[ARM] MVE big endian bitcasts
[llvm-complete.git] / lib / Target / ARM / ARMConstantIslandPass.cpp
blobc97cb08c6b8d8430ef1056bd98fb7e8fd652b469
1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function. This is required due to the
11 // limited pc-relative displacements that ARM has.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <utility>
54 #include <vector>
56 using namespace llvm;
58 #define DEBUG_TYPE "arm-cp-islands"
60 #define ARM_CP_ISLANDS_OPT_NAME \
61 "ARM constant island placement and branch shortening pass"
62 STATISTIC(NumCPEs, "Number of constpool entries");
63 STATISTIC(NumSplit, "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
66 STATISTIC(NumTBs, "Number of table branches generated");
67 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
68 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
69 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
70 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
71 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
73 static cl::opt<bool>
74 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
75 cl::desc("Adjust basic block layout to better use TB[BH]"));
77 static cl::opt<unsigned>
78 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
79 cl::desc("The max number of iteration for converge"));
81 static cl::opt<bool> SynthesizeThumb1TBB(
82 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
83 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
84 "equivalent to the TBB/TBH instructions"));
86 namespace {
88 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
89 /// requires constant pool entries to be scattered among the instructions
90 /// inside a function. To do this, it completely ignores the normal LLVM
91 /// constant pool; instead, it places constants wherever it feels like with
92 /// special instructions.
93 ///
94 /// The terminology used in this pass includes:
95 /// Islands - Clumps of constants placed in the function.
96 /// Water - Potential places where an island could be formed.
97 /// CPE - A constant pool entry that has been placed somewhere, which
98 /// tracks a list of users.
99 class ARMConstantIslands : public MachineFunctionPass {
100 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
102 /// WaterList - A sorted list of basic blocks where islands could be placed
103 /// (i.e. blocks that don't fall through to the following block, due
104 /// to a return, unreachable, or unconditional branch).
105 std::vector<MachineBasicBlock*> WaterList;
107 /// NewWaterList - The subset of WaterList that was created since the
108 /// previous iteration by inserting unconditional branches.
109 SmallSet<MachineBasicBlock*, 4> NewWaterList;
111 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
113 /// CPUser - One user of a constant pool, keeping the machine instruction
114 /// pointer, the constant pool being referenced, and the max displacement
115 /// allowed from the instruction to the CP. The HighWaterMark records the
116 /// highest basic block where a new CPEntry can be placed. To ensure this
117 /// pass terminates, the CP entries are initially placed at the end of the
118 /// function and then move monotonically to lower addresses. The
119 /// exception to this rule is when the current CP entry for a particular
120 /// CPUser is out of range, but there is another CP entry for the same
121 /// constant value in range. We want to use the existing in-range CP
122 /// entry, but if it later moves out of range, the search for new water
123 /// should resume where it left off. The HighWaterMark is used to record
124 /// that point.
125 struct CPUser {
126 MachineInstr *MI;
127 MachineInstr *CPEMI;
128 MachineBasicBlock *HighWaterMark;
129 unsigned MaxDisp;
130 bool NegOk;
131 bool IsSoImm;
132 bool KnownAlignment = false;
134 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
135 bool neg, bool soimm)
136 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
137 HighWaterMark = CPEMI->getParent();
140 /// getMaxDisp - Returns the maximum displacement supported by MI.
141 /// Correct for unknown alignment.
142 /// Conservatively subtract 2 bytes to handle weird alignment effects.
143 unsigned getMaxDisp() const {
144 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
148 /// CPUsers - Keep track of all of the machine instructions that use various
149 /// constant pools and their max displacement.
150 std::vector<CPUser> CPUsers;
152 /// CPEntry - One per constant pool entry, keeping the machine instruction
153 /// pointer, the constpool index, and the number of CPUser's which
154 /// reference this entry.
155 struct CPEntry {
156 MachineInstr *CPEMI;
157 unsigned CPI;
158 unsigned RefCount;
160 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
161 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
164 /// CPEntries - Keep track of all of the constant pool entry machine
165 /// instructions. For each original constpool index (i.e. those that existed
166 /// upon entry to this pass), it keeps a vector of entries. Original
167 /// elements are cloned as we go along; the clones are put in the vector of
168 /// the original element, but have distinct CPIs.
170 /// The first half of CPEntries contains generic constants, the second half
171 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
172 /// which vector it will be in here.
173 std::vector<std::vector<CPEntry>> CPEntries;
175 /// Maps a JT index to the offset in CPEntries containing copies of that
176 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
177 DenseMap<int, int> JumpTableEntryIndices;
179 /// Maps a JT index to the LEA that actually uses the index to calculate its
180 /// base address.
181 DenseMap<int, int> JumpTableUserIndices;
183 /// ImmBranch - One per immediate branch, keeping the machine instruction
184 /// pointer, conditional or unconditional, the max displacement,
185 /// and (if isCond is true) the corresponding unconditional branch
186 /// opcode.
187 struct ImmBranch {
188 MachineInstr *MI;
189 unsigned MaxDisp : 31;
190 bool isCond : 1;
191 unsigned UncondBr;
193 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
194 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
197 /// ImmBranches - Keep track of all the immediate branch instructions.
198 std::vector<ImmBranch> ImmBranches;
200 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
201 SmallVector<MachineInstr*, 4> PushPopMIs;
203 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
204 SmallVector<MachineInstr*, 4> T2JumpTables;
206 /// HasFarJump - True if any far jump instruction has been emitted during
207 /// the branch fix up pass.
208 bool HasFarJump;
210 MachineFunction *MF;
211 MachineConstantPool *MCP;
212 const ARMBaseInstrInfo *TII;
213 const ARMSubtarget *STI;
214 ARMFunctionInfo *AFI;
215 bool isThumb;
216 bool isThumb1;
217 bool isThumb2;
218 bool isPositionIndependentOrROPI;
220 public:
221 static char ID;
223 ARMConstantIslands() : MachineFunctionPass(ID) {}
225 bool runOnMachineFunction(MachineFunction &MF) override;
227 MachineFunctionProperties getRequiredProperties() const override {
228 return MachineFunctionProperties().set(
229 MachineFunctionProperties::Property::NoVRegs);
232 StringRef getPassName() const override {
233 return ARM_CP_ISLANDS_OPT_NAME;
236 private:
237 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
238 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
239 bool BBHasFallthrough(MachineBasicBlock *MBB);
240 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
241 unsigned getCPELogAlign(const MachineInstr *CPEMI);
242 void scanFunctionJumpTables();
243 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
246 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
247 unsigned getCombinedIndex(const MachineInstr *CPEMI);
248 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
249 bool findAvailableWater(CPUser&U, unsigned UserOffset,
250 water_iterator &WaterIter, bool CloserWater);
251 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
252 MachineBasicBlock *&NewMBB);
253 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
254 void removeDeadCPEMI(MachineInstr *CPEMI);
255 bool removeUnusedCPEntries();
256 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
257 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
258 bool DoDump = false);
259 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
260 CPUser &U, unsigned &Growth);
261 bool fixupImmediateBr(ImmBranch &Br);
262 bool fixupConditionalBr(ImmBranch &Br);
263 bool fixupUnconditionalBr(ImmBranch &Br);
264 bool undoLRSpillRestore();
265 bool optimizeThumb2Instructions();
266 bool optimizeThumb2Branches();
267 bool reorderThumb2JumpTables();
268 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
269 unsigned &DeadSize, bool &CanDeleteLEA,
270 bool &BaseRegKill);
271 bool optimizeThumb2JumpTables();
272 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
273 MachineBasicBlock *JTBB);
275 unsigned getUserOffset(CPUser&) const;
276 void dumpBBs();
277 void verify();
279 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
280 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
281 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
282 const CPUser &U) {
283 return isOffsetInRange(UserOffset, TrialOffset,
284 U.getMaxDisp(), U.NegOk, U.IsSoImm);
288 } // end anonymous namespace
290 char ARMConstantIslands::ID = 0;
292 /// verify - check BBOffsets, BBSizes, alignment of islands
293 void ARMConstantIslands::verify() {
294 #ifndef NDEBUG
295 BBInfoVector &BBInfo = BBUtils->getBBInfo();
296 assert(std::is_sorted(MF->begin(), MF->end(),
297 [&BBInfo](const MachineBasicBlock &LHS,
298 const MachineBasicBlock &RHS) {
299 return BBInfo[LHS.getNumber()].postOffset() <
300 BBInfo[RHS.getNumber()].postOffset();
301 }));
302 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
303 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
304 CPUser &U = CPUsers[i];
305 unsigned UserOffset = getUserOffset(U);
306 // Verify offset using the real max displacement without the safety
307 // adjustment.
308 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
309 /* DoDump = */ true)) {
310 LLVM_DEBUG(dbgs() << "OK\n");
311 continue;
313 LLVM_DEBUG(dbgs() << "Out of range.\n");
314 dumpBBs();
315 LLVM_DEBUG(MF->dump());
316 llvm_unreachable("Constant pool entry out of range!");
318 #endif
321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
322 /// print block size and offset information - debugging
323 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
324 BBInfoVector &BBInfo = BBUtils->getBBInfo();
325 LLVM_DEBUG({
326 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
327 const BasicBlockInfo &BBI = BBInfo[J];
328 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
329 << " kb=" << unsigned(BBI.KnownBits)
330 << " ua=" << unsigned(BBI.Unalign)
331 << " pa=" << unsigned(BBI.PostAlign)
332 << format(" size=%#x\n", BBInfo[J].Size);
336 #endif
338 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
339 MF = &mf;
340 MCP = mf.getConstantPool();
341 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
343 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
344 << MCP->getConstants().size() << " CP entries, aligned to "
345 << MCP->getConstantPoolAlignment() << " bytes *****\n");
347 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
348 TII = STI->getInstrInfo();
349 isPositionIndependentOrROPI =
350 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
351 AFI = MF->getInfo<ARMFunctionInfo>();
353 isThumb = AFI->isThumbFunction();
354 isThumb1 = AFI->isThumb1OnlyFunction();
355 isThumb2 = AFI->isThumb2Function();
357 HasFarJump = false;
358 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
360 // This pass invalidates liveness information when it splits basic blocks.
361 MF->getRegInfo().invalidateLiveness();
363 // Renumber all of the machine basic blocks in the function, guaranteeing that
364 // the numbers agree with the position of the block in the function.
365 MF->RenumberBlocks();
367 // Try to reorder and otherwise adjust the block layout to make good use
368 // of the TB[BH] instructions.
369 bool MadeChange = false;
370 if (GenerateTBB && AdjustJumpTableBlocks) {
371 scanFunctionJumpTables();
372 MadeChange |= reorderThumb2JumpTables();
373 // Data is out of date, so clear it. It'll be re-computed later.
374 T2JumpTables.clear();
375 // Blocks may have shifted around. Keep the numbering up to date.
376 MF->RenumberBlocks();
379 // Perform the initial placement of the constant pool entries. To start with,
380 // we put them all at the end of the function.
381 std::vector<MachineInstr*> CPEMIs;
382 if (!MCP->isEmpty())
383 doInitialConstPlacement(CPEMIs);
385 if (MF->getJumpTableInfo())
386 doInitialJumpTablePlacement(CPEMIs);
388 /// The next UID to take is the first unused one.
389 AFI->initPICLabelUId(CPEMIs.size());
391 // Do the initial scan of the function, building up information about the
392 // sizes of each block, the location of all the water, and finding all of the
393 // constant pool users.
394 initializeFunctionInfo(CPEMIs);
395 CPEMIs.clear();
396 LLVM_DEBUG(dumpBBs());
398 // Functions with jump tables need an alignment of 4 because they use the ADR
399 // instruction, which aligns the PC to 4 bytes before adding an offset.
400 if (!T2JumpTables.empty())
401 MF->ensureAlignment(2);
403 /// Remove dead constant pool entries.
404 MadeChange |= removeUnusedCPEntries();
406 // Iteratively place constant pool entries and fix up branches until there
407 // is no change.
408 unsigned NoCPIters = 0, NoBRIters = 0;
409 while (true) {
410 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
411 bool CPChange = false;
412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
413 // For most inputs, it converges in no more than 5 iterations.
414 // If it doesn't end in 10, the input may have huge BB or many CPEs.
415 // In this case, we will try different heuristics.
416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
417 if (CPChange && ++NoCPIters > CPMaxIteration)
418 report_fatal_error("Constant Island pass failed to converge!");
419 LLVM_DEBUG(dumpBBs());
421 // Clear NewWaterList now. If we split a block for branches, it should
422 // appear as "new water" for the next iteration of constant pool placement.
423 NewWaterList.clear();
425 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
426 bool BRChange = false;
427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
428 BRChange |= fixupImmediateBr(ImmBranches[i]);
429 if (BRChange && ++NoBRIters > 30)
430 report_fatal_error("Branch Fix Up pass failed to converge!");
431 LLVM_DEBUG(dumpBBs());
433 if (!CPChange && !BRChange)
434 break;
435 MadeChange = true;
438 // Shrink 32-bit Thumb2 load and store instructions.
439 if (isThumb2 && !STI->prefers32BitThumb())
440 MadeChange |= optimizeThumb2Instructions();
442 // Shrink 32-bit branch instructions.
443 if (isThumb && STI->hasV8MBaselineOps())
444 MadeChange |= optimizeThumb2Branches();
446 // Optimize jump tables using TBB / TBH.
447 if (GenerateTBB && !STI->genExecuteOnly())
448 MadeChange |= optimizeThumb2JumpTables();
450 // After a while, this might be made debug-only, but it is not expensive.
451 verify();
453 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
454 // undo the spill / restore of LR if possible.
455 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
456 MadeChange |= undoLRSpillRestore();
458 // Save the mapping between original and cloned constpool entries.
459 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
460 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
461 const CPEntry & CPE = CPEntries[i][j];
462 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
463 AFI->recordCPEClone(i, CPE.CPI);
467 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
469 BBUtils->clear();
470 WaterList.clear();
471 CPUsers.clear();
472 CPEntries.clear();
473 JumpTableEntryIndices.clear();
474 JumpTableUserIndices.clear();
475 ImmBranches.clear();
476 PushPopMIs.clear();
477 T2JumpTables.clear();
479 return MadeChange;
482 /// Perform the initial placement of the regular constant pool entries.
483 /// To start with, we put them all at the end of the function.
484 void
485 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
486 // Create the basic block to hold the CPE's.
487 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
488 MF->push_back(BB);
490 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
491 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
493 // Mark the basic block as required by the const-pool.
494 BB->setAlignment(MaxAlign);
496 // The function needs to be as aligned as the basic blocks. The linker may
497 // move functions around based on their alignment.
498 MF->ensureAlignment(BB->getAlignment());
500 // Order the entries in BB by descending alignment. That ensures correct
501 // alignment of all entries as long as BB is sufficiently aligned. Keep
502 // track of the insertion point for each alignment. We are going to bucket
503 // sort the entries as they are created.
504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
506 // Add all of the constants from the constant pool to the end block, use an
507 // identity mapping of CPI's to CPE's.
508 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
510 const DataLayout &TD = MF->getDataLayout();
511 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
512 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
513 unsigned Align = CPs[i].getAlignment();
514 assert(isPowerOf2_32(Align) && "Invalid alignment");
515 // Verify that all constant pool entries are a multiple of their alignment.
516 // If not, we would have to pad them out so that instructions stay aligned.
517 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
519 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
520 unsigned LogAlign = Log2_32(Align);
521 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
522 MachineInstr *CPEMI =
523 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
524 .addImm(i).addConstantPoolIndex(i).addImm(Size);
525 CPEMIs.push_back(CPEMI);
527 // Ensure that future entries with higher alignment get inserted before
528 // CPEMI. This is bucket sort with iterators.
529 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
530 if (InsPoint[a] == InsAt)
531 InsPoint[a] = CPEMI;
533 // Add a new CPEntry, but no corresponding CPUser yet.
534 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
535 ++NumCPEs;
536 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
537 << Size << ", align = " << Align << '\n');
539 LLVM_DEBUG(BB->dump());
542 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
543 /// instructions can be made more efficient if the jump table immediately
544 /// follows the instruction, it's best to place them immediately next to their
545 /// jumps to begin with. In almost all cases they'll never be moved from that
546 /// position.
547 void ARMConstantIslands::doInitialJumpTablePlacement(
548 std::vector<MachineInstr *> &CPEMIs) {
549 unsigned i = CPEntries.size();
550 auto MJTI = MF->getJumpTableInfo();
551 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
553 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
554 for (MachineBasicBlock &MBB : *MF) {
555 auto MI = MBB.getLastNonDebugInstr();
556 if (MI == MBB.end())
557 continue;
559 unsigned JTOpcode;
560 switch (MI->getOpcode()) {
561 default:
562 continue;
563 case ARM::BR_JTadd:
564 case ARM::BR_JTr:
565 case ARM::tBR_JTr:
566 case ARM::BR_JTm_i12:
567 case ARM::BR_JTm_rs:
568 JTOpcode = ARM::JUMPTABLE_ADDRS;
569 break;
570 case ARM::t2BR_JT:
571 JTOpcode = ARM::JUMPTABLE_INSTS;
572 break;
573 case ARM::tTBB_JT:
574 case ARM::t2TBB_JT:
575 JTOpcode = ARM::JUMPTABLE_TBB;
576 break;
577 case ARM::tTBH_JT:
578 case ARM::t2TBH_JT:
579 JTOpcode = ARM::JUMPTABLE_TBH;
580 break;
583 unsigned NumOps = MI->getDesc().getNumOperands();
584 MachineOperand JTOp =
585 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
586 unsigned JTI = JTOp.getIndex();
587 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
588 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
589 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
590 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
591 DebugLoc(), TII->get(JTOpcode))
592 .addImm(i++)
593 .addJumpTableIndex(JTI)
594 .addImm(Size);
595 CPEMIs.push_back(CPEMI);
596 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
597 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
598 if (!LastCorrectlyNumberedBB)
599 LastCorrectlyNumberedBB = &MBB;
602 // If we did anything then we need to renumber the subsequent blocks.
603 if (LastCorrectlyNumberedBB)
604 MF->RenumberBlocks(LastCorrectlyNumberedBB);
607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
608 /// into the block immediately after it.
609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
610 // Get the next machine basic block in the function.
611 MachineFunction::iterator MBBI = MBB->getIterator();
612 // Can't fall off end of function.
613 if (std::next(MBBI) == MBB->getParent()->end())
614 return false;
616 MachineBasicBlock *NextBB = &*std::next(MBBI);
617 if (!MBB->isSuccessor(NextBB))
618 return false;
620 // Try to analyze the end of the block. A potential fallthrough may already
621 // have an unconditional branch for whatever reason.
622 MachineBasicBlock *TBB, *FBB;
623 SmallVector<MachineOperand, 4> Cond;
624 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
625 return TooDifficult || FBB == nullptr;
628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
629 /// look up the corresponding CPEntry.
630 ARMConstantIslands::CPEntry *
631 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
632 const MachineInstr *CPEMI) {
633 std::vector<CPEntry> &CPEs = CPEntries[CPI];
634 // Number of entries per constpool index should be small, just do a
635 // linear search.
636 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
637 if (CPEs[i].CPEMI == CPEMI)
638 return &CPEs[i];
640 return nullptr;
643 /// getCPELogAlign - Returns the required alignment of the constant pool entry
644 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
645 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
646 switch (CPEMI->getOpcode()) {
647 case ARM::CONSTPOOL_ENTRY:
648 break;
649 case ARM::JUMPTABLE_TBB:
650 return isThumb1 ? 2 : 0;
651 case ARM::JUMPTABLE_TBH:
652 return isThumb1 ? 2 : 1;
653 case ARM::JUMPTABLE_INSTS:
654 return 1;
655 case ARM::JUMPTABLE_ADDRS:
656 return 2;
657 default:
658 llvm_unreachable("unknown constpool entry kind");
661 unsigned CPI = getCombinedIndex(CPEMI);
662 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
663 unsigned Align = MCP->getConstants()[CPI].getAlignment();
664 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
665 return Log2_32(Align);
668 /// scanFunctionJumpTables - Do a scan of the function, building up
669 /// information about the sizes of each block and the locations of all
670 /// the jump tables.
671 void ARMConstantIslands::scanFunctionJumpTables() {
672 for (MachineBasicBlock &MBB : *MF) {
673 for (MachineInstr &I : MBB)
674 if (I.isBranch() &&
675 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
676 T2JumpTables.push_back(&I);
680 /// initializeFunctionInfo - Do the initial scan of the function, building up
681 /// information about the sizes of each block, the location of all the water,
682 /// and finding all of the constant pool users.
683 void ARMConstantIslands::
684 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
686 BBUtils->computeAllBlockSizes();
687 BBInfoVector &BBInfo = BBUtils->getBBInfo();
688 // The known bits of the entry block offset are determined by the function
689 // alignment.
690 BBInfo.front().KnownBits = MF->getAlignment();
692 // Compute block offsets and known bits.
693 BBUtils->adjustBBOffsetsAfter(&MF->front());
695 // Now go back through the instructions and build up our data structures.
696 for (MachineBasicBlock &MBB : *MF) {
697 // If this block doesn't fall through into the next MBB, then this is
698 // 'water' that a constant pool island could be placed.
699 if (!BBHasFallthrough(&MBB))
700 WaterList.push_back(&MBB);
702 for (MachineInstr &I : MBB) {
703 if (I.isDebugInstr())
704 continue;
706 unsigned Opc = I.getOpcode();
707 if (I.isBranch()) {
708 bool isCond = false;
709 unsigned Bits = 0;
710 unsigned Scale = 1;
711 int UOpc = Opc;
712 switch (Opc) {
713 default:
714 continue; // Ignore other JT branches
715 case ARM::t2BR_JT:
716 case ARM::tBR_JTr:
717 T2JumpTables.push_back(&I);
718 continue; // Does not get an entry in ImmBranches
719 case ARM::Bcc:
720 isCond = true;
721 UOpc = ARM::B;
722 LLVM_FALLTHROUGH;
723 case ARM::B:
724 Bits = 24;
725 Scale = 4;
726 break;
727 case ARM::tBcc:
728 isCond = true;
729 UOpc = ARM::tB;
730 Bits = 8;
731 Scale = 2;
732 break;
733 case ARM::tB:
734 Bits = 11;
735 Scale = 2;
736 break;
737 case ARM::t2Bcc:
738 isCond = true;
739 UOpc = ARM::t2B;
740 Bits = 20;
741 Scale = 2;
742 break;
743 case ARM::t2B:
744 Bits = 24;
745 Scale = 2;
746 break;
749 // Record this immediate branch.
750 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
751 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
754 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
755 PushPopMIs.push_back(&I);
757 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
758 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
759 Opc == ARM::JUMPTABLE_TBH)
760 continue;
762 // Scan the instructions for constant pool operands.
763 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
764 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
765 // We found one. The addressing mode tells us the max displacement
766 // from the PC that this instruction permits.
768 // Basic size info comes from the TSFlags field.
769 unsigned Bits = 0;
770 unsigned Scale = 1;
771 bool NegOk = false;
772 bool IsSoImm = false;
774 switch (Opc) {
775 default:
776 llvm_unreachable("Unknown addressing mode for CP reference!");
778 // Taking the address of a CP entry.
779 case ARM::LEApcrel:
780 case ARM::LEApcrelJT:
781 // This takes a SoImm, which is 8 bit immediate rotated. We'll
782 // pretend the maximum offset is 255 * 4. Since each instruction
783 // 4 byte wide, this is always correct. We'll check for other
784 // displacements that fits in a SoImm as well.
785 Bits = 8;
786 Scale = 4;
787 NegOk = true;
788 IsSoImm = true;
789 break;
790 case ARM::t2LEApcrel:
791 case ARM::t2LEApcrelJT:
792 Bits = 12;
793 NegOk = true;
794 break;
795 case ARM::tLEApcrel:
796 case ARM::tLEApcrelJT:
797 Bits = 8;
798 Scale = 4;
799 break;
801 case ARM::LDRBi12:
802 case ARM::LDRi12:
803 case ARM::LDRcp:
804 case ARM::t2LDRpci:
805 case ARM::t2LDRHpci:
806 case ARM::t2LDRBpci:
807 Bits = 12; // +-offset_12
808 NegOk = true;
809 break;
811 case ARM::tLDRpci:
812 Bits = 8;
813 Scale = 4; // +(offset_8*4)
814 break;
816 case ARM::VLDRD:
817 case ARM::VLDRS:
818 Bits = 8;
819 Scale = 4; // +-(offset_8*4)
820 NegOk = true;
821 break;
822 case ARM::VLDRH:
823 Bits = 8;
824 Scale = 2; // +-(offset_8*2)
825 NegOk = true;
826 break;
829 // Remember that this is a user of a CP entry.
830 unsigned CPI = I.getOperand(op).getIndex();
831 if (I.getOperand(op).isJTI()) {
832 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
833 CPI = JumpTableEntryIndices[CPI];
836 MachineInstr *CPEMI = CPEMIs[CPI];
837 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
838 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
840 // Increment corresponding CPEntry reference count.
841 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
842 assert(CPE && "Cannot find a corresponding CPEntry!");
843 CPE->RefCount++;
845 // Instructions can only use one CP entry, don't bother scanning the
846 // rest of the operands.
847 break;
853 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
854 /// ID.
855 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
856 const MachineBasicBlock *RHS) {
857 return LHS->getNumber() < RHS->getNumber();
860 /// updateForInsertedWaterBlock - When a block is newly inserted into the
861 /// machine function, it upsets all of the block numbers. Renumber the blocks
862 /// and update the arrays that parallel this numbering.
863 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
864 // Renumber the MBB's to keep them consecutive.
865 NewBB->getParent()->RenumberBlocks(NewBB);
867 // Insert an entry into BBInfo to align it properly with the (newly
868 // renumbered) block numbers.
869 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
871 // Next, update WaterList. Specifically, we need to add NewMBB as having
872 // available water after it.
873 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
874 WaterList.insert(IP, NewBB);
877 /// Split the basic block containing MI into two blocks, which are joined by
878 /// an unconditional branch. Update data structures and renumber blocks to
879 /// account for this change and returns the newly created block.
880 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
881 MachineBasicBlock *OrigBB = MI->getParent();
883 // Create a new MBB for the code after the OrigBB.
884 MachineBasicBlock *NewBB =
885 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
886 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
887 MF->insert(MBBI, NewBB);
889 // Splice the instructions starting with MI over to NewBB.
890 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
892 // Add an unconditional branch from OrigBB to NewBB.
893 // Note the new unconditional branch is not being recorded.
894 // There doesn't seem to be meaningful DebugInfo available; this doesn't
895 // correspond to anything in the source.
896 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
897 if (!isThumb)
898 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
899 else
900 BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
901 .addMBB(NewBB)
902 .add(predOps(ARMCC::AL));
903 ++NumSplit;
905 // Update the CFG. All succs of OrigBB are now succs of NewBB.
906 NewBB->transferSuccessors(OrigBB);
908 // OrigBB branches to NewBB.
909 OrigBB->addSuccessor(NewBB);
911 // Update internal data structures to account for the newly inserted MBB.
912 // This is almost the same as updateForInsertedWaterBlock, except that
913 // the Water goes after OrigBB, not NewBB.
914 MF->RenumberBlocks(NewBB);
916 // Insert an entry into BBInfo to align it properly with the (newly
917 // renumbered) block numbers.
918 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
920 // Next, update WaterList. Specifically, we need to add OrigMBB as having
921 // available water after it (but not if it's already there, which happens
922 // when splitting before a conditional branch that is followed by an
923 // unconditional branch - in that case we want to insert NewBB).
924 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
925 MachineBasicBlock* WaterBB = *IP;
926 if (WaterBB == OrigBB)
927 WaterList.insert(std::next(IP), NewBB);
928 else
929 WaterList.insert(IP, OrigBB);
930 NewWaterList.insert(OrigBB);
932 // Figure out how large the OrigBB is. As the first half of the original
933 // block, it cannot contain a tablejump. The size includes
934 // the new jump we added. (It should be possible to do this without
935 // recounting everything, but it's very confusing, and this is rarely
936 // executed.)
937 BBUtils->computeBlockSize(OrigBB);
939 // Figure out how large the NewMBB is. As the second half of the original
940 // block, it may contain a tablejump.
941 BBUtils->computeBlockSize(NewBB);
943 // All BBOffsets following these blocks must be modified.
944 BBUtils->adjustBBOffsetsAfter(OrigBB);
946 return NewBB;
949 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
950 /// displacement computation. Update U.KnownAlignment to match its current
951 /// basic block location.
952 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
953 unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
955 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
956 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
957 unsigned KnownBits = BBI.internalKnownBits();
959 // The value read from PC is offset from the actual instruction address.
960 UserOffset += (isThumb ? 4 : 8);
962 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
963 // Make sure U.getMaxDisp() returns a constrained range.
964 U.KnownAlignment = (KnownBits >= 2);
966 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
967 // purposes of the displacement computation; compensate for that here.
968 // For unknown alignments, getMaxDisp() constrains the range instead.
969 if (isThumb && U.KnownAlignment)
970 UserOffset &= ~3u;
972 return UserOffset;
975 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
976 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
977 /// constant pool entry).
978 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
979 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
980 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
981 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
982 unsigned TrialOffset, unsigned MaxDisp,
983 bool NegativeOK, bool IsSoImm) {
984 if (UserOffset <= TrialOffset) {
985 // User before the Trial.
986 if (TrialOffset - UserOffset <= MaxDisp)
987 return true;
988 // FIXME: Make use full range of soimm values.
989 } else if (NegativeOK) {
990 if (UserOffset - TrialOffset <= MaxDisp)
991 return true;
992 // FIXME: Make use full range of soimm values.
994 return false;
997 /// isWaterInRange - Returns true if a CPE placed after the specified
998 /// Water (a basic block) will be in range for the specific MI.
1000 /// Compute how much the function will grow by inserting a CPE after Water.
1001 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1002 MachineBasicBlock* Water, CPUser &U,
1003 unsigned &Growth) {
1004 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1005 unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1006 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1007 unsigned NextBlockOffset, NextBlockAlignment;
1008 MachineFunction::const_iterator NextBlock = Water->getIterator();
1009 if (++NextBlock == MF->end()) {
1010 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1011 NextBlockAlignment = 0;
1012 } else {
1013 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1014 NextBlockAlignment = NextBlock->getAlignment();
1016 unsigned Size = U.CPEMI->getOperand(2).getImm();
1017 unsigned CPEEnd = CPEOffset + Size;
1019 // The CPE may be able to hide in the alignment padding before the next
1020 // block. It may also cause more padding to be required if it is more aligned
1021 // that the next block.
1022 if (CPEEnd > NextBlockOffset) {
1023 Growth = CPEEnd - NextBlockOffset;
1024 // Compute the padding that would go at the end of the CPE to align the next
1025 // block.
1026 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
1028 // If the CPE is to be inserted before the instruction, that will raise
1029 // the offset of the instruction. Also account for unknown alignment padding
1030 // in blocks between CPE and the user.
1031 if (CPEOffset < UserOffset)
1032 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1033 } else
1034 // CPE fits in existing padding.
1035 Growth = 0;
1037 return isOffsetInRange(UserOffset, CPEOffset, U);
1040 /// isCPEntryInRange - Returns true if the distance between specific MI and
1041 /// specific ConstPool entry instruction can fit in MI's displacement field.
1042 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1043 MachineInstr *CPEMI, unsigned MaxDisp,
1044 bool NegOk, bool DoDump) {
1045 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1047 if (DoDump) {
1048 LLVM_DEBUG({
1049 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1050 unsigned Block = MI->getParent()->getNumber();
1051 const BasicBlockInfo &BBI = BBInfo[Block];
1052 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1053 << " max delta=" << MaxDisp
1054 << format(" insn address=%#x", UserOffset) << " in "
1055 << printMBBReference(*MI->getParent()) << ": "
1056 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1057 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1058 int(CPEOffset - UserOffset));
1062 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1065 #ifndef NDEBUG
1066 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1067 /// unconditionally branches to its only successor.
1068 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1069 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1070 return false;
1072 MachineBasicBlock *Succ = *MBB->succ_begin();
1073 MachineBasicBlock *Pred = *MBB->pred_begin();
1074 MachineInstr *PredMI = &Pred->back();
1075 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1076 || PredMI->getOpcode() == ARM::t2B)
1077 return PredMI->getOperand(0).getMBB() == Succ;
1078 return false;
1080 #endif // NDEBUG
1082 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1083 /// and instruction CPEMI, and decrement its refcount. If the refcount
1084 /// becomes 0 remove the entry and instruction. Returns true if we removed
1085 /// the entry, false if we didn't.
1086 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1087 MachineInstr *CPEMI) {
1088 // Find the old entry. Eliminate it if it is no longer used.
1089 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1090 assert(CPE && "Unexpected!");
1091 if (--CPE->RefCount == 0) {
1092 removeDeadCPEMI(CPEMI);
1093 CPE->CPEMI = nullptr;
1094 --NumCPEs;
1095 return true;
1097 return false;
1100 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1101 if (CPEMI->getOperand(1).isCPI())
1102 return CPEMI->getOperand(1).getIndex();
1104 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1107 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1108 /// if not, see if an in-range clone of the CPE is in range, and if so,
1109 /// change the data structures so the user references the clone. Returns:
1110 /// 0 = no existing entry found
1111 /// 1 = entry found, and there were no code insertions or deletions
1112 /// 2 = entry found, and there were code insertions or deletions
1113 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1114 MachineInstr *UserMI = U.MI;
1115 MachineInstr *CPEMI = U.CPEMI;
1117 // Check to see if the CPE is already in-range.
1118 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1119 true)) {
1120 LLVM_DEBUG(dbgs() << "In range\n");
1121 return 1;
1124 // No. Look for previously created clones of the CPE that are in range.
1125 unsigned CPI = getCombinedIndex(CPEMI);
1126 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1127 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1128 // We already tried this one
1129 if (CPEs[i].CPEMI == CPEMI)
1130 continue;
1131 // Removing CPEs can leave empty entries, skip
1132 if (CPEs[i].CPEMI == nullptr)
1133 continue;
1134 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1135 U.NegOk)) {
1136 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1137 << CPEs[i].CPI << "\n");
1138 // Point the CPUser node to the replacement
1139 U.CPEMI = CPEs[i].CPEMI;
1140 // Change the CPI in the instruction operand to refer to the clone.
1141 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1142 if (UserMI->getOperand(j).isCPI()) {
1143 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1144 break;
1146 // Adjust the refcount of the clone...
1147 CPEs[i].RefCount++;
1148 // ...and the original. If we didn't remove the old entry, none of the
1149 // addresses changed, so we don't need another pass.
1150 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1153 return 0;
1156 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1157 /// the specific unconditional branch instruction.
1158 static inline unsigned getUnconditionalBrDisp(int Opc) {
1159 switch (Opc) {
1160 case ARM::tB:
1161 return ((1<<10)-1)*2;
1162 case ARM::t2B:
1163 return ((1<<23)-1)*2;
1164 default:
1165 break;
1168 return ((1<<23)-1)*4;
1171 /// findAvailableWater - Look for an existing entry in the WaterList in which
1172 /// we can place the CPE referenced from U so it's within range of U's MI.
1173 /// Returns true if found, false if not. If it returns true, WaterIter
1174 /// is set to the WaterList entry. For Thumb, prefer water that will not
1175 /// introduce padding to water that will. To ensure that this pass
1176 /// terminates, the CPE location for a particular CPUser is only allowed to
1177 /// move to a lower address, so search backward from the end of the list and
1178 /// prefer the first water that is in range.
1179 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1180 water_iterator &WaterIter,
1181 bool CloserWater) {
1182 if (WaterList.empty())
1183 return false;
1185 unsigned BestGrowth = ~0u;
1186 // The nearest water without splitting the UserBB is right after it.
1187 // If the distance is still large (we have a big BB), then we need to split it
1188 // if we don't converge after certain iterations. This helps the following
1189 // situation to converge:
1190 // BB0:
1191 // Big BB
1192 // BB1:
1193 // Constant Pool
1194 // When a CP access is out of range, BB0 may be used as water. However,
1195 // inserting islands between BB0 and BB1 makes other accesses out of range.
1196 MachineBasicBlock *UserBB = U.MI->getParent();
1197 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1198 unsigned MinNoSplitDisp =
1199 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1200 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1201 return false;
1202 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1203 --IP) {
1204 MachineBasicBlock* WaterBB = *IP;
1205 // Check if water is in range and is either at a lower address than the
1206 // current "high water mark" or a new water block that was created since
1207 // the previous iteration by inserting an unconditional branch. In the
1208 // latter case, we want to allow resetting the high water mark back to
1209 // this new water since we haven't seen it before. Inserting branches
1210 // should be relatively uncommon and when it does happen, we want to be
1211 // sure to take advantage of it for all the CPEs near that block, so that
1212 // we don't insert more branches than necessary.
1213 // When CloserWater is true, we try to find the lowest address after (or
1214 // equal to) user MI's BB no matter of padding growth.
1215 unsigned Growth;
1216 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1217 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1218 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1219 Growth < BestGrowth) {
1220 // This is the least amount of required padding seen so far.
1221 BestGrowth = Growth;
1222 WaterIter = IP;
1223 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1224 << " Growth=" << Growth << '\n');
1226 if (CloserWater && WaterBB == U.MI->getParent())
1227 return true;
1228 // Keep looking unless it is perfect and we're not looking for the lowest
1229 // possible address.
1230 if (!CloserWater && BestGrowth == 0)
1231 return true;
1233 if (IP == B)
1234 break;
1236 return BestGrowth != ~0u;
1239 /// createNewWater - No existing WaterList entry will work for
1240 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1241 /// block is used if in range, and the conditional branch munged so control
1242 /// flow is correct. Otherwise the block is split to create a hole with an
1243 /// unconditional branch around it. In either case NewMBB is set to a
1244 /// block following which the new island can be inserted (the WaterList
1245 /// is not adjusted).
1246 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1247 unsigned UserOffset,
1248 MachineBasicBlock *&NewMBB) {
1249 CPUser &U = CPUsers[CPUserIndex];
1250 MachineInstr *UserMI = U.MI;
1251 MachineInstr *CPEMI = U.CPEMI;
1252 unsigned CPELogAlign = getCPELogAlign(CPEMI);
1253 MachineBasicBlock *UserMBB = UserMI->getParent();
1254 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1255 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1257 // If the block does not end in an unconditional branch already, and if the
1258 // end of the block is within range, make new water there. (The addition
1259 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1260 // Thumb2, 2 on Thumb1.
1261 if (BBHasFallthrough(UserMBB)) {
1262 // Size of branch to insert.
1263 unsigned Delta = isThumb1 ? 2 : 4;
1264 // Compute the offset where the CPE will begin.
1265 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1267 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1268 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1269 << format(", expected CPE offset %#x\n", CPEOffset));
1270 NewMBB = &*++UserMBB->getIterator();
1271 // Add an unconditional branch from UserMBB to fallthrough block. Record
1272 // it for branch lengthening; this new branch will not get out of range,
1273 // but if the preceding conditional branch is out of range, the targets
1274 // will be exchanged, and the altered branch may be out of range, so the
1275 // machinery has to know about it.
1276 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1277 if (!isThumb)
1278 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1279 else
1280 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1281 .addMBB(NewMBB)
1282 .add(predOps(ARMCC::AL));
1283 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1284 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1285 MaxDisp, false, UncondBr));
1286 BBUtils->computeBlockSize(UserMBB);
1287 BBUtils->adjustBBOffsetsAfter(UserMBB);
1288 return;
1292 // What a big block. Find a place within the block to split it. This is a
1293 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1294 // entries are 4 bytes: if instruction I references island CPE, and
1295 // instruction I+1 references CPE', it will not work well to put CPE as far
1296 // forward as possible, since then CPE' cannot immediately follow it (that
1297 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1298 // need to create a new island. So, we make a first guess, then walk through
1299 // the instructions between the one currently being looked at and the
1300 // possible insertion point, and make sure any other instructions that
1301 // reference CPEs will be able to use the same island area; if not, we back
1302 // up the insertion point.
1304 // Try to split the block so it's fully aligned. Compute the latest split
1305 // point where we can add a 4-byte branch instruction, and then align to
1306 // LogAlign which is the largest possible alignment in the function.
1307 unsigned LogAlign = MF->getAlignment();
1308 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1309 unsigned KnownBits = UserBBI.internalKnownBits();
1310 unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1311 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1312 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1313 BaseInsertOffset));
1315 // The 4 in the following is for the unconditional branch we'll be inserting
1316 // (allows for long branch on Thumb1). Alignment of the island is handled
1317 // inside isOffsetInRange.
1318 BaseInsertOffset -= 4;
1320 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1321 << " la=" << LogAlign << " kb=" << KnownBits
1322 << " up=" << UPad << '\n');
1324 // This could point off the end of the block if we've already got constant
1325 // pool entries following this block; only the last one is in the water list.
1326 // Back past any possible branches (allow for a conditional and a maximally
1327 // long unconditional).
1328 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1329 // Ensure BaseInsertOffset is larger than the offset of the instruction
1330 // following UserMI so that the loop which searches for the split point
1331 // iterates at least once.
1332 BaseInsertOffset =
1333 std::max(UserBBI.postOffset() - UPad - 8,
1334 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1335 // If the CP is referenced(ie, UserOffset) is in first four instructions
1336 // after IT, this recalculated BaseInsertOffset could be in the middle of
1337 // an IT block. If it is, change the BaseInsertOffset to just after the
1338 // IT block. This still make the CP Entry is in range becuase of the
1339 // following reasons.
1340 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1341 // U.getMaxDisp() - UPad).
1342 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1343 // bytes).
1344 // 3. All the relevant instructions support much larger Maximum
1345 // displacement.
1346 MachineBasicBlock::iterator I = UserMI;
1347 ++I;
1348 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI),
1349 PredReg = 0;
1350 I->getOpcode() != ARM::t2IT &&
1351 getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1352 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1353 BaseInsertOffset =
1354 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1355 assert(I != UserMBB->end() && "Fell off end of block");
1357 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1359 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1360 CPEMI->getOperand(2).getImm();
1361 MachineBasicBlock::iterator MI = UserMI;
1362 ++MI;
1363 unsigned CPUIndex = CPUserIndex+1;
1364 unsigned NumCPUsers = CPUsers.size();
1365 MachineInstr *LastIT = nullptr;
1366 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1367 Offset < BaseInsertOffset;
1368 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1369 assert(MI != UserMBB->end() && "Fell off end of block");
1370 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1371 CPUser &U = CPUsers[CPUIndex];
1372 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1373 // Shift intertion point by one unit of alignment so it is within reach.
1374 BaseInsertOffset -= 1u << LogAlign;
1375 EndInsertOffset -= 1u << LogAlign;
1377 // This is overly conservative, as we don't account for CPEMIs being
1378 // reused within the block, but it doesn't matter much. Also assume CPEs
1379 // are added in order with alignment padding. We may eventually be able
1380 // to pack the aligned CPEs better.
1381 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1382 CPUIndex++;
1385 // Remember the last IT instruction.
1386 if (MI->getOpcode() == ARM::t2IT)
1387 LastIT = &*MI;
1390 --MI;
1392 // Avoid splitting an IT block.
1393 if (LastIT) {
1394 unsigned PredReg = 0;
1395 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1396 if (CC != ARMCC::AL)
1397 MI = LastIT;
1400 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1401 // On Windows, this instruction pair is covered by one single
1402 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1403 // constant island is injected inbetween them, the relocation will clobber
1404 // the instruction and fail to update the MOVT instruction.
1405 // (These instructions are bundled up until right before the ConstantIslands
1406 // pass.)
1407 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1408 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1409 ARMII::MO_HI16) {
1410 --MI;
1411 assert(MI->getOpcode() == ARM::t2MOVi16 &&
1412 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1413 ARMII::MO_LO16);
1416 // We really must not split an IT block.
1417 #ifndef NDEBUG
1418 unsigned PredReg;
1419 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1420 #endif
1421 NewMBB = splitBlockBeforeInstr(&*MI);
1424 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1425 /// is out-of-range. If so, pick up the constant pool value and move it some
1426 /// place in-range. Return true if we changed any addresses (thus must run
1427 /// another pass of branch lengthening), false otherwise.
1428 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1429 bool CloserWater) {
1430 CPUser &U = CPUsers[CPUserIndex];
1431 MachineInstr *UserMI = U.MI;
1432 MachineInstr *CPEMI = U.CPEMI;
1433 unsigned CPI = getCombinedIndex(CPEMI);
1434 unsigned Size = CPEMI->getOperand(2).getImm();
1435 // Compute this only once, it's expensive.
1436 unsigned UserOffset = getUserOffset(U);
1438 // See if the current entry is within range, or there is a clone of it
1439 // in range.
1440 int result = findInRangeCPEntry(U, UserOffset);
1441 if (result==1) return false;
1442 else if (result==2) return true;
1444 // No existing clone of this CPE is within range.
1445 // We will be generating a new clone. Get a UID for it.
1446 unsigned ID = AFI->createPICLabelUId();
1448 // Look for water where we can place this CPE.
1449 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1450 MachineBasicBlock *NewMBB;
1451 water_iterator IP;
1452 if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1453 LLVM_DEBUG(dbgs() << "Found water in range\n");
1454 MachineBasicBlock *WaterBB = *IP;
1456 // If the original WaterList entry was "new water" on this iteration,
1457 // propagate that to the new island. This is just keeping NewWaterList
1458 // updated to match the WaterList, which will be updated below.
1459 if (NewWaterList.erase(WaterBB))
1460 NewWaterList.insert(NewIsland);
1462 // The new CPE goes before the following block (NewMBB).
1463 NewMBB = &*++WaterBB->getIterator();
1464 } else {
1465 // No water found.
1466 LLVM_DEBUG(dbgs() << "No water found\n");
1467 createNewWater(CPUserIndex, UserOffset, NewMBB);
1469 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1470 // called while handling branches so that the water will be seen on the
1471 // next iteration for constant pools, but in this context, we don't want
1472 // it. Check for this so it will be removed from the WaterList.
1473 // Also remove any entry from NewWaterList.
1474 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1475 IP = find(WaterList, WaterBB);
1476 if (IP != WaterList.end())
1477 NewWaterList.erase(WaterBB);
1479 // We are adding new water. Update NewWaterList.
1480 NewWaterList.insert(NewIsland);
1482 // Always align the new block because CP entries can be smaller than 4
1483 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1484 // be an already aligned constant pool block.
1485 const unsigned Align = isThumb ? 1 : 2;
1486 if (NewMBB->getAlignment() < Align)
1487 NewMBB->setAlignment(Align);
1489 // Remove the original WaterList entry; we want subsequent insertions in
1490 // this vicinity to go after the one we're about to insert. This
1491 // considerably reduces the number of times we have to move the same CPE
1492 // more than once and is also important to ensure the algorithm terminates.
1493 if (IP != WaterList.end())
1494 WaterList.erase(IP);
1496 // Okay, we know we can put an island before NewMBB now, do it!
1497 MF->insert(NewMBB->getIterator(), NewIsland);
1499 // Update internal data structures to account for the newly inserted MBB.
1500 updateForInsertedWaterBlock(NewIsland);
1502 // Now that we have an island to add the CPE to, clone the original CPE and
1503 // add it to the island.
1504 U.HighWaterMark = NewIsland;
1505 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1506 .addImm(ID)
1507 .add(CPEMI->getOperand(1))
1508 .addImm(Size);
1509 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1510 ++NumCPEs;
1512 // Decrement the old entry, and remove it if refcount becomes 0.
1513 decrementCPEReferenceCount(CPI, CPEMI);
1515 // Mark the basic block as aligned as required by the const-pool entry.
1516 NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1518 // Increase the size of the island block to account for the new entry.
1519 BBUtils->adjustBBSize(NewIsland, Size);
1520 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1522 // Finally, change the CPI in the instruction operand to be ID.
1523 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1524 if (UserMI->getOperand(i).isCPI()) {
1525 UserMI->getOperand(i).setIndex(ID);
1526 break;
1529 LLVM_DEBUG(
1530 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1531 << format(" offset=%#x\n",
1532 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1534 return true;
1537 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1538 /// sizes and offsets of impacted basic blocks.
1539 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1540 MachineBasicBlock *CPEBB = CPEMI->getParent();
1541 unsigned Size = CPEMI->getOperand(2).getImm();
1542 CPEMI->eraseFromParent();
1543 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1544 BBUtils->adjustBBSize(CPEBB, -Size);
1545 // All succeeding offsets have the current size value added in, fix this.
1546 if (CPEBB->empty()) {
1547 BBInfo[CPEBB->getNumber()].Size = 0;
1549 // This block no longer needs to be aligned.
1550 CPEBB->setAlignment(0);
1551 } else
1552 // Entries are sorted by descending alignment, so realign from the front.
1553 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin()));
1555 BBUtils->adjustBBOffsetsAfter(CPEBB);
1556 // An island has only one predecessor BB and one successor BB. Check if
1557 // this BB's predecessor jumps directly to this BB's successor. This
1558 // shouldn't happen currently.
1559 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1560 // FIXME: remove the empty blocks after all the work is done?
1563 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1564 /// are zero.
1565 bool ARMConstantIslands::removeUnusedCPEntries() {
1566 unsigned MadeChange = false;
1567 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1568 std::vector<CPEntry> &CPEs = CPEntries[i];
1569 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1570 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1571 removeDeadCPEMI(CPEs[j].CPEMI);
1572 CPEs[j].CPEMI = nullptr;
1573 MadeChange = true;
1577 return MadeChange;
1581 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1582 /// away to fit in its displacement field.
1583 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1584 MachineInstr *MI = Br.MI;
1585 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1587 // Check to see if the DestBB is already in-range.
1588 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1589 return false;
1591 if (!Br.isCond)
1592 return fixupUnconditionalBr(Br);
1593 return fixupConditionalBr(Br);
1596 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1597 /// too far away to fit in its displacement field. If the LR register has been
1598 /// spilled in the epilogue, then we can use BL to implement a far jump.
1599 /// Otherwise, add an intermediate branch instruction to a branch.
1600 bool
1601 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1602 MachineInstr *MI = Br.MI;
1603 MachineBasicBlock *MBB = MI->getParent();
1604 if (!isThumb1)
1605 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1607 if (!AFI->isLRSpilled())
1608 report_fatal_error("underestimated function size");
1610 // Use BL to implement far jump.
1611 Br.MaxDisp = (1 << 21) * 2;
1612 MI->setDesc(TII->get(ARM::tBfar));
1613 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1614 BBInfo[MBB->getNumber()].Size += 2;
1615 BBUtils->adjustBBOffsetsAfter(MBB);
1616 HasFarJump = true;
1617 ++NumUBrFixed;
1619 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1621 return true;
1624 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1625 /// far away to fit in its displacement field. It is converted to an inverse
1626 /// conditional branch + an unconditional branch to the destination.
1627 bool
1628 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1629 MachineInstr *MI = Br.MI;
1630 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1632 // Add an unconditional branch to the destination and invert the branch
1633 // condition to jump over it:
1634 // blt L1
1635 // =>
1636 // bge L2
1637 // b L1
1638 // L2:
1639 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1640 CC = ARMCC::getOppositeCondition(CC);
1641 unsigned CCReg = MI->getOperand(2).getReg();
1643 // If the branch is at the end of its MBB and that has a fall-through block,
1644 // direct the updated conditional branch to the fall-through block. Otherwise,
1645 // split the MBB before the next instruction.
1646 MachineBasicBlock *MBB = MI->getParent();
1647 MachineInstr *BMI = &MBB->back();
1648 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1650 ++NumCBrFixed;
1651 if (BMI != MI) {
1652 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1653 BMI->getOpcode() == Br.UncondBr) {
1654 // Last MI in the BB is an unconditional branch. Can we simply invert the
1655 // condition and swap destinations:
1656 // beq L1
1657 // b L2
1658 // =>
1659 // bne L2
1660 // b L1
1661 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1662 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1663 LLVM_DEBUG(
1664 dbgs() << " Invert Bcc condition and swap its destination with "
1665 << *BMI);
1666 BMI->getOperand(0).setMBB(DestBB);
1667 MI->getOperand(0).setMBB(NewDest);
1668 MI->getOperand(1).setImm(CC);
1669 return true;
1674 if (NeedSplit) {
1675 splitBlockBeforeInstr(MI);
1676 // No need for the branch to the next block. We're adding an unconditional
1677 // branch to the destination.
1678 int delta = TII->getInstSizeInBytes(MBB->back());
1679 BBUtils->adjustBBSize(MBB, -delta);
1680 MBB->back().eraseFromParent();
1682 // The conditional successor will be swapped between the BBs after this, so
1683 // update CFG.
1684 MBB->addSuccessor(DestBB);
1685 std::next(MBB->getIterator())->removeSuccessor(DestBB);
1687 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1689 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1691 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1692 << " also invert condition and change dest. to "
1693 << printMBBReference(*NextBB) << "\n");
1695 // Insert a new conditional branch and a new unconditional branch.
1696 // Also update the ImmBranch as well as adding a new entry for the new branch.
1697 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1698 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1699 Br.MI = &MBB->back();
1700 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1701 if (isThumb)
1702 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1703 .addMBB(DestBB)
1704 .add(predOps(ARMCC::AL));
1705 else
1706 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1707 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1708 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1709 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1711 // Remove the old conditional branch. It may or may not still be in MBB.
1712 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1713 MI->eraseFromParent();
1714 BBUtils->adjustBBOffsetsAfter(MBB);
1715 return true;
1718 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1719 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1720 /// to do this if tBfar is not used.
1721 bool ARMConstantIslands::undoLRSpillRestore() {
1722 bool MadeChange = false;
1723 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1724 MachineInstr *MI = PushPopMIs[i];
1725 // First two operands are predicates.
1726 if (MI->getOpcode() == ARM::tPOP_RET &&
1727 MI->getOperand(2).getReg() == ARM::PC &&
1728 MI->getNumExplicitOperands() == 3) {
1729 // Create the new insn and copy the predicate from the old.
1730 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1731 .add(MI->getOperand(0))
1732 .add(MI->getOperand(1));
1733 MI->eraseFromParent();
1734 MadeChange = true;
1735 } else if (MI->getOpcode() == ARM::tPUSH &&
1736 MI->getOperand(2).getReg() == ARM::LR &&
1737 MI->getNumExplicitOperands() == 3) {
1738 // Just remove the push.
1739 MI->eraseFromParent();
1740 MadeChange = true;
1743 return MadeChange;
1746 bool ARMConstantIslands::optimizeThumb2Instructions() {
1747 bool MadeChange = false;
1749 // Shrink ADR and LDR from constantpool.
1750 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1751 CPUser &U = CPUsers[i];
1752 unsigned Opcode = U.MI->getOpcode();
1753 unsigned NewOpc = 0;
1754 unsigned Scale = 1;
1755 unsigned Bits = 0;
1756 switch (Opcode) {
1757 default: break;
1758 case ARM::t2LEApcrel:
1759 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1760 NewOpc = ARM::tLEApcrel;
1761 Bits = 8;
1762 Scale = 4;
1764 break;
1765 case ARM::t2LDRpci:
1766 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1767 NewOpc = ARM::tLDRpci;
1768 Bits = 8;
1769 Scale = 4;
1771 break;
1774 if (!NewOpc)
1775 continue;
1777 unsigned UserOffset = getUserOffset(U);
1778 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1780 // Be conservative with inline asm.
1781 if (!U.KnownAlignment)
1782 MaxOffs -= 2;
1784 // FIXME: Check if offset is multiple of scale if scale is not 4.
1785 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1786 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1787 U.MI->setDesc(TII->get(NewOpc));
1788 MachineBasicBlock *MBB = U.MI->getParent();
1789 BBUtils->adjustBBSize(MBB, -2);
1790 BBUtils->adjustBBOffsetsAfter(MBB);
1791 ++NumT2CPShrunk;
1792 MadeChange = true;
1796 return MadeChange;
1799 bool ARMConstantIslands::optimizeThumb2Branches() {
1800 bool MadeChange = false;
1802 // The order in which branches appear in ImmBranches is approximately their
1803 // order within the function body. By visiting later branches first, we reduce
1804 // the distance between earlier forward branches and their targets, making it
1805 // more likely that the cbn?z optimization, which can only apply to forward
1806 // branches, will succeed.
1807 for (unsigned i = ImmBranches.size(); i != 0; --i) {
1808 ImmBranch &Br = ImmBranches[i-1];
1809 unsigned Opcode = Br.MI->getOpcode();
1810 unsigned NewOpc = 0;
1811 unsigned Scale = 1;
1812 unsigned Bits = 0;
1813 switch (Opcode) {
1814 default: break;
1815 case ARM::t2B:
1816 NewOpc = ARM::tB;
1817 Bits = 11;
1818 Scale = 2;
1819 break;
1820 case ARM::t2Bcc:
1821 NewOpc = ARM::tBcc;
1822 Bits = 8;
1823 Scale = 2;
1824 break;
1826 if (NewOpc) {
1827 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1828 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1829 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1830 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1831 Br.MI->setDesc(TII->get(NewOpc));
1832 MachineBasicBlock *MBB = Br.MI->getParent();
1833 BBUtils->adjustBBSize(MBB, -2);
1834 BBUtils->adjustBBOffsetsAfter(MBB);
1835 ++NumT2BrShrunk;
1836 MadeChange = true;
1840 Opcode = Br.MI->getOpcode();
1841 if (Opcode != ARM::tBcc)
1842 continue;
1844 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1845 // so this transformation is not safe.
1846 if (!Br.MI->killsRegister(ARM::CPSR))
1847 continue;
1849 NewOpc = 0;
1850 unsigned PredReg = 0;
1851 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1852 if (Pred == ARMCC::EQ)
1853 NewOpc = ARM::tCBZ;
1854 else if (Pred == ARMCC::NE)
1855 NewOpc = ARM::tCBNZ;
1856 if (!NewOpc)
1857 continue;
1858 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1859 // Check if the distance is within 126. Subtract starting offset by 2
1860 // because the cmp will be eliminated.
1861 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1862 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1863 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1864 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1865 continue;
1867 // Search backwards to find a tCMPi8
1868 auto *TRI = STI->getRegisterInfo();
1869 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1870 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1871 continue;
1873 unsigned Reg = CmpMI->getOperand(0).getReg();
1875 // Check for Kill flags on Reg. If they are present remove them and set kill
1876 // on the new CBZ.
1877 MachineBasicBlock::iterator KillMI = Br.MI;
1878 bool RegKilled = false;
1879 do {
1880 --KillMI;
1881 if (KillMI->killsRegister(Reg, TRI)) {
1882 KillMI->clearRegisterKills(Reg, TRI);
1883 RegKilled = true;
1884 break;
1886 } while (KillMI != CmpMI);
1888 // Create the new CBZ/CBNZ
1889 MachineBasicBlock *MBB = Br.MI->getParent();
1890 LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1891 MachineInstr *NewBR =
1892 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1893 .addReg(Reg, getKillRegState(RegKilled))
1894 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1895 CmpMI->eraseFromParent();
1896 Br.MI->eraseFromParent();
1897 Br.MI = NewBR;
1898 BBInfo[MBB->getNumber()].Size -= 2;
1899 BBUtils->adjustBBOffsetsAfter(MBB);
1900 ++NumCBZ;
1901 MadeChange = true;
1904 return MadeChange;
1907 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1908 unsigned BaseReg) {
1909 if (I.getOpcode() != ARM::t2ADDrs)
1910 return false;
1912 if (I.getOperand(0).getReg() != EntryReg)
1913 return false;
1915 if (I.getOperand(1).getReg() != BaseReg)
1916 return false;
1918 // FIXME: what about CC and IdxReg?
1919 return true;
1922 /// While trying to form a TBB/TBH instruction, we may (if the table
1923 /// doesn't immediately follow the BR_JT) need access to the start of the
1924 /// jump-table. We know one instruction that produces such a register; this
1925 /// function works out whether that definition can be preserved to the BR_JT,
1926 /// possibly by removing an intervening addition (which is usually needed to
1927 /// calculate the actual entry to jump to).
1928 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
1929 MachineInstr *LEAMI,
1930 unsigned &DeadSize,
1931 bool &CanDeleteLEA,
1932 bool &BaseRegKill) {
1933 if (JumpMI->getParent() != LEAMI->getParent())
1934 return false;
1936 // Now we hope that we have at least these instructions in the basic block:
1937 // BaseReg = t2LEA ...
1938 // [...]
1939 // EntryReg = t2ADDrs BaseReg, ...
1940 // [...]
1941 // t2BR_JT EntryReg
1943 // We have to be very conservative about what we recognise here though. The
1944 // main perturbing factors to watch out for are:
1945 // + Spills at any point in the chain: not direct problems but we would
1946 // expect a blocking Def of the spilled register so in practice what we
1947 // can do is limited.
1948 // + EntryReg == BaseReg: this is the one situation we should allow a Def
1949 // of BaseReg, but only if the t2ADDrs can be removed.
1950 // + Some instruction other than t2ADDrs computing the entry. Not seen in
1951 // the wild, but we should be careful.
1952 unsigned EntryReg = JumpMI->getOperand(0).getReg();
1953 unsigned BaseReg = LEAMI->getOperand(0).getReg();
1955 CanDeleteLEA = true;
1956 BaseRegKill = false;
1957 MachineInstr *RemovableAdd = nullptr;
1958 MachineBasicBlock::iterator I(LEAMI);
1959 for (++I; &*I != JumpMI; ++I) {
1960 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
1961 RemovableAdd = &*I;
1962 break;
1965 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1966 const MachineOperand &MO = I->getOperand(K);
1967 if (!MO.isReg() || !MO.getReg())
1968 continue;
1969 if (MO.isDef() && MO.getReg() == BaseReg)
1970 return false;
1971 if (MO.isUse() && MO.getReg() == BaseReg) {
1972 BaseRegKill = BaseRegKill || MO.isKill();
1973 CanDeleteLEA = false;
1978 if (!RemovableAdd)
1979 return true;
1981 // Check the add really is removable, and that nothing else in the block
1982 // clobbers BaseReg.
1983 for (++I; &*I != JumpMI; ++I) {
1984 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1985 const MachineOperand &MO = I->getOperand(K);
1986 if (!MO.isReg() || !MO.getReg())
1987 continue;
1988 if (MO.isDef() && MO.getReg() == BaseReg)
1989 return false;
1990 if (MO.isUse() && MO.getReg() == EntryReg)
1991 RemovableAdd = nullptr;
1995 if (RemovableAdd) {
1996 RemovableAdd->eraseFromParent();
1997 DeadSize += isThumb2 ? 4 : 2;
1998 } else if (BaseReg == EntryReg) {
1999 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2000 // preserve it.
2001 return false;
2004 // We reached the end of the block without seeing another definition of
2005 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2006 // used in the TBB/TBH if necessary.
2007 return true;
2010 /// Returns whether CPEMI is the first instruction in the block
2011 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2012 /// we can switch the first register to PC and usually remove the address
2013 /// calculation that preceded it.
2014 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2015 MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2016 MachineFunction *MF = MBB->getParent();
2017 ++MBB;
2019 return MBB != MF->end() && MBB->begin() != MBB->end() &&
2020 &*MBB->begin() == CPEMI;
2023 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2024 MachineInstr *JumpMI,
2025 unsigned &DeadSize) {
2026 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2027 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2028 // and is not clobbered / used.
2029 MachineInstr *RemovableAdd = nullptr;
2030 unsigned EntryReg = JumpMI->getOperand(0).getReg();
2032 // Find the last ADD to set EntryReg
2033 MachineBasicBlock::iterator I(LEAMI);
2034 for (++I; &*I != JumpMI; ++I) {
2035 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2036 RemovableAdd = &*I;
2039 if (!RemovableAdd)
2040 return;
2042 // Ensure EntryReg is not clobbered or used.
2043 MachineBasicBlock::iterator J(RemovableAdd);
2044 for (++J; &*J != JumpMI; ++J) {
2045 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2046 const MachineOperand &MO = J->getOperand(K);
2047 if (!MO.isReg() || !MO.getReg())
2048 continue;
2049 if (MO.isDef() && MO.getReg() == EntryReg)
2050 return;
2051 if (MO.isUse() && MO.getReg() == EntryReg)
2052 return;
2056 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2057 RemovableAdd->eraseFromParent();
2058 DeadSize += 4;
2061 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2062 /// jumptables when it's possible.
2063 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2064 bool MadeChange = false;
2066 // FIXME: After the tables are shrunk, can we get rid some of the
2067 // constantpool tables?
2068 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2069 if (!MJTI) return false;
2071 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2072 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2073 MachineInstr *MI = T2JumpTables[i];
2074 const MCInstrDesc &MCID = MI->getDesc();
2075 unsigned NumOps = MCID.getNumOperands();
2076 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2077 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2078 unsigned JTI = JTOP.getIndex();
2079 assert(JTI < JT.size());
2081 bool ByteOk = true;
2082 bool HalfWordOk = true;
2083 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2084 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2085 BBInfoVector &BBInfo = BBUtils->getBBInfo();
2086 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2087 MachineBasicBlock *MBB = JTBBs[j];
2088 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2089 // Negative offset is not ok. FIXME: We should change BB layout to make
2090 // sure all the branches are forward.
2091 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2092 ByteOk = false;
2093 unsigned TBHLimit = ((1<<16)-1)*2;
2094 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2095 HalfWordOk = false;
2096 if (!ByteOk && !HalfWordOk)
2097 break;
2100 if (!ByteOk && !HalfWordOk)
2101 continue;
2103 CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2104 MachineBasicBlock *MBB = MI->getParent();
2105 if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2106 continue;
2108 unsigned DeadSize = 0;
2109 bool CanDeleteLEA = false;
2110 bool BaseRegKill = false;
2112 unsigned IdxReg = ~0U;
2113 bool IdxRegKill = true;
2114 if (isThumb2) {
2115 IdxReg = MI->getOperand(1).getReg();
2116 IdxRegKill = MI->getOperand(1).isKill();
2118 bool PreservedBaseReg =
2119 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2120 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2121 continue;
2122 } else {
2123 // We're in thumb-1 mode, so we must have something like:
2124 // %idx = tLSLri %idx, 2
2125 // %base = tLEApcrelJT
2126 // %t = tLDRr %base, %idx
2127 unsigned BaseReg = User.MI->getOperand(0).getReg();
2129 if (User.MI->getIterator() == User.MI->getParent()->begin())
2130 continue;
2131 MachineInstr *Shift = User.MI->getPrevNode();
2132 if (Shift->getOpcode() != ARM::tLSLri ||
2133 Shift->getOperand(3).getImm() != 2 ||
2134 !Shift->getOperand(2).isKill())
2135 continue;
2136 IdxReg = Shift->getOperand(2).getReg();
2137 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg();
2139 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2140 // the range is checked later, but the LEA might still clobber it and not
2141 // actually get removed.
2142 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2143 continue;
2145 MachineInstr *Load = User.MI->getNextNode();
2146 if (Load->getOpcode() != ARM::tLDRr)
2147 continue;
2148 if (Load->getOperand(1).getReg() != BaseReg ||
2149 Load->getOperand(2).getReg() != ShiftedIdxReg ||
2150 !Load->getOperand(2).isKill())
2151 continue;
2153 // If we're in PIC mode, there should be another ADD following.
2154 auto *TRI = STI->getRegisterInfo();
2156 // %base cannot be redefined after the load as it will appear before
2157 // TBB/TBH like:
2158 // %base =
2159 // %base =
2160 // tBB %base, %idx
2161 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2162 continue;
2164 if (isPositionIndependentOrROPI) {
2165 MachineInstr *Add = Load->getNextNode();
2166 if (Add->getOpcode() != ARM::tADDrr ||
2167 Add->getOperand(2).getReg() != BaseReg ||
2168 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2169 !Add->getOperand(3).isKill())
2170 continue;
2171 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2172 continue;
2173 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2174 // IdxReg gets redefined in the middle of the sequence.
2175 continue;
2176 Add->eraseFromParent();
2177 DeadSize += 2;
2178 } else {
2179 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2180 continue;
2181 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2182 // IdxReg gets redefined in the middle of the sequence.
2183 continue;
2186 // Now safe to delete the load and lsl. The LEA will be removed later.
2187 CanDeleteLEA = true;
2188 Shift->eraseFromParent();
2189 Load->eraseFromParent();
2190 DeadSize += 4;
2193 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2194 MachineInstr *CPEMI = User.CPEMI;
2195 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2196 if (!isThumb2)
2197 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2199 MachineBasicBlock::iterator MI_JT = MI;
2200 MachineInstr *NewJTMI =
2201 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2202 .addReg(User.MI->getOperand(0).getReg(),
2203 getKillRegState(BaseRegKill))
2204 .addReg(IdxReg, getKillRegState(IdxRegKill))
2205 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2206 .addImm(CPEMI->getOperand(0).getImm());
2207 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2209 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2210 CPEMI->setDesc(TII->get(JTOpc));
2212 if (jumpTableFollowsTB(MI, User.CPEMI)) {
2213 NewJTMI->getOperand(0).setReg(ARM::PC);
2214 NewJTMI->getOperand(0).setIsKill(false);
2216 if (CanDeleteLEA) {
2217 if (isThumb2)
2218 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2220 User.MI->eraseFromParent();
2221 DeadSize += isThumb2 ? 4 : 2;
2223 // The LEA was eliminated, the TBB instruction becomes the only new user
2224 // of the jump table.
2225 User.MI = NewJTMI;
2226 User.MaxDisp = 4;
2227 User.NegOk = false;
2228 User.IsSoImm = false;
2229 User.KnownAlignment = false;
2230 } else {
2231 // The LEA couldn't be eliminated, so we must add another CPUser to
2232 // record the TBB or TBH use.
2233 int CPEntryIdx = JumpTableEntryIndices[JTI];
2234 auto &CPEs = CPEntries[CPEntryIdx];
2235 auto Entry =
2236 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2237 ++Entry->RefCount;
2238 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2242 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2243 unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2244 MI->eraseFromParent();
2246 int Delta = OrigSize - NewSize + DeadSize;
2247 BBInfo[MBB->getNumber()].Size -= Delta;
2248 BBUtils->adjustBBOffsetsAfter(MBB);
2250 ++NumTBs;
2251 MadeChange = true;
2254 return MadeChange;
2257 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2258 /// jump tables always branch forwards, since that's what tbb and tbh need.
2259 bool ARMConstantIslands::reorderThumb2JumpTables() {
2260 bool MadeChange = false;
2262 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2263 if (!MJTI) return false;
2265 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2266 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2267 MachineInstr *MI = T2JumpTables[i];
2268 const MCInstrDesc &MCID = MI->getDesc();
2269 unsigned NumOps = MCID.getNumOperands();
2270 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2271 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2272 unsigned JTI = JTOP.getIndex();
2273 assert(JTI < JT.size());
2275 // We prefer if target blocks for the jump table come after the jump
2276 // instruction so we can use TB[BH]. Loop through the target blocks
2277 // and try to adjust them such that that's true.
2278 int JTNumber = MI->getParent()->getNumber();
2279 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2280 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2281 MachineBasicBlock *MBB = JTBBs[j];
2282 int DTNumber = MBB->getNumber();
2284 if (DTNumber < JTNumber) {
2285 // The destination precedes the switch. Try to move the block forward
2286 // so we have a positive offset.
2287 MachineBasicBlock *NewBB =
2288 adjustJTTargetBlockForward(MBB, MI->getParent());
2289 if (NewBB)
2290 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2291 MadeChange = true;
2296 return MadeChange;
2299 MachineBasicBlock *ARMConstantIslands::
2300 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2301 // If the destination block is terminated by an unconditional branch,
2302 // try to move it; otherwise, create a new block following the jump
2303 // table that branches back to the actual target. This is a very simple
2304 // heuristic. FIXME: We can definitely improve it.
2305 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2306 SmallVector<MachineOperand, 4> Cond;
2307 SmallVector<MachineOperand, 4> CondPrior;
2308 MachineFunction::iterator BBi = BB->getIterator();
2309 MachineFunction::iterator OldPrior = std::prev(BBi);
2311 // If the block terminator isn't analyzable, don't try to move the block
2312 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2314 // If the block ends in an unconditional branch, move it. The prior block
2315 // has to have an analyzable terminator for us to move this one. Be paranoid
2316 // and make sure we're not trying to move the entry block of the function.
2317 if (!B && Cond.empty() && BB != &MF->front() &&
2318 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2319 BB->moveAfter(JTBB);
2320 OldPrior->updateTerminator();
2321 BB->updateTerminator();
2322 // Update numbering to account for the block being moved.
2323 MF->RenumberBlocks();
2324 ++NumJTMoved;
2325 return nullptr;
2328 // Create a new MBB for the code after the jump BB.
2329 MachineBasicBlock *NewBB =
2330 MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2331 MachineFunction::iterator MBBI = ++JTBB->getIterator();
2332 MF->insert(MBBI, NewBB);
2334 // Add an unconditional branch from NewBB to BB.
2335 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2336 // correspond directly to anything in the source.
2337 if (isThumb2)
2338 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2339 .addMBB(BB)
2340 .add(predOps(ARMCC::AL));
2341 else
2342 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2343 .addMBB(BB)
2344 .add(predOps(ARMCC::AL));
2346 // Update internal data structures to account for the newly inserted MBB.
2347 MF->RenumberBlocks(NewBB);
2349 // Update the CFG.
2350 NewBB->addSuccessor(BB);
2351 JTBB->replaceSuccessor(BB, NewBB);
2353 ++NumJTInserted;
2354 return NewBB;
2357 /// createARMConstantIslandPass - returns an instance of the constpool
2358 /// island pass.
2359 FunctionPass *llvm::createARMConstantIslandPass() {
2360 return new ARMConstantIslands();
2363 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2364 false, false)