push_back(NamedValues[VarName]);
1003 // Remember this binding.
1004 NamedValues[VarName] = Alloca;
1007 // Codegen the body, now that all vars are in scope.
1008 Value *BodyVal = Body->codegen();
1009 if (!BodyVal)
1010 return nullptr;
1012 // Pop all our variables from scope.
1013 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1014 NamedValues[VarNames[i].first] = OldBindings[i];
1016 // Return the body computation.
1017 return BodyVal;
1020 Function *PrototypeAST::codegen() {
1021 // Make the function type: double(double,double) etc.
1022 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1023 FunctionType *FT =
1024 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1026 Function *F =
1027 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1029 // Set names for all arguments.
1030 unsigned Idx = 0;
1031 for (auto &Arg : F->args())
1032 Arg.setName(Args[Idx++]);
1034 return F;
1037 const PrototypeAST& FunctionAST::getProto() const {
1038 return *Proto;
1041 const std::string& FunctionAST::getName() const {
1042 return Proto->getName();
1045 Function *FunctionAST::codegen() {
1046 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1047 // reference to it for use below.
1048 auto &P = *Proto;
1049 Function *TheFunction = getFunction(P.getName());
1050 if (!TheFunction)
1051 return nullptr;
1053 // If this is an operator, install it.
1054 if (P.isBinaryOp())
1055 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1057 // Create a new basic block to start insertion into.
1058 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1059 Builder.SetInsertPoint(BB);
1061 // Record the function arguments in the NamedValues map.
1062 NamedValues.clear();
1063 for (auto &Arg : TheFunction->args()) {
1064 // Create an alloca for this variable.
1065 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1067 // Store the initial value into the alloca.
1068 Builder.CreateStore(&Arg, Alloca);
1070 // Add arguments to variable symbol table.
1071 NamedValues[Arg.getName()] = Alloca;
1074 if (Value *RetVal = Body->codegen()) {
1075 // Finish off the function.
1076 Builder.CreateRet(RetVal);
1078 // Validate the generated code, checking for consistency.
1079 verifyFunction(*TheFunction);
1081 return TheFunction;
1084 // Error reading body, remove function.
1085 TheFunction->eraseFromParent();
1087 if (P.isBinaryOp())
1088 BinopPrecedence.erase(Proto->getOperatorName());
1089 return nullptr;
1092 //===----------------------------------------------------------------------===//
1093 // Top-Level parsing and JIT Driver
1094 //===----------------------------------------------------------------------===//
1096 static void InitializeModule() {
1097 // Open a new module.
1098 TheModule = std::make_unique<Module>("my cool jit", TheContext);
1099 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1102 std::unique_ptr<llvm::Module>
1103 irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix) {
1104 if (auto *F = FnAST.codegen()) {
1105 F->setName(F->getName() + Suffix);
1106 auto M = std::move(TheModule);
1107 // Start a new module.
1108 InitializeModule();
1109 return M;
1110 } else
1111 report_fatal_error("Couldn't compile lazily JIT'd function");
1114 static void HandleDefinition() {
1115 if (auto FnAST = ParseDefinition()) {
1116 FunctionProtos[FnAST->getProto().getName()] =
1117 std::make_unique<PrototypeAST>(FnAST->getProto());
1118 ExitOnErr(TheJIT->addFunctionAST(std::move(FnAST)));
1119 } else {
1120 // Skip token for error recovery.
1121 getNextToken();
1125 static void HandleExtern() {
1126 if (auto ProtoAST = ParseExtern()) {
1127 if (auto *FnIR = ProtoAST->codegen()) {
1128 fprintf(stderr, "Read extern: ");
1129 FnIR->print(errs());
1130 fprintf(stderr, "\n");
1131 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1133 } else {
1134 // Skip token for error recovery.
1135 getNextToken();
1139 static void HandleTopLevelExpression() {
1140 // Evaluate a top-level expression into an anonymous function.
1141 if (auto FnAST = ParseTopLevelExpr()) {
1142 FunctionProtos[FnAST->getName()] =
1143 std::make_unique<PrototypeAST>(FnAST->getProto());
1144 if (FnAST->codegen()) {
1145 // JIT the module containing the anonymous expression, keeping a handle so
1146 // we can free it later.
1147 auto H = TheJIT->addModule(std::move(TheModule));
1148 InitializeModule();
1150 // Search the JIT for the __anon_expr symbol.
1151 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1152 assert(ExprSymbol && "Function not found");
1154 // Get the symbol's address and cast it to the right type (takes no
1155 // arguments, returns a double) so we can call it as a native function.
1156 double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress());
1157 fprintf(stderr, "Evaluated to %f\n", FP());
1159 // Delete the anonymous expression module from the JIT.
1160 TheJIT->removeModule(H);
1162 } else {
1163 // Skip token for error recovery.
1164 getNextToken();
1168 /// top ::= definition | external | expression | ';'
1169 static void MainLoop() {
1170 while (true) {
1171 fprintf(stderr, "ready> ");
1172 switch (CurTok) {
1173 case tok_eof:
1174 return;
1175 case ';': // ignore top-level semicolons.
1176 getNextToken();
1177 break;
1178 case tok_def:
1179 HandleDefinition();
1180 break;
1181 case tok_extern:
1182 HandleExtern();
1183 break;
1184 default:
1185 HandleTopLevelExpression();
1186 break;
1191 //===----------------------------------------------------------------------===//
1192 // "Library" functions that can be "extern'd" from user code.
1193 //===----------------------------------------------------------------------===//
1195 /// putchard - putchar that takes a double and returns 0.
1196 extern "C" double putchard(double X) {
1197 fputc((char)X, stderr);
1198 return 0;
1201 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1202 extern "C" double printd(double X) {
1203 fprintf(stderr, "%f\n", X);
1204 return 0;
1207 //===----------------------------------------------------------------------===//
1208 // Main driver code.
1209 //===----------------------------------------------------------------------===//
1211 int main() {
1212 InitializeNativeTarget();
1213 InitializeNativeTargetAsmPrinter();
1214 InitializeNativeTargetAsmParser();
1216 ExitOnErr.setBanner("Kaleidoscope: ");
1218 // Install standard binary operators.
1219 // 1 is lowest precedence.
1220 BinopPrecedence['='] = 2;
1221 BinopPrecedence['<'] = 10;
1222 BinopPrecedence['+'] = 20;
1223 BinopPrecedence['-'] = 20;
1224 BinopPrecedence['*'] = 40; // highest.
1226 // Prime the first token.
1227 fprintf(stderr, "ready> ");
1228 getNextToken();
1230 TheJIT = std::make_unique<KaleidoscopeJIT>();
1232 InitializeModule();
1234 // Run the main "interpreter loop" now.
1235 MainLoop();
1237 return 0;