1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::QPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
270 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
271 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
272 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
273 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
277 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
278 for (auto VT
: FloatTypes
) {
279 addRegisterClass(VT
, &ARM::QPRRegClass
);
283 // These are legal or custom whether we have MVE.fp or not
284 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
285 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
286 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
287 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
288 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
289 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
290 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
291 setOperationAction(ISD::SETCC
, VT
, Custom
);
294 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
295 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
296 setOperationAction(ISD::FROUND
, VT
, Legal
);
298 // No native support for these.
299 setOperationAction(ISD::FDIV
, VT
, Expand
);
300 setOperationAction(ISD::FREM
, VT
, Expand
);
301 setOperationAction(ISD::FSQRT
, VT
, Expand
);
302 setOperationAction(ISD::FSIN
, VT
, Expand
);
303 setOperationAction(ISD::FCOS
, VT
, Expand
);
304 setOperationAction(ISD::FPOW
, VT
, Expand
);
305 setOperationAction(ISD::FLOG
, VT
, Expand
);
306 setOperationAction(ISD::FLOG2
, VT
, Expand
);
307 setOperationAction(ISD::FLOG10
, VT
, Expand
);
308 setOperationAction(ISD::FEXP
, VT
, Expand
);
309 setOperationAction(ISD::FEXP2
, VT
, Expand
);
310 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
314 // We 'support' these types up to bitcast/load/store level, regardless of
315 // MVE integer-only / float support. Only doing FP data processing on the FP
316 // vector types is inhibited at integer-only level.
317 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
318 for (auto VT
: LongTypes
) {
319 addRegisterClass(VT
, &ARM::QPRRegClass
);
321 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
322 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
323 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
325 // We can do bitwise operations on v2i64 vectors
326 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
327 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
328 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
330 // It is legal to extload from v4i8 to v4i16 or v4i32.
331 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
332 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
333 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
335 // Some truncating stores are legal too.
336 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
337 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
338 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
341 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
342 for (auto VT
: pTypes
) {
343 addRegisterClass(VT
, &ARM::VCCRRegClass
);
344 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
345 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
346 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
347 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
348 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
349 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
350 setOperationAction(ISD::SETCC
, VT
, Custom
);
351 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
355 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
356 const ARMSubtarget
&STI
)
357 : TargetLowering(TM
), Subtarget(&STI
) {
358 RegInfo
= Subtarget
->getRegisterInfo();
359 Itins
= Subtarget
->getInstrItineraryData();
361 setBooleanContents(ZeroOrOneBooleanContent
);
362 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
364 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
365 !Subtarget
->isTargetWatchOS()) {
366 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
367 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
368 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
369 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
370 : CallingConv::ARM_AAPCS
);
373 if (Subtarget
->isTargetMachO()) {
374 // Uses VFP for Thumb libfuncs if available.
375 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
376 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
377 static const struct {
378 const RTLIB::Libcall Op
;
379 const char * const Name
;
380 const ISD::CondCode Cond
;
382 // Single-precision floating-point arithmetic.
383 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
384 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
385 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
386 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
388 // Double-precision floating-point arithmetic.
389 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
390 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
391 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
392 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
394 // Single-precision comparisons.
395 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
396 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
397 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
398 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
399 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
400 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
401 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
402 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
404 // Double-precision comparisons.
405 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
406 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
407 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
408 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
409 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
410 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
411 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
412 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
414 // Floating-point to integer conversions.
415 // i64 conversions are done via library routines even when generating VFP
416 // instructions, so use the same ones.
417 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
418 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
419 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
420 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
422 // Conversions between floating types.
423 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
424 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
426 // Integer to floating-point conversions.
427 // i64 conversions are done via library routines even when generating VFP
428 // instructions, so use the same ones.
429 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
430 // e.g., __floatunsidf vs. __floatunssidfvfp.
431 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
432 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
433 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
434 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
437 for (const auto &LC
: LibraryCalls
) {
438 setLibcallName(LC
.Op
, LC
.Name
);
439 if (LC
.Cond
!= ISD::SETCC_INVALID
)
440 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
445 // These libcalls are not available in 32-bit.
446 setLibcallName(RTLIB::SHL_I128
, nullptr);
447 setLibcallName(RTLIB::SRL_I128
, nullptr);
448 setLibcallName(RTLIB::SRA_I128
, nullptr);
451 if (Subtarget
->isAAPCS_ABI() &&
452 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
453 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
454 static const struct {
455 const RTLIB::Libcall Op
;
456 const char * const Name
;
457 const CallingConv::ID CC
;
458 const ISD::CondCode Cond
;
460 // Double-precision floating-point arithmetic helper functions
461 // RTABI chapter 4.1.2, Table 2
462 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
463 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
464 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
465 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
467 // Double-precision floating-point comparison helper functions
468 // RTABI chapter 4.1.2, Table 3
469 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
470 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
471 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
472 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
473 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
474 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
475 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
476 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
478 // Single-precision floating-point arithmetic helper functions
479 // RTABI chapter 4.1.2, Table 4
480 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
481 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
482 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
483 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
485 // Single-precision floating-point comparison helper functions
486 // RTABI chapter 4.1.2, Table 5
487 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
488 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
489 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
490 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
491 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
492 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
493 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
494 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
496 // Floating-point to integer conversions.
497 // RTABI chapter 4.1.2, Table 6
498 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
499 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
500 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
501 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
502 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
503 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
504 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
505 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
507 // Conversions between floating types.
508 // RTABI chapter 4.1.2, Table 7
509 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
513 // Integer to floating-point conversions.
514 // RTABI chapter 4.1.2, Table 8
515 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
516 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
517 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
518 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
519 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
520 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
521 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
522 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
524 // Long long helper functions
525 // RTABI chapter 4.2, Table 9
526 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
527 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 // Integer division functions
532 // RTABI chapter 4.3.1
533 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
535 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
537 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
538 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
540 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
543 for (const auto &LC
: LibraryCalls
) {
544 setLibcallName(LC
.Op
, LC
.Name
);
545 setLibcallCallingConv(LC
.Op
, LC
.CC
);
546 if (LC
.Cond
!= ISD::SETCC_INVALID
)
547 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
550 // EABI dependent RTLIB
551 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
552 TM
.Options
.EABIVersion
== EABI::EABI5
) {
553 static const struct {
554 const RTLIB::Libcall Op
;
555 const char *const Name
;
556 const CallingConv::ID CC
;
557 const ISD::CondCode Cond
;
558 } MemOpsLibraryCalls
[] = {
560 // RTABI chapter 4.3.4
561 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 for (const auto &LC
: MemOpsLibraryCalls
) {
567 setLibcallName(LC
.Op
, LC
.Name
);
568 setLibcallCallingConv(LC
.Op
, LC
.CC
);
569 if (LC
.Cond
!= ISD::SETCC_INVALID
)
570 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
575 if (Subtarget
->isTargetWindows()) {
576 static const struct {
577 const RTLIB::Libcall Op
;
578 const char * const Name
;
579 const CallingConv::ID CC
;
581 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
582 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
583 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
584 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
585 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
586 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
587 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
588 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
591 for (const auto &LC
: LibraryCalls
) {
592 setLibcallName(LC
.Op
, LC
.Name
);
593 setLibcallCallingConv(LC
.Op
, LC
.CC
);
597 // Use divmod compiler-rt calls for iOS 5.0 and later.
598 if (Subtarget
->isTargetMachO() &&
599 !(Subtarget
->isTargetIOS() &&
600 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
601 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
602 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
605 // The half <-> float conversion functions are always soft-float on
606 // non-watchos platforms, but are needed for some targets which use a
607 // hard-float calling convention by default.
608 if (!Subtarget
->isTargetWatchABI()) {
609 if (Subtarget
->isAAPCS_ABI()) {
610 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
611 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
612 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
614 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
615 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
616 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
620 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
621 // a __gnu_ prefix (which is the default).
622 if (Subtarget
->isTargetAEABI()) {
623 static const struct {
624 const RTLIB::Libcall Op
;
625 const char * const Name
;
626 const CallingConv::ID CC
;
628 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
629 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
630 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
633 for (const auto &LC
: LibraryCalls
) {
634 setLibcallName(LC
.Op
, LC
.Name
);
635 setLibcallCallingConv(LC
.Op
, LC
.CC
);
639 if (Subtarget
->isThumb1Only())
640 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
642 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
644 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
645 Subtarget
->hasFPRegs()) {
646 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
647 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
648 if (!Subtarget
->hasVFP2Base())
649 setAllExpand(MVT::f32
);
650 if (!Subtarget
->hasFP64())
651 setAllExpand(MVT::f64
);
654 if (Subtarget
->hasFullFP16()) {
655 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
656 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
657 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
658 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
660 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
661 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
664 for (MVT VT
: MVT::vector_valuetypes()) {
665 for (MVT InnerVT
: MVT::vector_valuetypes()) {
666 setTruncStoreAction(VT
, InnerVT
, Expand
);
667 addAllExtLoads(VT
, InnerVT
, Expand
);
670 setOperationAction(ISD::MULHS
, VT
, Expand
);
671 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
672 setOperationAction(ISD::MULHU
, VT
, Expand
);
673 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
675 setOperationAction(ISD::BSWAP
, VT
, Expand
);
678 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
679 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
681 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
682 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
684 if (Subtarget
->hasMVEIntegerOps())
685 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
687 // Combine low-overhead loop intrinsics so that we can lower i1 types.
688 if (Subtarget
->hasLOB()) {
689 setTargetDAGCombine(ISD::BRCOND
);
690 setTargetDAGCombine(ISD::BR_CC
);
693 if (Subtarget
->hasNEON()) {
694 addDRTypeForNEON(MVT::v2f32
);
695 addDRTypeForNEON(MVT::v8i8
);
696 addDRTypeForNEON(MVT::v4i16
);
697 addDRTypeForNEON(MVT::v2i32
);
698 addDRTypeForNEON(MVT::v1i64
);
700 addQRTypeForNEON(MVT::v4f32
);
701 addQRTypeForNEON(MVT::v2f64
);
702 addQRTypeForNEON(MVT::v16i8
);
703 addQRTypeForNEON(MVT::v8i16
);
704 addQRTypeForNEON(MVT::v4i32
);
705 addQRTypeForNEON(MVT::v2i64
);
707 if (Subtarget
->hasFullFP16()) {
708 addQRTypeForNEON(MVT::v8f16
);
709 addDRTypeForNEON(MVT::v4f16
);
713 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
714 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
715 // none of Neon, MVE or VFP supports any arithmetic operations on it.
716 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
717 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
718 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
719 // FIXME: Code duplication: FDIV and FREM are expanded always, see
720 // ARMTargetLowering::addTypeForNEON method for details.
721 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
722 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
723 // FIXME: Create unittest.
724 // In another words, find a way when "copysign" appears in DAG with vector
726 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
727 // FIXME: Code duplication: SETCC has custom operation action, see
728 // ARMTargetLowering::addTypeForNEON method for details.
729 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
730 // FIXME: Create unittest for FNEG and for FABS.
731 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
732 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
733 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
734 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
735 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
736 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
737 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
738 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
739 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
740 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
741 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
742 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
743 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
744 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
745 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
746 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
747 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
748 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
751 if (Subtarget
->hasNEON()) {
752 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
753 // supported for v4f32.
754 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
755 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
756 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
757 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
758 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
759 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
760 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
761 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
762 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
763 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
764 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
765 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
766 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
767 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
769 // Mark v2f32 intrinsics.
770 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
771 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
772 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
773 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
774 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
775 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
776 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
777 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
778 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
779 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
780 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
781 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
782 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
783 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
785 // Neon does not support some operations on v1i64 and v2i64 types.
786 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
787 // Custom handling for some quad-vector types to detect VMULL.
788 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
789 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
790 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
791 // Custom handling for some vector types to avoid expensive expansions
792 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
793 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
794 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
795 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
796 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
797 // a destination type that is wider than the source, and nor does
798 // it have a FP_TO_[SU]INT instruction with a narrower destination than
800 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
801 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
802 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
803 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
804 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
805 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
806 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
807 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
809 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
812 // NEON does not have single instruction CTPOP for vectors with element
813 // types wider than 8-bits. However, custom lowering can leverage the
814 // v8i8/v16i8 vcnt instruction.
815 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
816 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
817 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
818 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
819 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
820 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
822 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
823 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
825 // NEON does not have single instruction CTTZ for vectors.
826 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
827 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
828 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
829 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
831 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
832 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
834 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
836 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
837 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
839 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
841 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
842 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
843 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
844 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
846 // NEON only has FMA instructions as of VFP4.
847 if (!Subtarget
->hasVFP4Base()) {
848 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
849 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
852 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
853 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
854 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
855 setTargetDAGCombine(ISD::SHL
);
856 setTargetDAGCombine(ISD::SRL
);
857 setTargetDAGCombine(ISD::SRA
);
858 setTargetDAGCombine(ISD::SIGN_EXTEND
);
859 setTargetDAGCombine(ISD::ZERO_EXTEND
);
860 setTargetDAGCombine(ISD::ANY_EXTEND
);
861 setTargetDAGCombine(ISD::STORE
);
862 setTargetDAGCombine(ISD::FP_TO_SINT
);
863 setTargetDAGCombine(ISD::FP_TO_UINT
);
864 setTargetDAGCombine(ISD::FDIV
);
865 setTargetDAGCombine(ISD::LOAD
);
867 // It is legal to extload from v4i8 to v4i16 or v4i32.
868 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
870 for (MVT VT
: MVT::integer_vector_valuetypes()) {
871 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
872 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
873 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
878 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
879 setTargetDAGCombine(ISD::BUILD_VECTOR
);
880 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
881 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
884 if (!Subtarget
->hasFP64()) {
885 // When targeting a floating-point unit with only single-precision
886 // operations, f64 is legal for the few double-precision instructions which
887 // are present However, no double-precision operations other than moves,
888 // loads and stores are provided by the hardware.
889 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
890 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
891 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
892 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
893 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
894 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
895 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
896 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
897 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
898 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
899 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
900 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
901 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
902 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
903 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
904 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
905 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
906 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
907 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
908 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
909 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
910 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
911 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
912 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
913 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
914 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
915 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
916 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
917 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
918 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
919 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
922 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()){
923 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
924 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
927 if (!Subtarget
->hasFP16())
928 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
930 if (!Subtarget
->hasFP64())
931 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
933 computeRegisterProperties(Subtarget
->getRegisterInfo());
935 // ARM does not have floating-point extending loads.
936 for (MVT VT
: MVT::fp_valuetypes()) {
937 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
938 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
941 // ... or truncating stores
942 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
943 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
944 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
946 // ARM does not have i1 sign extending load.
947 for (MVT VT
: MVT::integer_valuetypes())
948 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
950 // ARM supports all 4 flavors of integer indexed load / store.
951 if (!Subtarget
->isThumb1Only()) {
952 for (unsigned im
= (unsigned)ISD::PRE_INC
;
953 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
954 setIndexedLoadAction(im
, MVT::i1
, Legal
);
955 setIndexedLoadAction(im
, MVT::i8
, Legal
);
956 setIndexedLoadAction(im
, MVT::i16
, Legal
);
957 setIndexedLoadAction(im
, MVT::i32
, Legal
);
958 setIndexedStoreAction(im
, MVT::i1
, Legal
);
959 setIndexedStoreAction(im
, MVT::i8
, Legal
);
960 setIndexedStoreAction(im
, MVT::i16
, Legal
);
961 setIndexedStoreAction(im
, MVT::i32
, Legal
);
964 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
965 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
966 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
969 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
970 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
971 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
972 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
974 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
975 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
977 // i64 operation support.
978 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
979 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
980 if (Subtarget
->isThumb1Only()) {
981 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
982 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
984 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
985 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
986 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
988 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
989 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
990 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
991 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
992 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
993 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
995 // MVE lowers 64 bit shifts to lsll and lsrl
996 // assuming that ISD::SRL and SRA of i64 are already marked custom
997 if (Subtarget
->hasMVEIntegerOps())
998 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1000 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1001 if (Subtarget
->isThumb1Only()) {
1002 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1003 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1004 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1007 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1008 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1010 // ARM does not have ROTL.
1011 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1012 for (MVT VT
: MVT::vector_valuetypes()) {
1013 setOperationAction(ISD::ROTL
, VT
, Expand
);
1014 setOperationAction(ISD::ROTR
, VT
, Expand
);
1016 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1017 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1018 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1019 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1020 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1023 // @llvm.readcyclecounter requires the Performance Monitors extension.
1024 // Default to the 0 expansion on unsupported platforms.
1025 // FIXME: Technically there are older ARM CPUs that have
1026 // implementation-specific ways of obtaining this information.
1027 if (Subtarget
->hasPerfMon())
1028 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1030 // Only ARMv6 has BSWAP.
1031 if (!Subtarget
->hasV6Ops())
1032 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1034 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1035 : Subtarget
->hasDivideInARMMode();
1037 // These are expanded into libcalls if the cpu doesn't have HW divider.
1038 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1039 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1042 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1043 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1044 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1046 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1047 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1050 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1053 // Register based DivRem for AEABI (RTABI 4.2)
1054 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1055 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1056 Subtarget
->isTargetWindows()) {
1057 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1058 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1059 HasStandaloneRem
= false;
1061 if (Subtarget
->isTargetWindows()) {
1063 const RTLIB::Libcall Op
;
1064 const char * const Name
;
1065 const CallingConv::ID CC
;
1066 } LibraryCalls
[] = {
1067 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1068 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1069 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1070 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1072 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1073 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1074 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1075 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1078 for (const auto &LC
: LibraryCalls
) {
1079 setLibcallName(LC
.Op
, LC
.Name
);
1080 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1084 const RTLIB::Libcall Op
;
1085 const char * const Name
;
1086 const CallingConv::ID CC
;
1087 } LibraryCalls
[] = {
1088 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1089 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1090 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1091 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1093 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1094 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1095 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1096 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1099 for (const auto &LC
: LibraryCalls
) {
1100 setLibcallName(LC
.Op
, LC
.Name
);
1101 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1105 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1106 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1107 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1108 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1110 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1111 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1114 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1115 for (auto &VT
: {MVT::f32
, MVT::f64
})
1116 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1118 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1119 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1120 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1121 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1123 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1124 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1126 // Use the default implementation.
1127 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1128 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1129 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1130 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1131 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1132 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1134 if (Subtarget
->isTargetWindows())
1135 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1137 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1139 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1140 // the default expansion.
1141 InsertFencesForAtomic
= false;
1142 if (Subtarget
->hasAnyDataBarrier() &&
1143 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1144 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1145 // to ldrex/strex loops already.
1146 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1147 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1148 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1150 // On v8, we have particularly efficient implementations of atomic fences
1151 // if they can be combined with nearby atomic loads and stores.
1152 if (!Subtarget
->hasAcquireRelease() ||
1153 getTargetMachine().getOptLevel() == 0) {
1154 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1155 InsertFencesForAtomic
= true;
1158 // If there's anything we can use as a barrier, go through custom lowering
1159 // for ATOMIC_FENCE.
1160 // If target has DMB in thumb, Fences can be inserted.
1161 if (Subtarget
->hasDataBarrier())
1162 InsertFencesForAtomic
= true;
1164 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1165 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1167 // Set them all for expansion, which will force libcalls.
1168 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1169 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1170 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1171 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1172 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1173 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1174 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1175 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1176 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1177 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1178 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1179 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1180 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1181 // Unordered/Monotonic case.
1182 if (!InsertFencesForAtomic
) {
1183 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1184 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1188 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1190 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1191 if (!Subtarget
->hasV6Ops()) {
1192 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1193 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1195 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1197 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1198 !Subtarget
->isThumb1Only()) {
1199 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1200 // iff target supports vfp2.
1201 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1202 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1205 // We want to custom lower some of our intrinsics.
1206 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1207 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1208 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1209 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1210 if (Subtarget
->useSjLjEH())
1211 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1213 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1214 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1215 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1216 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1217 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1218 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1219 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1220 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1221 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1222 if (Subtarget
->hasFullFP16()) {
1223 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1224 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1225 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1228 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1230 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1231 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1232 if (Subtarget
->hasFullFP16())
1233 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1234 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1235 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1236 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1238 // We don't support sin/cos/fmod/copysign/pow
1239 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1240 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1241 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1242 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1243 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1244 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1245 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1246 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1247 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1248 !Subtarget
->isThumb1Only()) {
1249 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1250 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1252 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1253 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1255 if (!Subtarget
->hasVFP4Base()) {
1256 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1257 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1260 // Various VFP goodness
1261 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1262 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1263 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1264 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1265 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1268 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1269 if (!Subtarget
->hasFP16()) {
1270 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1271 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1275 // Use __sincos_stret if available.
1276 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1277 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1278 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1279 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1282 // FP-ARMv8 implements a lot of rounding-like FP operations.
1283 if (Subtarget
->hasFPARMv8Base()) {
1284 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1285 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1286 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1287 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1288 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1289 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1290 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1291 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1292 if (Subtarget
->hasNEON()) {
1293 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1294 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1295 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1296 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1299 if (Subtarget
->hasFP64()) {
1300 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1301 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1302 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1303 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1304 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1305 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1306 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1307 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1311 // FP16 often need to be promoted to call lib functions
1312 if (Subtarget
->hasFullFP16()) {
1313 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1314 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1315 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1316 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1317 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1318 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1319 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1320 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1321 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1322 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1323 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1324 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1326 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1329 if (Subtarget
->hasNEON()) {
1330 // vmin and vmax aren't available in a scalar form, so we use
1331 // a NEON instruction with an undef lane instead.
1332 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1333 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1334 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1335 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1336 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1337 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1338 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1339 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1341 if (Subtarget
->hasFullFP16()) {
1342 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1343 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1344 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1345 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1347 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1348 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1349 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1350 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1354 // We have target-specific dag combine patterns for the following nodes:
1355 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1356 setTargetDAGCombine(ISD::ADD
);
1357 setTargetDAGCombine(ISD::SUB
);
1358 setTargetDAGCombine(ISD::MUL
);
1359 setTargetDAGCombine(ISD::AND
);
1360 setTargetDAGCombine(ISD::OR
);
1361 setTargetDAGCombine(ISD::XOR
);
1363 if (Subtarget
->hasV6Ops())
1364 setTargetDAGCombine(ISD::SRL
);
1365 if (Subtarget
->isThumb1Only())
1366 setTargetDAGCombine(ISD::SHL
);
1368 setStackPointerRegisterToSaveRestore(ARM::SP
);
1370 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1371 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1372 setSchedulingPreference(Sched::RegPressure
);
1374 setSchedulingPreference(Sched::Hybrid
);
1376 //// temporary - rewrite interface to use type
1377 MaxStoresPerMemset
= 8;
1378 MaxStoresPerMemsetOptSize
= 4;
1379 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1380 MaxStoresPerMemcpyOptSize
= 2;
1381 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1382 MaxStoresPerMemmoveOptSize
= 2;
1384 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1385 // are at least 4 bytes aligned.
1386 setMinStackArgumentAlignment(4);
1388 // Prefer likely predicted branches to selects on out-of-order cores.
1389 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1391 setPrefLoopAlignment(Subtarget
->getPrefLoopAlignment());
1393 setMinFunctionAlignment(Subtarget
->isThumb() ? 1 : 2);
1395 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1396 setTargetDAGCombine(ISD::ABS
);
1399 bool ARMTargetLowering::useSoftFloat() const {
1400 return Subtarget
->useSoftFloat();
1403 // FIXME: It might make sense to define the representative register class as the
1404 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1405 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1406 // SPR's representative would be DPR_VFP2. This should work well if register
1407 // pressure tracking were modified such that a register use would increment the
1408 // pressure of the register class's representative and all of it's super
1409 // classes' representatives transitively. We have not implemented this because
1410 // of the difficulty prior to coalescing of modeling operand register classes
1411 // due to the common occurrence of cross class copies and subregister insertions
1413 std::pair
<const TargetRegisterClass
*, uint8_t>
1414 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1416 const TargetRegisterClass
*RRC
= nullptr;
1418 switch (VT
.SimpleTy
) {
1420 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1421 // Use DPR as representative register class for all floating point
1422 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1423 // the cost is 1 for both f32 and f64.
1424 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1425 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1426 RRC
= &ARM::DPRRegClass
;
1427 // When NEON is used for SP, only half of the register file is available
1428 // because operations that define both SP and DP results will be constrained
1429 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1430 // coalescing by double-counting the SP regs. See the FIXME above.
1431 if (Subtarget
->useNEONForSinglePrecisionFP())
1434 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1435 case MVT::v4f32
: case MVT::v2f64
:
1436 RRC
= &ARM::DPRRegClass
;
1440 RRC
= &ARM::DPRRegClass
;
1444 RRC
= &ARM::DPRRegClass
;
1448 return std::make_pair(RRC
, Cost
);
1451 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1452 switch ((ARMISD::NodeType
)Opcode
) {
1453 case ARMISD::FIRST_NUMBER
: break;
1454 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1455 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1456 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1457 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1458 case ARMISD::CALL
: return "ARMISD::CALL";
1459 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1460 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1461 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1462 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1463 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1464 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1465 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1466 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1467 case ARMISD::CMP
: return "ARMISD::CMP";
1468 case ARMISD::CMN
: return "ARMISD::CMN";
1469 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1470 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1471 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1472 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1473 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1475 case ARMISD::CMOV
: return "ARMISD::CMOV";
1476 case ARMISD::SUBS
: return "ARMISD::SUBS";
1478 case ARMISD::SSAT
: return "ARMISD::SSAT";
1479 case ARMISD::USAT
: return "ARMISD::USAT";
1481 case ARMISD::ASRL
: return "ARMISD::ASRL";
1482 case ARMISD::LSRL
: return "ARMISD::LSRL";
1483 case ARMISD::LSLL
: return "ARMISD::LSLL";
1485 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1486 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1487 case ARMISD::RRX
: return "ARMISD::RRX";
1489 case ARMISD::ADDC
: return "ARMISD::ADDC";
1490 case ARMISD::ADDE
: return "ARMISD::ADDE";
1491 case ARMISD::SUBC
: return "ARMISD::SUBC";
1492 case ARMISD::SUBE
: return "ARMISD::SUBE";
1493 case ARMISD::LSLS
: return "ARMISD::LSLS";
1495 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1496 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1497 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1498 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1499 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1501 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1502 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1503 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1505 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1507 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1509 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1511 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1513 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1515 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1516 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1518 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1519 case ARMISD::VCMP
: return "ARMISD::VCMP";
1520 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1521 case ARMISD::VTST
: return "ARMISD::VTST";
1523 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1524 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1525 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1526 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1527 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1528 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1529 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1530 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1531 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1532 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1533 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1534 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1535 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1536 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1537 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1538 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1539 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1540 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1541 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1542 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1543 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1544 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1545 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1546 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1547 case ARMISD::VDUP
: return "ARMISD::VDUP";
1548 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1549 case ARMISD::VEXT
: return "ARMISD::VEXT";
1550 case ARMISD::VREV64
: return "ARMISD::VREV64";
1551 case ARMISD::VREV32
: return "ARMISD::VREV32";
1552 case ARMISD::VREV16
: return "ARMISD::VREV16";
1553 case ARMISD::VZIP
: return "ARMISD::VZIP";
1554 case ARMISD::VUZP
: return "ARMISD::VUZP";
1555 case ARMISD::VTRN
: return "ARMISD::VTRN";
1556 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1557 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1558 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1559 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1560 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1561 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1562 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1563 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1564 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1565 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1566 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1567 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1568 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1569 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1570 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1571 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1572 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1573 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1574 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1575 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1576 case ARMISD::BFI
: return "ARMISD::BFI";
1577 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1578 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1579 case ARMISD::VBSL
: return "ARMISD::VBSL";
1580 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1581 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1582 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1583 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1584 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1585 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1586 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1587 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1588 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1589 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1590 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1591 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1592 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1593 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1594 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1595 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1596 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1597 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1598 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1599 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1600 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1601 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1602 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1603 case ARMISD::WLS
: return "ARMISD::WLS";
1604 case ARMISD::LE
: return "ARMISD::LE";
1605 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1610 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1613 return getPointerTy(DL
);
1615 // MVE has a predicate register.
1616 if (Subtarget
->hasMVEIntegerOps() &&
1617 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1618 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1619 return VT
.changeVectorElementTypeToInteger();
1622 /// getRegClassFor - Return the register class that should be used for the
1623 /// specified value type.
1624 const TargetRegisterClass
*
1625 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1627 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1628 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1629 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1631 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1632 if (VT
== MVT::v4i64
)
1633 return &ARM::QQPRRegClass
;
1634 if (VT
== MVT::v8i64
)
1635 return &ARM::QQQQPRRegClass
;
1637 return TargetLowering::getRegClassFor(VT
);
1640 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1641 // source/dest is aligned and the copy size is large enough. We therefore want
1642 // to align such objects passed to memory intrinsics.
1643 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1644 unsigned &PrefAlign
) const {
1645 if (!isa
<MemIntrinsic
>(CI
))
1648 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1649 // cycle faster than 4-byte aligned LDM.
1650 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1654 // Create a fast isel object.
1656 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1657 const TargetLibraryInfo
*libInfo
) const {
1658 return ARM::createFastISel(funcInfo
, libInfo
);
1661 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1662 unsigned NumVals
= N
->getNumValues();
1664 return Sched::RegPressure
;
1666 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1667 EVT VT
= N
->getValueType(i
);
1668 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1670 if (VT
.isFloatingPoint() || VT
.isVector())
1674 if (!N
->isMachineOpcode())
1675 return Sched::RegPressure
;
1677 // Load are scheduled for latency even if there instruction itinerary
1678 // is not available.
1679 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1680 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1682 if (MCID
.getNumDefs() == 0)
1683 return Sched::RegPressure
;
1684 if (!Itins
->isEmpty() &&
1685 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1688 return Sched::RegPressure
;
1691 //===----------------------------------------------------------------------===//
1693 //===----------------------------------------------------------------------===//
1695 static bool isSRL16(const SDValue
&Op
) {
1696 if (Op
.getOpcode() != ISD::SRL
)
1698 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1699 return Const
->getZExtValue() == 16;
1703 static bool isSRA16(const SDValue
&Op
) {
1704 if (Op
.getOpcode() != ISD::SRA
)
1706 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1707 return Const
->getZExtValue() == 16;
1711 static bool isSHL16(const SDValue
&Op
) {
1712 if (Op
.getOpcode() != ISD::SHL
)
1714 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1715 return Const
->getZExtValue() == 16;
1719 // Check for a signed 16-bit value. We special case SRA because it makes it
1720 // more simple when also looking for SRAs that aren't sign extending a
1721 // smaller value. Without the check, we'd need to take extra care with
1722 // checking order for some operations.
1723 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1725 return isSHL16(Op
.getOperand(0));
1726 return DAG
.ComputeNumSignBits(Op
) == 17;
1729 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1730 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1732 default: llvm_unreachable("Unknown condition code!");
1733 case ISD::SETNE
: return ARMCC::NE
;
1734 case ISD::SETEQ
: return ARMCC::EQ
;
1735 case ISD::SETGT
: return ARMCC::GT
;
1736 case ISD::SETGE
: return ARMCC::GE
;
1737 case ISD::SETLT
: return ARMCC::LT
;
1738 case ISD::SETLE
: return ARMCC::LE
;
1739 case ISD::SETUGT
: return ARMCC::HI
;
1740 case ISD::SETUGE
: return ARMCC::HS
;
1741 case ISD::SETULT
: return ARMCC::LO
;
1742 case ISD::SETULE
: return ARMCC::LS
;
1746 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1747 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1748 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1749 CondCode2
= ARMCC::AL
;
1750 InvalidOnQNaN
= true;
1752 default: llvm_unreachable("Unknown FP condition!");
1755 CondCode
= ARMCC::EQ
;
1756 InvalidOnQNaN
= false;
1759 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1761 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1762 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1763 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1765 CondCode
= ARMCC::MI
;
1766 CondCode2
= ARMCC::GT
;
1767 InvalidOnQNaN
= false;
1769 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1770 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1772 CondCode
= ARMCC::EQ
;
1773 CondCode2
= ARMCC::VS
;
1774 InvalidOnQNaN
= false;
1776 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1777 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1779 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1781 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1784 CondCode
= ARMCC::NE
;
1785 InvalidOnQNaN
= false;
1790 //===----------------------------------------------------------------------===//
1791 // Calling Convention Implementation
1792 //===----------------------------------------------------------------------===//
1794 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1795 /// account presence of floating point hardware and calling convention
1796 /// limitations, such as support for variadic functions.
1798 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1799 bool isVarArg
) const {
1802 report_fatal_error("Unsupported calling convention");
1803 case CallingConv::ARM_AAPCS
:
1804 case CallingConv::ARM_APCS
:
1805 case CallingConv::GHC
:
1807 case CallingConv::PreserveMost
:
1808 return CallingConv::PreserveMost
;
1809 case CallingConv::ARM_AAPCS_VFP
:
1810 case CallingConv::Swift
:
1811 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1812 case CallingConv::C
:
1813 if (!Subtarget
->isAAPCS_ABI())
1814 return CallingConv::ARM_APCS
;
1815 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1816 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1818 return CallingConv::ARM_AAPCS_VFP
;
1820 return CallingConv::ARM_AAPCS
;
1821 case CallingConv::Fast
:
1822 case CallingConv::CXX_FAST_TLS
:
1823 if (!Subtarget
->isAAPCS_ABI()) {
1824 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1825 return CallingConv::Fast
;
1826 return CallingConv::ARM_APCS
;
1827 } else if (Subtarget
->hasVFP2Base() &&
1828 !Subtarget
->isThumb1Only() && !isVarArg
)
1829 return CallingConv::ARM_AAPCS_VFP
;
1831 return CallingConv::ARM_AAPCS
;
1835 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1836 bool isVarArg
) const {
1837 return CCAssignFnForNode(CC
, false, isVarArg
);
1840 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1841 bool isVarArg
) const {
1842 return CCAssignFnForNode(CC
, true, isVarArg
);
1845 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1846 /// CallingConvention.
1847 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1849 bool isVarArg
) const {
1850 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1852 report_fatal_error("Unsupported calling convention");
1853 case CallingConv::ARM_APCS
:
1854 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1855 case CallingConv::ARM_AAPCS
:
1856 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1857 case CallingConv::ARM_AAPCS_VFP
:
1858 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1859 case CallingConv::Fast
:
1860 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1861 case CallingConv::GHC
:
1862 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1863 case CallingConv::PreserveMost
:
1864 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1868 /// LowerCallResult - Lower the result values of a call into the
1869 /// appropriate copies out of appropriate physical registers.
1870 SDValue
ARMTargetLowering::LowerCallResult(
1871 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1872 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1873 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1874 SDValue ThisVal
) const {
1875 // Assign locations to each value returned by this call.
1876 SmallVector
<CCValAssign
, 16> RVLocs
;
1877 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1879 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1881 // Copy all of the result registers out of their specified physreg.
1882 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1883 CCValAssign VA
= RVLocs
[i
];
1885 // Pass 'this' value directly from the argument to return value, to avoid
1886 // reg unit interference
1887 if (i
== 0 && isThisReturn
) {
1888 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1889 "unexpected return calling convention register assignment");
1890 InVals
.push_back(ThisVal
);
1895 if (VA
.needsCustom()) {
1896 // Handle f64 or half of a v2f64.
1897 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1899 Chain
= Lo
.getValue(1);
1900 InFlag
= Lo
.getValue(2);
1901 VA
= RVLocs
[++i
]; // skip ahead to next loc
1902 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1904 Chain
= Hi
.getValue(1);
1905 InFlag
= Hi
.getValue(2);
1906 if (!Subtarget
->isLittle())
1908 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1910 if (VA
.getLocVT() == MVT::v2f64
) {
1911 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1912 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1913 DAG
.getConstant(0, dl
, MVT::i32
));
1915 VA
= RVLocs
[++i
]; // skip ahead to next loc
1916 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1917 Chain
= Lo
.getValue(1);
1918 InFlag
= Lo
.getValue(2);
1919 VA
= RVLocs
[++i
]; // skip ahead to next loc
1920 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1921 Chain
= Hi
.getValue(1);
1922 InFlag
= Hi
.getValue(2);
1923 if (!Subtarget
->isLittle())
1925 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1926 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1927 DAG
.getConstant(1, dl
, MVT::i32
));
1930 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1932 Chain
= Val
.getValue(1);
1933 InFlag
= Val
.getValue(2);
1936 switch (VA
.getLocInfo()) {
1937 default: llvm_unreachable("Unknown loc info!");
1938 case CCValAssign::Full
: break;
1939 case CCValAssign::BCvt
:
1940 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1944 InVals
.push_back(Val
);
1950 /// LowerMemOpCallTo - Store the argument to the stack.
1951 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1952 SDValue Arg
, const SDLoc
&dl
,
1954 const CCValAssign
&VA
,
1955 ISD::ArgFlagsTy Flags
) const {
1956 unsigned LocMemOffset
= VA
.getLocMemOffset();
1957 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1958 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1960 return DAG
.getStore(
1961 Chain
, dl
, Arg
, PtrOff
,
1962 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
1965 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
1966 SDValue Chain
, SDValue
&Arg
,
1967 RegsToPassVector
&RegsToPass
,
1968 CCValAssign
&VA
, CCValAssign
&NextVA
,
1970 SmallVectorImpl
<SDValue
> &MemOpChains
,
1971 ISD::ArgFlagsTy Flags
) const {
1972 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
1973 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
1974 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
1975 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
1977 if (NextVA
.isRegLoc())
1978 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
1980 assert(NextVA
.isMemLoc());
1981 if (!StackPtr
.getNode())
1982 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
1983 getPointerTy(DAG
.getDataLayout()));
1985 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
1991 /// LowerCall - Lowering a call into a callseq_start <-
1992 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1995 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1996 SmallVectorImpl
<SDValue
> &InVals
) const {
1997 SelectionDAG
&DAG
= CLI
.DAG
;
1999 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2000 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2001 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2002 SDValue Chain
= CLI
.Chain
;
2003 SDValue Callee
= CLI
.Callee
;
2004 bool &isTailCall
= CLI
.IsTailCall
;
2005 CallingConv::ID CallConv
= CLI
.CallConv
;
2006 bool doesNotRet
= CLI
.DoesNotReturn
;
2007 bool isVarArg
= CLI
.IsVarArg
;
2009 MachineFunction
&MF
= DAG
.getMachineFunction();
2010 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2011 bool isThisReturn
= false;
2012 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2013 bool PreferIndirect
= false;
2015 // Disable tail calls if they're not supported.
2016 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2019 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2020 // If we're optimizing for minimum size and the function is called three or
2021 // more times in this block, we can improve codesize by calling indirectly
2022 // as BLXr has a 16-bit encoding.
2023 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2025 auto *BB
= CLI
.CS
.getParent();
2026 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2027 count_if(GV
->users(), [&BB
](const User
*U
) {
2028 return isa
<Instruction
>(U
) &&
2029 cast
<Instruction
>(U
)->getParent() == BB
;
2034 // Check if it's really possible to do a tail call.
2035 isTailCall
= IsEligibleForTailCallOptimization(
2036 Callee
, CallConv
, isVarArg
, isStructRet
,
2037 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2039 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2040 report_fatal_error("failed to perform tail call elimination on a call "
2041 "site marked musttail");
2042 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2043 // detected sibcalls.
2048 // Analyze operands of the call, assigning locations to each operand.
2049 SmallVector
<CCValAssign
, 16> ArgLocs
;
2050 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2052 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2054 // Get a count of how many bytes are to be pushed on the stack.
2055 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2058 // For tail calls, memory operands are available in our caller's stack.
2061 // Adjust the stack pointer for the new arguments...
2062 // These operations are automatically eliminated by the prolog/epilog pass
2063 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2067 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2069 RegsToPassVector RegsToPass
;
2070 SmallVector
<SDValue
, 8> MemOpChains
;
2072 // Walk the register/memloc assignments, inserting copies/loads. In the case
2073 // of tail call optimization, arguments are handled later.
2074 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2076 ++i
, ++realArgIdx
) {
2077 CCValAssign
&VA
= ArgLocs
[i
];
2078 SDValue Arg
= OutVals
[realArgIdx
];
2079 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2080 bool isByVal
= Flags
.isByVal();
2082 // Promote the value if needed.
2083 switch (VA
.getLocInfo()) {
2084 default: llvm_unreachable("Unknown loc info!");
2085 case CCValAssign::Full
: break;
2086 case CCValAssign::SExt
:
2087 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2089 case CCValAssign::ZExt
:
2090 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2092 case CCValAssign::AExt
:
2093 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2095 case CCValAssign::BCvt
:
2096 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2100 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2101 if (VA
.needsCustom()) {
2102 if (VA
.getLocVT() == MVT::v2f64
) {
2103 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2104 DAG
.getConstant(0, dl
, MVT::i32
));
2105 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2106 DAG
.getConstant(1, dl
, MVT::i32
));
2108 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2109 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2111 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2112 if (VA
.isRegLoc()) {
2113 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2114 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2116 assert(VA
.isMemLoc());
2118 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2119 dl
, DAG
, VA
, Flags
));
2122 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2123 StackPtr
, MemOpChains
, Flags
);
2125 } else if (VA
.isRegLoc()) {
2126 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2127 Outs
[0].VT
== MVT::i32
) {
2128 assert(VA
.getLocVT() == MVT::i32
&&
2129 "unexpected calling convention register assignment");
2130 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2131 "unexpected use of 'returned'");
2132 isThisReturn
= true;
2134 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2135 } else if (isByVal
) {
2136 assert(VA
.isMemLoc());
2137 unsigned offset
= 0;
2139 // True if this byval aggregate will be split between registers
2141 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2142 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2144 if (CurByValIdx
< ByValArgsCount
) {
2146 unsigned RegBegin
, RegEnd
;
2147 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2150 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2152 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2153 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2154 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2155 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2156 MachinePointerInfo(),
2157 DAG
.InferPtrAlignment(AddArg
));
2158 MemOpChains
.push_back(Load
.getValue(1));
2159 RegsToPass
.push_back(std::make_pair(j
, Load
));
2162 // If parameter size outsides register area, "offset" value
2163 // helps us to calculate stack slot for remained part properly.
2164 offset
= RegEnd
- RegBegin
;
2166 CCInfo
.nextInRegsParam();
2169 if (Flags
.getByValSize() > 4*offset
) {
2170 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2171 unsigned LocMemOffset
= VA
.getLocMemOffset();
2172 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2173 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2174 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2175 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2176 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2178 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2181 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2182 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2183 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2186 } else if (!isTailCall
) {
2187 assert(VA
.isMemLoc());
2189 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2190 dl
, DAG
, VA
, Flags
));
2194 if (!MemOpChains
.empty())
2195 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2197 // Build a sequence of copy-to-reg nodes chained together with token chain
2198 // and flag operands which copy the outgoing args into the appropriate regs.
2200 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2201 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2202 RegsToPass
[i
].second
, InFlag
);
2203 InFlag
= Chain
.getValue(1);
2206 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2207 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2208 // node so that legalize doesn't hack it.
2209 bool isDirect
= false;
2211 const TargetMachine
&TM
= getTargetMachine();
2212 const Module
*Mod
= MF
.getFunction().getParent();
2213 const GlobalValue
*GV
= nullptr;
2214 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2215 GV
= G
->getGlobal();
2217 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2219 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2220 bool isLocalARMFunc
= false;
2221 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2222 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2224 if (Subtarget
->genLongCalls()) {
2225 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2226 "long-calls codegen is not position independent!");
2227 // Handle a global address or an external symbol. If it's not one of
2228 // those, the target's already in a register, so we don't need to do
2230 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2231 // Create a constant pool entry for the callee address
2232 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2233 ARMConstantPoolValue
*CPV
=
2234 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2236 // Get the address of the callee into a register
2237 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2238 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2239 Callee
= DAG
.getLoad(
2240 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2241 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2242 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2243 const char *Sym
= S
->getSymbol();
2245 // Create a constant pool entry for the callee address
2246 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2247 ARMConstantPoolValue
*CPV
=
2248 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2249 ARMPCLabelIndex
, 0);
2250 // Get the address of the callee into a register
2251 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2252 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2253 Callee
= DAG
.getLoad(
2254 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2255 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2257 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2258 if (!PreferIndirect
) {
2260 bool isDef
= GV
->isStrongDefinitionForLinker();
2262 // ARM call to a local ARM function is predicable.
2263 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2264 // tBX takes a register source operand.
2265 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2266 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2267 Callee
= DAG
.getNode(
2268 ARMISD::WrapperPIC
, dl
, PtrVt
,
2269 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2270 Callee
= DAG
.getLoad(
2271 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2272 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2273 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2274 MachineMemOperand::MOInvariant
);
2275 } else if (Subtarget
->isTargetCOFF()) {
2276 assert(Subtarget
->isTargetWindows() &&
2277 "Windows is the only supported COFF target");
2278 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2279 ? ARMII::MO_DLLIMPORT
2280 : ARMII::MO_NO_FLAG
;
2281 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2283 if (GV
->hasDLLImportStorageClass())
2285 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2286 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2287 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2289 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2292 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2294 // tBX takes a register source operand.
2295 const char *Sym
= S
->getSymbol();
2296 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2297 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2298 ARMConstantPoolValue
*CPV
=
2299 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2300 ARMPCLabelIndex
, 4);
2301 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2302 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2303 Callee
= DAG
.getLoad(
2304 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2305 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2306 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2307 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2309 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2313 // FIXME: handle tail calls differently.
2315 if (Subtarget
->isThumb()) {
2316 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2317 CallOpc
= ARMISD::CALL_NOLINK
;
2319 CallOpc
= ARMISD::CALL
;
2321 if (!isDirect
&& !Subtarget
->hasV5TOps())
2322 CallOpc
= ARMISD::CALL_NOLINK
;
2323 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2324 // Emit regular call when code size is the priority
2325 !Subtarget
->hasMinSize())
2326 // "mov lr, pc; b _foo" to avoid confusing the RSP
2327 CallOpc
= ARMISD::CALL_NOLINK
;
2329 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2332 std::vector
<SDValue
> Ops
;
2333 Ops
.push_back(Chain
);
2334 Ops
.push_back(Callee
);
2336 // Add argument registers to the end of the list so that they are known live
2338 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2339 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2340 RegsToPass
[i
].second
.getValueType()));
2342 // Add a register mask operand representing the call-preserved registers.
2344 const uint32_t *Mask
;
2345 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2347 // For 'this' returns, use the R0-preserving mask if applicable
2348 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2350 // Set isThisReturn to false if the calling convention is not one that
2351 // allows 'returned' to be modeled in this way, so LowerCallResult does
2352 // not try to pass 'this' straight through
2353 isThisReturn
= false;
2354 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2357 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2359 assert(Mask
&& "Missing call preserved mask for calling convention");
2360 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2363 if (InFlag
.getNode())
2364 Ops
.push_back(InFlag
);
2366 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2368 MF
.getFrameInfo().setHasTailCall();
2369 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2372 // Returns a chain and a flag for retval copy to use.
2373 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2374 InFlag
= Chain
.getValue(1);
2376 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2377 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2379 InFlag
= Chain
.getValue(1);
2381 // Handle result values, copying them out of physregs into vregs that we
2383 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2384 InVals
, isThisReturn
,
2385 isThisReturn
? OutVals
[0] : SDValue());
2388 /// HandleByVal - Every parameter *after* a byval parameter is passed
2389 /// on the stack. Remember the next parameter register to allocate,
2390 /// and then confiscate the rest of the parameter registers to insure
2392 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2393 unsigned Align
) const {
2394 // Byval (as with any stack) slots are always at least 4 byte aligned.
2395 Align
= std::max(Align
, 4U);
2397 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2401 unsigned AlignInRegs
= Align
/ 4;
2402 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2403 for (unsigned i
= 0; i
< Waste
; ++i
)
2404 Reg
= State
->AllocateReg(GPRArgRegs
);
2409 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2411 // Special case when NSAA != SP and parameter size greater than size of
2412 // all remained GPR regs. In that case we can't split parameter, we must
2413 // send it to stack. We also must set NCRN to R4, so waste all
2414 // remained registers.
2415 const unsigned NSAAOffset
= State
->getNextStackOffset();
2416 if (NSAAOffset
!= 0 && Size
> Excess
) {
2417 while (State
->AllocateReg(GPRArgRegs
))
2422 // First register for byval parameter is the first register that wasn't
2423 // allocated before this method call, so it would be "reg".
2424 // If parameter is small enough to be saved in range [reg, r4), then
2425 // the end (first after last) register would be reg + param-size-in-regs,
2426 // else parameter would be splitted between registers and stack,
2427 // end register would be r4 in this case.
2428 unsigned ByValRegBegin
= Reg
;
2429 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2430 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2431 // Note, first register is allocated in the beginning of function already,
2432 // allocate remained amount of registers we need.
2433 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2434 State
->AllocateReg(GPRArgRegs
);
2435 // A byval parameter that is split between registers and memory needs its
2436 // size truncated here.
2437 // In the case where the entire structure fits in registers, we set the
2438 // size in memory to zero.
2439 Size
= std::max
<int>(Size
- Excess
, 0);
2442 /// MatchingStackOffset - Return true if the given stack call argument is
2443 /// already available in the same position (relatively) of the caller's
2444 /// incoming argument stack.
2446 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2447 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2448 const TargetInstrInfo
*TII
) {
2449 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2450 int FI
= std::numeric_limits
<int>::max();
2451 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2452 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2453 if (!Register::isVirtualRegister(VR
))
2455 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2458 if (!Flags
.isByVal()) {
2459 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2464 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2465 if (Flags
.isByVal())
2466 // ByVal argument is passed in as a pointer but it's now being
2467 // dereferenced. e.g.
2468 // define @foo(%struct.X* %A) {
2469 // tail call @bar(%struct.X* byval %A)
2472 SDValue Ptr
= Ld
->getBasePtr();
2473 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2476 FI
= FINode
->getIndex();
2480 assert(FI
!= std::numeric_limits
<int>::max());
2481 if (!MFI
.isFixedObjectIndex(FI
))
2483 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2486 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2487 /// for tail call optimization. Targets which want to do tail call
2488 /// optimization should implement this function.
2489 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2490 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2491 bool isCalleeStructRet
, bool isCallerStructRet
,
2492 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2493 const SmallVectorImpl
<SDValue
> &OutVals
,
2494 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2495 const bool isIndirect
) const {
2496 MachineFunction
&MF
= DAG
.getMachineFunction();
2497 const Function
&CallerF
= MF
.getFunction();
2498 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2500 assert(Subtarget
->supportsTailCall());
2502 // Indirect tail calls cannot be optimized for Thumb1 if the args
2503 // to the call take up r0-r3. The reason is that there are no legal registers
2504 // left to hold the pointer to the function to be called.
2505 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2506 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2509 // Look for obvious safe cases to perform tail call optimization that do not
2510 // require ABI changes. This is what gcc calls sibcall.
2512 // Exception-handling functions need a special set of instructions to indicate
2513 // a return to the hardware. Tail-calling another function would probably
2515 if (CallerF
.hasFnAttribute("interrupt"))
2518 // Also avoid sibcall optimization if either caller or callee uses struct
2519 // return semantics.
2520 if (isCalleeStructRet
|| isCallerStructRet
)
2523 // Externally-defined functions with weak linkage should not be
2524 // tail-called on ARM when the OS does not support dynamic
2525 // pre-emption of symbols, as the AAELF spec requires normal calls
2526 // to undefined weak functions to be replaced with a NOP or jump to the
2527 // next instruction. The behaviour of branch instructions in this
2528 // situation (as used for tail calls) is implementation-defined, so we
2529 // cannot rely on the linker replacing the tail call with a return.
2530 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2531 const GlobalValue
*GV
= G
->getGlobal();
2532 const Triple
&TT
= getTargetMachine().getTargetTriple();
2533 if (GV
->hasExternalWeakLinkage() &&
2534 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2538 // Check that the call results are passed in the same way.
2539 LLVMContext
&C
= *DAG
.getContext();
2540 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2541 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2542 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2544 // The callee has to preserve all registers the caller needs to preserve.
2545 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2546 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2547 if (CalleeCC
!= CallerCC
) {
2548 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2549 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2553 // If Caller's vararg or byval argument has been split between registers and
2554 // stack, do not perform tail call, since part of the argument is in caller's
2556 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2557 if (AFI_Caller
->getArgRegsSaveSize())
2560 // If the callee takes no arguments then go on to check the results of the
2562 if (!Outs
.empty()) {
2563 // Check if stack adjustment is needed. For now, do not do this if any
2564 // argument is passed on the stack.
2565 SmallVector
<CCValAssign
, 16> ArgLocs
;
2566 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2567 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2568 if (CCInfo
.getNextStackOffset()) {
2569 // Check if the arguments are already laid out in the right way as
2570 // the caller's fixed stack objects.
2571 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2572 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2573 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2574 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2576 ++i
, ++realArgIdx
) {
2577 CCValAssign
&VA
= ArgLocs
[i
];
2578 EVT RegVT
= VA
.getLocVT();
2579 SDValue Arg
= OutVals
[realArgIdx
];
2580 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2581 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2583 if (VA
.needsCustom()) {
2584 // f64 and vector types are split into multiple registers or
2585 // register/stack-slot combinations. The types will not match
2586 // the registers; give up on memory f64 refs until we figure
2587 // out what to do about this.
2590 if (!ArgLocs
[++i
].isRegLoc())
2592 if (RegVT
== MVT::v2f64
) {
2593 if (!ArgLocs
[++i
].isRegLoc())
2595 if (!ArgLocs
[++i
].isRegLoc())
2598 } else if (!VA
.isRegLoc()) {
2599 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2606 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2607 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2615 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2616 MachineFunction
&MF
, bool isVarArg
,
2617 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2618 LLVMContext
&Context
) const {
2619 SmallVector
<CCValAssign
, 16> RVLocs
;
2620 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2621 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2624 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2625 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2626 const MachineFunction
&MF
= DAG
.getMachineFunction();
2627 const Function
&F
= MF
.getFunction();
2629 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2631 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2632 // version of the "preferred return address". These offsets affect the return
2633 // instruction if this is a return from PL1 without hypervisor extensions.
2634 // IRQ/FIQ: +4 "subs pc, lr, #4"
2635 // SWI: 0 "subs pc, lr, #0"
2636 // ABORT: +4 "subs pc, lr, #4"
2637 // UNDEF: +4/+2 "subs pc, lr, #0"
2638 // UNDEF varies depending on where the exception came from ARM or Thumb
2639 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2642 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2645 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2648 report_fatal_error("Unsupported interrupt attribute. If present, value "
2649 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2651 RetOps
.insert(RetOps
.begin() + 1,
2652 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2654 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2658 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2660 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2661 const SmallVectorImpl
<SDValue
> &OutVals
,
2662 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2663 // CCValAssign - represent the assignment of the return value to a location.
2664 SmallVector
<CCValAssign
, 16> RVLocs
;
2666 // CCState - Info about the registers and stack slots.
2667 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2670 // Analyze outgoing return values.
2671 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2674 SmallVector
<SDValue
, 4> RetOps
;
2675 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2676 bool isLittleEndian
= Subtarget
->isLittle();
2678 MachineFunction
&MF
= DAG
.getMachineFunction();
2679 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2680 AFI
->setReturnRegsCount(RVLocs
.size());
2682 // Copy the result values into the output registers.
2683 for (unsigned i
= 0, realRVLocIdx
= 0;
2685 ++i
, ++realRVLocIdx
) {
2686 CCValAssign
&VA
= RVLocs
[i
];
2687 assert(VA
.isRegLoc() && "Can only return in registers!");
2689 SDValue Arg
= OutVals
[realRVLocIdx
];
2690 bool ReturnF16
= false;
2692 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2693 // Half-precision return values can be returned like this:
2695 // t11 f16 = fadd ...
2696 // t12: i16 = bitcast t11
2697 // t13: i32 = zero_extend t12
2698 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2700 // to avoid code generation for bitcasts, we simply set Arg to the node
2701 // that produces the f16 value, t11 in this case.
2703 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2704 SDValue ZE
= Arg
.getOperand(0);
2705 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2706 SDValue BC
= ZE
.getOperand(0);
2707 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2708 Arg
= BC
.getOperand(0);
2715 switch (VA
.getLocInfo()) {
2716 default: llvm_unreachable("Unknown loc info!");
2717 case CCValAssign::Full
: break;
2718 case CCValAssign::BCvt
:
2720 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2724 if (VA
.needsCustom()) {
2725 if (VA
.getLocVT() == MVT::v2f64
) {
2726 // Extract the first half and return it in two registers.
2727 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2728 DAG
.getConstant(0, dl
, MVT::i32
));
2729 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2730 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2732 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2733 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2735 Flag
= Chain
.getValue(1);
2736 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2737 VA
= RVLocs
[++i
]; // skip ahead to next loc
2738 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2739 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2741 Flag
= Chain
.getValue(1);
2742 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2743 VA
= RVLocs
[++i
]; // skip ahead to next loc
2745 // Extract the 2nd half and fall through to handle it as an f64 value.
2746 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2747 DAG
.getConstant(1, dl
, MVT::i32
));
2749 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2751 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2752 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2753 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2754 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2756 Flag
= Chain
.getValue(1);
2757 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2758 VA
= RVLocs
[++i
]; // skip ahead to next loc
2759 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2760 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2763 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2765 // Guarantee that all emitted copies are
2766 // stuck together, avoiding something bad.
2767 Flag
= Chain
.getValue(1);
2768 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2769 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2771 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2772 const MCPhysReg
*I
=
2773 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2776 if (ARM::GPRRegClass
.contains(*I
))
2777 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2778 else if (ARM::DPRRegClass
.contains(*I
))
2779 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2781 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2785 // Update chain and glue.
2788 RetOps
.push_back(Flag
);
2790 // CPUs which aren't M-class use a special sequence to return from
2791 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2792 // though we use "subs pc, lr, #N").
2794 // M-class CPUs actually use a normal return sequence with a special
2795 // (hardware-provided) value in LR, so the normal code path works.
2796 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2797 !Subtarget
->isMClass()) {
2798 if (Subtarget
->isThumb1Only())
2799 report_fatal_error("interrupt attribute is not supported in Thumb1");
2800 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2803 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2806 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2807 if (N
->getNumValues() != 1)
2809 if (!N
->hasNUsesOfValue(1, 0))
2812 SDValue TCChain
= Chain
;
2813 SDNode
*Copy
= *N
->use_begin();
2814 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2815 // If the copy has a glue operand, we conservatively assume it isn't safe to
2816 // perform a tail call.
2817 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2819 TCChain
= Copy
->getOperand(0);
2820 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2821 SDNode
*VMov
= Copy
;
2822 // f64 returned in a pair of GPRs.
2823 SmallPtrSet
<SDNode
*, 2> Copies
;
2824 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2826 if (UI
->getOpcode() != ISD::CopyToReg
)
2830 if (Copies
.size() > 2)
2833 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2835 SDValue UseChain
= UI
->getOperand(0);
2836 if (Copies
.count(UseChain
.getNode()))
2840 // We are at the top of this chain.
2841 // If the copy has a glue operand, we conservatively assume it
2842 // isn't safe to perform a tail call.
2843 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2849 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2850 // f32 returned in a single GPR.
2851 if (!Copy
->hasOneUse())
2853 Copy
= *Copy
->use_begin();
2854 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2856 // If the copy has a glue operand, we conservatively assume it isn't safe to
2857 // perform a tail call.
2858 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2860 TCChain
= Copy
->getOperand(0);
2865 bool HasRet
= false;
2866 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2868 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2869 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2881 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2882 if (!Subtarget
->supportsTailCall())
2886 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2887 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2893 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2894 // and pass the lower and high parts through.
2895 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2897 SDValue WriteValue
= Op
->getOperand(2);
2899 // This function is only supposed to be called for i64 type argument.
2900 assert(WriteValue
.getValueType() == MVT::i64
2901 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2903 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2904 DAG
.getConstant(0, DL
, MVT::i32
));
2905 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2906 DAG
.getConstant(1, DL
, MVT::i32
));
2907 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2908 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2911 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2912 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2913 // one of the above mentioned nodes. It has to be wrapped because otherwise
2914 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2915 // be used to form addressing mode. These wrapped nodes will be selected
2917 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2918 SelectionDAG
&DAG
) const {
2919 EVT PtrVT
= Op
.getValueType();
2920 // FIXME there is no actual debug info here
2922 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2925 // When generating execute-only code Constant Pools must be promoted to the
2926 // global data section. It's a bit ugly that we can't share them across basic
2927 // blocks, but this way we guarantee that execute-only behaves correct with
2928 // position-independent addressing modes.
2929 if (Subtarget
->genExecuteOnly()) {
2930 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2931 auto T
= const_cast<Type
*>(CP
->getType());
2932 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2933 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2934 getFunction().getParent());
2935 auto GV
= new GlobalVariable(
2936 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2937 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2938 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2939 Twine(AFI
->createPICLabelUId())
2941 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2943 return LowerGlobalAddress(GA
, DAG
);
2946 if (CP
->isMachineConstantPoolEntry())
2947 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2948 CP
->getAlignment());
2950 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2951 CP
->getAlignment());
2952 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2955 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2956 return MachineJumpTableInfo::EK_Inline
;
2959 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2960 SelectionDAG
&DAG
) const {
2961 MachineFunction
&MF
= DAG
.getMachineFunction();
2962 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2963 unsigned ARMPCLabelIndex
= 0;
2965 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2966 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2968 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
2969 if (!IsPositionIndependent
) {
2970 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
2972 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
2973 ARMPCLabelIndex
= AFI
->createPICLabelUId();
2974 ARMConstantPoolValue
*CPV
=
2975 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
2976 ARMCP::CPBlockAddress
, PCAdj
);
2977 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
2979 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
2980 SDValue Result
= DAG
.getLoad(
2981 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
2982 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2983 if (!IsPositionIndependent
)
2985 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
2986 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
2989 /// Convert a TLS address reference into the correct sequence of loads
2990 /// and calls to compute the variable's address for Darwin, and return an
2991 /// SDValue containing the final node.
2993 /// Darwin only has one TLS scheme which must be capable of dealing with the
2994 /// fully general situation, in the worst case. This means:
2995 /// + "extern __thread" declaration.
2996 /// + Defined in a possibly unknown dynamic library.
2998 /// The general system is that each __thread variable has a [3 x i32] descriptor
2999 /// which contains information used by the runtime to calculate the address. The
3000 /// only part of this the compiler needs to know about is the first word, which
3001 /// contains a function pointer that must be called with the address of the
3002 /// entire descriptor in "r0".
3004 /// Since this descriptor may be in a different unit, in general access must
3005 /// proceed along the usual ARM rules. A common sequence to produce is:
3007 /// movw rT1, :lower16:_var$non_lazy_ptr
3008 /// movt rT1, :upper16:_var$non_lazy_ptr
3012 /// [...address now in r0...]
3014 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3015 SelectionDAG
&DAG
) const {
3016 assert(Subtarget
->isTargetDarwin() &&
3017 "This function expects a Darwin target");
3020 // First step is to get the address of the actua global symbol. This is where
3021 // the TLS descriptor lives.
3022 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3024 // The first entry in the descriptor is a function pointer that we must call
3025 // to obtain the address of the variable.
3026 SDValue Chain
= DAG
.getEntryNode();
3027 SDValue FuncTLVGet
= DAG
.getLoad(
3028 MVT::i32
, DL
, Chain
, DescAddr
,
3029 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3030 /* Alignment = */ 4,
3031 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3032 MachineMemOperand::MOInvariant
);
3033 Chain
= FuncTLVGet
.getValue(1);
3035 MachineFunction
&F
= DAG
.getMachineFunction();
3036 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3037 MFI
.setAdjustsStack(true);
3039 // TLS calls preserve all registers except those that absolutely must be
3040 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3043 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3044 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3045 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3047 // Finally, we can make the call. This is just a degenerate version of a
3048 // normal AArch64 call node: r0 takes the address of the descriptor, and
3049 // returns the address of the variable in this thread.
3050 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3052 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3053 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3054 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3055 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3059 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3060 SelectionDAG
&DAG
) const {
3061 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3063 SDValue Chain
= DAG
.getEntryNode();
3064 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3067 // Load the current TEB (thread environment block)
3068 SDValue Ops
[] = {Chain
,
3069 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3070 DAG
.getConstant(15, DL
, MVT::i32
),
3071 DAG
.getConstant(0, DL
, MVT::i32
),
3072 DAG
.getConstant(13, DL
, MVT::i32
),
3073 DAG
.getConstant(0, DL
, MVT::i32
),
3074 DAG
.getConstant(2, DL
, MVT::i32
)};
3075 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3076 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3078 SDValue TEB
= CurrentTEB
.getValue(0);
3079 Chain
= CurrentTEB
.getValue(1);
3081 // Load the ThreadLocalStoragePointer from the TEB
3082 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3084 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3085 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3087 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3088 // offset into the TLSArray.
3090 // Load the TLS index from the C runtime
3092 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3093 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3094 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3096 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3097 DAG
.getConstant(2, DL
, MVT::i32
));
3098 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3099 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3100 MachinePointerInfo());
3102 // Get the offset of the start of the .tls section (section base)
3103 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3104 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3105 SDValue Offset
= DAG
.getLoad(
3106 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3107 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3108 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3110 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3113 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3115 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3116 SelectionDAG
&DAG
) const {
3118 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3119 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3120 MachineFunction
&MF
= DAG
.getMachineFunction();
3121 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3122 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3123 ARMConstantPoolValue
*CPV
=
3124 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3125 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3126 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3127 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3128 Argument
= DAG
.getLoad(
3129 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3130 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3131 SDValue Chain
= Argument
.getValue(1);
3133 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3134 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3136 // call __tls_get_addr.
3139 Entry
.Node
= Argument
;
3140 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3141 Args
.push_back(Entry
);
3143 // FIXME: is there useful debug info available here?
3144 TargetLowering::CallLoweringInfo
CLI(DAG
);
3145 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3146 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3147 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3149 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3150 return CallResult
.first
;
3153 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3154 // "local exec" model.
3156 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3158 TLSModel::Model model
) const {
3159 const GlobalValue
*GV
= GA
->getGlobal();
3162 SDValue Chain
= DAG
.getEntryNode();
3163 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3164 // Get the Thread Pointer
3165 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3167 if (model
== TLSModel::InitialExec
) {
3168 MachineFunction
&MF
= DAG
.getMachineFunction();
3169 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3170 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3171 // Initial exec model.
3172 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3173 ARMConstantPoolValue
*CPV
=
3174 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3175 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3177 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3178 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3179 Offset
= DAG
.getLoad(
3180 PtrVT
, dl
, Chain
, Offset
,
3181 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3182 Chain
= Offset
.getValue(1);
3184 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3185 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3187 Offset
= DAG
.getLoad(
3188 PtrVT
, dl
, Chain
, Offset
,
3189 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3192 assert(model
== TLSModel::LocalExec
);
3193 ARMConstantPoolValue
*CPV
=
3194 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3195 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3196 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3197 Offset
= DAG
.getLoad(
3198 PtrVT
, dl
, Chain
, Offset
,
3199 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3202 // The address of the thread local variable is the add of the thread
3203 // pointer with the offset of the variable.
3204 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3208 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3209 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3210 if (DAG
.getTarget().useEmulatedTLS())
3211 return LowerToTLSEmulatedModel(GA
, DAG
);
3213 if (Subtarget
->isTargetDarwin())
3214 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3216 if (Subtarget
->isTargetWindows())
3217 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3219 // TODO: implement the "local dynamic" model
3220 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3221 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3224 case TLSModel::GeneralDynamic
:
3225 case TLSModel::LocalDynamic
:
3226 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3227 case TLSModel::InitialExec
:
3228 case TLSModel::LocalExec
:
3229 return LowerToTLSExecModels(GA
, DAG
, model
);
3231 llvm_unreachable("bogus TLS model");
3234 /// Return true if all users of V are within function F, looking through
3236 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3237 SmallVector
<const User
*,4> Worklist
;
3238 for (auto *U
: V
->users())
3239 Worklist
.push_back(U
);
3240 while (!Worklist
.empty()) {
3241 auto *U
= Worklist
.pop_back_val();
3242 if (isa
<ConstantExpr
>(U
)) {
3243 for (auto *UU
: U
->users())
3244 Worklist
.push_back(UU
);
3248 auto *I
= dyn_cast
<Instruction
>(U
);
3249 if (!I
|| I
->getParent()->getParent() != F
)
3255 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3256 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3257 EVT PtrVT
, const SDLoc
&dl
) {
3258 // If we're creating a pool entry for a constant global with unnamed address,
3259 // and the global is small enough, we can emit it inline into the constant pool
3260 // to save ourselves an indirection.
3262 // This is a win if the constant is only used in one function (so it doesn't
3263 // need to be duplicated) or duplicating the constant wouldn't increase code
3264 // size (implying the constant is no larger than 4 bytes).
3265 const Function
&F
= DAG
.getMachineFunction().getFunction();
3267 // We rely on this decision to inline being idemopotent and unrelated to the
3268 // use-site. We know that if we inline a variable at one use site, we'll
3269 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3270 // doesn't know about this optimization, so bail out if it's enabled else
3271 // we could decide to inline here (and thus never emit the GV) but require
3272 // the GV from fast-isel generated code.
3273 if (!EnableConstpoolPromotion
||
3274 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3277 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3278 if (!GVar
|| !GVar
->hasInitializer() ||
3279 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3280 !GVar
->hasLocalLinkage())
3283 // If we inline a value that contains relocations, we move the relocations
3284 // from .data to .text. This is not allowed in position-independent code.
3285 auto *Init
= GVar
->getInitializer();
3286 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3287 Init
->needsRelocation())
3290 // The constant islands pass can only really deal with alignment requests
3291 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3292 // any type wanting greater alignment requirements than 4 bytes. We also
3293 // can only promote constants that are multiples of 4 bytes in size or
3294 // are paddable to a multiple of 4. Currently we only try and pad constants
3295 // that are strings for simplicity.
3296 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3297 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3298 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3299 unsigned RequiredPadding
= 4 - (Size
% 4);
3300 bool PaddingPossible
=
3301 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3302 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3306 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3307 MachineFunction
&MF
= DAG
.getMachineFunction();
3308 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3310 // We can't bloat the constant pool too much, else the ConstantIslands pass
3311 // may fail to converge. If we haven't promoted this global yet (it may have
3312 // multiple uses), and promoting it would increase the constant pool size (Sz
3313 // > 4), ensure we have space to do so up to MaxTotal.
3314 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3315 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3316 ConstpoolPromotionMaxTotal
)
3319 // This is only valid if all users are in a single function; we can't clone
3320 // the constant in general. The LLVM IR unnamed_addr allows merging
3321 // constants, but not cloning them.
3323 // We could potentially allow cloning if we could prove all uses of the
3324 // constant in the current function don't care about the address, like
3325 // printf format strings. But that isn't implemented for now.
3326 if (!allUsersAreInFunction(GVar
, &F
))
3329 // We're going to inline this global. Pad it out if needed.
3330 if (RequiredPadding
!= 4) {
3331 StringRef S
= CDAInit
->getAsString();
3333 SmallVector
<uint8_t,16> V(S
.size());
3334 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3335 while (RequiredPadding
--)
3337 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3340 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3342 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3343 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3344 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3345 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3348 ++NumConstpoolPromoted
;
3349 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3352 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3353 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3354 if (!(GV
= GA
->getBaseObject()))
3356 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3357 return V
->isConstant();
3358 return isa
<Function
>(GV
);
3361 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3362 SelectionDAG
&DAG
) const {
3363 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3364 default: llvm_unreachable("unknown object format");
3366 return LowerGlobalAddressWindows(Op
, DAG
);
3368 return LowerGlobalAddressELF(Op
, DAG
);
3370 return LowerGlobalAddressDarwin(Op
, DAG
);
3374 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3375 SelectionDAG
&DAG
) const {
3376 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3378 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3379 const TargetMachine
&TM
= getTargetMachine();
3380 bool IsRO
= isReadOnly(GV
);
3382 // promoteToConstantPool only if not generating XO text section
3383 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3384 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3387 if (isPositionIndependent()) {
3388 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3389 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3390 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3391 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3394 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3395 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3397 } else if (Subtarget
->isROPI() && IsRO
) {
3399 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3400 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3402 } else if (Subtarget
->isRWPI() && !IsRO
) {
3405 if (Subtarget
->useMovt()) {
3407 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3408 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3409 } else { // use literal pool for address constant
3410 ARMConstantPoolValue
*CPV
=
3411 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3412 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3413 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3414 RelAddr
= DAG
.getLoad(
3415 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3416 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3418 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3419 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3423 // If we have T2 ops, we can materialize the address directly via movt/movw
3424 // pair. This is always cheaper.
3425 if (Subtarget
->useMovt()) {
3427 // FIXME: Once remat is capable of dealing with instructions with register
3428 // operands, expand this into two nodes.
3429 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3430 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3432 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3433 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3435 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3436 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3440 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3441 SelectionDAG
&DAG
) const {
3442 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3443 "ROPI/RWPI not currently supported for Darwin");
3444 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3446 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3448 if (Subtarget
->useMovt())
3451 // FIXME: Once remat is capable of dealing with instructions with register
3452 // operands, expand this into multiple nodes
3454 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3456 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3457 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3459 if (Subtarget
->isGVIndirectSymbol(GV
))
3460 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3461 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3465 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3466 SelectionDAG
&DAG
) const {
3467 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3468 assert(Subtarget
->useMovt() &&
3469 "Windows on ARM expects to use movw/movt");
3470 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3471 "ROPI/RWPI not currently supported for Windows");
3473 const TargetMachine
&TM
= getTargetMachine();
3474 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3475 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3476 if (GV
->hasDLLImportStorageClass())
3477 TargetFlags
= ARMII::MO_DLLIMPORT
;
3478 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3479 TargetFlags
= ARMII::MO_COFFSTUB
;
3480 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3486 // FIXME: Once remat is capable of dealing with instructions with register
3487 // operands, expand this into two nodes.
3488 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3489 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3491 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3492 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3493 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3498 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3500 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3501 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3502 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3503 Op
.getOperand(1), Val
);
3507 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3509 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3510 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3513 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3514 SelectionDAG
&DAG
) const {
3516 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3521 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3522 const ARMSubtarget
*Subtarget
) const {
3523 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3526 default: return SDValue(); // Don't custom lower most intrinsics.
3527 case Intrinsic::thread_pointer
: {
3528 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3529 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3531 case Intrinsic::eh_sjlj_lsda
: {
3532 MachineFunction
&MF
= DAG
.getMachineFunction();
3533 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3534 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3535 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3537 bool IsPositionIndependent
= isPositionIndependent();
3538 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3539 ARMConstantPoolValue
*CPV
=
3540 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3541 ARMCP::CPLSDA
, PCAdj
);
3542 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3543 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3544 SDValue Result
= DAG
.getLoad(
3545 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3546 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3548 if (IsPositionIndependent
) {
3549 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3550 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3554 case Intrinsic::arm_neon_vabs
:
3555 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3557 case Intrinsic::arm_neon_vmulls
:
3558 case Intrinsic::arm_neon_vmullu
: {
3559 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3560 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3561 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3562 Op
.getOperand(1), Op
.getOperand(2));
3564 case Intrinsic::arm_neon_vminnm
:
3565 case Intrinsic::arm_neon_vmaxnm
: {
3566 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3567 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3568 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3569 Op
.getOperand(1), Op
.getOperand(2));
3571 case Intrinsic::arm_neon_vminu
:
3572 case Intrinsic::arm_neon_vmaxu
: {
3573 if (Op
.getValueType().isFloatingPoint())
3575 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3576 ? ISD::UMIN
: ISD::UMAX
;
3577 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3578 Op
.getOperand(1), Op
.getOperand(2));
3580 case Intrinsic::arm_neon_vmins
:
3581 case Intrinsic::arm_neon_vmaxs
: {
3582 // v{min,max}s is overloaded between signed integers and floats.
3583 if (!Op
.getValueType().isFloatingPoint()) {
3584 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3585 ? ISD::SMIN
: ISD::SMAX
;
3586 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3587 Op
.getOperand(1), Op
.getOperand(2));
3589 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3590 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3591 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3592 Op
.getOperand(1), Op
.getOperand(2));
3594 case Intrinsic::arm_neon_vtbl1
:
3595 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3596 Op
.getOperand(1), Op
.getOperand(2));
3597 case Intrinsic::arm_neon_vtbl2
:
3598 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3599 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3603 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3604 const ARMSubtarget
*Subtarget
) {
3606 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3607 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3608 if (SSID
== SyncScope::SingleThread
)
3611 if (!Subtarget
->hasDataBarrier()) {
3612 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3613 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3615 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3616 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3617 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3618 DAG
.getConstant(0, dl
, MVT::i32
));
3621 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3622 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3623 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3624 if (Subtarget
->isMClass()) {
3625 // Only a full system barrier exists in the M-class architectures.
3626 Domain
= ARM_MB::SY
;
3627 } else if (Subtarget
->preferISHSTBarriers() &&
3628 Ord
== AtomicOrdering::Release
) {
3629 // Swift happens to implement ISHST barriers in a way that's compatible with
3630 // Release semantics but weaker than ISH so we'd be fools not to use
3631 // it. Beware: other processors probably don't!
3632 Domain
= ARM_MB::ISHST
;
3635 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3636 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3637 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3640 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3641 const ARMSubtarget
*Subtarget
) {
3642 // ARM pre v5TE and Thumb1 does not have preload instructions.
3643 if (!(Subtarget
->isThumb2() ||
3644 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3645 // Just preserve the chain.
3646 return Op
.getOperand(0);
3649 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3651 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3652 // ARMv7 with MP extension has PLDW.
3653 return Op
.getOperand(0);
3655 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3656 if (Subtarget
->isThumb()) {
3658 isRead
= ~isRead
& 1;
3659 isData
= ~isData
& 1;
3662 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3663 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3664 DAG
.getConstant(isData
, dl
, MVT::i32
));
3667 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3668 MachineFunction
&MF
= DAG
.getMachineFunction();
3669 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3671 // vastart just stores the address of the VarArgsFrameIndex slot into the
3672 // memory location argument.
3674 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3675 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3676 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3677 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3678 MachinePointerInfo(SV
));
3681 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3682 CCValAssign
&NextVA
,
3685 const SDLoc
&dl
) const {
3686 MachineFunction
&MF
= DAG
.getMachineFunction();
3687 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3689 const TargetRegisterClass
*RC
;
3690 if (AFI
->isThumb1OnlyFunction())
3691 RC
= &ARM::tGPRRegClass
;
3693 RC
= &ARM::GPRRegClass
;
3695 // Transform the arguments stored in physical registers into virtual ones.
3696 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3697 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3700 if (NextVA
.isMemLoc()) {
3701 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3702 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3704 // Create load node to retrieve arguments from the stack.
3705 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3706 ArgValue2
= DAG
.getLoad(
3707 MVT::i32
, dl
, Root
, FIN
,
3708 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3710 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3711 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3713 if (!Subtarget
->isLittle())
3714 std::swap (ArgValue
, ArgValue2
);
3715 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3718 // The remaining GPRs hold either the beginning of variable-argument
3719 // data, or the beginning of an aggregate passed by value (usually
3720 // byval). Either way, we allocate stack slots adjacent to the data
3721 // provided by our caller, and store the unallocated registers there.
3722 // If this is a variadic function, the va_list pointer will begin with
3723 // these values; otherwise, this reassembles a (byval) structure that
3724 // was split between registers and memory.
3725 // Return: The frame index registers were stored into.
3726 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3727 const SDLoc
&dl
, SDValue
&Chain
,
3728 const Value
*OrigArg
,
3729 unsigned InRegsParamRecordIdx
,
3730 int ArgOffset
, unsigned ArgSize
) const {
3731 // Currently, two use-cases possible:
3732 // Case #1. Non-var-args function, and we meet first byval parameter.
3733 // Setup first unallocated register as first byval register;
3734 // eat all remained registers
3735 // (these two actions are performed by HandleByVal method).
3736 // Then, here, we initialize stack frame with
3737 // "store-reg" instructions.
3738 // Case #2. Var-args function, that doesn't contain byval parameters.
3739 // The same: eat all remained unallocated registers,
3740 // initialize stack frame.
3742 MachineFunction
&MF
= DAG
.getMachineFunction();
3743 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3744 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3745 unsigned RBegin
, REnd
;
3746 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3747 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3749 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3750 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3755 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3757 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3758 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3759 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3761 SmallVector
<SDValue
, 4> MemOps
;
3762 const TargetRegisterClass
*RC
=
3763 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3765 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3766 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3767 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3768 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3769 MachinePointerInfo(OrigArg
, 4 * i
));
3770 MemOps
.push_back(Store
);
3771 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3774 if (!MemOps
.empty())
3775 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3779 // Setup stack frame, the va_list pointer will start from.
3780 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3781 const SDLoc
&dl
, SDValue
&Chain
,
3783 unsigned TotalArgRegsSaveSize
,
3784 bool ForceMutable
) const {
3785 MachineFunction
&MF
= DAG
.getMachineFunction();
3786 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3788 // Try to store any remaining integer argument regs
3789 // to their spots on the stack so that they may be loaded by dereferencing
3790 // the result of va_next.
3791 // If there is no regs to be stored, just point address after last
3792 // argument passed via stack.
3793 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3794 CCInfo
.getInRegsParamsCount(),
3795 CCInfo
.getNextStackOffset(),
3796 std::max(4U, TotalArgRegsSaveSize
));
3797 AFI
->setVarArgsFrameIndex(FrameIndex
);
3800 SDValue
ARMTargetLowering::LowerFormalArguments(
3801 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3802 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3803 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3804 MachineFunction
&MF
= DAG
.getMachineFunction();
3805 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3807 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3809 // Assign locations to all of the incoming arguments.
3810 SmallVector
<CCValAssign
, 16> ArgLocs
;
3811 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3813 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3815 SmallVector
<SDValue
, 16> ArgValues
;
3817 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3818 unsigned CurArgIdx
= 0;
3820 // Initially ArgRegsSaveSize is zero.
3821 // Then we increase this value each time we meet byval parameter.
3822 // We also increase this value in case of varargs function.
3823 AFI
->setArgRegsSaveSize(0);
3825 // Calculate the amount of stack space that we need to allocate to store
3826 // byval and variadic arguments that are passed in registers.
3827 // We need to know this before we allocate the first byval or variadic
3828 // argument, as they will be allocated a stack slot below the CFA (Canonical
3829 // Frame Address, the stack pointer at entry to the function).
3830 unsigned ArgRegBegin
= ARM::R4
;
3831 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3832 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3835 CCValAssign
&VA
= ArgLocs
[i
];
3836 unsigned Index
= VA
.getValNo();
3837 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3838 if (!Flags
.isByVal())
3841 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3842 unsigned RBegin
, REnd
;
3843 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3844 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3846 CCInfo
.nextInRegsParam();
3848 CCInfo
.rewindByValRegsInfo();
3850 int lastInsIndex
= -1;
3851 if (isVarArg
&& MFI
.hasVAStart()) {
3852 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3853 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3854 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3857 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3858 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3859 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3861 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3862 CCValAssign
&VA
= ArgLocs
[i
];
3863 if (Ins
[VA
.getValNo()].isOrigArg()) {
3864 std::advance(CurOrigArg
,
3865 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3866 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3868 // Arguments stored in registers.
3869 if (VA
.isRegLoc()) {
3870 EVT RegVT
= VA
.getLocVT();
3872 if (VA
.needsCustom()) {
3873 // f64 and vector types are split up into multiple registers or
3874 // combinations of registers and stack slots.
3875 if (VA
.getLocVT() == MVT::v2f64
) {
3876 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3878 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3880 if (VA
.isMemLoc()) {
3881 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3882 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3883 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3884 MachinePointerInfo::getFixedStack(
3885 DAG
.getMachineFunction(), FI
));
3887 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3890 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3891 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3892 ArgValue
, ArgValue1
,
3893 DAG
.getIntPtrConstant(0, dl
));
3894 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3895 ArgValue
, ArgValue2
,
3896 DAG
.getIntPtrConstant(1, dl
));
3898 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3900 const TargetRegisterClass
*RC
;
3903 if (RegVT
== MVT::f16
)
3904 RC
= &ARM::HPRRegClass
;
3905 else if (RegVT
== MVT::f32
)
3906 RC
= &ARM::SPRRegClass
;
3907 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3908 RC
= &ARM::DPRRegClass
;
3909 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3910 RC
= &ARM::QPRRegClass
;
3911 else if (RegVT
== MVT::i32
)
3912 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3913 : &ARM::GPRRegClass
;
3915 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3917 // Transform the arguments in physical registers into virtual ones.
3918 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3919 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3921 // If this value is passed in r0 and has the returned attribute (e.g.
3922 // C++ 'structors), record this fact for later use.
3923 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
3924 AFI
->setPreservesR0();
3928 // If this is an 8 or 16-bit value, it is really passed promoted
3929 // to 32 bits. Insert an assert[sz]ext to capture this, then
3930 // truncate to the right size.
3931 switch (VA
.getLocInfo()) {
3932 default: llvm_unreachable("Unknown loc info!");
3933 case CCValAssign::Full
: break;
3934 case CCValAssign::BCvt
:
3935 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
3937 case CCValAssign::SExt
:
3938 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
3939 DAG
.getValueType(VA
.getValVT()));
3940 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3942 case CCValAssign::ZExt
:
3943 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
3944 DAG
.getValueType(VA
.getValVT()));
3945 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3949 InVals
.push_back(ArgValue
);
3950 } else { // VA.isRegLoc()
3952 assert(VA
.isMemLoc());
3953 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
3955 int index
= VA
.getValNo();
3957 // Some Ins[] entries become multiple ArgLoc[] entries.
3958 // Process them only once.
3959 if (index
!= lastInsIndex
)
3961 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
3962 // FIXME: For now, all byval parameter objects are marked mutable.
3963 // This can be changed with more analysis.
3964 // In case of tail call optimization mark all arguments mutable.
3965 // Since they could be overwritten by lowering of arguments in case of
3967 if (Flags
.isByVal()) {
3968 assert(Ins
[index
].isOrigArg() &&
3969 "Byval arguments cannot be implicit");
3970 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
3972 int FrameIndex
= StoreByValRegs(
3973 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
3974 VA
.getLocMemOffset(), Flags
.getByValSize());
3975 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
3976 CCInfo
.nextInRegsParam();
3978 unsigned FIOffset
= VA
.getLocMemOffset();
3979 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
3982 // Create load nodes to retrieve arguments from the stack.
3983 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3984 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
3985 MachinePointerInfo::getFixedStack(
3986 DAG
.getMachineFunction(), FI
)));
3988 lastInsIndex
= index
;
3994 if (isVarArg
&& MFI
.hasVAStart())
3995 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
3996 CCInfo
.getNextStackOffset(),
3997 TotalArgRegsSaveSize
);
3999 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4004 /// isFloatingPointZero - Return true if this is +0.0.
4005 static bool isFloatingPointZero(SDValue Op
) {
4006 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4007 return CFP
->getValueAPF().isPosZero();
4008 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4009 // Maybe this has already been legalized into the constant pool?
4010 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4011 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4012 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4013 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4014 return CFP
->getValueAPF().isPosZero();
4016 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4017 Op
->getValueType(0) == MVT::f64
) {
4018 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4019 // created by LowerConstantFP().
4020 SDValue BitcastOp
= Op
->getOperand(0);
4021 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4022 isNullConstant(BitcastOp
->getOperand(0)))
4028 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4029 /// the given operands.
4030 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4031 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4032 const SDLoc
&dl
) const {
4033 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4034 unsigned C
= RHSC
->getZExtValue();
4035 if (!isLegalICmpImmediate((int32_t)C
)) {
4036 // Constant does not fit, try adjusting it by one.
4041 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4042 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4043 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4048 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4049 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4050 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4055 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4056 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4057 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4062 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4063 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4064 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4069 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4070 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4071 // In ARM and Thumb-2, the compare instructions can shift their second
4073 CC
= ISD::getSetCCSwappedOperands(CC
);
4074 std::swap(LHS
, RHS
);
4077 // Thumb1 has very limited immediate modes, so turning an "and" into a
4078 // shift can save multiple instructions.
4080 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4081 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4082 // own. If it's the operand to an unsigned comparison with an immediate,
4083 // we can eliminate one of the shifts: we transform
4084 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4086 // We avoid transforming cases which aren't profitable due to encoding
4089 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4090 // would not; in that case, we're essentially trading one immediate load for
4092 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4093 // 3. C2 is zero; we have other code for this special case.
4095 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4096 // instruction, since the AND is always one instruction anyway, but we could
4097 // use narrow instructions in some cases.
4098 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4099 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4100 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4101 !isSignedIntSetCC(CC
)) {
4102 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4103 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4104 uint64_t RHSV
= RHSC
->getZExtValue();
4105 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4106 unsigned ShiftBits
= countLeadingZeros(Mask
);
4107 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4108 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4109 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4110 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4115 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4116 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4118 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4119 // some tweaks to the heuristics for the previous and->shift transform.
4120 // FIXME: Optimize cases where the LHS isn't a shift.
4121 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4122 isa
<ConstantSDNode
>(RHS
) &&
4123 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4124 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4125 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4127 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4128 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4129 DAG
.getVTList(MVT::i32
, MVT::i32
),
4131 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4132 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4133 Shift
.getValue(1), SDValue());
4134 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4135 return Chain
.getValue(1);
4138 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4140 // If the RHS is a constant zero then the V (overflow) flag will never be
4141 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4142 // simpler for other passes (like the peephole optimiser) to deal with.
4143 if (isNullConstant(RHS
)) {
4147 CondCode
= ARMCC::PL
;
4150 CondCode
= ARMCC::MI
;
4155 ARMISD::NodeType CompareType
;
4158 CompareType
= ARMISD::CMP
;
4163 CompareType
= ARMISD::CMPZ
;
4166 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4167 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4170 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4171 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4172 SelectionDAG
&DAG
, const SDLoc
&dl
,
4173 bool InvalidOnQNaN
) const {
4174 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4176 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4177 if (!isFloatingPointZero(RHS
))
4178 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4180 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4181 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4184 /// duplicateCmp - Glue values can have only one use, so this function
4185 /// duplicates a comparison node.
4187 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4188 unsigned Opc
= Cmp
.getOpcode();
4190 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4191 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4193 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4194 Cmp
= Cmp
.getOperand(0);
4195 Opc
= Cmp
.getOpcode();
4196 if (Opc
== ARMISD::CMPFP
)
4197 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4198 Cmp
.getOperand(1), Cmp
.getOperand(2));
4200 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4201 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4204 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4207 // This function returns three things: the arithmetic computation itself
4208 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4209 // comparison and the condition code define the case in which the arithmetic
4210 // computation *does not* overflow.
4211 std::pair
<SDValue
, SDValue
>
4212 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4213 SDValue
&ARMcc
) const {
4214 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4216 SDValue Value
, OverflowCmp
;
4217 SDValue LHS
= Op
.getOperand(0);
4218 SDValue RHS
= Op
.getOperand(1);
4221 // FIXME: We are currently always generating CMPs because we don't support
4222 // generating CMN through the backend. This is not as good as the natural
4223 // CMP case because it causes a register dependency and cannot be folded
4226 switch (Op
.getOpcode()) {
4228 llvm_unreachable("Unknown overflow instruction!");
4230 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4231 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4232 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4235 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4236 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4237 // We do not use it in the USUBO case as Value may not be used.
4238 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4239 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4241 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4244 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4245 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4246 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4249 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4250 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4251 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4254 // We generate a UMUL_LOHI and then check if the high word is 0.
4255 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4256 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4257 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4259 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4260 DAG
.getConstant(0, dl
, MVT::i32
));
4261 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4264 // We generate a SMUL_LOHI and then check if all the bits of the high word
4265 // are the same as the sign bit of the low word.
4266 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4267 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4268 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4270 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4271 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4273 DAG
.getConstant(31, dl
, MVT::i32
)));
4274 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4278 return std::make_pair(Value
, OverflowCmp
);
4282 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4283 // Let legalize expand this if it isn't a legal type yet.
4284 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4287 SDValue Value
, OverflowCmp
;
4289 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4290 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4292 // We use 0 and 1 as false and true values.
4293 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4294 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4295 EVT VT
= Op
.getValueType();
4297 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4298 ARMcc
, CCR
, OverflowCmp
);
4300 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4301 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4304 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4305 SelectionDAG
&DAG
) {
4306 SDLoc
DL(BoolCarry
);
4307 EVT CarryVT
= BoolCarry
.getValueType();
4309 // This converts the boolean value carry into the carry flag by doing
4310 // ARMISD::SUBC Carry, 1
4311 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4312 DAG
.getVTList(CarryVT
, MVT::i32
),
4313 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4314 return Carry
.getValue(1);
4317 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4318 SelectionDAG
&DAG
) {
4321 // Now convert the carry flag into a boolean carry. We do this
4322 // using ARMISD:ADDE 0, 0, Carry
4323 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4324 DAG
.getConstant(0, DL
, MVT::i32
),
4325 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4328 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4329 SelectionDAG
&DAG
) const {
4330 // Let legalize expand this if it isn't a legal type yet.
4331 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4334 SDValue LHS
= Op
.getOperand(0);
4335 SDValue RHS
= Op
.getOperand(1);
4338 EVT VT
= Op
.getValueType();
4339 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4342 switch (Op
.getOpcode()) {
4344 llvm_unreachable("Unknown overflow instruction!");
4346 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4347 // Convert the carry flag into a boolean value.
4348 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4351 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4352 // Convert the carry flag into a boolean value.
4353 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4354 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4355 // value. So compute 1 - C.
4356 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4357 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4362 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4365 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4366 SDValue Cond
= Op
.getOperand(0);
4367 SDValue SelectTrue
= Op
.getOperand(1);
4368 SDValue SelectFalse
= Op
.getOperand(2);
4370 unsigned Opc
= Cond
.getOpcode();
4372 if (Cond
.getResNo() == 1 &&
4373 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4374 Opc
== ISD::USUBO
)) {
4375 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4378 SDValue Value
, OverflowCmp
;
4380 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4381 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4382 EVT VT
= Op
.getValueType();
4384 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4390 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4391 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4393 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4394 const ConstantSDNode
*CMOVTrue
=
4395 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4396 const ConstantSDNode
*CMOVFalse
=
4397 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4399 if (CMOVTrue
&& CMOVFalse
) {
4400 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4401 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4405 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4407 False
= SelectFalse
;
4408 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4413 if (True
.getNode() && False
.getNode()) {
4414 EVT VT
= Op
.getValueType();
4415 SDValue ARMcc
= Cond
.getOperand(2);
4416 SDValue CCR
= Cond
.getOperand(3);
4417 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4418 assert(True
.getValueType() == VT
);
4419 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4424 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4425 // undefined bits before doing a full-word comparison with zero.
4426 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4427 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4429 return DAG
.getSelectCC(dl
, Cond
,
4430 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4431 SelectTrue
, SelectFalse
, ISD::SETNE
);
4434 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4435 bool &swpCmpOps
, bool &swpVselOps
) {
4436 // Start by selecting the GE condition code for opcodes that return true for
4438 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4439 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4440 CondCode
= ARMCC::GE
;
4442 // and GT for opcodes that return false for 'equality'.
4443 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4444 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4445 CondCode
= ARMCC::GT
;
4447 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4448 // to swap the compare operands.
4449 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4450 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4453 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4454 // If we have an unordered opcode, we need to swap the operands to the VSEL
4455 // instruction (effectively negating the condition).
4457 // This also has the effect of swapping which one of 'less' or 'greater'
4458 // returns true, so we also swap the compare operands. It also switches
4459 // whether we return true for 'equality', so we compensate by picking the
4460 // opposite condition code to our original choice.
4461 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4462 CC
== ISD::SETUGT
) {
4463 swpCmpOps
= !swpCmpOps
;
4464 swpVselOps
= !swpVselOps
;
4465 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4468 // 'ordered' is 'anything but unordered', so use the VS condition code and
4469 // swap the VSEL operands.
4470 if (CC
== ISD::SETO
) {
4471 CondCode
= ARMCC::VS
;
4475 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4476 // code and swap the VSEL operands. Also do this if we don't care about the
4478 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4479 CondCode
= ARMCC::EQ
;
4484 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4485 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4486 SDValue Cmp
, SelectionDAG
&DAG
) const {
4487 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4488 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4489 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4490 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4491 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4493 SDValue TrueLow
= TrueVal
.getValue(0);
4494 SDValue TrueHigh
= TrueVal
.getValue(1);
4495 SDValue FalseLow
= FalseVal
.getValue(0);
4496 SDValue FalseHigh
= FalseVal
.getValue(1);
4498 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4500 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4501 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4503 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4505 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4510 static bool isGTorGE(ISD::CondCode CC
) {
4511 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4514 static bool isLTorLE(ISD::CondCode CC
) {
4515 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4518 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4519 // All of these conditions (and their <= and >= counterparts) will do:
4524 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4525 const SDValue TrueVal
, const SDValue FalseVal
,
4526 const ISD::CondCode CC
, const SDValue K
) {
4527 return (isGTorGE(CC
) &&
4528 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4530 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4533 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4534 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4535 const SDValue TrueVal
, const SDValue FalseVal
,
4536 const ISD::CondCode CC
, const SDValue K
) {
4537 return (isGTorGE(CC
) &&
4538 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4540 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4543 // Check if two chained conditionals could be converted into SSAT or USAT.
4545 // SSAT can replace a set of two conditional selectors that bound a number to an
4546 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4548 // x < -k ? -k : (x > k ? k : x)
4549 // x < -k ? -k : (x < k ? x : k)
4550 // x > -k ? (x > k ? k : x) : -k
4551 // x < k ? (x < -k ? -k : x) : k
4554 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4557 // It returns true if the conversion can be done, false otherwise.
4558 // Additionally, the variable is returned in parameter V, the constant in K and
4559 // usat is set to true if the conditional represents an unsigned saturation
4560 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4561 uint64_t &K
, bool &usat
) {
4562 SDValue LHS1
= Op
.getOperand(0);
4563 SDValue RHS1
= Op
.getOperand(1);
4564 SDValue TrueVal1
= Op
.getOperand(2);
4565 SDValue FalseVal1
= Op
.getOperand(3);
4566 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4568 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4569 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4572 SDValue LHS2
= Op2
.getOperand(0);
4573 SDValue RHS2
= Op2
.getOperand(1);
4574 SDValue TrueVal2
= Op2
.getOperand(2);
4575 SDValue FalseVal2
= Op2
.getOperand(3);
4576 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4578 // Find out which are the constants and which are the variables
4579 // in each conditional
4580 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4583 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4586 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4587 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4588 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4589 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4591 // We must detect cases where the original operations worked with 16- or
4592 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4593 // must work with sign-extended values but the select operations return
4594 // the original non-extended value.
4595 SDValue V2TmpReg
= V2Tmp
;
4596 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4597 V2TmpReg
= V2Tmp
->getOperand(0);
4599 // Check that the registers and the constants have the correct values
4600 // in both conditionals
4601 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4605 // Figure out which conditional is saturating the lower/upper bound.
4606 const SDValue
*LowerCheckOp
=
4607 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4609 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4612 const SDValue
*UpperCheckOp
=
4613 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4615 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4619 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4622 // Check that the constant in the lower-bound check is
4623 // the opposite of the constant in the upper-bound check
4624 // in 1's complement.
4625 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4626 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4627 int64_t PosVal
= std::max(Val1
, Val2
);
4628 int64_t NegVal
= std::min(Val1
, Val2
);
4630 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4631 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4632 isPowerOf2_64(PosVal
+ 1)) {
4634 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4637 else if (NegVal
== 0)
4643 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4651 // Check if a condition of the type x < k ? k : x can be converted into a
4652 // bit operation instead of conditional moves.
4653 // Currently this is allowed given:
4654 // - The conditions and values match up
4655 // - k is 0 or -1 (all ones)
4656 // This function will not check the last condition, thats up to the caller
4657 // It returns true if the transformation can be made, and in such case
4658 // returns x in V, and k in SatK.
4659 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4662 SDValue LHS
= Op
.getOperand(0);
4663 SDValue RHS
= Op
.getOperand(1);
4664 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4665 SDValue TrueVal
= Op
.getOperand(2);
4666 SDValue FalseVal
= Op
.getOperand(3);
4668 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4672 // No constant operation in comparison, early out
4676 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4677 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4678 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4680 // If the constant on left and right side, or variable on left and right,
4681 // does not match, early out
4682 if (*K
!= KTmp
|| V
!= VTmp
)
4685 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4693 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4695 return !Subtarget
->hasVFP2Base();
4697 return !Subtarget
->hasFP64();
4699 return !Subtarget
->hasFullFP16();
4703 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4704 EVT VT
= Op
.getValueType();
4707 // Try to convert two saturating conditional selects into a single SSAT
4709 uint64_t SatConstant
;
4711 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4712 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4714 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4715 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4717 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4718 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4721 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4722 // into more efficient bit operations, which is possible when k is 0 or -1
4723 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4724 // single instructions. On Thumb the shift and the bit operation will be two
4726 // Only allow this transformation on full-width (32-bit) operations
4727 SDValue LowerSatConstant
;
4728 if (VT
== MVT::i32
&&
4729 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4730 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4731 DAG
.getConstant(31, dl
, VT
));
4732 if (isNullConstant(LowerSatConstant
)) {
4733 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4734 DAG
.getAllOnesConstant(dl
, VT
));
4735 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4736 } else if (isAllOnesConstant(LowerSatConstant
))
4737 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4740 SDValue LHS
= Op
.getOperand(0);
4741 SDValue RHS
= Op
.getOperand(1);
4742 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4743 SDValue TrueVal
= Op
.getOperand(2);
4744 SDValue FalseVal
= Op
.getOperand(3);
4746 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4747 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4748 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4750 // If softenSetCCOperands only returned one value, we should compare it to
4752 if (!RHS
.getNode()) {
4753 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4758 if (LHS
.getValueType() == MVT::i32
) {
4759 // Try to generate VSEL on ARMv8.
4760 // The VSEL instruction can't use all the usual ARM condition
4761 // codes: it only has two bits to select the condition code, so it's
4762 // constrained to use only GE, GT, VS and EQ.
4764 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4765 // swap the operands of the previous compare instruction (effectively
4766 // inverting the compare condition, swapping 'less' and 'greater') and
4767 // sometimes need to swap the operands to the VSEL (which inverts the
4768 // condition in the sense of firing whenever the previous condition didn't)
4769 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4770 TrueVal
.getValueType() == MVT::f32
||
4771 TrueVal
.getValueType() == MVT::f64
)) {
4772 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4773 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4774 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4775 CC
= ISD::getSetCCInverse(CC
, true);
4776 std::swap(TrueVal
, FalseVal
);
4781 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4782 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4783 // Choose GE over PL, which vsel does now support
4784 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4785 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4786 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4789 ARMCC::CondCodes CondCode
, CondCode2
;
4791 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4793 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4794 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4795 // must use VSEL (limited condition codes), due to not having conditional f16
4797 if (Subtarget
->hasFPARMv8Base() &&
4798 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4799 (TrueVal
.getValueType() == MVT::f16
||
4800 TrueVal
.getValueType() == MVT::f32
||
4801 TrueVal
.getValueType() == MVT::f64
)) {
4802 bool swpCmpOps
= false;
4803 bool swpVselOps
= false;
4804 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4806 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4807 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4809 std::swap(LHS
, RHS
);
4811 std::swap(TrueVal
, FalseVal
);
4815 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4816 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4817 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4818 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4819 if (CondCode2
!= ARMCC::AL
) {
4820 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4821 // FIXME: Needs another CMP because flag can have but one use.
4822 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4823 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4828 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4829 /// to morph to an integer compare sequence.
4830 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4831 const ARMSubtarget
*Subtarget
) {
4832 SDNode
*N
= Op
.getNode();
4833 if (!N
->hasOneUse())
4834 // Otherwise it requires moving the value from fp to integer registers.
4836 if (!N
->getNumValues())
4838 EVT VT
= Op
.getValueType();
4839 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4840 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4841 // vmrs are very slow, e.g. cortex-a8.
4844 if (isFloatingPointZero(Op
)) {
4848 return ISD::isNormalLoad(N
);
4851 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4852 if (isFloatingPointZero(Op
))
4853 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4855 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4856 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4857 Ld
->getPointerInfo(), Ld
->getAlignment(),
4858 Ld
->getMemOperand()->getFlags());
4860 llvm_unreachable("Unknown VFP cmp argument!");
4863 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4864 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4867 if (isFloatingPointZero(Op
)) {
4868 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4869 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
4873 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
4874 SDValue Ptr
= Ld
->getBasePtr();
4876 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
4877 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
4879 EVT PtrType
= Ptr
.getValueType();
4880 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
4881 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
4882 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
4883 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
4884 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
4885 Ld
->getMemOperand()->getFlags());
4889 llvm_unreachable("Unknown VFP cmp argument!");
4892 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4893 /// f32 and even f64 comparisons to integer ones.
4895 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
4896 SDValue Chain
= Op
.getOperand(0);
4897 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4898 SDValue LHS
= Op
.getOperand(2);
4899 SDValue RHS
= Op
.getOperand(3);
4900 SDValue Dest
= Op
.getOperand(4);
4903 bool LHSSeenZero
= false;
4904 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
4905 bool RHSSeenZero
= false;
4906 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
4907 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
4908 // If unsafe fp math optimization is enabled and there are no other uses of
4909 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4910 // to an integer comparison.
4911 if (CC
== ISD::SETOEQ
)
4913 else if (CC
== ISD::SETUNE
)
4916 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
4918 if (LHS
.getValueType() == MVT::f32
) {
4919 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4920 bitcastf32Toi32(LHS
, DAG
), Mask
);
4921 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4922 bitcastf32Toi32(RHS
, DAG
), Mask
);
4923 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4924 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4925 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4926 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4931 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
4932 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
4933 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
4934 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
4935 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4936 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4937 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4938 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
4939 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
4945 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
4946 SDValue Chain
= Op
.getOperand(0);
4947 SDValue Cond
= Op
.getOperand(1);
4948 SDValue Dest
= Op
.getOperand(2);
4951 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4953 unsigned Opc
= Cond
.getOpcode();
4954 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4955 !Subtarget
->isThumb1Only();
4956 if (Cond
.getResNo() == 1 &&
4957 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4958 Opc
== ISD::USUBO
|| OptimizeMul
)) {
4959 // Only lower legal XALUO ops.
4960 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4963 // The actual operation with overflow check.
4964 SDValue Value
, OverflowCmp
;
4966 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4968 // Reverse the condition code.
4969 ARMCC::CondCodes CondCode
=
4970 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4971 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4972 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4973 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4975 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4982 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4983 SDValue Chain
= Op
.getOperand(0);
4984 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4985 SDValue LHS
= Op
.getOperand(2);
4986 SDValue RHS
= Op
.getOperand(3);
4987 SDValue Dest
= Op
.getOperand(4);
4990 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4991 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4992 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4994 // If softenSetCCOperands only returned one value, we should compare it to
4996 if (!RHS
.getNode()) {
4997 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5002 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5004 unsigned Opc
= LHS
.getOpcode();
5005 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5006 !Subtarget
->isThumb1Only();
5007 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5008 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5009 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5010 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5011 // Only lower legal XALUO ops.
5012 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5015 // The actual operation with overflow check.
5016 SDValue Value
, OverflowCmp
;
5018 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5020 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5021 // Reverse the condition code.
5022 ARMCC::CondCodes CondCode
=
5023 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5024 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5025 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5027 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5029 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5033 if (LHS
.getValueType() == MVT::i32
) {
5035 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5036 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5037 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5038 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5041 if (getTargetMachine().Options
.UnsafeFPMath
&&
5042 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5043 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5044 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5048 ARMCC::CondCodes CondCode
, CondCode2
;
5050 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5052 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5053 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5054 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5055 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5056 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5057 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5058 if (CondCode2
!= ARMCC::AL
) {
5059 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5060 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5061 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5066 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5067 SDValue Chain
= Op
.getOperand(0);
5068 SDValue Table
= Op
.getOperand(1);
5069 SDValue Index
= Op
.getOperand(2);
5072 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5073 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5074 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5075 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5076 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5077 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5078 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5079 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5080 // which does another jump to the destination. This also makes it easier
5081 // to translate it to TBB / TBH later (Thumb2 only).
5082 // FIXME: This might not work if the function is extremely large.
5083 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5084 Addr
, Op
.getOperand(2), JTI
);
5086 if (isPositionIndependent() || Subtarget
->isROPI()) {
5088 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5089 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5090 Chain
= Addr
.getValue(1);
5091 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5092 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5095 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5096 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5097 Chain
= Addr
.getValue(1);
5098 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5102 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5103 EVT VT
= Op
.getValueType();
5106 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5107 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5109 return DAG
.UnrollVectorOp(Op
.getNode());
5112 const bool HasFullFP16
=
5113 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5116 const EVT OpTy
= Op
.getOperand(0).getValueType();
5117 if (OpTy
== MVT::v4f32
)
5119 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5121 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5124 llvm_unreachable("Invalid type for custom lowering!");
5126 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5127 return DAG
.UnrollVectorOp(Op
.getNode());
5129 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5130 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5133 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5134 EVT VT
= Op
.getValueType();
5136 return LowerVectorFP_TO_INT(Op
, DAG
);
5137 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5139 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5140 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5143 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5145 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5146 /*isSigned*/ false, SDLoc(Op
)).first
;
5152 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5153 EVT VT
= Op
.getValueType();
5156 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5157 if (VT
.getVectorElementType() == MVT::f32
)
5159 return DAG
.UnrollVectorOp(Op
.getNode());
5162 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5163 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5164 "Invalid type for custom lowering!");
5166 const bool HasFullFP16
=
5167 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5170 if (VT
== MVT::v4f32
)
5171 DestVecType
= MVT::v4i32
;
5172 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5173 DestVecType
= MVT::v4i16
;
5174 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5175 DestVecType
= MVT::v8i16
;
5177 return DAG
.UnrollVectorOp(Op
.getNode());
5181 switch (Op
.getOpcode()) {
5182 default: llvm_unreachable("Invalid opcode!");
5183 case ISD::SINT_TO_FP
:
5184 CastOpc
= ISD::SIGN_EXTEND
;
5185 Opc
= ISD::SINT_TO_FP
;
5187 case ISD::UINT_TO_FP
:
5188 CastOpc
= ISD::ZERO_EXTEND
;
5189 Opc
= ISD::UINT_TO_FP
;
5193 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5194 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5197 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5198 EVT VT
= Op
.getValueType();
5200 return LowerVectorINT_TO_FP(Op
, DAG
);
5201 if (isUnsupportedFloatingType(VT
)) {
5203 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5204 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5207 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5209 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5210 /*isSigned*/ false, SDLoc(Op
)).first
;
5216 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5217 // Implement fcopysign with a fabs and a conditional fneg.
5218 SDValue Tmp0
= Op
.getOperand(0);
5219 SDValue Tmp1
= Op
.getOperand(1);
5221 EVT VT
= Op
.getValueType();
5222 EVT SrcVT
= Tmp1
.getValueType();
5223 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5224 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5225 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5228 // Use VBSL to copy the sign bit.
5229 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5230 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5231 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5232 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5234 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5235 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5236 DAG
.getConstant(32, dl
, MVT::i32
));
5237 else /*if (VT == MVT::f32)*/
5238 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5239 if (SrcVT
== MVT::f32
) {
5240 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5242 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5243 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5244 DAG
.getConstant(32, dl
, MVT::i32
));
5245 } else if (VT
== MVT::f32
)
5246 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5247 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5248 DAG
.getConstant(32, dl
, MVT::i32
));
5249 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5250 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5252 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5254 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5255 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5256 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5258 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5259 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5260 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5261 if (VT
== MVT::f32
) {
5262 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5263 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5264 DAG
.getConstant(0, dl
, MVT::i32
));
5266 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5272 // Bitcast operand 1 to i32.
5273 if (SrcVT
== MVT::f64
)
5274 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5276 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5278 // Or in the signbit with integer operations.
5279 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5280 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5281 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5282 if (VT
== MVT::f32
) {
5283 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5284 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5285 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5286 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5289 // f64: Or the high part with signbit and then combine two parts.
5290 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5292 SDValue Lo
= Tmp0
.getValue(0);
5293 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5294 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5295 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5298 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5299 MachineFunction
&MF
= DAG
.getMachineFunction();
5300 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5301 MFI
.setReturnAddressIsTaken(true);
5303 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5306 EVT VT
= Op
.getValueType();
5308 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5310 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5311 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5312 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5313 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5314 MachinePointerInfo());
5317 // Return LR, which contains the return address. Mark it an implicit live-in.
5318 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5319 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5322 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5323 const ARMBaseRegisterInfo
&ARI
=
5324 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5325 MachineFunction
&MF
= DAG
.getMachineFunction();
5326 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5327 MFI
.setFrameAddressIsTaken(true);
5329 EVT VT
= Op
.getValueType();
5330 SDLoc
dl(Op
); // FIXME probably not meaningful
5331 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5332 unsigned FrameReg
= ARI
.getFrameRegister(MF
);
5333 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5335 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5336 MachinePointerInfo());
5340 // FIXME? Maybe this could be a TableGen attribute on some registers and
5341 // this table could be generated automatically from RegInfo.
5342 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5343 SelectionDAG
&DAG
) const {
5344 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5345 .Case("sp", ARM::SP
)
5349 report_fatal_error(Twine("Invalid register name \""
5350 + StringRef(RegName
) + "\"."));
5353 // Result is 64 bit value so split into two 32 bit values and return as a
5355 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5356 SelectionDAG
&DAG
) {
5359 // This function is only supposed to be called for i64 type destination.
5360 assert(N
->getValueType(0) == MVT::i64
5361 && "ExpandREAD_REGISTER called for non-i64 type result.");
5363 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5364 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5368 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5370 Results
.push_back(Read
.getOperand(0));
5373 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5374 /// When \p DstVT, the destination type of \p BC, is on the vector
5375 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5376 /// it might be possible to combine them, such that everything stays on the
5377 /// vector register bank.
5378 /// \p return The node that would replace \p BT, if the combine
5380 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5381 SelectionDAG
&DAG
) {
5382 SDValue Op
= BC
->getOperand(0);
5383 EVT DstVT
= BC
->getValueType(0);
5385 // The only vector instruction that can produce a scalar (remember,
5386 // since the bitcast was about to be turned into VMOVDRR, the source
5387 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5388 // Moreover, we can do this combine only if there is one use.
5389 // Finally, if the destination type is not a vector, there is not
5390 // much point on forcing everything on the vector bank.
5391 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5395 // If the index is not constant, we will introduce an additional
5396 // multiply that will stick.
5397 // Give up in that case.
5398 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5401 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5403 // Compute the new index.
5404 const APInt
&APIntIndex
= Index
->getAPIntValue();
5405 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5406 NewIndex
*= APIntIndex
;
5407 // Check if the new constant index fits into i32.
5408 if (NewIndex
.getBitWidth() > 32)
5411 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5412 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5414 SDValue ExtractSrc
= Op
.getOperand(0);
5415 EVT VecVT
= EVT::getVectorVT(
5416 *DAG
.getContext(), DstVT
.getScalarType(),
5417 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5418 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5419 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5420 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5423 /// ExpandBITCAST - If the target supports VFP, this function is called to
5424 /// expand a bit convert where either the source or destination type is i64 to
5425 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5426 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5427 /// vectors), since the legalizer won't know what to do with that.
5428 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5429 const ARMSubtarget
*Subtarget
) {
5430 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5432 SDValue Op
= N
->getOperand(0);
5434 // This function is only supposed to be called for i64 types, either as the
5435 // source or destination of the bit convert.
5436 EVT SrcVT
= Op
.getValueType();
5437 EVT DstVT
= N
->getValueType(0);
5438 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5440 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5441 // FullFP16: half values are passed in S-registers, and we don't
5442 // need any of the bitcast and moves:
5444 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5445 // t5: i32 = bitcast t2
5446 // t18: f16 = ARMISD::VMOVhr t5
5447 if (Op
.getOpcode() != ISD::CopyFromReg
||
5448 Op
.getValueType() != MVT::f32
)
5451 auto Move
= N
->use_begin();
5452 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5455 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5456 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5457 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5461 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5464 // SoftFP: read half-precision arguments:
5467 // t7: i16 = truncate t2 <~~~~ Op
5468 // t8: f16 = bitcast t7 <~~~~ N
5470 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5471 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5472 MVT::f16
, Op
.getOperand(0));
5477 // Half-precision return values
5478 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5482 // t11: f16 = fadd t8, t10
5483 // t12: i16 = bitcast t11 <~~~ SDNode N
5484 // t13: i32 = zero_extend t12
5485 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5486 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5488 // transform this into:
5490 // t20: i32 = ARMISD::VMOVrh t11
5491 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5493 auto ZeroExtend
= N
->use_begin();
5494 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5495 ZeroExtend
->getValueType(0) != MVT::i32
)
5498 auto Copy
= ZeroExtend
->use_begin();
5499 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5500 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5501 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5502 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5508 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5511 // Turn i64->f64 into VMOVDRR.
5512 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5513 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5514 // if we can combine the bitcast with its source.
5515 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5518 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5519 DAG
.getConstant(0, dl
, MVT::i32
));
5520 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5521 DAG
.getConstant(1, dl
, MVT::i32
));
5522 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5523 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5526 // Turn f64->i64 into VMOVRRD.
5527 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5529 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5530 SrcVT
.getVectorNumElements() > 1)
5531 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5532 DAG
.getVTList(MVT::i32
, MVT::i32
),
5533 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5535 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5536 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5537 // Merge the pieces into a single i64 value.
5538 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5544 /// getZeroVector - Returns a vector of specified type with all zero elements.
5545 /// Zero vectors are used to represent vector negation and in those cases
5546 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5547 /// not support i64 elements, so sometimes the zero vectors will need to be
5548 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5550 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5551 assert(VT
.isVector() && "Expected a vector type");
5552 // The canonical modified immediate encoding of a zero vector is....0!
5553 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5554 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5555 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5556 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5559 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5560 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5561 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5562 SelectionDAG
&DAG
) const {
5563 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5564 EVT VT
= Op
.getValueType();
5565 unsigned VTBits
= VT
.getSizeInBits();
5567 SDValue ShOpLo
= Op
.getOperand(0);
5568 SDValue ShOpHi
= Op
.getOperand(1);
5569 SDValue ShAmt
= Op
.getOperand(2);
5571 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5572 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5574 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5576 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5577 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5578 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5579 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5580 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5581 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5582 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5583 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5584 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5585 ISD::SETGE
, ARMcc
, DAG
, dl
);
5586 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5589 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5590 SDValue HiBigShift
= Opc
== ISD::SRA
5591 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5592 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5593 : DAG
.getConstant(0, dl
, VT
);
5594 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5595 ISD::SETGE
, ARMcc
, DAG
, dl
);
5596 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5599 SDValue Ops
[2] = { Lo
, Hi
};
5600 return DAG
.getMergeValues(Ops
, dl
);
5603 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5604 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5605 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5606 SelectionDAG
&DAG
) const {
5607 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5608 EVT VT
= Op
.getValueType();
5609 unsigned VTBits
= VT
.getSizeInBits();
5611 SDValue ShOpLo
= Op
.getOperand(0);
5612 SDValue ShOpHi
= Op
.getOperand(1);
5613 SDValue ShAmt
= Op
.getOperand(2);
5615 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5617 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5618 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5619 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5620 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5621 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5622 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5624 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5625 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5626 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5627 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5628 ISD::SETGE
, ARMcc
, DAG
, dl
);
5629 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5632 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5633 ISD::SETGE
, ARMcc
, DAG
, dl
);
5634 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5635 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5636 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5638 SDValue Ops
[2] = { Lo
, Hi
};
5639 return DAG
.getMergeValues(Ops
, dl
);
5642 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5643 SelectionDAG
&DAG
) const {
5644 // The rounding mode is in bits 23:22 of the FPSCR.
5645 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5646 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5647 // so that the shift + and get folded into a bitfield extract.
5649 SDValue Ops
[] = { DAG
.getEntryNode(),
5650 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5652 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5653 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5654 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5655 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5656 DAG
.getConstant(22, dl
, MVT::i32
));
5657 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5658 DAG
.getConstant(3, dl
, MVT::i32
));
5661 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5662 const ARMSubtarget
*ST
) {
5664 EVT VT
= N
->getValueType(0);
5665 if (VT
.isVector()) {
5666 assert(ST
->hasNEON());
5668 // Compute the least significant set bit: LSB = X & -X
5669 SDValue X
= N
->getOperand(0);
5670 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5671 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5673 EVT ElemTy
= VT
.getVectorElementType();
5675 if (ElemTy
== MVT::i8
) {
5676 // Compute with: cttz(x) = ctpop(lsb - 1)
5677 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5678 DAG
.getTargetConstant(1, dl
, ElemTy
));
5679 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5680 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5683 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5684 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5685 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5686 unsigned NumBits
= ElemTy
.getSizeInBits();
5687 SDValue WidthMinus1
=
5688 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5689 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5690 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5691 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5694 // Compute with: cttz(x) = ctpop(lsb - 1)
5698 if (ElemTy
== MVT::i64
) {
5699 // Load constant 0xffff'ffff'ffff'ffff to register.
5700 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5701 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5702 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5704 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5705 DAG
.getTargetConstant(1, dl
, ElemTy
));
5706 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5708 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5711 if (!ST
->hasV6T2Ops())
5714 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5715 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5718 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5719 const ARMSubtarget
*ST
) {
5720 EVT VT
= N
->getValueType(0);
5723 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5724 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5725 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5726 "Unexpected type for custom ctpop lowering");
5728 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5729 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5730 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5731 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5733 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5734 unsigned EltSize
= 8;
5735 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5736 while (EltSize
!= VT
.getScalarSizeInBits()) {
5737 SmallVector
<SDValue
, 8> Ops
;
5738 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5739 TLI
.getPointerTy(DAG
.getDataLayout())));
5744 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5745 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5751 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5752 /// operand of a vector shift operation, where all the elements of the
5753 /// build_vector must have the same constant integer value.
5754 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5755 // Ignore bit_converts.
5756 while (Op
.getOpcode() == ISD::BITCAST
)
5757 Op
= Op
.getOperand(0);
5758 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5759 APInt SplatBits
, SplatUndef
;
5760 unsigned SplatBitSize
;
5763 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5765 SplatBitSize
> ElementBits
)
5767 Cnt
= SplatBits
.getSExtValue();
5771 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5772 /// operand of a vector shift left operation. That value must be in the range:
5773 /// 0 <= Value < ElementBits for a left shift; or
5774 /// 0 <= Value <= ElementBits for a long left shift.
5775 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5776 assert(VT
.isVector() && "vector shift count is not a vector type");
5777 int64_t ElementBits
= VT
.getScalarSizeInBits();
5778 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5780 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5783 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5784 /// operand of a vector shift right operation. For a shift opcode, the value
5785 /// is positive, but for an intrinsic the value count must be negative. The
5786 /// absolute value must be in the range:
5787 /// 1 <= |Value| <= ElementBits for a right shift; or
5788 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5789 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5791 assert(VT
.isVector() && "vector shift count is not a vector type");
5792 int64_t ElementBits
= VT
.getScalarSizeInBits();
5793 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5796 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5797 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5804 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5805 const ARMSubtarget
*ST
) {
5806 EVT VT
= N
->getValueType(0);
5813 // We essentially have two forms here. Shift by an immediate and shift by a
5814 // vector register (there are also shift by a gpr, but that is just handled
5815 // with a tablegen pattern). We cannot easily match shift by an immediate in
5816 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5817 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5818 // signed or unsigned, and a negative shift indicates a shift right).
5819 if (N
->getOpcode() == ISD::SHL
) {
5820 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5821 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5822 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5823 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5827 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5828 "unexpected vector shift opcode");
5830 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5831 unsigned VShiftOpc
=
5832 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5833 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5834 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5837 // Other right shifts we don't have operations for (we use a shift left by a
5838 // negative number).
5839 EVT ShiftVT
= N
->getOperand(1).getValueType();
5840 SDValue NegatedCount
= DAG
.getNode(
5841 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5842 unsigned VShiftOpc
=
5843 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5844 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5847 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5848 const ARMSubtarget
*ST
) {
5849 EVT VT
= N
->getValueType(0);
5852 // We can get here for a node like i32 = ISD::SHL i32, i64
5856 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5857 N
->getOpcode() == ISD::SHL
) &&
5858 "Unknown shift to lower!");
5860 unsigned ShOpc
= N
->getOpcode();
5861 if (ST
->hasMVEIntegerOps()) {
5862 SDValue ShAmt
= N
->getOperand(1);
5863 unsigned ShPartsOpc
= ARMISD::LSLL
;
5864 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5866 // If the shift amount is greater than 32 then do the default optimisation
5867 if (Con
&& Con
->getZExtValue() > 32)
5870 // Extract the lower 32 bits of the shift amount if it's an i64
5871 if (ShAmt
->getValueType(0) == MVT::i64
)
5872 ShAmt
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ShAmt
,
5873 DAG
.getConstant(0, dl
, MVT::i32
));
5875 if (ShOpc
== ISD::SRL
) {
5877 // There is no t2LSRLr instruction so negate and perform an lsll if the
5878 // shift amount is in a register, emulating a right shift.
5879 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5880 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
5882 // Else generate an lsrl on the immediate shift amount
5883 ShPartsOpc
= ARMISD::LSRL
;
5884 } else if (ShOpc
== ISD::SRA
)
5885 ShPartsOpc
= ARMISD::ASRL
;
5887 // Lower 32 bits of the destination/source
5888 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5889 DAG
.getConstant(0, dl
, MVT::i32
));
5890 // Upper 32 bits of the destination/source
5891 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5892 DAG
.getConstant(1, dl
, MVT::i32
));
5894 // Generate the shift operation as computed above
5895 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
5897 // The upper 32 bits come from the second return value of lsll
5898 Hi
= SDValue(Lo
.getNode(), 1);
5899 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5902 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5903 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
5906 // If we are in thumb mode, we don't have RRX.
5907 if (ST
->isThumb1Only())
5910 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5911 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5912 DAG
.getConstant(0, dl
, MVT::i32
));
5913 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5914 DAG
.getConstant(1, dl
, MVT::i32
));
5916 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5917 // captures the result into a carry flag.
5918 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
5919 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
5921 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5922 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
5924 // Merge the pieces into a single i64 value.
5925 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5928 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
5929 const ARMSubtarget
*ST
) {
5930 bool Invert
= false;
5932 unsigned Opc
= ARMCC::AL
;
5934 SDValue Op0
= Op
.getOperand(0);
5935 SDValue Op1
= Op
.getOperand(1);
5936 SDValue CC
= Op
.getOperand(2);
5937 EVT VT
= Op
.getValueType();
5938 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5943 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
5945 assert(ST
->hasMVEIntegerOps() &&
5946 "No hardware support for integer vector comparison!");
5948 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
5951 // Make sure we expand floating point setcc to scalar if we do not have
5952 // mve.fp, so that we can handle them from there.
5953 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
5959 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
5960 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
5961 // Special-case integer 64-bit equality comparisons. They aren't legal,
5962 // but they can be lowered with a few vector instructions.
5963 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
5964 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
5965 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
5966 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
5967 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
5968 DAG
.getCondCode(ISD::SETEQ
));
5969 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
5970 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
5971 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
5972 if (SetCCOpcode
== ISD::SETNE
)
5973 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
5974 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
5978 if (CmpVT
.getVectorElementType() == MVT::i64
)
5979 // 64-bit comparisons are not legal in general.
5982 if (Op1
.getValueType().isFloatingPoint()) {
5983 switch (SetCCOpcode
) {
5984 default: llvm_unreachable("Illegal FP comparison");
5987 if (ST
->hasMVEFloatOps()) {
5988 Opc
= ARMCC::NE
; break;
5990 Invert
= true; LLVM_FALLTHROUGH
;
5993 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
5995 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5997 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
5999 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6001 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6002 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6003 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6004 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6005 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6006 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6008 // Expand this to (OLT | OGT).
6009 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6010 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6011 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6012 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6013 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6015 Result
= DAG
.getNOT(dl
, Result
, VT
);
6018 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6020 // Expand this to (OLT | OGE).
6021 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6022 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6023 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6024 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6025 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6027 Result
= DAG
.getNOT(dl
, Result
, VT
);
6032 // Integer comparisons.
6033 switch (SetCCOpcode
) {
6034 default: llvm_unreachable("Illegal integer comparison");
6036 if (ST
->hasMVEIntegerOps()) {
6037 Opc
= ARMCC::NE
; break;
6039 Invert
= true; LLVM_FALLTHROUGH
;
6041 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6042 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6043 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6044 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6045 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6046 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6047 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6048 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6049 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6052 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6053 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6055 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6057 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6060 // Ignore bitconvert.
6061 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6062 AndOp
= AndOp
.getOperand(0);
6064 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6065 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6066 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6067 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6069 Result
= DAG
.getNOT(dl
, Result
, VT
);
6076 std::swap(Op0
, Op1
);
6078 // If one of the operands is a constant vector zero, attempt to fold the
6079 // comparison to a specialized compare-against-zero form.
6081 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6083 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6084 if (Opc
== ARMCC::GE
)
6086 else if (Opc
== ARMCC::GT
)
6092 if (SingleOp
.getNode()) {
6093 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6094 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6096 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6097 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6100 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6103 Result
= DAG
.getNOT(dl
, Result
, VT
);
6108 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6109 SDValue LHS
= Op
.getOperand(0);
6110 SDValue RHS
= Op
.getOperand(1);
6111 SDValue Carry
= Op
.getOperand(2);
6112 SDValue Cond
= Op
.getOperand(3);
6115 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6117 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6118 // have to invert the carry first.
6119 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6120 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6121 // This converts the boolean value carry into the carry flag.
6122 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6124 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6125 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6127 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6128 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6129 SDValue ARMcc
= DAG
.getConstant(
6130 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6131 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6132 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6133 Cmp
.getValue(1), SDValue());
6134 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6135 CCR
, Chain
.getValue(1));
6138 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6139 /// valid vector constant for a NEON or MVE instruction with a "modified
6140 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6141 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6142 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6143 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6144 VMOVModImmType type
) {
6145 unsigned OpCmode
, Imm
;
6147 // SplatBitSize is set to the smallest size that splats the vector, so a
6148 // zero vector will always have SplatBitSize == 8. However, NEON modified
6149 // immediate instructions others than VMOV do not support the 8-bit encoding
6150 // of a zero vector, and the default encoding of zero is supposed to be the
6155 switch (SplatBitSize
) {
6157 if (type
!= VMOVModImm
)
6159 // Any 1-byte value is OK. Op=0, Cmode=1110.
6160 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6163 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6167 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6168 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6169 if ((SplatBits
& ~0xff) == 0) {
6170 // Value = 0x00nn: Op=x, Cmode=100x.
6175 if ((SplatBits
& ~0xff00) == 0) {
6176 // Value = 0xnn00: Op=x, Cmode=101x.
6178 Imm
= SplatBits
>> 8;
6184 // NEON's 32-bit VMOV supports splat values where:
6185 // * only one byte is nonzero, or
6186 // * the least significant byte is 0xff and the second byte is nonzero, or
6187 // * the least significant 2 bytes are 0xff and the third is nonzero.
6188 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6189 if ((SplatBits
& ~0xff) == 0) {
6190 // Value = 0x000000nn: Op=x, Cmode=000x.
6195 if ((SplatBits
& ~0xff00) == 0) {
6196 // Value = 0x0000nn00: Op=x, Cmode=001x.
6198 Imm
= SplatBits
>> 8;
6201 if ((SplatBits
& ~0xff0000) == 0) {
6202 // Value = 0x00nn0000: Op=x, Cmode=010x.
6204 Imm
= SplatBits
>> 16;
6207 if ((SplatBits
& ~0xff000000) == 0) {
6208 // Value = 0xnn000000: Op=x, Cmode=011x.
6210 Imm
= SplatBits
>> 24;
6214 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6215 if (type
== OtherModImm
) return SDValue();
6217 if ((SplatBits
& ~0xffff) == 0 &&
6218 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6219 // Value = 0x0000nnff: Op=x, Cmode=1100.
6221 Imm
= SplatBits
>> 8;
6225 // cmode == 0b1101 is not supported for MVE VMVN
6226 if (type
== MVEVMVNModImm
)
6229 if ((SplatBits
& ~0xffffff) == 0 &&
6230 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6231 // Value = 0x00nnffff: Op=x, Cmode=1101.
6233 Imm
= SplatBits
>> 16;
6237 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6238 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6239 // VMOV.I32. A (very) minor optimization would be to replicate the value
6240 // and fall through here to test for a valid 64-bit splat. But, then the
6241 // caller would also need to check and handle the change in size.
6245 if (type
!= VMOVModImm
)
6247 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6248 uint64_t BitMask
= 0xff;
6250 unsigned ImmMask
= 1;
6252 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6253 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6256 } else if ((SplatBits
& BitMask
) != 0) {
6263 if (DAG
.getDataLayout().isBigEndian())
6264 // swap higher and lower 32 bit word
6265 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6267 // Op=1, Cmode=1110.
6269 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6274 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6277 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6278 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6281 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6282 const ARMSubtarget
*ST
) const {
6283 EVT VT
= Op
.getValueType();
6284 bool IsDouble
= (VT
== MVT::f64
);
6285 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6286 const APFloat
&FPVal
= CFP
->getValueAPF();
6288 // Prevent floating-point constants from using literal loads
6289 // when execute-only is enabled.
6290 if (ST
->genExecuteOnly()) {
6291 // If we can represent the constant as an immediate, don't lower it
6292 if (isFPImmLegal(FPVal
, VT
))
6294 // Otherwise, construct as integer, and move to float register
6295 APInt INTVal
= FPVal
.bitcastToAPInt();
6297 switch (VT
.getSimpleVT().SimpleTy
) {
6299 llvm_unreachable("Unknown floating point type!");
6302 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6303 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6304 if (!ST
->isLittle())
6306 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6309 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6310 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6314 if (!ST
->hasVFP3Base())
6317 // Use the default (constant pool) lowering for double constants when we have
6319 if (IsDouble
&& !Subtarget
->hasFP64())
6322 // Try splatting with a VMOV.f32...
6323 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6326 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6327 // We have code in place to select a valid ConstantFP already, no need to
6332 // It's a float and we are trying to use NEON operations where
6333 // possible. Lower it to a splat followed by an extract.
6335 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6336 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6338 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6339 DAG
.getConstant(0, DL
, MVT::i32
));
6342 // The rest of our options are NEON only, make sure that's allowed before
6344 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6348 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6350 // It wouldn't really be worth bothering for doubles except for one very
6351 // important value, which does happen to match: 0.0. So make sure we don't do
6353 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6356 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6357 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6358 VMovVT
, false, VMOVModImm
);
6359 if (NewVal
!= SDValue()) {
6361 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6364 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6366 // It's a float: cast and extract a vector element.
6367 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6369 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6370 DAG
.getConstant(0, DL
, MVT::i32
));
6373 // Finally, try a VMVN.i32
6374 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6376 if (NewVal
!= SDValue()) {
6378 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6381 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6383 // It's a float: cast and extract a vector element.
6384 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6386 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6387 DAG
.getConstant(0, DL
, MVT::i32
));
6393 // check if an VEXT instruction can handle the shuffle mask when the
6394 // vector sources of the shuffle are the same.
6395 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6396 unsigned NumElts
= VT
.getVectorNumElements();
6398 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6404 // If this is a VEXT shuffle, the immediate value is the index of the first
6405 // element. The other shuffle indices must be the successive elements after
6407 unsigned ExpectedElt
= Imm
;
6408 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6409 // Increment the expected index. If it wraps around, just follow it
6410 // back to index zero and keep going.
6412 if (ExpectedElt
== NumElts
)
6415 if (M
[i
] < 0) continue; // ignore UNDEF indices
6416 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6423 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6424 bool &ReverseVEXT
, unsigned &Imm
) {
6425 unsigned NumElts
= VT
.getVectorNumElements();
6426 ReverseVEXT
= false;
6428 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6434 // If this is a VEXT shuffle, the immediate value is the index of the first
6435 // element. The other shuffle indices must be the successive elements after
6437 unsigned ExpectedElt
= Imm
;
6438 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6439 // Increment the expected index. If it wraps around, it may still be
6440 // a VEXT but the source vectors must be swapped.
6442 if (ExpectedElt
== NumElts
* 2) {
6447 if (M
[i
] < 0) continue; // ignore UNDEF indices
6448 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6452 // Adjust the index value if the source operands will be swapped.
6459 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6460 /// instruction with the specified blocksize. (The order of the elements
6461 /// within each block of the vector is reversed.)
6462 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6463 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6464 "Only possible block sizes for VREV are: 16, 32, 64");
6466 unsigned EltSz
= VT
.getScalarSizeInBits();
6470 unsigned NumElts
= VT
.getVectorNumElements();
6471 unsigned BlockElts
= M
[0] + 1;
6472 // If the first shuffle index is UNDEF, be optimistic.
6474 BlockElts
= BlockSize
/ EltSz
;
6476 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6479 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6480 if (M
[i
] < 0) continue; // ignore UNDEF indices
6481 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6488 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6489 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6490 // range, then 0 is placed into the resulting vector. So pretty much any mask
6491 // of 8 elements can work here.
6492 return VT
== MVT::v8i8
&& M
.size() == 8;
6495 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6497 if (Mask
.size() == Elements
* 2)
6498 return Index
/ Elements
;
6499 return Mask
[Index
] == 0 ? 0 : 1;
6502 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6503 // checking that pairs of elements in the shuffle mask represent the same index
6504 // in each vector, incrementing the expected index by 2 at each step.
6505 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6506 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6508 // WhichResult gives the offset for each element in the mask based on which
6509 // of the two results it belongs to.
6511 // The transpose can be represented either as:
6512 // result1 = shufflevector v1, v2, result1_shuffle_mask
6513 // result2 = shufflevector v1, v2, result2_shuffle_mask
6514 // where v1/v2 and the shuffle masks have the same number of elements
6515 // (here WhichResult (see below) indicates which result is being checked)
6518 // results = shufflevector v1, v2, shuffle_mask
6519 // where both results are returned in one vector and the shuffle mask has twice
6520 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6521 // want to check the low half and high half of the shuffle mask as if it were
6523 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6524 unsigned EltSz
= VT
.getScalarSizeInBits();
6528 unsigned NumElts
= VT
.getVectorNumElements();
6529 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6532 // If the mask is twice as long as the input vector then we need to check the
6533 // upper and lower parts of the mask with a matching value for WhichResult
6534 // FIXME: A mask with only even values will be rejected in case the first
6535 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6536 // M[0] is used to determine WhichResult
6537 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6538 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6539 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6540 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6541 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6546 if (M
.size() == NumElts
*2)
6552 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6553 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6554 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6555 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6556 unsigned EltSz
= VT
.getScalarSizeInBits();
6560 unsigned NumElts
= VT
.getVectorNumElements();
6561 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6564 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6565 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6566 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6567 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6568 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6573 if (M
.size() == NumElts
*2)
6579 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6580 // that the mask elements are either all even and in steps of size 2 or all odd
6581 // and in steps of size 2.
6582 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6583 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6585 // Requires similar checks to that of isVTRNMask with
6586 // respect the how results are returned.
6587 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6588 unsigned EltSz
= VT
.getScalarSizeInBits();
6592 unsigned NumElts
= VT
.getVectorNumElements();
6593 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6596 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6597 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6598 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6599 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6604 if (M
.size() == NumElts
*2)
6607 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6608 if (VT
.is64BitVector() && EltSz
== 32)
6614 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6615 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6616 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6617 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6618 unsigned EltSz
= VT
.getScalarSizeInBits();
6622 unsigned NumElts
= VT
.getVectorNumElements();
6623 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6626 unsigned Half
= NumElts
/ 2;
6627 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6628 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6629 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6630 unsigned Idx
= WhichResult
;
6631 for (unsigned k
= 0; k
< Half
; ++k
) {
6632 int MIdx
= M
[i
+ j
+ k
];
6633 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6640 if (M
.size() == NumElts
*2)
6643 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6644 if (VT
.is64BitVector() && EltSz
== 32)
6650 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6651 // that pairs of elements of the shufflemask represent the same index in each
6652 // vector incrementing sequentially through the vectors.
6653 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6654 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6656 // Requires similar checks to that of isVTRNMask with respect the how results
6658 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6659 unsigned EltSz
= VT
.getScalarSizeInBits();
6663 unsigned NumElts
= VT
.getVectorNumElements();
6664 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6667 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6668 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6669 unsigned Idx
= WhichResult
* NumElts
/ 2;
6670 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6671 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6672 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6678 if (M
.size() == NumElts
*2)
6681 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6682 if (VT
.is64BitVector() && EltSz
== 32)
6688 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6689 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6690 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6691 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6692 unsigned EltSz
= VT
.getScalarSizeInBits();
6696 unsigned NumElts
= VT
.getVectorNumElements();
6697 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6700 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6701 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6702 unsigned Idx
= WhichResult
* NumElts
/ 2;
6703 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6704 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6705 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6711 if (M
.size() == NumElts
*2)
6714 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6715 if (VT
.is64BitVector() && EltSz
== 32)
6721 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6722 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6723 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6724 unsigned &WhichResult
,
6727 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6728 return ARMISD::VTRN
;
6729 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6730 return ARMISD::VUZP
;
6731 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6732 return ARMISD::VZIP
;
6735 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6736 return ARMISD::VTRN
;
6737 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6738 return ARMISD::VUZP
;
6739 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6740 return ARMISD::VZIP
;
6745 /// \return true if this is a reverse operation on an vector.
6746 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6747 unsigned NumElts
= VT
.getVectorNumElements();
6748 // Make sure the mask has the right size.
6749 if (NumElts
!= M
.size())
6752 // Look for <15, ..., 3, -1, 1, 0>.
6753 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6754 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6760 // If N is an integer constant that can be moved into a register in one
6761 // instruction, return an SDValue of such a constant (will become a MOV
6762 // instruction). Otherwise return null.
6763 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6764 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6766 if (!isa
<ConstantSDNode
>(N
))
6768 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6770 if (ST
->isThumb1Only()) {
6771 if (Val
<= 255 || ~Val
<= 255)
6772 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6774 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6775 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6780 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6781 const ARMSubtarget
*ST
) {
6783 EVT VT
= Op
.getValueType();
6785 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6787 unsigned NumElts
= VT
.getVectorNumElements();
6789 unsigned BitsPerBool
;
6793 } else if (NumElts
== 8) {
6796 } else if (NumElts
== 16) {
6802 // First create base with bits set where known
6803 unsigned Bits32
= 0;
6804 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6805 SDValue V
= Op
.getOperand(i
);
6806 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6808 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6810 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6813 // Add in unknown nodes
6814 // FIXME: Handle splats of the same value better.
6815 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6816 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6817 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6818 SDValue V
= Op
.getOperand(i
);
6819 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6821 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6822 DAG
.getConstant(i
, dl
, MVT::i32
));
6828 // If this is a case we can't handle, return null and let the default
6829 // expansion code take care of it.
6830 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6831 const ARMSubtarget
*ST
) const {
6832 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6834 EVT VT
= Op
.getValueType();
6836 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6837 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6839 APInt SplatBits
, SplatUndef
;
6840 unsigned SplatBitSize
;
6842 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6843 if (SplatUndef
.isAllOnesValue())
6844 return DAG
.getUNDEF(VT
);
6846 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6847 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6848 // Check if an immediate VMOV works.
6850 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6851 SplatUndef
.getZExtValue(), SplatBitSize
,
6852 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6855 if (Val
.getNode()) {
6856 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6857 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6860 // Try an immediate VMVN.
6861 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6862 Val
= isVMOVModifiedImm(
6863 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6864 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6865 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6866 if (Val
.getNode()) {
6867 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
6868 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6871 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6872 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
6873 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
6875 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
6876 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
6882 // Scan through the operands to see if only one value is used.
6884 // As an optimisation, even if more than one value is used it may be more
6885 // profitable to splat with one value then change some lanes.
6887 // Heuristically we decide to do this if the vector has a "dominant" value,
6888 // defined as splatted to more than half of the lanes.
6889 unsigned NumElts
= VT
.getVectorNumElements();
6890 bool isOnlyLowElement
= true;
6891 bool usesOnlyOneValue
= true;
6892 bool hasDominantValue
= false;
6893 bool isConstant
= true;
6895 // Map of the number of times a particular SDValue appears in the
6897 DenseMap
<SDValue
, unsigned> ValueCounts
;
6899 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6900 SDValue V
= Op
.getOperand(i
);
6904 isOnlyLowElement
= false;
6905 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
6908 ValueCounts
.insert(std::make_pair(V
, 0));
6909 unsigned &Count
= ValueCounts
[V
];
6911 // Is this value dominant? (takes up more than half of the lanes)
6912 if (++Count
> (NumElts
/ 2)) {
6913 hasDominantValue
= true;
6917 if (ValueCounts
.size() != 1)
6918 usesOnlyOneValue
= false;
6919 if (!Value
.getNode() && !ValueCounts
.empty())
6920 Value
= ValueCounts
.begin()->first
;
6922 if (ValueCounts
.empty())
6923 return DAG
.getUNDEF(VT
);
6925 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6926 // Keep going if we are hitting this case.
6927 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
6928 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
6930 unsigned EltSize
= VT
.getScalarSizeInBits();
6932 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6933 // i32 and try again.
6934 if (hasDominantValue
&& EltSize
<= 32) {
6938 // If we are VDUPing a value that comes directly from a vector, that will
6939 // cause an unnecessary move to and from a GPR, where instead we could
6940 // just use VDUPLANE. We can only do this if the lane being extracted
6941 // is at a constant index, as the VDUP from lane instructions only have
6942 // constant-index forms.
6943 ConstantSDNode
*constIndex
;
6944 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
6945 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
6946 // We need to create a new undef vector to use for the VDUPLANE if the
6947 // size of the vector from which we get the value is different than the
6948 // size of the vector that we need to create. We will insert the element
6949 // such that the register coalescer will remove unnecessary copies.
6950 if (VT
!= Value
->getOperand(0).getValueType()) {
6951 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
6952 VT
.getVectorNumElements();
6953 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6954 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
6955 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
6956 DAG
.getConstant(index
, dl
, MVT::i32
));
6958 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6959 Value
->getOperand(0), Value
->getOperand(1));
6961 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
6963 if (!usesOnlyOneValue
) {
6964 // The dominant value was splatted as 'N', but we now have to insert
6965 // all differing elements.
6966 for (unsigned I
= 0; I
< NumElts
; ++I
) {
6967 if (Op
.getOperand(I
) == Value
)
6969 SmallVector
<SDValue
, 3> Ops
;
6971 Ops
.push_back(Op
.getOperand(I
));
6972 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
6973 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
6978 if (VT
.getVectorElementType().isFloatingPoint()) {
6979 SmallVector
<SDValue
, 8> Ops
;
6980 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
6981 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
6982 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
6983 for (unsigned i
= 0; i
< NumElts
; ++i
)
6984 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
6986 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
6987 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
6988 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
6990 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
6992 if (usesOnlyOneValue
) {
6993 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
6994 if (isConstant
&& Val
.getNode())
6995 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
6999 // If all elements are constants and the case above didn't get hit, fall back
7000 // to the default expansion, which will generate a load from the constant
7005 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7007 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7008 if (shuffle
!= SDValue())
7012 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7013 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7014 // into two 64-bit vectors; we might discover a better way to lower it.
7015 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7016 EVT ExtVT
= VT
.getVectorElementType();
7017 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7019 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7020 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7021 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7022 SDValue Upper
= DAG
.getBuildVector(
7023 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7024 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7025 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7027 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7030 // Vectors with 32- or 64-bit elements can be built by directly assigning
7031 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7032 // will be legalized.
7033 if (EltSize
>= 32) {
7034 // Do the expansion with floating-point types, since that is what the VFP
7035 // registers are defined to use, and since i64 is not legal.
7036 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7037 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7038 SmallVector
<SDValue
, 8> Ops
;
7039 for (unsigned i
= 0; i
< NumElts
; ++i
)
7040 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7041 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7042 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7045 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7046 // know the default expansion would otherwise fall back on something even
7047 // worse. For a vector with one or two non-undef values, that's
7048 // scalar_to_vector for the elements followed by a shuffle (provided the
7049 // shuffle is valid for the target) and materialization element by element
7050 // on the stack followed by a load for everything else.
7051 if (!isConstant
&& !usesOnlyOneValue
) {
7052 SDValue Vec
= DAG
.getUNDEF(VT
);
7053 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7054 SDValue V
= Op
.getOperand(i
);
7057 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7058 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7066 // Gather data to see if the operation can be modelled as a
7067 // shuffle in combination with VEXTs.
7068 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7069 SelectionDAG
&DAG
) const {
7070 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7072 EVT VT
= Op
.getValueType();
7073 unsigned NumElts
= VT
.getVectorNumElements();
7075 struct ShuffleSourceInfo
{
7077 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7078 unsigned MaxElt
= 0;
7080 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7081 // be compatible with the shuffle we intend to construct. As a result
7082 // ShuffleVec will be some sliding window into the original Vec.
7085 // Code should guarantee that element i in Vec starts at element "WindowBase
7086 // + i * WindowScale in ShuffleVec".
7088 int WindowScale
= 1;
7090 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7092 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7095 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7097 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7098 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7099 SDValue V
= Op
.getOperand(i
);
7102 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7103 // A shuffle can only come from building a vector from various
7104 // elements of other vectors.
7106 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7107 // Furthermore, shuffles require a constant mask, whereas extractelts
7108 // accept variable indices.
7112 // Add this element source to the list if it's not already there.
7113 SDValue SourceVec
= V
.getOperand(0);
7114 auto Source
= llvm::find(Sources
, SourceVec
);
7115 if (Source
== Sources
.end())
7116 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7118 // Update the minimum and maximum lane number seen.
7119 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7120 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7121 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7124 // Currently only do something sane when at most two source vectors
7126 if (Sources
.size() > 2)
7129 // Find out the smallest element size among result and two sources, and use
7130 // it as element size to build the shuffle_vector.
7131 EVT SmallestEltTy
= VT
.getVectorElementType();
7132 for (auto &Source
: Sources
) {
7133 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7134 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7135 SmallestEltTy
= SrcEltTy
;
7137 unsigned ResMultiplier
=
7138 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7139 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7140 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7142 // If the source vector is too wide or too narrow, we may nevertheless be able
7143 // to construct a compatible shuffle either by concatenating it with UNDEF or
7144 // extracting a suitable range of elements.
7145 for (auto &Src
: Sources
) {
7146 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7148 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7151 // This stage of the search produces a source with the same element type as
7152 // the original, but with a total width matching the BUILD_VECTOR output.
7153 EVT EltVT
= SrcVT
.getVectorElementType();
7154 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7155 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7157 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7158 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7160 // We can pad out the smaller vector for free, so if it's part of a
7163 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7164 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7168 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7171 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7172 // Span too large for a VEXT to cope
7176 if (Src
.MinElt
>= NumSrcElts
) {
7177 // The extraction can just take the second half
7179 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7180 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7181 Src
.WindowBase
= -NumSrcElts
;
7182 } else if (Src
.MaxElt
< NumSrcElts
) {
7183 // The extraction can just take the first half
7185 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7186 DAG
.getConstant(0, dl
, MVT::i32
));
7188 // An actual VEXT is needed
7190 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7191 DAG
.getConstant(0, dl
, MVT::i32
));
7193 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7194 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7196 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7198 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7199 Src
.WindowBase
= -Src
.MinElt
;
7203 // Another possible incompatibility occurs from the vector element types. We
7204 // can fix this by bitcasting the source vectors to the same type we intend
7206 for (auto &Src
: Sources
) {
7207 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7208 if (SrcEltTy
== SmallestEltTy
)
7210 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7211 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7212 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7213 Src
.WindowBase
*= Src
.WindowScale
;
7216 // Final sanity check before we try to actually produce a shuffle.
7217 LLVM_DEBUG(for (auto Src
7219 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7221 // The stars all align, our next step is to produce the mask for the shuffle.
7222 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7223 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7224 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7225 SDValue Entry
= Op
.getOperand(i
);
7226 if (Entry
.isUndef())
7229 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7230 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7232 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7233 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7235 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7236 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7237 VT
.getScalarSizeInBits());
7238 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7240 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7241 // starting at the appropriate offset.
7242 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7244 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7245 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7246 for (int j
= 0; j
< LanesDefined
; ++j
)
7247 LaneMask
[j
] = ExtractBase
+ j
;
7250 // Final check before we try to produce nonsense...
7251 if (!isShuffleMaskLegal(Mask
, ShuffleVT
))
7254 // We can't handle more than two sources. This should have already
7255 // been checked before this point.
7256 assert(Sources
.size() <= 2 && "Too many sources!");
7258 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7259 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7260 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7262 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7263 ShuffleOps
[1], Mask
);
7264 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7267 enum ShuffleOpCodes
{
7268 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7277 OP_VUZPL
, // VUZP, left result
7278 OP_VUZPR
, // VUZP, right result
7279 OP_VZIPL
, // VZIP, left result
7280 OP_VZIPR
, // VZIP, right result
7281 OP_VTRNL
, // VTRN, left result
7282 OP_VTRNR
// VTRN, right result
7285 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7286 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7299 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7300 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7301 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7302 /// are assumed to be legal.
7303 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7304 if (VT
.getVectorNumElements() == 4 &&
7305 (VT
.is128BitVector() || VT
.is64BitVector())) {
7306 unsigned PFIndexes
[4];
7307 for (unsigned i
= 0; i
!= 4; ++i
) {
7311 PFIndexes
[i
] = M
[i
];
7314 // Compute the index in the perfect shuffle table.
7315 unsigned PFTableIndex
=
7316 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7317 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7318 unsigned Cost
= (PFEntry
>> 30);
7320 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7324 bool ReverseVEXT
, isV_UNDEF
;
7325 unsigned Imm
, WhichResult
;
7327 unsigned EltSize
= VT
.getScalarSizeInBits();
7328 if (EltSize
>= 32 ||
7329 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7330 isVREVMask(M
, VT
, 64) ||
7331 isVREVMask(M
, VT
, 32) ||
7332 isVREVMask(M
, VT
, 16))
7334 else if (Subtarget
->hasNEON() &&
7335 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7336 isVTBLMask(M
, VT
) ||
7337 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7339 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7340 isReverseMask(M
, VT
))
7346 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7347 /// the specified operations to build the shuffle.
7348 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7349 SDValue RHS
, SelectionDAG
&DAG
,
7351 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7352 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7353 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7355 if (OpNum
== OP_COPY
) {
7356 if (LHSID
== (1*9+2)*9+3) return LHS
;
7357 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7361 SDValue OpLHS
, OpRHS
;
7362 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7363 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7364 EVT VT
= OpLHS
.getValueType();
7367 default: llvm_unreachable("Unknown shuffle opcode!");
7369 // VREV divides the vector in half and swaps within the half.
7370 if (VT
.getVectorElementType() == MVT::i32
||
7371 VT
.getVectorElementType() == MVT::f32
)
7372 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7373 // vrev <4 x i16> -> VREV32
7374 if (VT
.getVectorElementType() == MVT::i16
)
7375 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7376 // vrev <4 x i8> -> VREV16
7377 assert(VT
.getVectorElementType() == MVT::i8
);
7378 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7383 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7384 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7388 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7390 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7393 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7394 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7397 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7398 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7401 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7402 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7406 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7407 ArrayRef
<int> ShuffleMask
,
7408 SelectionDAG
&DAG
) {
7409 // Check to see if we can use the VTBL instruction.
7410 SDValue V1
= Op
.getOperand(0);
7411 SDValue V2
= Op
.getOperand(1);
7414 SmallVector
<SDValue
, 8> VTBLMask
;
7415 for (ArrayRef
<int>::iterator
7416 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7417 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7419 if (V2
.getNode()->isUndef())
7420 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7421 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7423 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7424 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7427 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7428 SelectionDAG
&DAG
) {
7430 SDValue OpLHS
= Op
.getOperand(0);
7431 EVT VT
= OpLHS
.getValueType();
7433 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7434 "Expect an v8i16/v16i8 type");
7435 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7436 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7437 // extract the first 8 bytes into the top double word and the last 8 bytes
7438 // into the bottom double word. The v8i16 case is similar.
7439 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7440 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7441 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7444 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7445 switch (VT
.getSimpleVT().SimpleTy
) {
7453 llvm_unreachable("Unexpected vector predicate type");
7457 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7458 SelectionDAG
&DAG
) {
7459 // Converting from boolean predicates to integers involves creating a vector
7460 // of all ones or all zeroes and selecting the lanes based upon the real
7463 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7464 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7467 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7468 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7470 // Get full vector type from predicate type
7471 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7474 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7475 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7476 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7477 // since we know in hardware the sizes are really the same.
7478 if (VT
!= MVT::v16i1
)
7479 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7483 // Select either all ones or zeroes depending upon the real predicate bits.
7484 SDValue PredAsVector
=
7485 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7487 // Recast our new predicate-as-integer v16i8 vector into something
7488 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7489 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7492 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7493 const ARMSubtarget
*ST
) {
7494 EVT VT
= Op
.getValueType();
7495 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7496 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7498 assert(ST
->hasMVEIntegerOps() &&
7499 "No support for vector shuffle of boolean predicates");
7501 SDValue V1
= Op
.getOperand(0);
7503 if (isReverseMask(ShuffleMask
, VT
)) {
7504 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7505 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7506 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7507 DAG
.getConstant(16, dl
, MVT::i32
));
7508 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7511 // Until we can come up with optimised cases for every single vector
7512 // shuffle in existence we have chosen the least painful strategy. This is
7513 // to essentially promote the boolean predicate to a 8-bit integer, where
7514 // each predicate represents a byte. Then we fall back on a normal integer
7515 // vector shuffle and convert the result back into a predicate vector. In
7516 // many cases the generated code might be even better than scalar code
7517 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7518 // fields in a register into 8 other arbitrary 2-bit fields!
7519 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7520 EVT NewVT
= PredAsVector
.getValueType();
7523 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7524 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7526 // Now return the result of comparing the shuffled vector with zero,
7527 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7528 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7529 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7532 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7533 const ARMSubtarget
*ST
) {
7534 SDValue V1
= Op
.getOperand(0);
7535 SDValue V2
= Op
.getOperand(1);
7537 EVT VT
= Op
.getValueType();
7538 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7539 unsigned EltSize
= VT
.getScalarSizeInBits();
7541 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7542 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7544 // Convert shuffles that are directly supported on NEON to target-specific
7545 // DAG nodes, instead of keeping them as shuffles and matching them again
7546 // during code selection. This is more efficient and avoids the possibility
7547 // of inconsistencies between legalization and selection.
7548 // FIXME: floating-point vectors should be canonicalized to integer vectors
7549 // of the same time so that they get CSEd properly.
7550 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7552 if (EltSize
<= 32) {
7553 if (SVN
->isSplat()) {
7554 int Lane
= SVN
->getSplatIndex();
7555 // If this is undef splat, generate it via "just" vdup, if possible.
7556 if (Lane
== -1) Lane
= 0;
7558 // Test if V1 is a SCALAR_TO_VECTOR.
7559 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7560 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7562 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7563 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7565 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7566 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7567 bool IsScalarToVector
= true;
7568 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7569 if (!V1
.getOperand(i
).isUndef()) {
7570 IsScalarToVector
= false;
7573 if (IsScalarToVector
)
7574 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7576 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7577 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7580 bool ReverseVEXT
= false;
7582 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7585 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7586 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7589 if (isVREVMask(ShuffleMask
, VT
, 64))
7590 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7591 if (isVREVMask(ShuffleMask
, VT
, 32))
7592 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7593 if (isVREVMask(ShuffleMask
, VT
, 16))
7594 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7596 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7597 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7598 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7601 // Check for Neon shuffles that modify both input vectors in place.
7602 // If both results are used, i.e., if there are two shuffles with the same
7603 // source operands and with masks corresponding to both results of one of
7604 // these operations, DAG memoization will ensure that a single node is
7605 // used for both shuffles.
7606 unsigned WhichResult
= 0;
7607 bool isV_UNDEF
= false;
7608 if (ST
->hasNEON()) {
7609 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7610 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7613 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7614 .getValue(WhichResult
);
7618 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7619 // shuffles that produce a result larger than their operands with:
7620 // shuffle(concat(v1, undef), concat(v2, undef))
7622 // shuffle(concat(v1, v2), undef)
7623 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7625 // This is useful in the general case, but there are special cases where
7626 // native shuffles produce larger results: the two-result ops.
7628 // Look through the concat when lowering them:
7629 // shuffle(concat(v1, v2), undef)
7631 // concat(VZIP(v1, v2):0, :1)
7633 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7634 SDValue SubV1
= V1
->getOperand(0);
7635 SDValue SubV2
= V1
->getOperand(1);
7636 EVT SubVT
= SubV1
.getValueType();
7638 // We expect these to have been canonicalized to -1.
7639 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7640 return i
< (int)VT
.getVectorNumElements();
7641 }) && "Unexpected shuffle index into UNDEF operand!");
7643 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7644 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7647 assert((WhichResult
== 0) &&
7648 "In-place shuffle of concat can only have one result!");
7649 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7651 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7657 // If the shuffle is not directly supported and it has 4 elements, use
7658 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7659 unsigned NumElts
= VT
.getVectorNumElements();
7661 unsigned PFIndexes
[4];
7662 for (unsigned i
= 0; i
!= 4; ++i
) {
7663 if (ShuffleMask
[i
] < 0)
7666 PFIndexes
[i
] = ShuffleMask
[i
];
7669 // Compute the index in the perfect shuffle table.
7670 unsigned PFTableIndex
=
7671 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7672 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7673 unsigned Cost
= (PFEntry
>> 30);
7677 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7678 else if (isLegalMVEShuffleOp(PFEntry
)) {
7679 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7680 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7681 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7682 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7683 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7684 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7689 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7690 if (EltSize
>= 32) {
7691 // Do the expansion with floating-point types, since that is what the VFP
7692 // registers are defined to use, and since i64 is not legal.
7693 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7694 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7695 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7696 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7697 SmallVector
<SDValue
, 8> Ops
;
7698 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7699 if (ShuffleMask
[i
] < 0)
7700 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7702 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7703 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7704 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7707 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7708 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7711 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7712 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7714 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7715 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7721 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7722 const ARMSubtarget
*ST
) {
7723 EVT VecVT
= Op
.getOperand(0).getValueType();
7726 assert(ST
->hasMVEIntegerOps() &&
7727 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7730 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7731 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7732 unsigned LaneWidth
=
7733 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7734 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7735 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7736 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7737 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7738 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7739 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7742 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7743 SelectionDAG
&DAG
) const {
7744 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7745 SDValue Lane
= Op
.getOperand(2);
7746 if (!isa
<ConstantSDNode
>(Lane
))
7749 SDValue Elt
= Op
.getOperand(1);
7750 EVT EltVT
= Elt
.getValueType();
7752 if (Subtarget
->hasMVEIntegerOps() &&
7753 Op
.getValueType().getScalarSizeInBits() == 1)
7754 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7756 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7757 TargetLowering::TypePromoteFloat
) {
7758 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7759 // but the type system will try to do that if we don't intervene.
7760 // Reinterpret any such vector-element insertion as one with the
7761 // corresponding integer types.
7765 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7766 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7767 TargetLowering::TypePromoteFloat
);
7769 SDValue VecIn
= Op
.getOperand(0);
7770 EVT VecVT
= VecIn
.getValueType();
7771 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7772 VecVT
.getVectorNumElements());
7774 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7775 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7776 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7777 IVecIn
, IElt
, Lane
);
7778 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7784 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7785 const ARMSubtarget
*ST
) {
7786 EVT VecVT
= Op
.getOperand(0).getValueType();
7789 assert(ST
->hasMVEIntegerOps() &&
7790 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7793 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7794 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7795 unsigned LaneWidth
=
7796 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7797 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7798 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7802 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7803 const ARMSubtarget
*ST
) {
7804 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7805 SDValue Lane
= Op
.getOperand(1);
7806 if (!isa
<ConstantSDNode
>(Lane
))
7809 SDValue Vec
= Op
.getOperand(0);
7810 EVT VT
= Vec
.getValueType();
7812 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7813 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7815 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7817 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7823 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7824 const ARMSubtarget
*ST
) {
7825 SDValue V1
= Op
.getOperand(0);
7826 SDValue V2
= Op
.getOperand(1);
7828 EVT VT
= Op
.getValueType();
7829 EVT Op1VT
= V1
.getValueType();
7830 EVT Op2VT
= V2
.getValueType();
7831 unsigned NumElts
= VT
.getVectorNumElements();
7833 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7834 assert(VT
.getScalarSizeInBits() == 1 &&
7835 "Unexpected custom CONCAT_VECTORS lowering");
7836 assert(ST
->hasMVEIntegerOps() &&
7837 "CONCAT_VECTORS lowering only supported for MVE");
7839 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7840 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7842 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7843 // promoted to v8i16, etc.
7845 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7847 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7848 // to be the right size for the destination. For example, if Op1 is v4i1 then
7849 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7850 // which when promoted is v8i16. That means each i32 element from Op1 needs
7851 // truncating to i16 and inserting in the result.
7852 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7853 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7854 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7855 EVT NewVT
= NewV
.getValueType();
7856 EVT ConcatVT
= ConVec
.getValueType();
7857 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7858 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7859 DAG
.getIntPtrConstant(i
, dl
));
7860 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7861 DAG
.getConstant(j
, dl
, MVT::i32
));
7866 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7867 ConVec
= ExractInto(NewV2
, ConVec
, j
);
7869 // Now return the result of comparing the subvector with zero,
7870 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7871 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
7872 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7875 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
7876 const ARMSubtarget
*ST
) {
7877 EVT VT
= Op
->getValueType(0);
7878 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7879 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
7881 // The only time a CONCAT_VECTORS operation can have legal types is when
7882 // two 64-bit vectors are concatenated to a 128-bit vector.
7883 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
7884 "unexpected CONCAT_VECTORS");
7886 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
7887 SDValue Op0
= Op
.getOperand(0);
7888 SDValue Op1
= Op
.getOperand(1);
7890 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7891 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
7892 DAG
.getIntPtrConstant(0, dl
));
7894 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7895 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
7896 DAG
.getIntPtrConstant(1, dl
));
7897 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
7900 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
7901 const ARMSubtarget
*ST
) {
7902 SDValue V1
= Op
.getOperand(0);
7903 SDValue V2
= Op
.getOperand(1);
7905 EVT VT
= Op
.getValueType();
7906 EVT Op1VT
= V1
.getValueType();
7907 unsigned NumElts
= VT
.getVectorNumElements();
7908 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
7910 assert(VT
.getScalarSizeInBits() == 1 &&
7911 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7912 assert(ST
->hasMVEIntegerOps() &&
7913 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7915 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7917 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7918 // promoted to v8i16, etc.
7920 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7922 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
7923 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
7924 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
7925 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
7926 DAG
.getIntPtrConstant(i
, dl
));
7927 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
7928 DAG
.getConstant(j
, dl
, MVT::i32
));
7931 // Now return the result of comparing the subvector with zero,
7932 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7933 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
7934 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7937 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7938 /// element has been zero/sign-extended, depending on the isSigned parameter,
7939 /// from an integer type half its size.
7940 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
7942 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7943 EVT VT
= N
->getValueType(0);
7944 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
7945 SDNode
*BVN
= N
->getOperand(0).getNode();
7946 if (BVN
->getValueType(0) != MVT::v4i32
||
7947 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
7949 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
7950 unsigned HiElt
= 1 - LoElt
;
7951 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
7952 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
7953 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
7954 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
7955 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
7958 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
7959 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
7962 if (Hi0
->isNullValue() && Hi1
->isNullValue())
7968 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
7971 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
7972 SDNode
*Elt
= N
->getOperand(i
).getNode();
7973 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
7974 unsigned EltSize
= VT
.getScalarSizeInBits();
7975 unsigned HalfSize
= EltSize
/ 2;
7977 if (!isIntN(HalfSize
, C
->getSExtValue()))
7980 if (!isUIntN(HalfSize
, C
->getZExtValue()))
7991 /// isSignExtended - Check if a node is a vector value that is sign-extended
7992 /// or a constant BUILD_VECTOR with sign-extended elements.
7993 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7994 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
7996 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8001 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8002 /// or a constant BUILD_VECTOR with zero-extended elements.
8003 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8004 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8006 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8011 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8012 if (OrigVT
.getSizeInBits() >= 64)
8015 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8017 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8018 switch (OrigSimpleTy
) {
8019 default: llvm_unreachable("Unexpected Vector Type");
8028 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8029 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8030 /// We insert the required extension here to get the vector to fill a D register.
8031 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8034 unsigned ExtOpcode
) {
8035 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8036 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8037 // 64-bits we need to insert a new extension so that it will be 64-bits.
8038 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8039 if (OrigTy
.getSizeInBits() >= 64)
8042 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8043 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8045 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8048 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8049 /// does not do any sign/zero extension. If the original vector is less
8050 /// than 64 bits, an appropriate extension will be added after the load to
8051 /// reach a total size of 64 bits. We have to add the extension separately
8052 /// because ARM does not have a sign/zero extending load for vectors.
8053 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8054 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8056 // The load already has the right type.
8057 if (ExtendedTy
== LD
->getMemoryVT())
8058 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8059 LD
->getBasePtr(), LD
->getPointerInfo(),
8060 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8062 // We need to create a zextload/sextload. We cannot just create a load
8063 // followed by a zext/zext node because LowerMUL is also run during normal
8064 // operation legalization where we can't create illegal types.
8065 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8066 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8067 LD
->getMemoryVT(), LD
->getAlignment(),
8068 LD
->getMemOperand()->getFlags());
8071 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8072 /// extending load, or BUILD_VECTOR with extended elements, return the
8073 /// unextended value. The unextended vector should be 64 bits so that it can
8074 /// be used as an operand to a VMULL instruction. If the original vector size
8075 /// before extension is less than 64 bits we add a an extension to resize
8076 /// the vector to 64 bits.
8077 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8078 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8079 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8080 N
->getOperand(0)->getValueType(0),
8084 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8085 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8086 "Expected extending load");
8088 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8089 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8090 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8092 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8093 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8098 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8099 // have been legalized as a BITCAST from v4i32.
8100 if (N
->getOpcode() == ISD::BITCAST
) {
8101 SDNode
*BVN
= N
->getOperand(0).getNode();
8102 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8103 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8104 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8105 return DAG
.getBuildVector(
8106 MVT::v2i32
, SDLoc(N
),
8107 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8109 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8110 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8111 EVT VT
= N
->getValueType(0);
8112 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8113 unsigned NumElts
= VT
.getVectorNumElements();
8114 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8115 SmallVector
<SDValue
, 8> Ops
;
8117 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8118 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8119 const APInt
&CInt
= C
->getAPIntValue();
8120 // Element types smaller than 32 bits are not legal, so use i32 elements.
8121 // The values are implicitly truncated so sext vs. zext doesn't matter.
8122 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8124 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8127 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8128 unsigned Opcode
= N
->getOpcode();
8129 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8130 SDNode
*N0
= N
->getOperand(0).getNode();
8131 SDNode
*N1
= N
->getOperand(1).getNode();
8132 return N0
->hasOneUse() && N1
->hasOneUse() &&
8133 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8138 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8139 unsigned Opcode
= N
->getOpcode();
8140 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8141 SDNode
*N0
= N
->getOperand(0).getNode();
8142 SDNode
*N1
= N
->getOperand(1).getNode();
8143 return N0
->hasOneUse() && N1
->hasOneUse() &&
8144 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8149 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8150 // Multiplications are only custom-lowered for 128-bit vectors so that
8151 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8152 EVT VT
= Op
.getValueType();
8153 assert(VT
.is128BitVector() && VT
.isInteger() &&
8154 "unexpected type for custom-lowering ISD::MUL");
8155 SDNode
*N0
= Op
.getOperand(0).getNode();
8156 SDNode
*N1
= Op
.getOperand(1).getNode();
8157 unsigned NewOpc
= 0;
8159 bool isN0SExt
= isSignExtended(N0
, DAG
);
8160 bool isN1SExt
= isSignExtended(N1
, DAG
);
8161 if (isN0SExt
&& isN1SExt
)
8162 NewOpc
= ARMISD::VMULLs
;
8164 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8165 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8166 if (isN0ZExt
&& isN1ZExt
)
8167 NewOpc
= ARMISD::VMULLu
;
8168 else if (isN1SExt
|| isN1ZExt
) {
8169 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8170 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8171 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8172 NewOpc
= ARMISD::VMULLs
;
8174 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8175 NewOpc
= ARMISD::VMULLu
;
8177 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8179 NewOpc
= ARMISD::VMULLu
;
8185 if (VT
== MVT::v2i64
)
8186 // Fall through to expand this. It is not legal.
8189 // Other vector multiplications are legal.
8194 // Legalize to a VMULL instruction.
8197 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8199 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8200 assert(Op0
.getValueType().is64BitVector() &&
8201 Op1
.getValueType().is64BitVector() &&
8202 "unexpected types for extended operands to VMULL");
8203 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8206 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8207 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8214 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8215 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8216 EVT Op1VT
= Op1
.getValueType();
8217 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8218 DAG
.getNode(NewOpc
, DL
, VT
,
8219 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8220 DAG
.getNode(NewOpc
, DL
, VT
,
8221 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8224 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8225 SelectionDAG
&DAG
) {
8226 // TODO: Should this propagate fast-math-flags?
8229 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8230 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8231 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8232 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8233 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8234 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8235 // Get reciprocal estimate.
8236 // float4 recip = vrecpeq_f32(yf);
8237 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8238 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8240 // Because char has a smaller range than uchar, we can actually get away
8241 // without any newton steps. This requires that we use a weird bias
8242 // of 0xb000, however (again, this has been exhaustively tested).
8243 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8244 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8245 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8246 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8247 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8248 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8249 // Convert back to short.
8250 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8251 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8255 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8256 SelectionDAG
&DAG
) {
8257 // TODO: Should this propagate fast-math-flags?
8260 // Convert to float.
8261 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8262 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8263 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8264 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8265 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8266 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8268 // Use reciprocal estimate and one refinement step.
8269 // float4 recip = vrecpeq_f32(yf);
8270 // recip *= vrecpsq_f32(yf, recip);
8271 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8272 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8274 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8275 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8277 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8278 // Because short has a smaller range than ushort, we can actually get away
8279 // with only a single newton step. This requires that we use a weird bias
8280 // of 89, however (again, this has been exhaustively tested).
8281 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8282 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8283 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8284 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8285 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8286 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8287 // Convert back to integer and return.
8288 // return vmovn_s32(vcvt_s32_f32(result));
8289 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8290 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8294 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8295 const ARMSubtarget
*ST
) {
8296 EVT VT
= Op
.getValueType();
8297 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8298 "unexpected type for custom-lowering ISD::SDIV");
8301 SDValue N0
= Op
.getOperand(0);
8302 SDValue N1
= Op
.getOperand(1);
8305 if (VT
== MVT::v8i8
) {
8306 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8307 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8309 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8310 DAG
.getIntPtrConstant(4, dl
));
8311 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8312 DAG
.getIntPtrConstant(4, dl
));
8313 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8314 DAG
.getIntPtrConstant(0, dl
));
8315 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8316 DAG
.getIntPtrConstant(0, dl
));
8318 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8319 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8321 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8322 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8324 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8327 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8330 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8331 const ARMSubtarget
*ST
) {
8332 // TODO: Should this propagate fast-math-flags?
8333 EVT VT
= Op
.getValueType();
8334 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8335 "unexpected type for custom-lowering ISD::UDIV");
8338 SDValue N0
= Op
.getOperand(0);
8339 SDValue N1
= Op
.getOperand(1);
8342 if (VT
== MVT::v8i8
) {
8343 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8344 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8346 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8347 DAG
.getIntPtrConstant(4, dl
));
8348 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8349 DAG
.getIntPtrConstant(4, dl
));
8350 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8351 DAG
.getIntPtrConstant(0, dl
));
8352 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8353 DAG
.getIntPtrConstant(0, dl
));
8355 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8356 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8358 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8359 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8361 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8362 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8368 // v4i16 sdiv ... Convert to float.
8369 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8370 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8371 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8372 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8373 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8374 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8376 // Use reciprocal estimate and two refinement steps.
8377 // float4 recip = vrecpeq_f32(yf);
8378 // recip *= vrecpsq_f32(yf, recip);
8379 // recip *= vrecpsq_f32(yf, recip);
8380 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8381 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8383 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8384 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8386 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8387 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8388 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8390 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8391 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8392 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8393 // and that it will never cause us to return an answer too large).
8394 // float4 result = as_float4(as_int4(xf*recip) + 2);
8395 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8396 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8397 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8398 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8399 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8400 // Convert back to integer and return.
8401 // return vmovn_u32(vcvt_s32_f32(result));
8402 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8403 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8407 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8408 SDNode
*N
= Op
.getNode();
8409 EVT VT
= N
->getValueType(0);
8410 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8412 SDValue Carry
= Op
.getOperand(2);
8417 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8418 // This converts the boolean value carry into the carry flag.
8419 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8421 // Do the addition proper using the carry flag we wanted.
8422 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8423 Op
.getOperand(1), Carry
);
8425 // Now convert the carry flag into a boolean value.
8426 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8428 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8429 // have to invert the carry first.
8430 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8431 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8432 // This converts the boolean value carry into the carry flag.
8433 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8435 // Do the subtraction proper using the carry flag we wanted.
8436 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8437 Op
.getOperand(1), Carry
);
8439 // Now convert the carry flag into a boolean value.
8440 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8441 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8442 // by ISD::SUBCARRY, so compute 1 - C.
8443 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8444 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8447 // Return both values.
8448 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8451 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8452 assert(Subtarget
->isTargetDarwin());
8454 // For iOS, we want to call an alternative entry point: __sincos_stret,
8455 // return values are passed via sret.
8457 SDValue Arg
= Op
.getOperand(0);
8458 EVT ArgVT
= Arg
.getValueType();
8459 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8460 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8462 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8463 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8465 // Pair of floats / doubles used to pass the result.
8466 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8467 auto &DL
= DAG
.getDataLayout();
8470 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8472 if (ShouldUseSRet
) {
8473 // Create stack object for sret.
8474 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8475 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8476 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8477 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8481 Entry
.Ty
= RetTy
->getPointerTo();
8482 Entry
.IsSExt
= false;
8483 Entry
.IsZExt
= false;
8484 Entry
.IsSRet
= true;
8485 Args
.push_back(Entry
);
8486 RetTy
= Type::getVoidTy(*DAG
.getContext());
8492 Entry
.IsSExt
= false;
8493 Entry
.IsZExt
= false;
8494 Args
.push_back(Entry
);
8497 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8498 const char *LibcallName
= getLibcallName(LC
);
8499 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8500 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8502 TargetLowering::CallLoweringInfo
CLI(DAG
);
8504 .setChain(DAG
.getEntryNode())
8505 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8506 .setDiscardResult(ShouldUseSRet
);
8507 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8510 return CallResult
.first
;
8513 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8515 // Address of cos field.
8516 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8517 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8519 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8521 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8522 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8523 LoadSin
.getValue(0), LoadCos
.getValue(0));
8526 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8528 SDValue
&Chain
) const {
8529 EVT VT
= Op
.getValueType();
8530 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8531 "unexpected type for custom lowering DIV");
8534 const auto &DL
= DAG
.getDataLayout();
8535 const auto &TLI
= DAG
.getTargetLoweringInfo();
8537 const char *Name
= nullptr;
8539 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8541 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8543 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8545 ARMTargetLowering::ArgListTy Args
;
8547 for (auto AI
: {1, 0}) {
8549 Arg
.Node
= Op
.getOperand(AI
);
8550 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8551 Args
.push_back(Arg
);
8554 CallLoweringInfo
CLI(DAG
);
8557 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8558 ES
, std::move(Args
));
8560 return LowerCallTo(CLI
).first
;
8563 // This is a code size optimisation: return the original SDIV node to
8564 // DAGCombiner when we don't want to expand SDIV into a sequence of
8565 // instructions, and an empty node otherwise which will cause the
8566 // SDIV to be expanded in DAGCombine.
8568 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8570 SmallVectorImpl
<SDNode
*> &Created
) const {
8571 // TODO: Support SREM
8572 if (N
->getOpcode() != ISD::SDIV
)
8575 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8576 const bool MinSize
= ST
.hasMinSize();
8577 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8578 : ST
.hasDivideInARMMode();
8580 // Don't touch vector types; rewriting this may lead to scalarizing
8582 if (N
->getOperand(0).getValueType().isVector())
8585 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8586 // hwdiv support for this to be really profitable.
8587 if (!(MinSize
&& HasDivide
))
8590 // ARM mode is a bit simpler than Thumb: we can handle large power
8591 // of 2 immediates with 1 mov instruction; no further checks required,
8592 // just return the sdiv node.
8594 return SDValue(N
, 0);
8596 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8597 // and thus lose the code size benefits of a MOVS that requires only 2.
8598 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8599 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8600 if (Divisor
.sgt(128))
8603 return SDValue(N
, 0);
8606 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8607 bool Signed
) const {
8608 assert(Op
.getValueType() == MVT::i32
&&
8609 "unexpected type for custom lowering DIV");
8612 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8613 DAG
.getEntryNode(), Op
.getOperand(1));
8615 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8618 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8620 SDValue Op
= N
->getOperand(1);
8621 if (N
->getValueType(0) == MVT::i32
)
8622 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8623 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8624 DAG
.getConstant(0, DL
, MVT::i32
));
8625 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8626 DAG
.getConstant(1, DL
, MVT::i32
));
8627 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8628 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8631 void ARMTargetLowering::ExpandDIV_Windows(
8632 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8633 SmallVectorImpl
<SDValue
> &Results
) const {
8634 const auto &DL
= DAG
.getDataLayout();
8635 const auto &TLI
= DAG
.getTargetLoweringInfo();
8637 assert(Op
.getValueType() == MVT::i64
&&
8638 "unexpected type for custom lowering DIV");
8641 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8643 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8645 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8646 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8647 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8648 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8650 Results
.push_back(Lower
);
8651 Results
.push_back(Upper
);
8654 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8655 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8656 // Acquire/Release load/store is not legal for targets without a dmb or
8657 // equivalent available.
8660 // Monotonic load/store is legal for all targets.
8664 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8665 SmallVectorImpl
<SDValue
> &Results
,
8667 const ARMSubtarget
*Subtarget
) {
8669 // Under Power Management extensions, the cycle-count is:
8670 // mrc p15, #0, <Rt>, c9, c13, #0
8671 SDValue Ops
[] = { N
->getOperand(0), // Chain
8672 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8673 DAG
.getConstant(15, DL
, MVT::i32
),
8674 DAG
.getConstant(0, DL
, MVT::i32
),
8675 DAG
.getConstant(9, DL
, MVT::i32
),
8676 DAG
.getConstant(13, DL
, MVT::i32
),
8677 DAG
.getConstant(0, DL
, MVT::i32
)
8680 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8681 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8682 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8683 DAG
.getConstant(0, DL
, MVT::i32
)));
8684 Results
.push_back(Cycles32
.getValue(1));
8687 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8688 SDLoc
dl(V
.getNode());
8689 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8690 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8691 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8693 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8695 std::swap (VLo
, VHi
);
8697 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8698 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8699 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8700 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8702 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8705 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8706 SmallVectorImpl
<SDValue
> & Results
,
8707 SelectionDAG
&DAG
) {
8708 assert(N
->getValueType(0) == MVT::i64
&&
8709 "AtomicCmpSwap on types less than 64 should be legal");
8710 SDValue Ops
[] = {N
->getOperand(1),
8711 createGPRPairNode(DAG
, N
->getOperand(2)),
8712 createGPRPairNode(DAG
, N
->getOperand(3)),
8714 SDNode
*CmpSwap
= DAG
.getMachineNode(
8715 ARM::CMP_SWAP_64
, SDLoc(N
),
8716 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8718 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8719 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8721 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8724 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8725 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8727 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8728 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8729 Results
.push_back(SDValue(CmpSwap
, 2));
8732 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8733 SelectionDAG
&DAG
) {
8734 const auto &TLI
= DAG
.getTargetLoweringInfo();
8736 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8737 "Custom lowering is MSVCRT specific!");
8740 SDValue Val
= Op
.getOperand(0);
8741 MVT Ty
= Val
->getSimpleValueType(0);
8742 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8743 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8744 TLI
.getPointerTy(DAG
.getDataLayout()));
8746 TargetLowering::ArgListTy Args
;
8747 TargetLowering::ArgListEntry Entry
;
8750 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8751 Entry
.IsZExt
= true;
8752 Args
.push_back(Entry
);
8754 Entry
.Node
= Exponent
;
8755 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8756 Entry
.IsZExt
= true;
8757 Args
.push_back(Entry
);
8759 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8761 // In the in-chain to the call is the entry node If we are emitting a
8762 // tailcall, the chain will be mutated if the node has a non-entry input
8764 SDValue InChain
= DAG
.getEntryNode();
8765 SDValue TCChain
= InChain
;
8767 const Function
&F
= DAG
.getMachineFunction().getFunction();
8768 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8769 F
.getReturnType() == LCRTy
;
8773 TargetLowering::CallLoweringInfo
CLI(DAG
);
8776 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8778 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8780 // Return the chain (the DAG root) if it is a tail call
8781 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8784 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8785 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8786 switch (Op
.getOpcode()) {
8787 default: llvm_unreachable("Don't know how to custom lower this!");
8788 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8789 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8790 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8791 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8792 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8793 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8794 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8795 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8796 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8797 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8798 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8799 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8800 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8801 case ISD::SINT_TO_FP
:
8802 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8803 case ISD::FP_TO_SINT
:
8804 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8805 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8806 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8807 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8808 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8809 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8810 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8811 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8813 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8816 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8817 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8818 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8819 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8820 case ISD::SRL_PARTS
:
8821 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8823 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8824 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8825 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8826 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8827 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8828 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8829 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8830 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8831 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8832 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8833 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8834 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8835 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8837 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8838 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8839 return LowerSDIV(Op
, DAG
, Subtarget
);
8841 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8842 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8843 return LowerUDIV(Op
, DAG
, Subtarget
);
8845 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8848 return LowerSignedALUO(Op
, DAG
);
8851 return LowerUnsignedALUO(Op
, DAG
);
8852 case ISD::ATOMIC_LOAD
:
8853 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8854 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8856 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8857 case ISD::DYNAMIC_STACKALLOC
:
8858 if (Subtarget
->isTargetWindows())
8859 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8860 llvm_unreachable("Don't know how to custom lower this!");
8861 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8862 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8863 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8864 case ARMISD::WIN__DBZCHK
: return SDValue();
8868 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
8869 SelectionDAG
&DAG
) {
8870 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
8872 if (IntNo
== Intrinsic::arm_smlald
)
8873 Opc
= ARMISD::SMLALD
;
8874 else if (IntNo
== Intrinsic::arm_smlaldx
)
8875 Opc
= ARMISD::SMLALDX
;
8876 else if (IntNo
== Intrinsic::arm_smlsld
)
8877 Opc
= ARMISD::SMLSLD
;
8878 else if (IntNo
== Intrinsic::arm_smlsldx
)
8879 Opc
= ARMISD::SMLSLDX
;
8884 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8886 DAG
.getConstant(0, dl
, MVT::i32
));
8887 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8889 DAG
.getConstant(1, dl
, MVT::i32
));
8891 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
8892 DAG
.getVTList(MVT::i32
, MVT::i32
),
8893 N
->getOperand(1), N
->getOperand(2),
8895 Results
.push_back(LongMul
.getValue(0));
8896 Results
.push_back(LongMul
.getValue(1));
8899 /// ReplaceNodeResults - Replace the results of node with an illegal result
8900 /// type with new values built out of custom code.
8901 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
8902 SmallVectorImpl
<SDValue
> &Results
,
8903 SelectionDAG
&DAG
) const {
8905 switch (N
->getOpcode()) {
8907 llvm_unreachable("Don't know how to custom expand this!");
8908 case ISD::READ_REGISTER
:
8909 ExpandREAD_REGISTER(N
, Results
, DAG
);
8912 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
8917 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
8921 Res
= LowerREM(N
, DAG
);
8925 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
8926 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
8927 Results
.push_back(Res
.getValue(0));
8928 Results
.push_back(Res
.getValue(1));
8930 case ISD::READCYCLECOUNTER
:
8931 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
8935 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
8936 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
8938 case ISD::ATOMIC_CMP_SWAP
:
8939 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
8941 case ISD::INTRINSIC_WO_CHAIN
:
8942 return ReplaceLongIntrinsic(N
, Results
, DAG
);
8944 lowerABS(N
, Results
, DAG
);
8949 Results
.push_back(Res
);
8952 //===----------------------------------------------------------------------===//
8953 // ARM Scheduler Hooks
8954 //===----------------------------------------------------------------------===//
8956 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8957 /// registers the function context.
8958 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
8959 MachineBasicBlock
*MBB
,
8960 MachineBasicBlock
*DispatchBB
,
8962 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
8963 "ROPI/RWPI not currently supported with SjLj");
8964 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
8965 DebugLoc dl
= MI
.getDebugLoc();
8966 MachineFunction
*MF
= MBB
->getParent();
8967 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
8968 MachineConstantPool
*MCP
= MF
->getConstantPool();
8969 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
8970 const Function
&F
= MF
->getFunction();
8972 bool isThumb
= Subtarget
->isThumb();
8973 bool isThumb2
= Subtarget
->isThumb2();
8975 unsigned PCLabelId
= AFI
->createPICLabelUId();
8976 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
8977 ARMConstantPoolValue
*CPV
=
8978 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
8979 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
8981 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
8982 : &ARM::GPRRegClass
;
8984 // Grab constant pool and fixed stack memory operands.
8985 MachineMemOperand
*CPMMO
=
8986 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
8987 MachineMemOperand::MOLoad
, 4, 4);
8989 MachineMemOperand
*FIMMOSt
=
8990 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
8991 MachineMemOperand::MOStore
, 4, 4);
8993 // Load the address of the dispatch MBB into the jump buffer.
8995 // Incoming value: jbuf
8996 // ldr.n r5, LCPI1_1
8999 // str r5, [$jbuf, #+4] ; &jbuf[1]
9000 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9001 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9002 .addConstantPoolIndex(CPI
)
9003 .addMemOperand(CPMMO
)
9004 .add(predOps(ARMCC::AL
));
9005 // Set the low bit because of thumb mode.
9006 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9007 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9008 .addReg(NewVReg1
, RegState::Kill
)
9010 .add(predOps(ARMCC::AL
))
9012 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9013 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9014 .addReg(NewVReg2
, RegState::Kill
)
9016 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9017 .addReg(NewVReg3
, RegState::Kill
)
9019 .addImm(36) // &jbuf[1] :: pc
9020 .addMemOperand(FIMMOSt
)
9021 .add(predOps(ARMCC::AL
));
9022 } else if (isThumb
) {
9023 // Incoming value: jbuf
9024 // ldr.n r1, LCPI1_4
9028 // add r2, $jbuf, #+4 ; &jbuf[1]
9030 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9031 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9032 .addConstantPoolIndex(CPI
)
9033 .addMemOperand(CPMMO
)
9034 .add(predOps(ARMCC::AL
));
9035 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9036 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9037 .addReg(NewVReg1
, RegState::Kill
)
9039 // Set the low bit because of thumb mode.
9040 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9041 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9042 .addReg(ARM::CPSR
, RegState::Define
)
9044 .add(predOps(ARMCC::AL
));
9045 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9046 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9047 .addReg(ARM::CPSR
, RegState::Define
)
9048 .addReg(NewVReg2
, RegState::Kill
)
9049 .addReg(NewVReg3
, RegState::Kill
)
9050 .add(predOps(ARMCC::AL
));
9051 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9052 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9054 .addImm(36); // &jbuf[1] :: pc
9055 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9056 .addReg(NewVReg4
, RegState::Kill
)
9057 .addReg(NewVReg5
, RegState::Kill
)
9059 .addMemOperand(FIMMOSt
)
9060 .add(predOps(ARMCC::AL
));
9062 // Incoming value: jbuf
9065 // str r1, [$jbuf, #+4] ; &jbuf[1]
9066 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9067 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9068 .addConstantPoolIndex(CPI
)
9070 .addMemOperand(CPMMO
)
9071 .add(predOps(ARMCC::AL
));
9072 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9073 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9074 .addReg(NewVReg1
, RegState::Kill
)
9076 .add(predOps(ARMCC::AL
));
9077 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9078 .addReg(NewVReg2
, RegState::Kill
)
9080 .addImm(36) // &jbuf[1] :: pc
9081 .addMemOperand(FIMMOSt
)
9082 .add(predOps(ARMCC::AL
));
9086 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9087 MachineBasicBlock
*MBB
) const {
9088 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9089 DebugLoc dl
= MI
.getDebugLoc();
9090 MachineFunction
*MF
= MBB
->getParent();
9091 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9092 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9093 int FI
= MFI
.getFunctionContextIndex();
9095 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9096 : &ARM::GPRnopcRegClass
;
9098 // Get a mapping of the call site numbers to all of the landing pads they're
9100 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9101 unsigned MaxCSNum
= 0;
9102 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9104 if (!BB
->isEHPad()) continue;
9106 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9108 for (MachineBasicBlock::iterator
9109 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9110 if (!II
->isEHLabel()) continue;
9112 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9113 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9115 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9116 for (SmallVectorImpl
<unsigned>::iterator
9117 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9118 CSI
!= CSE
; ++CSI
) {
9119 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9120 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9126 // Get an ordered list of the machine basic blocks for the jump table.
9127 std::vector
<MachineBasicBlock
*> LPadList
;
9128 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9129 LPadList
.reserve(CallSiteNumToLPad
.size());
9130 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9131 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9132 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9133 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9134 LPadList
.push_back(*II
);
9135 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9139 assert(!LPadList
.empty() &&
9140 "No landing pad destinations for the dispatch jump table!");
9142 // Create the jump table and associated information.
9143 MachineJumpTableInfo
*JTI
=
9144 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9145 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9147 // Create the MBBs for the dispatch code.
9149 // Shove the dispatch's address into the return slot in the function context.
9150 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9151 DispatchBB
->setIsEHPad();
9153 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9154 unsigned trap_opcode
;
9155 if (Subtarget
->isThumb())
9156 trap_opcode
= ARM::tTRAP
;
9158 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9160 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9161 DispatchBB
->addSuccessor(TrapBB
);
9163 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9164 DispatchBB
->addSuccessor(DispContBB
);
9167 MF
->insert(MF
->end(), DispatchBB
);
9168 MF
->insert(MF
->end(), DispContBB
);
9169 MF
->insert(MF
->end(), TrapBB
);
9171 // Insert code into the entry block that creates and registers the function
9173 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9175 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9176 MachinePointerInfo::getFixedStack(*MF
, FI
),
9177 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9179 MachineInstrBuilder MIB
;
9180 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9182 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9183 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9185 // Add a register mask with no preserved registers. This results in all
9186 // registers being marked as clobbered. This can't work if the dispatch block
9187 // is in a Thumb1 function and is linked with ARM code which uses the FP
9188 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9189 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9191 bool IsPositionIndependent
= isPositionIndependent();
9192 unsigned NumLPads
= LPadList
.size();
9193 if (Subtarget
->isThumb2()) {
9194 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9195 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9198 .addMemOperand(FIMMOLd
)
9199 .add(predOps(ARMCC::AL
));
9201 if (NumLPads
< 256) {
9202 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9204 .addImm(LPadList
.size())
9205 .add(predOps(ARMCC::AL
));
9207 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9208 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9209 .addImm(NumLPads
& 0xFFFF)
9210 .add(predOps(ARMCC::AL
));
9212 unsigned VReg2
= VReg1
;
9213 if ((NumLPads
& 0xFFFF0000) != 0) {
9214 VReg2
= MRI
->createVirtualRegister(TRC
);
9215 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9217 .addImm(NumLPads
>> 16)
9218 .add(predOps(ARMCC::AL
));
9221 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9224 .add(predOps(ARMCC::AL
));
9227 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9232 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9233 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9234 .addJumpTableIndex(MJTI
)
9235 .add(predOps(ARMCC::AL
));
9237 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9238 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9239 .addReg(NewVReg3
, RegState::Kill
)
9241 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9242 .add(predOps(ARMCC::AL
))
9245 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9246 .addReg(NewVReg4
, RegState::Kill
)
9248 .addJumpTableIndex(MJTI
);
9249 } else if (Subtarget
->isThumb()) {
9250 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9251 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9254 .addMemOperand(FIMMOLd
)
9255 .add(predOps(ARMCC::AL
));
9257 if (NumLPads
< 256) {
9258 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9261 .add(predOps(ARMCC::AL
));
9263 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9264 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9265 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9267 // MachineConstantPool wants an explicit alignment.
9268 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9270 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9271 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9273 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9274 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9275 .addReg(VReg1
, RegState::Define
)
9276 .addConstantPoolIndex(Idx
)
9277 .add(predOps(ARMCC::AL
));
9278 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9281 .add(predOps(ARMCC::AL
));
9284 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9289 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9290 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9291 .addReg(ARM::CPSR
, RegState::Define
)
9294 .add(predOps(ARMCC::AL
));
9296 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9297 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9298 .addJumpTableIndex(MJTI
)
9299 .add(predOps(ARMCC::AL
));
9301 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9302 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9303 .addReg(ARM::CPSR
, RegState::Define
)
9304 .addReg(NewVReg2
, RegState::Kill
)
9306 .add(predOps(ARMCC::AL
));
9308 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9309 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9311 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9312 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9313 .addReg(NewVReg4
, RegState::Kill
)
9315 .addMemOperand(JTMMOLd
)
9316 .add(predOps(ARMCC::AL
));
9318 unsigned NewVReg6
= NewVReg5
;
9319 if (IsPositionIndependent
) {
9320 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9321 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9322 .addReg(ARM::CPSR
, RegState::Define
)
9323 .addReg(NewVReg5
, RegState::Kill
)
9325 .add(predOps(ARMCC::AL
));
9328 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9329 .addReg(NewVReg6
, RegState::Kill
)
9330 .addJumpTableIndex(MJTI
);
9332 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9333 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9336 .addMemOperand(FIMMOLd
)
9337 .add(predOps(ARMCC::AL
));
9339 if (NumLPads
< 256) {
9340 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9343 .add(predOps(ARMCC::AL
));
9344 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9345 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9346 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9347 .addImm(NumLPads
& 0xFFFF)
9348 .add(predOps(ARMCC::AL
));
9350 unsigned VReg2
= VReg1
;
9351 if ((NumLPads
& 0xFFFF0000) != 0) {
9352 VReg2
= MRI
->createVirtualRegister(TRC
);
9353 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9355 .addImm(NumLPads
>> 16)
9356 .add(predOps(ARMCC::AL
));
9359 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9362 .add(predOps(ARMCC::AL
));
9364 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9365 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9366 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9368 // MachineConstantPool wants an explicit alignment.
9369 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9371 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9372 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9374 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9375 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9376 .addReg(VReg1
, RegState::Define
)
9377 .addConstantPoolIndex(Idx
)
9379 .add(predOps(ARMCC::AL
));
9380 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9382 .addReg(VReg1
, RegState::Kill
)
9383 .add(predOps(ARMCC::AL
));
9386 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9391 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9392 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9394 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9395 .add(predOps(ARMCC::AL
))
9397 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9398 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9399 .addJumpTableIndex(MJTI
)
9400 .add(predOps(ARMCC::AL
));
9402 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9403 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9404 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9405 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9406 .addReg(NewVReg3
, RegState::Kill
)
9409 .addMemOperand(JTMMOLd
)
9410 .add(predOps(ARMCC::AL
));
9412 if (IsPositionIndependent
) {
9413 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9414 .addReg(NewVReg5
, RegState::Kill
)
9416 .addJumpTableIndex(MJTI
);
9418 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9419 .addReg(NewVReg5
, RegState::Kill
)
9420 .addJumpTableIndex(MJTI
);
9424 // Add the jump table entries as successors to the MBB.
9425 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9426 for (std::vector
<MachineBasicBlock
*>::iterator
9427 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9428 MachineBasicBlock
*CurMBB
= *I
;
9429 if (SeenMBBs
.insert(CurMBB
).second
)
9430 DispContBB
->addSuccessor(CurMBB
);
9433 // N.B. the order the invoke BBs are processed in doesn't matter here.
9434 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9435 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9436 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9438 // Remove the landing pad successor from the invoke block and replace it
9439 // with the new dispatch block.
9440 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9442 while (!Successors
.empty()) {
9443 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9444 if (SMBB
->isEHPad()) {
9445 BB
->removeSuccessor(SMBB
);
9446 MBBLPads
.push_back(SMBB
);
9450 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9451 BB
->normalizeSuccProbs();
9453 // Find the invoke call and mark all of the callee-saved registers as
9454 // 'implicit defined' so that they're spilled. This prevents code from
9455 // moving instructions to before the EH block, where they will never be
9457 for (MachineBasicBlock::reverse_iterator
9458 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9459 if (!II
->isCall()) continue;
9461 DenseMap
<unsigned, bool> DefRegs
;
9462 for (MachineInstr::mop_iterator
9463 OI
= II
->operands_begin(), OE
= II
->operands_end();
9465 if (!OI
->isReg()) continue;
9466 DefRegs
[OI
->getReg()] = true;
9469 MachineInstrBuilder
MIB(*MF
, &*II
);
9471 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9472 unsigned Reg
= SavedRegs
[i
];
9473 if (Subtarget
->isThumb2() &&
9474 !ARM::tGPRRegClass
.contains(Reg
) &&
9475 !ARM::hGPRRegClass
.contains(Reg
))
9477 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9479 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9482 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9489 // Mark all former landing pads as non-landing pads. The dispatch is the only
9491 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9492 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9493 (*I
)->setIsEHPad(false);
9495 // The instruction is gone now.
9496 MI
.eraseFromParent();
9500 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9501 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9502 E
= MBB
->succ_end(); I
!= E
; ++I
)
9505 llvm_unreachable("Expecting a BB with two successors!");
9508 /// Return the load opcode for a given load size. If load size >= 8,
9509 /// neon opcode will be returned.
9510 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9512 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9513 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9515 return LdSize
== 4 ? ARM::tLDRi
9516 : LdSize
== 2 ? ARM::tLDRHi
9517 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9519 return LdSize
== 4 ? ARM::t2LDR_POST
9520 : LdSize
== 2 ? ARM::t2LDRH_POST
9521 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9522 return LdSize
== 4 ? ARM::LDR_POST_IMM
9523 : LdSize
== 2 ? ARM::LDRH_POST
9524 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9527 /// Return the store opcode for a given store size. If store size >= 8,
9528 /// neon opcode will be returned.
9529 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9531 return StSize
== 16 ? ARM::VST1q32wb_fixed
9532 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9534 return StSize
== 4 ? ARM::tSTRi
9535 : StSize
== 2 ? ARM::tSTRHi
9536 : StSize
== 1 ? ARM::tSTRBi
: 0;
9538 return StSize
== 4 ? ARM::t2STR_POST
9539 : StSize
== 2 ? ARM::t2STRH_POST
9540 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9541 return StSize
== 4 ? ARM::STR_POST_IMM
9542 : StSize
== 2 ? ARM::STRH_POST
9543 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9546 /// Emit a post-increment load operation with given size. The instructions
9547 /// will be added to BB at Pos.
9548 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9549 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9550 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9551 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9552 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9553 assert(LdOpc
!= 0 && "Should have a load opcode");
9555 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9556 .addReg(AddrOut
, RegState::Define
)
9559 .add(predOps(ARMCC::AL
));
9560 } else if (IsThumb1
) {
9561 // load + update AddrIn
9562 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9565 .add(predOps(ARMCC::AL
));
9566 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9567 .add(t1CondCodeOp())
9570 .add(predOps(ARMCC::AL
));
9571 } else if (IsThumb2
) {
9572 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9573 .addReg(AddrOut
, RegState::Define
)
9576 .add(predOps(ARMCC::AL
));
9578 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9579 .addReg(AddrOut
, RegState::Define
)
9583 .add(predOps(ARMCC::AL
));
9587 /// Emit a post-increment store operation with given size. The instructions
9588 /// will be added to BB at Pos.
9589 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9590 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9591 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9592 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9593 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9594 assert(StOpc
!= 0 && "Should have a store opcode");
9596 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9600 .add(predOps(ARMCC::AL
));
9601 } else if (IsThumb1
) {
9602 // store + update AddrIn
9603 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9607 .add(predOps(ARMCC::AL
));
9608 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9609 .add(t1CondCodeOp())
9612 .add(predOps(ARMCC::AL
));
9613 } else if (IsThumb2
) {
9614 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9618 .add(predOps(ARMCC::AL
));
9620 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9625 .add(predOps(ARMCC::AL
));
9630 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9631 MachineBasicBlock
*BB
) const {
9632 // This pseudo instruction has 3 operands: dst, src, size
9633 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9634 // Otherwise, we will generate unrolled scalar copies.
9635 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9636 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9637 MachineFunction::iterator It
= ++BB
->getIterator();
9639 unsigned dest
= MI
.getOperand(0).getReg();
9640 unsigned src
= MI
.getOperand(1).getReg();
9641 unsigned SizeVal
= MI
.getOperand(2).getImm();
9642 unsigned Align
= MI
.getOperand(3).getImm();
9643 DebugLoc dl
= MI
.getDebugLoc();
9645 MachineFunction
*MF
= BB
->getParent();
9646 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9647 unsigned UnitSize
= 0;
9648 const TargetRegisterClass
*TRC
= nullptr;
9649 const TargetRegisterClass
*VecTRC
= nullptr;
9651 bool IsThumb1
= Subtarget
->isThumb1Only();
9652 bool IsThumb2
= Subtarget
->isThumb2();
9653 bool IsThumb
= Subtarget
->isThumb();
9657 } else if (Align
& 2) {
9660 // Check whether we can use NEON instructions.
9661 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9662 Subtarget
->hasNEON()) {
9663 if ((Align
% 16 == 0) && SizeVal
>= 16)
9665 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9668 // Can't use NEON instructions.
9673 // Select the correct opcode and register class for unit size load/store
9674 bool IsNeon
= UnitSize
>= 8;
9675 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9677 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9678 : UnitSize
== 8 ? &ARM::DPRRegClass
9681 unsigned BytesLeft
= SizeVal
% UnitSize
;
9682 unsigned LoopSize
= SizeVal
- BytesLeft
;
9684 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9685 // Use LDR and STR to copy.
9686 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9687 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9688 unsigned srcIn
= src
;
9689 unsigned destIn
= dest
;
9690 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9691 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9692 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9693 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9694 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9695 IsThumb1
, IsThumb2
);
9696 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9697 IsThumb1
, IsThumb2
);
9702 // Handle the leftover bytes with LDRB and STRB.
9703 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9704 // [destOut] = STRB_POST(scratch, destIn, 1)
9705 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9706 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9707 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9708 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9709 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9710 IsThumb1
, IsThumb2
);
9711 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9712 IsThumb1
, IsThumb2
);
9716 MI
.eraseFromParent(); // The instruction is gone now.
9720 // Expand the pseudo op to a loop.
9723 // movw varEnd, # --> with thumb2
9725 // ldrcp varEnd, idx --> without thumb2
9726 // fallthrough --> loopMBB
9728 // PHI varPhi, varEnd, varLoop
9729 // PHI srcPhi, src, srcLoop
9730 // PHI destPhi, dst, destLoop
9731 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9732 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9733 // subs varLoop, varPhi, #UnitSize
9735 // fallthrough --> exitMBB
9737 // epilogue to handle left-over bytes
9738 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9739 // [destOut] = STRB_POST(scratch, destLoop, 1)
9740 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9741 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9742 MF
->insert(It
, loopMBB
);
9743 MF
->insert(It
, exitMBB
);
9745 // Transfer the remainder of BB and its successor edges to exitMBB.
9746 exitMBB
->splice(exitMBB
->begin(), BB
,
9747 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9748 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9750 // Load an immediate to varEnd.
9751 unsigned varEnd
= MRI
.createVirtualRegister(TRC
);
9752 if (Subtarget
->useMovt()) {
9753 unsigned Vtmp
= varEnd
;
9754 if ((LoopSize
& 0xFFFF0000) != 0)
9755 Vtmp
= MRI
.createVirtualRegister(TRC
);
9756 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9757 .addImm(LoopSize
& 0xFFFF)
9758 .add(predOps(ARMCC::AL
));
9760 if ((LoopSize
& 0xFFFF0000) != 0)
9761 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9763 .addImm(LoopSize
>> 16)
9764 .add(predOps(ARMCC::AL
));
9766 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9767 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9768 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9770 // MachineConstantPool wants an explicit alignment.
9771 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9773 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9774 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9775 MachineMemOperand
*CPMMO
=
9776 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9777 MachineMemOperand::MOLoad
, 4, 4);
9780 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9781 .addReg(varEnd
, RegState::Define
)
9782 .addConstantPoolIndex(Idx
)
9783 .add(predOps(ARMCC::AL
))
9784 .addMemOperand(CPMMO
);
9786 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9787 .addReg(varEnd
, RegState::Define
)
9788 .addConstantPoolIndex(Idx
)
9790 .add(predOps(ARMCC::AL
))
9791 .addMemOperand(CPMMO
);
9793 BB
->addSuccessor(loopMBB
);
9795 // Generate the loop body:
9796 // varPhi = PHI(varLoop, varEnd)
9797 // srcPhi = PHI(srcLoop, src)
9798 // destPhi = PHI(destLoop, dst)
9799 MachineBasicBlock
*entryBB
= BB
;
9801 unsigned varLoop
= MRI
.createVirtualRegister(TRC
);
9802 unsigned varPhi
= MRI
.createVirtualRegister(TRC
);
9803 unsigned srcLoop
= MRI
.createVirtualRegister(TRC
);
9804 unsigned srcPhi
= MRI
.createVirtualRegister(TRC
);
9805 unsigned destLoop
= MRI
.createVirtualRegister(TRC
);
9806 unsigned destPhi
= MRI
.createVirtualRegister(TRC
);
9808 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9809 .addReg(varLoop
).addMBB(loopMBB
)
9810 .addReg(varEnd
).addMBB(entryBB
);
9811 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9812 .addReg(srcLoop
).addMBB(loopMBB
)
9813 .addReg(src
).addMBB(entryBB
);
9814 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9815 .addReg(destLoop
).addMBB(loopMBB
)
9816 .addReg(dest
).addMBB(entryBB
);
9818 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9819 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9820 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9821 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9822 IsThumb1
, IsThumb2
);
9823 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9824 IsThumb1
, IsThumb2
);
9826 // Decrement loop variable by UnitSize.
9828 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9829 .add(t1CondCodeOp())
9832 .add(predOps(ARMCC::AL
));
9834 MachineInstrBuilder MIB
=
9835 BuildMI(*BB
, BB
->end(), dl
,
9836 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9839 .add(predOps(ARMCC::AL
))
9841 MIB
->getOperand(5).setReg(ARM::CPSR
);
9842 MIB
->getOperand(5).setIsDef(true);
9844 BuildMI(*BB
, BB
->end(), dl
,
9845 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9846 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9848 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9849 BB
->addSuccessor(loopMBB
);
9850 BB
->addSuccessor(exitMBB
);
9852 // Add epilogue to handle BytesLeft.
9854 auto StartOfExit
= exitMBB
->begin();
9856 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9857 // [destOut] = STRB_POST(scratch, destLoop, 1)
9858 unsigned srcIn
= srcLoop
;
9859 unsigned destIn
= destLoop
;
9860 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9861 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9862 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9863 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9864 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9865 IsThumb1
, IsThumb2
);
9866 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9867 IsThumb1
, IsThumb2
);
9872 MI
.eraseFromParent(); // The instruction is gone now.
9877 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
9878 MachineBasicBlock
*MBB
) const {
9879 const TargetMachine
&TM
= getTargetMachine();
9880 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
9881 DebugLoc DL
= MI
.getDebugLoc();
9883 assert(Subtarget
->isTargetWindows() &&
9884 "__chkstk is only supported on Windows");
9885 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9887 // __chkstk takes the number of words to allocate on the stack in R4, and
9888 // returns the stack adjustment in number of bytes in R4. This will not
9889 // clober any other registers (other than the obvious lr).
9891 // Although, technically, IP should be considered a register which may be
9892 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9893 // thumb-2 environment, so there is no interworking required. As a result, we
9894 // do not expect a veneer to be emitted by the linker, clobbering IP.
9896 // Each module receives its own copy of __chkstk, so no import thunk is
9897 // required, again, ensuring that IP is not clobbered.
9899 // Finally, although some linkers may theoretically provide a trampoline for
9900 // out of range calls (which is quite common due to a 32M range limitation of
9901 // branches for Thumb), we can generate the long-call version via
9902 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9905 switch (TM
.getCodeModel()) {
9906 case CodeModel::Tiny
:
9907 llvm_unreachable("Tiny code model not available on ARM.");
9908 case CodeModel::Small
:
9909 case CodeModel::Medium
:
9910 case CodeModel::Kernel
:
9911 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
9912 .add(predOps(ARMCC::AL
))
9913 .addExternalSymbol("__chkstk")
9914 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9915 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9917 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9919 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9921 case CodeModel::Large
: {
9922 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
9923 unsigned Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
9925 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
9926 .addExternalSymbol("__chkstk");
9927 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
9928 .add(predOps(ARMCC::AL
))
9929 .addReg(Reg
, RegState::Kill
)
9930 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9931 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9933 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9935 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9940 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
9941 .addReg(ARM::SP
, RegState::Kill
)
9942 .addReg(ARM::R4
, RegState::Kill
)
9943 .setMIFlags(MachineInstr::FrameSetup
)
9944 .add(predOps(ARMCC::AL
))
9947 MI
.eraseFromParent();
9952 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
9953 MachineBasicBlock
*MBB
) const {
9954 DebugLoc DL
= MI
.getDebugLoc();
9955 MachineFunction
*MF
= MBB
->getParent();
9956 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9958 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
9959 MF
->insert(++MBB
->getIterator(), ContBB
);
9960 ContBB
->splice(ContBB
->begin(), MBB
,
9961 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
9962 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
9963 MBB
->addSuccessor(ContBB
);
9965 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9966 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
9967 MF
->push_back(TrapBB
);
9968 MBB
->addSuccessor(TrapBB
);
9970 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
9971 .addReg(MI
.getOperand(0).getReg())
9973 .add(predOps(ARMCC::AL
));
9974 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
9979 MI
.eraseFromParent();
9983 // The CPSR operand of SelectItr might be missing a kill marker
9984 // because there were multiple uses of CPSR, and ISel didn't know
9985 // which to mark. Figure out whether SelectItr should have had a
9986 // kill marker, and set it if it should. Returns the correct kill
9988 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
9989 MachineBasicBlock
* BB
,
9990 const TargetRegisterInfo
* TRI
) {
9991 // Scan forward through BB for a use/def of CPSR.
9992 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
9993 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
9994 const MachineInstr
& mi
= *miI
;
9995 if (mi
.readsRegister(ARM::CPSR
))
9997 if (mi
.definesRegister(ARM::CPSR
))
9998 break; // Should have kill-flag - update below.
10001 // If we hit the end of the block, check whether CPSR is live into a
10003 if (miI
== BB
->end()) {
10004 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10005 sEnd
= BB
->succ_end();
10006 sItr
!= sEnd
; ++sItr
) {
10007 MachineBasicBlock
* succ
= *sItr
;
10008 if (succ
->isLiveIn(ARM::CPSR
))
10013 // We found a def, or hit the end of the basic block and CPSR wasn't live
10014 // out. SelectMI should have a kill flag on CPSR.
10015 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10019 MachineBasicBlock
*
10020 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10021 MachineBasicBlock
*BB
) const {
10022 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10023 DebugLoc dl
= MI
.getDebugLoc();
10024 bool isThumb2
= Subtarget
->isThumb2();
10025 switch (MI
.getOpcode()) {
10028 llvm_unreachable("Unexpected instr type to insert");
10031 // Thumb1 post-indexed loads are really just single-register LDMs.
10032 case ARM::tLDR_postidx
: {
10033 MachineOperand
Def(MI
.getOperand(1));
10034 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10036 .add(MI
.getOperand(2)) // Rn
10037 .add(MI
.getOperand(3)) // PredImm
10038 .add(MI
.getOperand(4)) // PredReg
10039 .add(MI
.getOperand(0)) // Rt
10041 MI
.eraseFromParent();
10045 // The Thumb2 pre-indexed stores have the same MI operands, they just
10046 // define them differently in the .td files from the isel patterns, so
10047 // they need pseudos.
10048 case ARM::t2STR_preidx
:
10049 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10051 case ARM::t2STRB_preidx
:
10052 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10054 case ARM::t2STRH_preidx
:
10055 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10058 case ARM::STRi_preidx
:
10059 case ARM::STRBi_preidx
: {
10060 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10061 : ARM::STRB_PRE_IMM
;
10062 // Decode the offset.
10063 unsigned Offset
= MI
.getOperand(4).getImm();
10064 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10065 Offset
= ARM_AM::getAM2Offset(Offset
);
10069 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10070 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10071 .add(MI
.getOperand(0)) // Rn_wb
10072 .add(MI
.getOperand(1)) // Rt
10073 .add(MI
.getOperand(2)) // Rn
10074 .addImm(Offset
) // offset (skip GPR==zero_reg)
10075 .add(MI
.getOperand(5)) // pred
10076 .add(MI
.getOperand(6))
10077 .addMemOperand(MMO
);
10078 MI
.eraseFromParent();
10081 case ARM::STRr_preidx
:
10082 case ARM::STRBr_preidx
:
10083 case ARM::STRH_preidx
: {
10085 switch (MI
.getOpcode()) {
10086 default: llvm_unreachable("unexpected opcode!");
10087 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10088 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10089 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10091 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10092 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10093 MIB
.add(MI
.getOperand(i
));
10094 MI
.eraseFromParent();
10098 case ARM::tMOVCCr_pseudo
: {
10099 // To "insert" a SELECT_CC instruction, we actually have to insert the
10100 // diamond control-flow pattern. The incoming instruction knows the
10101 // destination vreg to set, the condition code register to branch on, the
10102 // true/false values to select between, and a branch opcode to use.
10103 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10104 MachineFunction::iterator It
= ++BB
->getIterator();
10109 // cmpTY ccX, r1, r2
10111 // fallthrough --> copy0MBB
10112 MachineBasicBlock
*thisMBB
= BB
;
10113 MachineFunction
*F
= BB
->getParent();
10114 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10115 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10116 F
->insert(It
, copy0MBB
);
10117 F
->insert(It
, sinkMBB
);
10119 // Check whether CPSR is live past the tMOVCCr_pseudo.
10120 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10121 if (!MI
.killsRegister(ARM::CPSR
) &&
10122 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10123 copy0MBB
->addLiveIn(ARM::CPSR
);
10124 sinkMBB
->addLiveIn(ARM::CPSR
);
10127 // Transfer the remainder of BB and its successor edges to sinkMBB.
10128 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10129 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10130 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10132 BB
->addSuccessor(copy0MBB
);
10133 BB
->addSuccessor(sinkMBB
);
10135 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10137 .addImm(MI
.getOperand(3).getImm())
10138 .addReg(MI
.getOperand(4).getReg());
10141 // %FalseValue = ...
10142 // # fallthrough to sinkMBB
10145 // Update machine-CFG edges
10146 BB
->addSuccessor(sinkMBB
);
10149 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10152 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10153 .addReg(MI
.getOperand(1).getReg())
10155 .addReg(MI
.getOperand(2).getReg())
10158 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10163 case ARM::BCCZi64
: {
10164 // If there is an unconditional branch to the other successor, remove it.
10165 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10167 // Compare both parts that make up the double comparison separately for
10169 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10171 unsigned LHS1
= MI
.getOperand(1).getReg();
10172 unsigned LHS2
= MI
.getOperand(2).getReg();
10174 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10177 .add(predOps(ARMCC::AL
));
10178 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10179 .addReg(LHS2
).addImm(0)
10180 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10182 unsigned RHS1
= MI
.getOperand(3).getReg();
10183 unsigned RHS2
= MI
.getOperand(4).getReg();
10184 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10187 .add(predOps(ARMCC::AL
));
10188 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10189 .addReg(LHS2
).addReg(RHS2
)
10190 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10193 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10194 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10195 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10196 std::swap(destMBB
, exitMBB
);
10198 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10199 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10201 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10203 .add(predOps(ARMCC::AL
));
10205 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10207 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10211 case ARM::Int_eh_sjlj_setjmp
:
10212 case ARM::Int_eh_sjlj_setjmp_nofp
:
10213 case ARM::tInt_eh_sjlj_setjmp
:
10214 case ARM::t2Int_eh_sjlj_setjmp
:
10215 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10218 case ARM::Int_eh_sjlj_setup_dispatch
:
10219 EmitSjLjDispatchBlock(MI
, BB
);
10224 // To insert an ABS instruction, we have to insert the
10225 // diamond control-flow pattern. The incoming instruction knows the
10226 // source vreg to test against 0, the destination vreg to set,
10227 // the condition code register to branch on, the
10228 // true/false values to select between, and a branch opcode to use.
10233 // BCC (branch to SinkBB if V0 >= 0)
10234 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10235 // SinkBB: V1 = PHI(V2, V3)
10236 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10237 MachineFunction::iterator BBI
= ++BB
->getIterator();
10238 MachineFunction
*Fn
= BB
->getParent();
10239 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10240 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10241 Fn
->insert(BBI
, RSBBB
);
10242 Fn
->insert(BBI
, SinkBB
);
10244 unsigned int ABSSrcReg
= MI
.getOperand(1).getReg();
10245 unsigned int ABSDstReg
= MI
.getOperand(0).getReg();
10246 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10247 bool isThumb2
= Subtarget
->isThumb2();
10248 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10249 // In Thumb mode S must not be specified if source register is the SP or
10250 // PC and if destination register is the SP, so restrict register class
10251 unsigned NewRsbDstReg
=
10252 MRI
.createVirtualRegister(isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10254 // Transfer the remainder of BB and its successor edges to sinkMBB.
10255 SinkBB
->splice(SinkBB
->begin(), BB
,
10256 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10257 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10259 BB
->addSuccessor(RSBBB
);
10260 BB
->addSuccessor(SinkBB
);
10262 // fall through to SinkMBB
10263 RSBBB
->addSuccessor(SinkBB
);
10265 // insert a cmp at the end of BB
10266 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10269 .add(predOps(ARMCC::AL
));
10271 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10273 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10274 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10276 // insert rsbri in RSBBB
10277 // Note: BCC and rsbri will be converted into predicated rsbmi
10278 // by if-conversion pass
10279 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10280 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10281 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10283 .add(predOps(ARMCC::AL
))
10284 .add(condCodeOp());
10286 // insert PHI in SinkBB,
10287 // reuse ABSDstReg to not change uses of ABS instruction
10288 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10289 TII
->get(ARM::PHI
), ABSDstReg
)
10290 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10291 .addReg(ABSSrcReg
).addMBB(BB
);
10293 // remove ABS instruction
10294 MI
.eraseFromParent();
10296 // return last added BB
10299 case ARM::COPY_STRUCT_BYVAL_I32
:
10301 return EmitStructByval(MI
, BB
);
10302 case ARM::WIN__CHKSTK
:
10303 return EmitLowered__chkstk(MI
, BB
);
10304 case ARM::WIN__DBZCHK
:
10305 return EmitLowered__dbzchk(MI
, BB
);
10309 /// Attaches vregs to MEMCPY that it will use as scratch registers
10310 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10311 /// instead of as a custom inserter because we need the use list from the SDNode.
10312 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10313 MachineInstr
&MI
, const SDNode
*Node
) {
10314 bool isThumb1
= Subtarget
->isThumb1Only();
10316 DebugLoc DL
= MI
.getDebugLoc();
10317 MachineFunction
*MF
= MI
.getParent()->getParent();
10318 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10319 MachineInstrBuilder
MIB(*MF
, MI
);
10321 // If the new dst/src is unused mark it as dead.
10322 if (!Node
->hasAnyUseOfValue(0)) {
10323 MI
.getOperand(0).setIsDead(true);
10325 if (!Node
->hasAnyUseOfValue(1)) {
10326 MI
.getOperand(1).setIsDead(true);
10329 // The MEMCPY both defines and kills the scratch registers.
10330 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10331 unsigned TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10332 : &ARM::GPRRegClass
);
10333 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10337 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10338 SDNode
*Node
) const {
10339 if (MI
.getOpcode() == ARM::MEMCPY
) {
10340 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10344 const MCInstrDesc
*MCID
= &MI
.getDesc();
10345 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10346 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10347 // operand is still set to noreg. If needed, set the optional operand's
10348 // register to CPSR, and remove the redundant implicit def.
10350 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10352 // Rename pseudo opcodes.
10353 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10356 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10357 MCID
= &TII
->get(NewOpc
);
10359 assert(MCID
->getNumOperands() ==
10360 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10361 && "converted opcode should be the same except for cc_out"
10362 " (and, on Thumb1, pred)");
10366 // Add the optional cc_out operand
10367 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10369 // On Thumb1, move all input operands to the end, then add the predicate
10370 if (Subtarget
->isThumb1Only()) {
10371 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10372 MI
.addOperand(MI
.getOperand(1));
10373 MI
.RemoveOperand(1);
10376 // Restore the ties
10377 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10378 const MachineOperand
& op
= MI
.getOperand(i
);
10379 if (op
.isReg() && op
.isUse()) {
10380 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10382 MI
.tieOperands(DefIdx
, i
);
10386 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10387 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10390 ccOutIdx
= MCID
->getNumOperands() - 1;
10392 ccOutIdx
= MCID
->getNumOperands() - 1;
10394 // Any ARM instruction that sets the 's' bit should specify an optional
10395 // "cc_out" operand in the last operand position.
10396 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10397 assert(!NewOpc
&& "Optional cc_out operand required");
10400 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10401 // since we already have an optional CPSR def.
10402 bool definesCPSR
= false;
10403 bool deadCPSR
= false;
10404 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10406 const MachineOperand
&MO
= MI
.getOperand(i
);
10407 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10408 definesCPSR
= true;
10411 MI
.RemoveOperand(i
);
10415 if (!definesCPSR
) {
10416 assert(!NewOpc
&& "Optional cc_out operand required");
10419 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10421 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10422 "expect uninitialized optional cc_out operand");
10423 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10424 if (!Subtarget
->isThumb1Only())
10428 // If this instruction was defined with an optional CPSR def and its dag node
10429 // had a live implicit CPSR def, then activate the optional CPSR def.
10430 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10431 MO
.setReg(ARM::CPSR
);
10435 //===----------------------------------------------------------------------===//
10436 // ARM Optimization Hooks
10437 //===----------------------------------------------------------------------===//
10439 // Helper function that checks if N is a null or all ones constant.
10440 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10441 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10444 // Return true if N is conditionally 0 or all ones.
10445 // Detects these expressions where cc is an i1 value:
10447 // (select cc 0, y) [AllOnes=0]
10448 // (select cc y, 0) [AllOnes=0]
10449 // (zext cc) [AllOnes=0]
10450 // (sext cc) [AllOnes=0/1]
10451 // (select cc -1, y) [AllOnes=1]
10452 // (select cc y, -1) [AllOnes=1]
10454 // Invert is set when N is the null/all ones constant when CC is false.
10455 // OtherOp is set to the alternative value of N.
10456 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10457 SDValue
&CC
, bool &Invert
,
10459 SelectionDAG
&DAG
) {
10460 switch (N
->getOpcode()) {
10461 default: return false;
10462 case ISD::SELECT
: {
10463 CC
= N
->getOperand(0);
10464 SDValue N1
= N
->getOperand(1);
10465 SDValue N2
= N
->getOperand(2);
10466 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10471 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10478 case ISD::ZERO_EXTEND
:
10479 // (zext cc) can never be the all ones value.
10483 case ISD::SIGN_EXTEND
: {
10485 EVT VT
= N
->getValueType(0);
10486 CC
= N
->getOperand(0);
10487 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10491 // When looking for an AllOnes constant, N is an sext, and the 'other'
10493 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10494 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10495 // When looking for a 0 constant, N can be zext or sext.
10496 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10498 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10505 // Combine a constant select operand into its use:
10507 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10508 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10509 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10510 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10511 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10513 // The transform is rejected if the select doesn't have a constant operand that
10514 // is null, or all ones when AllOnes is set.
10516 // Also recognize sext/zext from i1:
10518 // (add (zext cc), x) -> (select cc (add x, 1), x)
10519 // (add (sext cc), x) -> (select cc (add x, -1), x)
10521 // These transformations eventually create predicated instructions.
10523 // @param N The node to transform.
10524 // @param Slct The N operand that is a select.
10525 // @param OtherOp The other N operand (x above).
10526 // @param DCI Context.
10527 // @param AllOnes Require the select constant to be all ones instead of null.
10528 // @returns The new node, or SDValue() on failure.
10530 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10531 TargetLowering::DAGCombinerInfo
&DCI
,
10532 bool AllOnes
= false) {
10533 SelectionDAG
&DAG
= DCI
.DAG
;
10534 EVT VT
= N
->getValueType(0);
10535 SDValue NonConstantVal
;
10537 bool SwapSelectOps
;
10538 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10539 NonConstantVal
, DAG
))
10542 // Slct is now know to be the desired identity constant when CC is true.
10543 SDValue TrueVal
= OtherOp
;
10544 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10545 OtherOp
, NonConstantVal
);
10546 // Unless SwapSelectOps says CC should be false.
10548 std::swap(TrueVal
, FalseVal
);
10550 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10551 CCOp
, TrueVal
, FalseVal
);
10554 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10556 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10557 TargetLowering::DAGCombinerInfo
&DCI
) {
10558 SDValue N0
= N
->getOperand(0);
10559 SDValue N1
= N
->getOperand(1);
10560 if (N0
.getNode()->hasOneUse())
10561 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10563 if (N1
.getNode()->hasOneUse())
10564 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10569 static bool IsVUZPShuffleNode(SDNode
*N
) {
10570 // VUZP shuffle node.
10571 if (N
->getOpcode() == ARMISD::VUZP
)
10574 // "VUZP" on i32 is an alias for VTRN.
10575 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10581 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10582 TargetLowering::DAGCombinerInfo
&DCI
,
10583 const ARMSubtarget
*Subtarget
) {
10584 // Look for ADD(VUZP.0, VUZP.1).
10585 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10589 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10590 if (!N
->getValueType(0).is64BitVector())
10594 SelectionDAG
&DAG
= DCI
.DAG
;
10595 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10597 SDNode
*Unzip
= N0
.getNode();
10598 EVT VT
= N
->getValueType(0);
10600 SmallVector
<SDValue
, 8> Ops
;
10601 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10602 TLI
.getPointerTy(DAG
.getDataLayout())));
10603 Ops
.push_back(Unzip
->getOperand(0));
10604 Ops
.push_back(Unzip
->getOperand(1));
10606 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10609 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10610 TargetLowering::DAGCombinerInfo
&DCI
,
10611 const ARMSubtarget
*Subtarget
) {
10612 // Check for two extended operands.
10613 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10614 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10615 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10616 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10619 SDValue N00
= N0
.getOperand(0);
10620 SDValue N10
= N1
.getOperand(0);
10622 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10623 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10627 // We only recognize Q register paddl here; this can't be reached until
10628 // after type legalization.
10629 if (!N00
.getValueType().is64BitVector() ||
10630 !N0
.getValueType().is128BitVector())
10633 // Generate vpaddl.
10634 SelectionDAG
&DAG
= DCI
.DAG
;
10635 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10637 EVT VT
= N
->getValueType(0);
10639 SmallVector
<SDValue
, 8> Ops
;
10640 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10642 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10643 Opcode
= Intrinsic::arm_neon_vpaddls
;
10645 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10646 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10647 TLI
.getPointerTy(DAG
.getDataLayout())));
10648 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10649 unsigned NumElts
= VT
.getVectorNumElements();
10650 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10651 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10652 N00
.getOperand(0), N00
.getOperand(1));
10653 Ops
.push_back(Concat
);
10655 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10658 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10659 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10660 // much easier to match.
10662 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10663 TargetLowering::DAGCombinerInfo
&DCI
,
10664 const ARMSubtarget
*Subtarget
) {
10665 // Only perform optimization if after legalize, and if NEON is available. We
10666 // also expected both operands to be BUILD_VECTORs.
10667 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10668 || N0
.getOpcode() != ISD::BUILD_VECTOR
10669 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10672 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10673 EVT VT
= N
->getValueType(0);
10674 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10677 // Check that the vector operands are of the right form.
10678 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10679 // operands, where N is the size of the formed vector.
10680 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10681 // index such that we have a pair wise add pattern.
10683 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10684 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10686 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10687 SDNode
*V
= Vec
.getNode();
10688 unsigned nextIndex
= 0;
10690 // For each operands to the ADD which are BUILD_VECTORs,
10691 // check to see if each of their operands are an EXTRACT_VECTOR with
10692 // the same vector and appropriate index.
10693 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10694 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10695 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10697 SDValue ExtVec0
= N0
->getOperand(i
);
10698 SDValue ExtVec1
= N1
->getOperand(i
);
10700 // First operand is the vector, verify its the same.
10701 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10702 V
!= ExtVec1
->getOperand(0).getNode())
10705 // Second is the constant, verify its correct.
10706 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10707 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10709 // For the constant, we want to see all the even or all the odd.
10710 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10711 || C1
->getZExtValue() != nextIndex
+1)
10714 // Increment index.
10720 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10721 // we're using the entire input vector, otherwise there's a size/legality
10722 // mismatch somewhere.
10723 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10724 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10727 // Create VPADDL node.
10728 SelectionDAG
&DAG
= DCI
.DAG
;
10729 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10733 // Build operand list.
10734 SmallVector
<SDValue
, 8> Ops
;
10735 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10736 TLI
.getPointerTy(DAG
.getDataLayout())));
10738 // Input is the vector.
10739 Ops
.push_back(Vec
);
10741 // Get widened type and narrowed type.
10743 unsigned numElem
= VT
.getVectorNumElements();
10745 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10746 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10747 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10748 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10749 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10751 llvm_unreachable("Invalid vector element type for padd optimization.");
10754 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10755 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10756 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10759 static SDValue
findMUL_LOHI(SDValue V
) {
10760 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10761 V
->getOpcode() == ISD::SMUL_LOHI
)
10766 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10767 TargetLowering::DAGCombinerInfo
&DCI
,
10768 const ARMSubtarget
*Subtarget
) {
10769 if (Subtarget
->isThumb()) {
10770 if (!Subtarget
->hasDSP())
10772 } else if (!Subtarget
->hasV5TEOps())
10775 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10776 // accumulates the product into a 64-bit value. The 16-bit values will
10777 // be sign extended somehow or SRA'd into 32-bit values
10778 // (addc (adde (mul 16bit, 16bit), lo), hi)
10779 SDValue Mul
= AddcNode
->getOperand(0);
10780 SDValue Lo
= AddcNode
->getOperand(1);
10781 if (Mul
.getOpcode() != ISD::MUL
) {
10782 Lo
= AddcNode
->getOperand(0);
10783 Mul
= AddcNode
->getOperand(1);
10784 if (Mul
.getOpcode() != ISD::MUL
)
10788 SDValue SRA
= AddeNode
->getOperand(0);
10789 SDValue Hi
= AddeNode
->getOperand(1);
10790 if (SRA
.getOpcode() != ISD::SRA
) {
10791 SRA
= AddeNode
->getOperand(1);
10792 Hi
= AddeNode
->getOperand(0);
10793 if (SRA
.getOpcode() != ISD::SRA
)
10796 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10797 if (Const
->getZExtValue() != 31)
10802 if (SRA
.getOperand(0) != Mul
)
10805 SelectionDAG
&DAG
= DCI
.DAG
;
10806 SDLoc
dl(AddcNode
);
10807 unsigned Opcode
= 0;
10811 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10812 Opcode
= ARMISD::SMLALBB
;
10813 Op0
= Mul
.getOperand(0);
10814 Op1
= Mul
.getOperand(1);
10815 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10816 Opcode
= ARMISD::SMLALBT
;
10817 Op0
= Mul
.getOperand(0);
10818 Op1
= Mul
.getOperand(1).getOperand(0);
10819 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10820 Opcode
= ARMISD::SMLALTB
;
10821 Op0
= Mul
.getOperand(0).getOperand(0);
10822 Op1
= Mul
.getOperand(1);
10823 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10824 Opcode
= ARMISD::SMLALTT
;
10825 Op0
= Mul
->getOperand(0).getOperand(0);
10826 Op1
= Mul
->getOperand(1).getOperand(0);
10832 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10834 // Replace the ADDs' nodes uses by the MLA node's values.
10835 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10836 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10838 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10839 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10841 // Return original node to notify the driver to stop replacing.
10842 SDValue
resNode(AddcNode
, 0);
10846 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10847 TargetLowering::DAGCombinerInfo
&DCI
,
10848 const ARMSubtarget
*Subtarget
) {
10849 // Look for multiply add opportunities.
10850 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10851 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10852 // a glue link from the first add to the second add.
10853 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10854 // a S/UMLAL instruction.
10857 // V \ [no multiline comment]
10863 // In the special case where only the higher part of a signed result is used
10864 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10865 // a constant with the exact value of 0x80000000, we recognize we are dealing
10866 // with a "rounded multiply and add" (or subtract) and transform it into
10867 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10869 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
10870 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
10871 "Expect an ADDE or SUBE");
10873 assert(AddeSubeNode
->getNumOperands() == 3 &&
10874 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
10875 "ADDE node has the wrong inputs");
10877 // Check that we are chained to the right ADDC or SUBC node.
10878 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
10879 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10880 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
10881 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
10882 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
10885 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
10886 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
10888 // Check if the two operands are from the same mul_lohi node.
10889 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
10892 assert(AddcSubcNode
->getNumValues() == 2 &&
10893 AddcSubcNode
->getValueType(0) == MVT::i32
&&
10894 "Expect ADDC with two result values. First: i32");
10896 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10897 // maybe a SMLAL which multiplies two 16-bit values.
10898 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10899 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
10900 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
10901 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
10902 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
10903 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
10905 // Check for the triangle shape.
10906 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
10907 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
10909 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10910 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
10913 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10914 bool IsLeftOperandMUL
= false;
10915 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
10916 if (MULOp
== SDValue())
10917 MULOp
= findMUL_LOHI(AddeSubeOp1
);
10919 IsLeftOperandMUL
= true;
10920 if (MULOp
== SDValue())
10923 // Figure out the right opcode.
10924 unsigned Opc
= MULOp
->getOpcode();
10925 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
10927 // Figure out the high and low input values to the MLAL node.
10928 SDValue
*HiAddSub
= nullptr;
10929 SDValue
*LoMul
= nullptr;
10930 SDValue
*LowAddSub
= nullptr;
10932 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10933 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
10936 if (IsLeftOperandMUL
)
10937 HiAddSub
= &AddeSubeOp1
;
10939 HiAddSub
= &AddeSubeOp0
;
10941 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10942 // whose low result is fed to the ADDC/SUBC we are checking.
10944 if (AddcSubcOp0
== MULOp
.getValue(0)) {
10945 LoMul
= &AddcSubcOp0
;
10946 LowAddSub
= &AddcSubcOp1
;
10948 if (AddcSubcOp1
== MULOp
.getValue(0)) {
10949 LoMul
= &AddcSubcOp1
;
10950 LowAddSub
= &AddcSubcOp0
;
10956 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10957 // the replacement below will create a cycle.
10958 if (AddcSubcNode
== HiAddSub
->getNode() ||
10959 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
10962 // Create the merged node.
10963 SelectionDAG
&DAG
= DCI
.DAG
;
10965 // Start building operand list.
10966 SmallVector
<SDValue
, 8> Ops
;
10967 Ops
.push_back(LoMul
->getOperand(0));
10968 Ops
.push_back(LoMul
->getOperand(1));
10970 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10971 // the case, we must be doing signed multiplication and only use the higher
10972 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10973 // addition or subtraction with the value of 0x800000.
10974 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
10975 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
10976 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
10977 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
10979 Ops
.push_back(*HiAddSub
);
10980 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
10981 FinalOpc
= ARMISD::SMMLSR
;
10983 FinalOpc
= ARMISD::SMMLAR
;
10985 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
10986 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
10988 return SDValue(AddeSubeNode
, 0);
10989 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
10990 // SMMLS is generated during instruction selection and the rest of this
10991 // function can not handle the case where AddcSubcNode is a SUBC.
10994 // Finish building the operand list for {U/S}MLAL
10995 Ops
.push_back(*LowAddSub
);
10996 Ops
.push_back(*HiAddSub
);
10998 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
10999 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11001 // Replace the ADDs' nodes uses by the MLA node's values.
11002 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11003 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11005 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11006 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11008 // Return original node to notify the driver to stop replacing.
11009 return SDValue(AddeSubeNode
, 0);
11012 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11013 TargetLowering::DAGCombinerInfo
&DCI
,
11014 const ARMSubtarget
*Subtarget
) {
11015 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11016 // While trying to combine for the other MLAL nodes, first search for the
11017 // chance to use UMAAL. Check if Addc uses a node which has already
11018 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11019 // as the addend, and it's handled in PerformUMLALCombine.
11021 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11022 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11024 // Check that we have a glued ADDC node.
11025 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11026 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11029 // Find the converted UMAAL or quit if it doesn't exist.
11030 SDNode
*UmlalNode
= nullptr;
11032 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11033 UmlalNode
= AddcNode
->getOperand(0).getNode();
11034 AddHi
= AddcNode
->getOperand(1);
11035 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11036 UmlalNode
= AddcNode
->getOperand(1).getNode();
11037 AddHi
= AddcNode
->getOperand(0);
11039 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11042 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11043 // the ADDC as well as Zero.
11044 if (!isNullConstant(UmlalNode
->getOperand(3)))
11047 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11048 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11049 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11050 isNullConstant(AddeNode
->getOperand(1)))) {
11051 SelectionDAG
&DAG
= DCI
.DAG
;
11052 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11053 UmlalNode
->getOperand(2), AddHi
};
11054 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11055 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11057 // Replace the ADDs' nodes uses by the UMAAL node's values.
11058 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11059 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11061 // Return original node to notify the driver to stop replacing.
11062 return SDValue(AddeNode
, 0);
11067 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11068 const ARMSubtarget
*Subtarget
) {
11069 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11072 // Check that we have a pair of ADDC and ADDE as operands.
11073 // Both addends of the ADDE must be zero.
11074 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11075 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11076 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11077 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11078 isNullConstant(AddeNode
->getOperand(0)) &&
11079 isNullConstant(AddeNode
->getOperand(1)) &&
11080 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11081 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11082 DAG
.getVTList(MVT::i32
, MVT::i32
),
11083 {N
->getOperand(0), N
->getOperand(1),
11084 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11089 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11090 TargetLowering::DAGCombinerInfo
&DCI
,
11091 const ARMSubtarget
*Subtarget
) {
11092 SelectionDAG
&DAG(DCI
.DAG
);
11094 if (N
->getOpcode() == ARMISD::SUBC
) {
11095 // (SUBC (ADDE 0, 0, C), 1) -> C
11096 SDValue LHS
= N
->getOperand(0);
11097 SDValue RHS
= N
->getOperand(1);
11098 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11099 isNullConstant(LHS
->getOperand(0)) &&
11100 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11101 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11105 if (Subtarget
->isThumb1Only()) {
11106 SDValue RHS
= N
->getOperand(1);
11107 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11108 int32_t imm
= C
->getSExtValue();
11109 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11111 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11112 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11114 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11122 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11123 TargetLowering::DAGCombinerInfo
&DCI
,
11124 const ARMSubtarget
*Subtarget
) {
11125 if (Subtarget
->isThumb1Only()) {
11126 SelectionDAG
&DAG
= DCI
.DAG
;
11127 SDValue RHS
= N
->getOperand(1);
11128 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11129 int64_t imm
= C
->getSExtValue();
11133 // The with-carry-in form matches bitwise not instead of the negation.
11134 // Effectively, the inverse interpretation of the carry flag already
11135 // accounts for part of the negation.
11136 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11138 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11140 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11141 N
->getOperand(0), RHS
, N
->getOperand(2));
11144 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11145 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11150 static SDValue
PerformABSCombine(SDNode
*N
,
11151 TargetLowering::DAGCombinerInfo
&DCI
,
11152 const ARMSubtarget
*Subtarget
) {
11154 SelectionDAG
&DAG
= DCI
.DAG
;
11155 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11157 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11160 if (!TLI
.expandABS(N
, res
, DAG
))
11166 /// PerformADDECombine - Target-specific dag combine transform from
11167 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11168 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11169 static SDValue
PerformADDECombine(SDNode
*N
,
11170 TargetLowering::DAGCombinerInfo
&DCI
,
11171 const ARMSubtarget
*Subtarget
) {
11172 // Only ARM and Thumb2 support UMLAL/SMLAL.
11173 if (Subtarget
->isThumb1Only())
11174 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11176 // Only perform the checks after legalize when the pattern is available.
11177 if (DCI
.isBeforeLegalize()) return SDValue();
11179 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11182 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11183 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11184 /// called with the default operands, and if that fails, with commuted
11186 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11187 TargetLowering::DAGCombinerInfo
&DCI
,
11188 const ARMSubtarget
*Subtarget
){
11189 // Attempt to create vpadd for this add.
11190 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11193 // Attempt to create vpaddl for this add.
11194 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11196 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11200 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11201 if (N0
.getNode()->hasOneUse())
11202 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11208 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11209 CombineLevel Level
) const {
11210 if (Level
== BeforeLegalizeTypes
)
11213 if (N
->getOpcode() != ISD::SHL
)
11216 if (Subtarget
->isThumb1Only()) {
11217 // Avoid making expensive immediates by commuting shifts. (This logic
11218 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11220 if (N
->getOpcode() != ISD::SHL
)
11222 SDValue N1
= N
->getOperand(0);
11223 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11224 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11226 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11227 if (Const
->getAPIntValue().ult(256))
11229 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11230 Const
->getAPIntValue().sgt(-256))
11236 // Turn off commute-with-shift transform after legalization, so it doesn't
11237 // conflict with PerformSHLSimplify. (We could try to detect when
11238 // PerformSHLSimplify would trigger more precisely, but it isn't
11239 // really necessary.)
11243 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11244 const SDNode
*N
, CombineLevel Level
) const {
11245 if (!Subtarget
->isThumb1Only())
11248 if (Level
== BeforeLegalizeTypes
)
11254 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11255 if (!Subtarget
->hasNEON()) {
11256 if (Subtarget
->isThumb1Only())
11257 return VT
.getScalarSizeInBits() <= 32;
11260 return VT
.isScalarInteger();
11263 static SDValue
PerformSHLSimplify(SDNode
*N
,
11264 TargetLowering::DAGCombinerInfo
&DCI
,
11265 const ARMSubtarget
*ST
) {
11266 // Allow the generic combiner to identify potential bswaps.
11267 if (DCI
.isBeforeLegalize())
11270 // DAG combiner will fold:
11271 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11272 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11273 // Other code patterns that can be also be modified have the following form:
11274 // b + ((a << 1) | 510)
11275 // b + ((a << 1) & 510)
11276 // b + ((a << 1) ^ 510)
11277 // b + ((a << 1) + 510)
11279 // Many instructions can perform the shift for free, but it requires both
11280 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11281 // instruction will needed. So, unfold back to the original pattern if:
11282 // - if c1 and c2 are small enough that they don't require mov imms.
11283 // - the user(s) of the node can perform an shl
11285 // No shifted operands for 16-bit instructions.
11286 if (ST
->isThumb() && ST
->isThumb1Only())
11289 // Check that all the users could perform the shl themselves.
11290 for (auto U
: N
->uses()) {
11291 switch(U
->getOpcode()) {
11301 // Check that the user isn't already using a constant because there
11302 // aren't any instructions that support an immediate operand and a
11303 // shifted operand.
11304 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11305 isa
<ConstantSDNode
>(U
->getOperand(1)))
11308 // Check that it's not already using a shift.
11309 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11310 U
->getOperand(1).getOpcode() == ISD::SHL
)
11316 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11317 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11320 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11323 SDValue SHL
= N
->getOperand(0);
11325 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11326 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11327 if (!C1ShlC2
|| !C2
)
11330 APInt C2Int
= C2
->getAPIntValue();
11331 APInt C1Int
= C1ShlC2
->getAPIntValue();
11333 // Check that performing a lshr will not lose any information.
11334 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11335 C2Int
.getBitWidth() - C2
->getZExtValue());
11336 if ((C1Int
& Mask
) != C1Int
)
11339 // Shift the first constant.
11340 C1Int
.lshrInPlace(C2Int
);
11342 // The immediates are encoded as an 8-bit value that can be rotated.
11343 auto LargeImm
= [](const APInt
&Imm
) {
11344 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11345 return Imm
.getBitWidth() - Zeros
> 8;
11348 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11351 SelectionDAG
&DAG
= DCI
.DAG
;
11353 SDValue X
= SHL
.getOperand(0);
11354 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11355 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11356 // Shift left to compensate for the lshr of C1Int.
11357 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11359 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11360 SHL
.dump(); N
->dump());
11361 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11366 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11368 static SDValue
PerformADDCombine(SDNode
*N
,
11369 TargetLowering::DAGCombinerInfo
&DCI
,
11370 const ARMSubtarget
*Subtarget
) {
11371 SDValue N0
= N
->getOperand(0);
11372 SDValue N1
= N
->getOperand(1);
11374 // Only works one way, because it needs an immediate operand.
11375 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11378 // First try with the default operand order.
11379 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11382 // If that didn't work, try again with the operands commuted.
11383 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11386 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11388 static SDValue
PerformSUBCombine(SDNode
*N
,
11389 TargetLowering::DAGCombinerInfo
&DCI
) {
11390 SDValue N0
= N
->getOperand(0);
11391 SDValue N1
= N
->getOperand(1);
11393 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11394 if (N1
.getNode()->hasOneUse())
11395 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11401 /// PerformVMULCombine
11402 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11403 /// special multiplier accumulator forwarding.
11404 /// vmul d3, d0, d2
11405 /// vmla d3, d1, d2
11407 /// vadd d3, d0, d1
11408 /// vmul d3, d3, d2
11409 // However, for (A + B) * (A + B),
11416 static SDValue
PerformVMULCombine(SDNode
*N
,
11417 TargetLowering::DAGCombinerInfo
&DCI
,
11418 const ARMSubtarget
*Subtarget
) {
11419 if (!Subtarget
->hasVMLxForwarding())
11422 SelectionDAG
&DAG
= DCI
.DAG
;
11423 SDValue N0
= N
->getOperand(0);
11424 SDValue N1
= N
->getOperand(1);
11425 unsigned Opcode
= N0
.getOpcode();
11426 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11427 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11428 Opcode
= N1
.getOpcode();
11429 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11430 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11438 EVT VT
= N
->getValueType(0);
11440 SDValue N00
= N0
->getOperand(0);
11441 SDValue N01
= N0
->getOperand(1);
11442 return DAG
.getNode(Opcode
, DL
, VT
,
11443 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11444 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11447 static SDValue
PerformMULCombine(SDNode
*N
,
11448 TargetLowering::DAGCombinerInfo
&DCI
,
11449 const ARMSubtarget
*Subtarget
) {
11450 SelectionDAG
&DAG
= DCI
.DAG
;
11452 if (Subtarget
->isThumb1Only())
11455 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11458 EVT VT
= N
->getValueType(0);
11459 if (VT
.is64BitVector() || VT
.is128BitVector())
11460 return PerformVMULCombine(N
, DCI
, Subtarget
);
11461 if (VT
!= MVT::i32
)
11464 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11468 int64_t MulAmt
= C
->getSExtValue();
11469 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11471 ShiftAmt
= ShiftAmt
& (32 - 1);
11472 SDValue V
= N
->getOperand(0);
11476 MulAmt
>>= ShiftAmt
;
11479 if (isPowerOf2_32(MulAmt
- 1)) {
11480 // (mul x, 2^N + 1) => (add (shl x, N), x)
11481 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11483 DAG
.getNode(ISD::SHL
, DL
, VT
,
11485 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11487 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11488 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11489 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11490 DAG
.getNode(ISD::SHL
, DL
, VT
,
11492 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11498 uint64_t MulAmtAbs
= -MulAmt
;
11499 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11500 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11501 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11503 DAG
.getNode(ISD::SHL
, DL
, VT
,
11505 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11507 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11508 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11509 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11511 DAG
.getNode(ISD::SHL
, DL
, VT
,
11513 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11515 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11516 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11522 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11523 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11525 // Do not add new nodes to DAG combiner worklist.
11526 DCI
.CombineTo(N
, Res
, false);
11530 static SDValue
CombineANDShift(SDNode
*N
,
11531 TargetLowering::DAGCombinerInfo
&DCI
,
11532 const ARMSubtarget
*Subtarget
) {
11533 // Allow DAGCombine to pattern-match before we touch the canonical form.
11534 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11537 if (N
->getValueType(0) != MVT::i32
)
11540 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11544 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11545 // Don't transform uxtb/uxth.
11546 if (C1
== 255 || C1
== 65535)
11549 SDNode
*N0
= N
->getOperand(0).getNode();
11550 if (!N0
->hasOneUse())
11553 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11556 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11558 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11562 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11563 if (!C2
|| C2
>= 32)
11566 // Clear irrelevant bits in the mask.
11572 SelectionDAG
&DAG
= DCI
.DAG
;
11575 // We have a pattern of the form "(and (shl x, c2) c1)" or
11576 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11577 // transform to a pair of shifts, to save materializing c1.
11579 // First pattern: right shift, then mask off leading bits.
11580 // FIXME: Use demanded bits?
11581 if (!LeftShift
&& isMask_32(C1
)) {
11582 uint32_t C3
= countLeadingZeros(C1
);
11584 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11585 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11586 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11587 DAG
.getConstant(C3
, DL
, MVT::i32
));
11591 // First pattern, reversed: left shift, then mask off trailing bits.
11592 if (LeftShift
&& isMask_32(~C1
)) {
11593 uint32_t C3
= countTrailingZeros(C1
);
11595 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11596 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11597 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11598 DAG
.getConstant(C3
, DL
, MVT::i32
));
11602 // Second pattern: left shift, then mask off leading bits.
11603 // FIXME: Use demanded bits?
11604 if (LeftShift
&& isShiftedMask_32(C1
)) {
11605 uint32_t Trailing
= countTrailingZeros(C1
);
11606 uint32_t C3
= countLeadingZeros(C1
);
11607 if (Trailing
== C2
&& C2
+ C3
< 32) {
11608 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11609 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11610 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11611 DAG
.getConstant(C3
, DL
, MVT::i32
));
11615 // Second pattern, reversed: right shift, then mask off trailing bits.
11616 // FIXME: Handle other patterns of known/demanded bits.
11617 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11618 uint32_t Leading
= countLeadingZeros(C1
);
11619 uint32_t C3
= countTrailingZeros(C1
);
11620 if (Leading
== C2
&& C2
+ C3
< 32) {
11621 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11622 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11623 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11624 DAG
.getConstant(C3
, DL
, MVT::i32
));
11628 // FIXME: Transform "(and (shl x, c2) c1)" ->
11629 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11634 static SDValue
PerformANDCombine(SDNode
*N
,
11635 TargetLowering::DAGCombinerInfo
&DCI
,
11636 const ARMSubtarget
*Subtarget
) {
11637 // Attempt to use immediate-form VBIC
11638 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11640 EVT VT
= N
->getValueType(0);
11641 SelectionDAG
&DAG
= DCI
.DAG
;
11643 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11646 APInt SplatBits
, SplatUndef
;
11647 unsigned SplatBitSize
;
11649 if (BVN
&& Subtarget
->hasNEON() &&
11650 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11651 if (SplatBitSize
<= 64) {
11653 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11654 SplatUndef
.getZExtValue(), SplatBitSize
,
11655 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11657 if (Val
.getNode()) {
11659 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11660 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11661 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11666 if (!Subtarget
->isThumb1Only()) {
11667 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11668 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11671 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11675 if (Subtarget
->isThumb1Only())
11676 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11682 // Try combining OR nodes to SMULWB, SMULWT.
11683 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11684 TargetLowering::DAGCombinerInfo
&DCI
,
11685 const ARMSubtarget
*Subtarget
) {
11686 if (!Subtarget
->hasV6Ops() ||
11687 (Subtarget
->isThumb() &&
11688 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11691 SDValue SRL
= OR
->getOperand(0);
11692 SDValue SHL
= OR
->getOperand(1);
11694 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11695 SRL
= OR
->getOperand(1);
11696 SHL
= OR
->getOperand(0);
11698 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11701 // The first operands to the shifts need to be the two results from the
11702 // same smul_lohi node.
11703 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11704 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11707 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11708 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11709 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11713 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11714 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11715 // For SMUWB the 16-bit value will signed extended somehow.
11716 // For SMULWT only the SRA is required.
11717 // Check both sides of SMUL_LOHI
11718 SDValue OpS16
= SMULLOHI
->getOperand(0);
11719 SDValue OpS32
= SMULLOHI
->getOperand(1);
11721 SelectionDAG
&DAG
= DCI
.DAG
;
11722 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11724 OpS32
= SMULLOHI
->getOperand(0);
11728 unsigned Opcode
= 0;
11729 if (isS16(OpS16
, DAG
))
11730 Opcode
= ARMISD::SMULWB
;
11731 else if (isSRA16(OpS16
)) {
11732 Opcode
= ARMISD::SMULWT
;
11733 OpS16
= OpS16
->getOperand(0);
11738 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11739 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11740 return SDValue(OR
, 0);
11743 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11744 TargetLowering::DAGCombinerInfo
&DCI
,
11745 const ARMSubtarget
*Subtarget
) {
11746 // BFI is only available on V6T2+
11747 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11750 EVT VT
= N
->getValueType(0);
11751 SDValue N0
= N
->getOperand(0);
11752 SDValue N1
= N
->getOperand(1);
11753 SelectionDAG
&DAG
= DCI
.DAG
;
11755 // 1) or (and A, mask), val => ARMbfi A, val, mask
11756 // iff (val & mask) == val
11758 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11759 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11760 // && mask == ~mask2
11761 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11762 // && ~mask == mask2
11763 // (i.e., copy a bitfield value into another bitfield of the same width)
11765 if (VT
!= MVT::i32
)
11768 SDValue N00
= N0
.getOperand(0);
11770 // The value and the mask need to be constants so we can verify this is
11771 // actually a bitfield set. If the mask is 0xffff, we can do better
11772 // via a movt instruction, so don't use BFI in that case.
11773 SDValue MaskOp
= N0
.getOperand(1);
11774 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11777 unsigned Mask
= MaskC
->getZExtValue();
11778 if (Mask
== 0xffff)
11781 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11782 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11784 unsigned Val
= N1C
->getZExtValue();
11785 if ((Val
& ~Mask
) != Val
)
11788 if (ARM::isBitFieldInvertedMask(Mask
)) {
11789 Val
>>= countTrailingZeros(~Mask
);
11791 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11792 DAG
.getConstant(Val
, DL
, MVT::i32
),
11793 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11795 DCI
.CombineTo(N
, Res
, false);
11796 // Return value from the original node to inform the combiner than N is
11798 return SDValue(N
, 0);
11800 } else if (N1
.getOpcode() == ISD::AND
) {
11801 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11802 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11805 unsigned Mask2
= N11C
->getZExtValue();
11807 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11809 if (ARM::isBitFieldInvertedMask(Mask
) &&
11810 (Mask
== ~Mask2
)) {
11811 // The pack halfword instruction works better for masks that fit it,
11812 // so use that when it's available.
11813 if (Subtarget
->hasDSP() &&
11814 (Mask
== 0xffff || Mask
== 0xffff0000))
11817 unsigned amt
= countTrailingZeros(Mask2
);
11818 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11819 DAG
.getConstant(amt
, DL
, MVT::i32
));
11820 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11821 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11822 DCI
.CombineTo(N
, Res
, false);
11823 // Return value from the original node to inform the combiner than N is
11825 return SDValue(N
, 0);
11826 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11827 (~Mask
== Mask2
)) {
11828 // The pack halfword instruction works better for masks that fit it,
11829 // so use that when it's available.
11830 if (Subtarget
->hasDSP() &&
11831 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11834 unsigned lsb
= countTrailingZeros(Mask
);
11835 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11836 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11837 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11838 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11839 DCI
.CombineTo(N
, Res
, false);
11840 // Return value from the original node to inform the combiner than N is
11842 return SDValue(N
, 0);
11846 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11847 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11848 ARM::isBitFieldInvertedMask(~Mask
)) {
11849 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11850 // where lsb(mask) == #shamt and masked bits of B are known zero.
11851 SDValue ShAmt
= N00
.getOperand(1);
11852 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11853 unsigned LSB
= countTrailingZeros(Mask
);
11857 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11858 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11860 DCI
.CombineTo(N
, Res
, false);
11861 // Return value from the original node to inform the combiner than N is
11863 return SDValue(N
, 0);
11869 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
11886 static SDValue
PerformORCombine_i1(SDNode
*N
,
11887 TargetLowering::DAGCombinerInfo
&DCI
,
11888 const ARMSubtarget
*Subtarget
) {
11889 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11890 // together with predicates
11891 EVT VT
= N
->getValueType(0);
11892 SDValue N0
= N
->getOperand(0);
11893 SDValue N1
= N
->getOperand(1);
11895 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
11896 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
11897 if (N0
->getOpcode() == ARMISD::VCMP
)
11898 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
11900 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
11901 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
11903 if (N1
->getOpcode() == ARMISD::VCMP
)
11904 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
11906 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
11907 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
11910 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
11913 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
11914 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
11916 if (!isValidMVECond(Opposite0
,
11917 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
11918 !isValidMVECond(Opposite1
,
11919 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
11922 SmallVector
<SDValue
, 4> Ops0
;
11923 Ops0
.push_back(N0
->getOperand(0));
11924 if (N0
->getOpcode() == ARMISD::VCMP
)
11925 Ops0
.push_back(N0
->getOperand(1));
11926 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
11927 SmallVector
<SDValue
, 4> Ops1
;
11928 Ops1
.push_back(N1
->getOperand(0));
11929 if (N1
->getOpcode() == ARMISD::VCMP
)
11930 Ops1
.push_back(N1
->getOperand(1));
11931 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
11933 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
11934 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
11935 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
11936 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
11937 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
11940 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11941 static SDValue
PerformORCombine(SDNode
*N
,
11942 TargetLowering::DAGCombinerInfo
&DCI
,
11943 const ARMSubtarget
*Subtarget
) {
11944 // Attempt to use immediate-form VORR
11945 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11947 EVT VT
= N
->getValueType(0);
11948 SelectionDAG
&DAG
= DCI
.DAG
;
11950 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11953 APInt SplatBits
, SplatUndef
;
11954 unsigned SplatBitSize
;
11956 if (BVN
&& Subtarget
->hasNEON() &&
11957 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11958 if (SplatBitSize
<= 64) {
11960 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
11961 SplatUndef
.getZExtValue(), SplatBitSize
,
11962 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
11964 if (Val
.getNode()) {
11966 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
11967 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
11968 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
11973 if (!Subtarget
->isThumb1Only()) {
11974 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11975 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11977 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
11981 SDValue N0
= N
->getOperand(0);
11982 SDValue N1
= N
->getOperand(1);
11984 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11985 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
11986 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
11988 // The code below optimizes (or (and X, Y), Z).
11989 // The AND operand needs to have a single user to make these optimizations
11991 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
11995 unsigned SplatBitSize
;
11998 APInt SplatBits0
, SplatBits1
;
11999 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12000 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12001 // Ensure that the second operand of both ands are constants
12002 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12003 HasAnyUndefs
) && !HasAnyUndefs
) {
12004 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12005 HasAnyUndefs
) && !HasAnyUndefs
) {
12006 // Ensure that the bit width of the constants are the same and that
12007 // the splat arguments are logical inverses as per the pattern we
12008 // are trying to simplify.
12009 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12010 SplatBits0
== ~SplatBits1
) {
12011 // Canonicalize the vector type to make instruction selection
12013 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12014 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12017 N1
->getOperand(0));
12018 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12024 if (Subtarget
->hasMVEIntegerOps() &&
12025 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12026 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12028 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12030 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12031 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12035 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12041 static SDValue
PerformXORCombine(SDNode
*N
,
12042 TargetLowering::DAGCombinerInfo
&DCI
,
12043 const ARMSubtarget
*Subtarget
) {
12044 EVT VT
= N
->getValueType(0);
12045 SelectionDAG
&DAG
= DCI
.DAG
;
12047 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12050 if (!Subtarget
->isThumb1Only()) {
12051 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12052 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12055 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12062 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12063 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12064 // their position in "to" (Rd).
12065 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12066 assert(N
->getOpcode() == ARMISD::BFI
);
12068 SDValue From
= N
->getOperand(1);
12069 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12070 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12072 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12073 // #C in the base of the SHR.
12074 if (From
->getOpcode() == ISD::SRL
&&
12075 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12076 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12077 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12078 FromMask
<<= Shift
.getLimitedValue(31);
12079 From
= From
->getOperand(0);
12085 // If A and B contain one contiguous set of bits, does A | B == A . B?
12087 // Neither A nor B must be zero.
12088 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12089 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12090 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12091 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12094 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12095 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12097 APInt ToMask
, FromMask
;
12098 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12099 SDValue To
= N
->getOperand(0);
12101 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12102 // aren't compatible, but not if they set the same bit in their destination as
12103 // we do (or that of any BFI we're going to combine with).
12105 APInt CombinedToMask
= ToMask
;
12106 while (V
.getOpcode() == ARMISD::BFI
) {
12107 APInt NewToMask
, NewFromMask
;
12108 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12109 if (NewFrom
!= From
) {
12110 // This BFI has a different base. Keep going.
12111 CombinedToMask
|= NewToMask
;
12112 V
= V
.getOperand(0);
12116 // Do the written bits conflict with any we've seen so far?
12117 if ((NewToMask
& CombinedToMask
).getBoolValue())
12118 // Conflicting bits - bail out because going further is unsafe.
12121 // Are the new bits contiguous when combined with the old bits?
12122 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12123 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12125 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12126 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12129 // We've seen a write to some bits, so track it.
12130 CombinedToMask
|= NewToMask
;
12132 V
= V
.getOperand(0);
12138 static SDValue
PerformBFICombine(SDNode
*N
,
12139 TargetLowering::DAGCombinerInfo
&DCI
) {
12140 SDValue N1
= N
->getOperand(1);
12141 if (N1
.getOpcode() == ISD::AND
) {
12142 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12143 // the bits being cleared by the AND are not demanded by the BFI.
12144 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12147 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12148 unsigned LSB
= countTrailingZeros(~InvMask
);
12149 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12151 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12152 "undefined behavior");
12153 unsigned Mask
= (1u << Width
) - 1;
12154 unsigned Mask2
= N11C
->getZExtValue();
12155 if ((Mask
& (~Mask2
)) == 0)
12156 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12157 N
->getOperand(0), N1
.getOperand(0),
12159 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12160 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12161 // Keep track of any consecutive bits set that all come from the same base
12162 // value. We can combine these together into a single BFI.
12163 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12164 if (CombineBFI
== SDValue())
12167 // We've found a BFI.
12168 APInt ToMask1
, FromMask1
;
12169 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12171 APInt ToMask2
, FromMask2
;
12172 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12173 assert(From1
== From2
);
12176 // First, unlink CombineBFI.
12177 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12178 // Then create a new BFI, combining the two together.
12179 APInt NewFromMask
= FromMask1
| FromMask2
;
12180 APInt NewToMask
= ToMask1
| ToMask2
;
12182 EVT VT
= N
->getValueType(0);
12185 if (NewFromMask
[0] == 0)
12186 From1
= DCI
.DAG
.getNode(
12187 ISD::SRL
, dl
, VT
, From1
,
12188 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12189 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12190 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12195 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12196 /// ARMISD::VMOVRRD.
12197 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12198 TargetLowering::DAGCombinerInfo
&DCI
,
12199 const ARMSubtarget
*Subtarget
) {
12200 // vmovrrd(vmovdrr x, y) -> x,y
12201 SDValue InDouble
= N
->getOperand(0);
12202 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12203 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12205 // vmovrrd(load f64) -> (load i32), (load i32)
12206 SDNode
*InNode
= InDouble
.getNode();
12207 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12208 InNode
->getValueType(0) == MVT::f64
&&
12209 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12210 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12211 // TODO: Should this be done for non-FrameIndex operands?
12212 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12214 SelectionDAG
&DAG
= DCI
.DAG
;
12216 SDValue BasePtr
= LD
->getBasePtr();
12218 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12219 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12221 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12222 DAG
.getConstant(4, DL
, MVT::i32
));
12224 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12225 LD
->getPointerInfo().getWithOffset(4),
12226 std::min(4U, LD
->getAlignment()),
12227 LD
->getMemOperand()->getFlags());
12229 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12230 if (DCI
.DAG
.getDataLayout().isBigEndian())
12231 std::swap (NewLD1
, NewLD2
);
12232 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12239 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12240 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12241 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12242 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12243 SDValue Op0
= N
->getOperand(0);
12244 SDValue Op1
= N
->getOperand(1);
12245 if (Op0
.getOpcode() == ISD::BITCAST
)
12246 Op0
= Op0
.getOperand(0);
12247 if (Op1
.getOpcode() == ISD::BITCAST
)
12248 Op1
= Op1
.getOperand(0);
12249 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12250 Op0
.getNode() == Op1
.getNode() &&
12251 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12252 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12253 N
->getValueType(0), Op0
.getOperand(0));
12257 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12258 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12259 /// i64 vector to have f64 elements, since the value can then be loaded
12260 /// directly into a VFP register.
12261 static bool hasNormalLoadOperand(SDNode
*N
) {
12262 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12263 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12264 SDNode
*Elt
= N
->getOperand(i
).getNode();
12265 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12271 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12272 /// ISD::BUILD_VECTOR.
12273 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12274 TargetLowering::DAGCombinerInfo
&DCI
,
12275 const ARMSubtarget
*Subtarget
) {
12276 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12277 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12278 // into a pair of GPRs, which is fine when the value is used as a scalar,
12279 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12280 SelectionDAG
&DAG
= DCI
.DAG
;
12281 if (N
->getNumOperands() == 2)
12282 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12285 // Load i64 elements as f64 values so that type legalization does not split
12286 // them up into i32 values.
12287 EVT VT
= N
->getValueType(0);
12288 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12291 SmallVector
<SDValue
, 8> Ops
;
12292 unsigned NumElts
= VT
.getVectorNumElements();
12293 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12294 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12296 // Make the DAGCombiner fold the bitcast.
12297 DCI
.AddToWorklist(V
.getNode());
12299 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12300 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12301 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12304 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12306 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12307 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12308 // At that time, we may have inserted bitcasts from integer to float.
12309 // If these bitcasts have survived DAGCombine, change the lowering of this
12310 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12311 // force to use floating point types.
12313 // Make sure we can change the type of the vector.
12314 // This is possible iff:
12315 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12316 // 1.1. Vector is used only once.
12317 // 1.2. Use is a bit convert to an integer type.
12318 // 2. The size of its operands are 32-bits (64-bits are not legal).
12319 EVT VT
= N
->getValueType(0);
12320 EVT EltVT
= VT
.getVectorElementType();
12322 // Check 1.1. and 2.
12323 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12326 // By construction, the input type must be float.
12327 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12330 SDNode
*Use
= *N
->use_begin();
12331 if (Use
->getOpcode() != ISD::BITCAST
||
12332 Use
->getValueType(0).isFloatingPoint())
12335 // Check profitability.
12336 // Model is, if more than half of the relevant operands are bitcast from
12337 // i32, turn the build_vector into a sequence of insert_vector_elt.
12338 // Relevant operands are everything that is not statically
12339 // (i.e., at compile time) bitcasted.
12340 unsigned NumOfBitCastedElts
= 0;
12341 unsigned NumElts
= VT
.getVectorNumElements();
12342 unsigned NumOfRelevantElts
= NumElts
;
12343 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12344 SDValue Elt
= N
->getOperand(Idx
);
12345 if (Elt
->getOpcode() == ISD::BITCAST
) {
12346 // Assume only bit cast to i32 will go away.
12347 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12348 ++NumOfBitCastedElts
;
12349 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12350 // Constants are statically casted, thus do not count them as
12351 // relevant operands.
12352 --NumOfRelevantElts
;
12355 // Check if more than half of the elements require a non-free bitcast.
12356 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12359 SelectionDAG
&DAG
= DCI
.DAG
;
12360 // Create the new vector type.
12361 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12362 // Check if the type is legal.
12363 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12364 if (!TLI
.isTypeLegal(VecVT
))
12368 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12369 // => BITCAST INSERT_VECTOR_ELT
12370 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12371 // (BITCAST EN), N.
12372 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12374 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12375 SDValue V
= N
->getOperand(Idx
);
12378 if (V
.getOpcode() == ISD::BITCAST
&&
12379 V
->getOperand(0).getValueType() == MVT::i32
)
12380 // Fold obvious case.
12381 V
= V
.getOperand(0);
12383 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12384 // Make the DAGCombiner fold the bitcasts.
12385 DCI
.AddToWorklist(V
.getNode());
12387 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12388 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12390 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12391 // Make the DAGCombiner fold the bitcasts.
12392 DCI
.AddToWorklist(Vec
.getNode());
12396 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12397 /// ISD::INSERT_VECTOR_ELT.
12398 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12399 TargetLowering::DAGCombinerInfo
&DCI
) {
12400 // Bitcast an i64 load inserted into a vector to f64.
12401 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12402 EVT VT
= N
->getValueType(0);
12403 SDNode
*Elt
= N
->getOperand(1).getNode();
12404 if (VT
.getVectorElementType() != MVT::i64
||
12405 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12408 SelectionDAG
&DAG
= DCI
.DAG
;
12410 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12411 VT
.getVectorNumElements());
12412 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12413 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12414 // Make the DAGCombiner fold the bitcasts.
12415 DCI
.AddToWorklist(Vec
.getNode());
12416 DCI
.AddToWorklist(V
.getNode());
12417 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12418 Vec
, V
, N
->getOperand(2));
12419 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12422 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12423 /// ISD::VECTOR_SHUFFLE.
12424 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12425 // The LLVM shufflevector instruction does not require the shuffle mask
12426 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12427 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12428 // operands do not match the mask length, they are extended by concatenating
12429 // them with undef vectors. That is probably the right thing for other
12430 // targets, but for NEON it is better to concatenate two double-register
12431 // size vector operands into a single quad-register size vector. Do that
12432 // transformation here:
12433 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12434 // shuffle(concat(v1, v2), undef)
12435 SDValue Op0
= N
->getOperand(0);
12436 SDValue Op1
= N
->getOperand(1);
12437 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12438 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12439 Op0
.getNumOperands() != 2 ||
12440 Op1
.getNumOperands() != 2)
12442 SDValue Concat0Op1
= Op0
.getOperand(1);
12443 SDValue Concat1Op1
= Op1
.getOperand(1);
12444 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12446 // Skip the transformation if any of the types are illegal.
12447 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12448 EVT VT
= N
->getValueType(0);
12449 if (!TLI
.isTypeLegal(VT
) ||
12450 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12451 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12454 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12455 Op0
.getOperand(0), Op1
.getOperand(0));
12456 // Translate the shuffle mask.
12457 SmallVector
<int, 16> NewMask
;
12458 unsigned NumElts
= VT
.getVectorNumElements();
12459 unsigned HalfElts
= NumElts
/2;
12460 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12461 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12462 int MaskElt
= SVN
->getMaskElt(n
);
12464 if (MaskElt
< (int)HalfElts
)
12466 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12467 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12468 NewMask
.push_back(NewElt
);
12470 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12471 DAG
.getUNDEF(VT
), NewMask
);
12474 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12475 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12476 /// base address updates.
12477 /// For generic load/stores, the memory type is assumed to be a vector.
12478 /// The caller is assumed to have checked legality.
12479 static SDValue
CombineBaseUpdate(SDNode
*N
,
12480 TargetLowering::DAGCombinerInfo
&DCI
) {
12481 SelectionDAG
&DAG
= DCI
.DAG
;
12482 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12483 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12484 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12485 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12486 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12487 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12490 // Search for a use of the address operand that is an increment.
12491 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12492 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12493 SDNode
*User
= *UI
;
12494 if (User
->getOpcode() != ISD::ADD
||
12495 UI
.getUse().getResNo() != Addr
.getResNo())
12498 // Check that the add is independent of the load/store. Otherwise, folding
12499 // it would create a cycle. We can avoid searching through Addr as it's a
12500 // predecessor to both.
12501 SmallPtrSet
<const SDNode
*, 32> Visited
;
12502 SmallVector
<const SDNode
*, 16> Worklist
;
12503 Visited
.insert(Addr
.getNode());
12504 Worklist
.push_back(N
);
12505 Worklist
.push_back(User
);
12506 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12507 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12510 // Find the new opcode for the updating load/store.
12511 bool isLoadOp
= true;
12512 bool isLaneOp
= false;
12513 unsigned NewOpc
= 0;
12514 unsigned NumVecs
= 0;
12516 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12518 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12519 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12520 NumVecs
= 1; break;
12521 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12522 NumVecs
= 2; break;
12523 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12524 NumVecs
= 3; break;
12525 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12526 NumVecs
= 4; break;
12527 case Intrinsic::arm_neon_vld2dup
:
12528 case Intrinsic::arm_neon_vld3dup
:
12529 case Intrinsic::arm_neon_vld4dup
:
12530 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12531 // combining base updates for such intrinsics.
12533 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12534 NumVecs
= 2; isLaneOp
= true; break;
12535 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12536 NumVecs
= 3; isLaneOp
= true; break;
12537 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12538 NumVecs
= 4; isLaneOp
= true; break;
12539 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12540 NumVecs
= 1; isLoadOp
= false; break;
12541 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12542 NumVecs
= 2; isLoadOp
= false; break;
12543 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12544 NumVecs
= 3; isLoadOp
= false; break;
12545 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12546 NumVecs
= 4; isLoadOp
= false; break;
12547 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12548 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12549 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12550 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12551 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12552 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12556 switch (N
->getOpcode()) {
12557 default: llvm_unreachable("unexpected opcode for Neon base update");
12558 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12559 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12560 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12561 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12562 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12563 NumVecs
= 1; isLaneOp
= false; break;
12564 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12565 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12569 // Find the size of memory referenced by the load/store.
12572 VecTy
= N
->getValueType(0);
12573 } else if (isIntrinsic
) {
12574 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12576 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12577 VecTy
= N
->getOperand(1).getValueType();
12580 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12582 NumBytes
/= VecTy
.getVectorNumElements();
12584 // If the increment is a constant, it must match the memory ref size.
12585 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12586 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12587 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12588 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12589 // separate instructions that make it harder to use a non-constant update.
12593 // OK, we found an ADD we can fold into the base update.
12594 // Now, create a _UPD node, taking care of not breaking alignment.
12596 EVT AlignedVecTy
= VecTy
;
12597 unsigned Alignment
= MemN
->getAlignment();
12599 // If this is a less-than-standard-aligned load/store, change the type to
12600 // match the standard alignment.
12601 // The alignment is overlooked when selecting _UPD variants; and it's
12602 // easier to introduce bitcasts here than fix that.
12603 // There are 3 ways to get to this base-update combine:
12604 // - intrinsics: they are assumed to be properly aligned (to the standard
12605 // alignment of the memory type), so we don't need to do anything.
12606 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12607 // intrinsics, so, likewise, there's nothing to do.
12608 // - generic load/store instructions: the alignment is specified as an
12609 // explicit operand, rather than implicitly as the standard alignment
12610 // of the memory type (like the intrisics). We need to change the
12611 // memory type to match the explicit alignment. That way, we don't
12612 // generate non-standard-aligned ARMISD::VLDx nodes.
12613 if (isa
<LSBaseSDNode
>(N
)) {
12614 if (Alignment
== 0)
12616 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12617 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12618 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12619 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12620 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12621 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12623 // Don't set an explicit alignment on regular load/stores that we want
12624 // to transform to VLD/VST 1_UPD nodes.
12625 // This matches the behavior of regular load/stores, which only get an
12626 // explicit alignment if the MMO alignment is larger than the standard
12627 // alignment of the memory type.
12628 // Intrinsics, however, always get an explicit alignment, set to the
12629 // alignment of the MMO.
12633 // Create the new updating load/store node.
12634 // First, create an SDVTList for the new updating node's results.
12636 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12638 for (n
= 0; n
< NumResultVecs
; ++n
)
12639 Tys
[n
] = AlignedVecTy
;
12640 Tys
[n
++] = MVT::i32
;
12641 Tys
[n
] = MVT::Other
;
12642 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12644 // Then, gather the new node's operands.
12645 SmallVector
<SDValue
, 8> Ops
;
12646 Ops
.push_back(N
->getOperand(0)); // incoming chain
12647 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12648 Ops
.push_back(Inc
);
12650 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12651 // Try to match the intrinsic's signature
12652 Ops
.push_back(StN
->getValue());
12654 // Loads (and of course intrinsics) match the intrinsics' signature,
12655 // so just add all but the alignment operand.
12656 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12657 Ops
.push_back(N
->getOperand(i
));
12660 // For all node types, the alignment operand is always the last one.
12661 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12663 // If this is a non-standard-aligned STORE, the penultimate operand is the
12664 // stored value. Bitcast it to the aligned type.
12665 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12666 SDValue
&StVal
= Ops
[Ops
.size()-2];
12667 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12670 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12671 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12672 MemN
->getMemOperand());
12674 // Update the uses.
12675 SmallVector
<SDValue
, 5> NewResults
;
12676 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12677 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12679 // If this is an non-standard-aligned LOAD, the first result is the loaded
12680 // value. Bitcast it to the expected result type.
12681 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12682 SDValue
&LdVal
= NewResults
[0];
12683 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12686 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12687 DCI
.CombineTo(N
, NewResults
);
12688 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12695 static SDValue
PerformVLDCombine(SDNode
*N
,
12696 TargetLowering::DAGCombinerInfo
&DCI
) {
12697 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12700 return CombineBaseUpdate(N
, DCI
);
12703 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12704 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12705 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12707 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12708 SelectionDAG
&DAG
= DCI
.DAG
;
12709 EVT VT
= N
->getValueType(0);
12710 // vldN-dup instructions only support 64-bit vectors for N > 1.
12711 if (!VT
.is64BitVector())
12714 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12715 SDNode
*VLD
= N
->getOperand(0).getNode();
12716 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12718 unsigned NumVecs
= 0;
12719 unsigned NewOpc
= 0;
12720 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12721 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12723 NewOpc
= ARMISD::VLD2DUP
;
12724 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12726 NewOpc
= ARMISD::VLD3DUP
;
12727 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12729 NewOpc
= ARMISD::VLD4DUP
;
12734 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12735 // numbers match the load.
12736 unsigned VLDLaneNo
=
12737 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12738 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12740 // Ignore uses of the chain result.
12741 if (UI
.getUse().getResNo() == NumVecs
)
12743 SDNode
*User
= *UI
;
12744 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12745 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12749 // Create the vldN-dup node.
12752 for (n
= 0; n
< NumVecs
; ++n
)
12754 Tys
[n
] = MVT::Other
;
12755 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12756 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12757 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12758 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12759 Ops
, VLDMemInt
->getMemoryVT(),
12760 VLDMemInt
->getMemOperand());
12762 // Update the uses.
12763 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12765 unsigned ResNo
= UI
.getUse().getResNo();
12766 // Ignore uses of the chain result.
12767 if (ResNo
== NumVecs
)
12769 SDNode
*User
= *UI
;
12770 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12773 // Now the vldN-lane intrinsic is dead except for its chain result.
12774 // Update uses of the chain.
12775 std::vector
<SDValue
> VLDDupResults
;
12776 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12777 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12778 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12779 DCI
.CombineTo(VLD
, VLDDupResults
);
12784 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12785 /// ARMISD::VDUPLANE.
12786 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12787 TargetLowering::DAGCombinerInfo
&DCI
) {
12788 SDValue Op
= N
->getOperand(0);
12790 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12791 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12792 if (CombineVLDDUP(N
, DCI
))
12793 return SDValue(N
, 0);
12795 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12796 // redundant. Ignore bit_converts for now; element sizes are checked below.
12797 while (Op
.getOpcode() == ISD::BITCAST
)
12798 Op
= Op
.getOperand(0);
12799 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12802 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12803 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12804 // The canonical VMOV for a zero vector uses a 32-bit element size.
12805 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12807 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12809 EVT VT
= N
->getValueType(0);
12810 if (EltSize
> VT
.getScalarSizeInBits())
12813 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12816 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12817 static SDValue
PerformVDUPCombine(SDNode
*N
,
12818 TargetLowering::DAGCombinerInfo
&DCI
,
12819 const ARMSubtarget
*Subtarget
) {
12820 SelectionDAG
&DAG
= DCI
.DAG
;
12821 SDValue Op
= N
->getOperand(0);
12823 if (!Subtarget
->hasNEON())
12826 // Match VDUP(LOAD) -> VLD1DUP.
12827 // We match this pattern here rather than waiting for isel because the
12828 // transform is only legal for unindexed loads.
12829 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12830 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12831 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12832 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12833 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12834 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12835 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12836 Ops
, LD
->getMemoryVT(),
12837 LD
->getMemOperand());
12838 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12845 static SDValue
PerformLOADCombine(SDNode
*N
,
12846 TargetLowering::DAGCombinerInfo
&DCI
) {
12847 EVT VT
= N
->getValueType(0);
12849 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12850 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12851 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12852 return CombineBaseUpdate(N
, DCI
);
12857 /// PerformSTORECombine - Target-specific dag combine xforms for
12859 static SDValue
PerformSTORECombine(SDNode
*N
,
12860 TargetLowering::DAGCombinerInfo
&DCI
) {
12861 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12862 if (St
->isVolatile())
12865 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12866 // pack all of the elements in one place. Next, store to memory in fewer
12868 SDValue StVal
= St
->getValue();
12869 EVT VT
= StVal
.getValueType();
12870 if (St
->isTruncatingStore() && VT
.isVector()) {
12871 SelectionDAG
&DAG
= DCI
.DAG
;
12872 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12873 EVT StVT
= St
->getMemoryVT();
12874 unsigned NumElems
= VT
.getVectorNumElements();
12875 assert(StVT
!= VT
&& "Cannot truncate to the same type");
12876 unsigned FromEltSz
= VT
.getScalarSizeInBits();
12877 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
12879 // From, To sizes and ElemCount must be pow of two
12880 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
12882 // We are going to use the original vector elt for storing.
12883 // Accumulated smaller vector elements must be a multiple of the store size.
12884 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
12886 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
12887 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
12889 // Create a type on which we perform the shuffle.
12890 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
12891 NumElems
*SizeRatio
);
12892 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
12895 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
12896 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
12897 for (unsigned i
= 0; i
< NumElems
; ++i
)
12898 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
12899 ? (i
+ 1) * SizeRatio
- 1
12902 // Can't shuffle using an illegal type.
12903 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
12905 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
12906 DAG
.getUNDEF(WideVec
.getValueType()),
12908 // At this point all of the data is stored at the bottom of the
12909 // register. We now need to save it to mem.
12911 // Find the largest store unit
12912 MVT StoreType
= MVT::i8
;
12913 for (MVT Tp
: MVT::integer_valuetypes()) {
12914 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
12917 // Didn't find a legal store type.
12918 if (!TLI
.isTypeLegal(StoreType
))
12921 // Bitcast the original vector into a vector of store-size units
12922 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
12923 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
12924 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
12925 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
12926 SmallVector
<SDValue
, 8> Chains
;
12927 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
12928 TLI
.getPointerTy(DAG
.getDataLayout()));
12929 SDValue BasePtr
= St
->getBasePtr();
12931 // Perform one or more big stores into memory.
12932 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
12933 for (unsigned I
= 0; I
< E
; I
++) {
12934 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
12935 StoreType
, ShuffWide
,
12936 DAG
.getIntPtrConstant(I
, DL
));
12937 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
12938 St
->getPointerInfo(), St
->getAlignment(),
12939 St
->getMemOperand()->getFlags());
12940 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
12942 Chains
.push_back(Ch
);
12944 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
12947 if (!ISD::isNormalStore(St
))
12950 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12951 // ARM stores of arguments in the same cache line.
12952 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
12953 StVal
.getNode()->hasOneUse()) {
12954 SelectionDAG
&DAG
= DCI
.DAG
;
12955 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
12957 SDValue BasePtr
= St
->getBasePtr();
12958 SDValue NewST1
= DAG
.getStore(
12959 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
12960 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
12961 St
->getMemOperand()->getFlags());
12963 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12964 DAG
.getConstant(4, DL
, MVT::i32
));
12965 return DAG
.getStore(NewST1
.getValue(0), DL
,
12966 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
12967 OffsetPtr
, St
->getPointerInfo(),
12968 std::min(4U, St
->getAlignment() / 2),
12969 St
->getMemOperand()->getFlags());
12972 if (StVal
.getValueType() == MVT::i64
&&
12973 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
12975 // Bitcast an i64 store extracted from a vector to f64.
12976 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12977 SelectionDAG
&DAG
= DCI
.DAG
;
12979 SDValue IntVec
= StVal
.getOperand(0);
12980 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12981 IntVec
.getValueType().getVectorNumElements());
12982 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
12983 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
12984 Vec
, StVal
.getOperand(1));
12986 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
12987 // Make the DAGCombiner fold the bitcasts.
12988 DCI
.AddToWorklist(Vec
.getNode());
12989 DCI
.AddToWorklist(ExtElt
.getNode());
12990 DCI
.AddToWorklist(V
.getNode());
12991 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
12992 St
->getPointerInfo(), St
->getAlignment(),
12993 St
->getMemOperand()->getFlags(), St
->getAAInfo());
12996 // If this is a legal vector store, try to combine it into a VST1_UPD.
12997 if (ISD::isNormalStore(N
) && VT
.isVector() &&
12998 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12999 return CombineBaseUpdate(N
, DCI
);
13004 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13005 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13006 /// when the VMUL has a constant operand that is a power of 2.
13008 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13009 /// vmul.f32 d16, d17, d16
13010 /// vcvt.s32.f32 d16, d16
13012 /// vcvt.s32.f32 d16, d16, #3
13013 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13014 const ARMSubtarget
*Subtarget
) {
13015 if (!Subtarget
->hasNEON())
13018 SDValue Op
= N
->getOperand(0);
13019 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13020 Op
.getOpcode() != ISD::FMUL
)
13023 SDValue ConstVec
= Op
->getOperand(1);
13024 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13027 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13028 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13029 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13030 uint32_t IntBits
= IntTy
.getSizeInBits();
13031 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13032 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13033 // These instructions only exist converting from f32 to i32. We can handle
13034 // smaller integers by generating an extra truncate, but larger ones would
13035 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13036 // these intructions only support v2i32/v4i32 types.
13040 BitVector UndefElements
;
13041 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13042 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13043 if (C
== -1 || C
== 0 || C
> 32)
13047 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13048 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13049 Intrinsic::arm_neon_vcvtfp2fxu
;
13050 SDValue FixConv
= DAG
.getNode(
13051 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13052 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13053 DAG
.getConstant(C
, dl
, MVT::i32
));
13055 if (IntBits
< FloatBits
)
13056 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13061 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13062 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13063 /// when the VDIV has a constant operand that is a power of 2.
13065 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13066 /// vcvt.f32.s32 d16, d16
13067 /// vdiv.f32 d16, d17, d16
13069 /// vcvt.f32.s32 d16, d16, #3
13070 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13071 const ARMSubtarget
*Subtarget
) {
13072 if (!Subtarget
->hasNEON())
13075 SDValue Op
= N
->getOperand(0);
13076 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13077 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13078 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13081 SDValue ConstVec
= N
->getOperand(1);
13082 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13085 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13086 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13087 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13088 uint32_t IntBits
= IntTy
.getSizeInBits();
13089 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13090 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13091 // These instructions only exist converting from i32 to f32. We can handle
13092 // smaller integers by generating an extra extend, but larger ones would
13093 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13094 // these intructions only support v2i32/v4i32 types.
13098 BitVector UndefElements
;
13099 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13100 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13101 if (C
== -1 || C
== 0 || C
> 32)
13105 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13106 SDValue ConvInput
= Op
.getOperand(0);
13107 if (IntBits
< FloatBits
)
13108 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13109 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13112 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13113 Intrinsic::arm_neon_vcvtfxu2fp
;
13114 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13116 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13117 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13120 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13121 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13122 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13125 // Don't do anything for most intrinsics.
13128 // Vector shifts: check for immediate versions and lower them.
13129 // Note: This is done during DAG combining instead of DAG legalizing because
13130 // the build_vectors for 64-bit vector element shift counts are generally
13131 // not legal, and it is hard to see their values after they get legalized to
13132 // loads from a constant pool.
13133 case Intrinsic::arm_neon_vshifts
:
13134 case Intrinsic::arm_neon_vshiftu
:
13135 case Intrinsic::arm_neon_vrshifts
:
13136 case Intrinsic::arm_neon_vrshiftu
:
13137 case Intrinsic::arm_neon_vrshiftn
:
13138 case Intrinsic::arm_neon_vqshifts
:
13139 case Intrinsic::arm_neon_vqshiftu
:
13140 case Intrinsic::arm_neon_vqshiftsu
:
13141 case Intrinsic::arm_neon_vqshiftns
:
13142 case Intrinsic::arm_neon_vqshiftnu
:
13143 case Intrinsic::arm_neon_vqshiftnsu
:
13144 case Intrinsic::arm_neon_vqrshiftns
:
13145 case Intrinsic::arm_neon_vqrshiftnu
:
13146 case Intrinsic::arm_neon_vqrshiftnsu
: {
13147 EVT VT
= N
->getOperand(1).getValueType();
13149 unsigned VShiftOpc
= 0;
13152 case Intrinsic::arm_neon_vshifts
:
13153 case Intrinsic::arm_neon_vshiftu
:
13154 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13155 VShiftOpc
= ARMISD::VSHLIMM
;
13158 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13159 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13160 : ARMISD::VSHRuIMM
);
13165 case Intrinsic::arm_neon_vrshifts
:
13166 case Intrinsic::arm_neon_vrshiftu
:
13167 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13171 case Intrinsic::arm_neon_vqshifts
:
13172 case Intrinsic::arm_neon_vqshiftu
:
13173 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13177 case Intrinsic::arm_neon_vqshiftsu
:
13178 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13180 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13182 case Intrinsic::arm_neon_vrshiftn
:
13183 case Intrinsic::arm_neon_vqshiftns
:
13184 case Intrinsic::arm_neon_vqshiftnu
:
13185 case Intrinsic::arm_neon_vqshiftnsu
:
13186 case Intrinsic::arm_neon_vqrshiftns
:
13187 case Intrinsic::arm_neon_vqrshiftnu
:
13188 case Intrinsic::arm_neon_vqrshiftnsu
:
13189 // Narrowing shifts require an immediate right shift.
13190 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13192 llvm_unreachable("invalid shift count for narrowing vector shift "
13196 llvm_unreachable("unhandled vector shift");
13200 case Intrinsic::arm_neon_vshifts
:
13201 case Intrinsic::arm_neon_vshiftu
:
13202 // Opcode already set above.
13204 case Intrinsic::arm_neon_vrshifts
:
13205 VShiftOpc
= ARMISD::VRSHRsIMM
;
13207 case Intrinsic::arm_neon_vrshiftu
:
13208 VShiftOpc
= ARMISD::VRSHRuIMM
;
13210 case Intrinsic::arm_neon_vrshiftn
:
13211 VShiftOpc
= ARMISD::VRSHRNIMM
;
13213 case Intrinsic::arm_neon_vqshifts
:
13214 VShiftOpc
= ARMISD::VQSHLsIMM
;
13216 case Intrinsic::arm_neon_vqshiftu
:
13217 VShiftOpc
= ARMISD::VQSHLuIMM
;
13219 case Intrinsic::arm_neon_vqshiftsu
:
13220 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13222 case Intrinsic::arm_neon_vqshiftns
:
13223 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13225 case Intrinsic::arm_neon_vqshiftnu
:
13226 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13228 case Intrinsic::arm_neon_vqshiftnsu
:
13229 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13231 case Intrinsic::arm_neon_vqrshiftns
:
13232 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13234 case Intrinsic::arm_neon_vqrshiftnu
:
13235 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13237 case Intrinsic::arm_neon_vqrshiftnsu
:
13238 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13243 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13244 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13247 case Intrinsic::arm_neon_vshiftins
: {
13248 EVT VT
= N
->getOperand(1).getValueType();
13250 unsigned VShiftOpc
= 0;
13252 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13253 VShiftOpc
= ARMISD::VSLIIMM
;
13254 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13255 VShiftOpc
= ARMISD::VSRIIMM
;
13257 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13261 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13262 N
->getOperand(1), N
->getOperand(2),
13263 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13266 case Intrinsic::arm_neon_vqrshifts
:
13267 case Intrinsic::arm_neon_vqrshiftu
:
13268 // No immediate versions of these to check for.
13275 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13276 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13277 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13278 /// vector element shift counts are generally not legal, and it is hard to see
13279 /// their values after they get legalized to loads from a constant pool.
13280 static SDValue
PerformShiftCombine(SDNode
*N
,
13281 TargetLowering::DAGCombinerInfo
&DCI
,
13282 const ARMSubtarget
*ST
) {
13283 SelectionDAG
&DAG
= DCI
.DAG
;
13284 EVT VT
= N
->getValueType(0);
13285 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13286 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13287 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13288 SDValue N1
= N
->getOperand(1);
13289 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13290 SDValue N0
= N
->getOperand(0);
13291 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13292 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13293 APInt::getHighBitsSet(32, 16)))
13294 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13298 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13299 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13300 N
->getOperand(0)->hasOneUse()) {
13301 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13303 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13304 // usually show up because instcombine prefers to canonicalize it to
13305 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13306 // out of GEP lowering in some cases.
13307 SDValue N0
= N
->getOperand(0);
13308 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13311 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13312 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13315 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13316 // Don't transform uxtb/uxth.
13317 if (AndMask
== 255 || AndMask
== 65535)
13319 if (isMask_32(AndMask
)) {
13320 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13321 if (MaskedBits
> ShiftAmt
) {
13323 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13324 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13325 return DAG
.getNode(
13326 ISD::SRL
, DL
, MVT::i32
, SHL
,
13327 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13332 // Nothing to be done for scalar shifts.
13333 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13334 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13336 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13341 switch (N
->getOpcode()) {
13342 default: llvm_unreachable("unexpected shift opcode");
13345 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13347 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13348 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13354 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13355 unsigned VShiftOpc
=
13356 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13358 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13359 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13365 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13366 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13367 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13368 const ARMSubtarget
*ST
) {
13369 SDValue N0
= N
->getOperand(0);
13371 // Check for sign- and zero-extensions of vector extract operations of 8-
13372 // and 16-bit vector elements. NEON supports these directly. They are
13373 // handled during DAG combining because type legalization will promote them
13374 // to 32-bit types and it is messy to recognize the operations after that.
13375 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13376 SDValue Vec
= N0
.getOperand(0);
13377 SDValue Lane
= N0
.getOperand(1);
13378 EVT VT
= N
->getValueType(0);
13379 EVT EltVT
= N0
.getValueType();
13380 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13382 if (VT
== MVT::i32
&&
13383 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13384 TLI
.isTypeLegal(Vec
.getValueType()) &&
13385 isa
<ConstantSDNode
>(Lane
)) {
13388 switch (N
->getOpcode()) {
13389 default: llvm_unreachable("unexpected opcode");
13390 case ISD::SIGN_EXTEND
:
13391 Opc
= ARMISD::VGETLANEs
;
13393 case ISD::ZERO_EXTEND
:
13394 case ISD::ANY_EXTEND
:
13395 Opc
= ARMISD::VGETLANEu
;
13398 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13405 static const APInt
*isPowerOf2Constant(SDValue V
) {
13406 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13409 const APInt
*CV
= &C
->getAPIntValue();
13410 return CV
->isPowerOf2() ? CV
: nullptr;
13413 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13414 // If we have a CMOV, OR and AND combination such as:
13419 // * CN is a single bit;
13420 // * All bits covered by CM are known zero in y
13422 // Then we can convert this into a sequence of BFI instructions. This will
13423 // always be a win if CM is a single bit, will always be no worse than the
13424 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13425 // three bits (due to the extra IT instruction).
13427 SDValue Op0
= CMOV
->getOperand(0);
13428 SDValue Op1
= CMOV
->getOperand(1);
13429 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13430 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13431 SDValue CmpZ
= CMOV
->getOperand(4);
13433 // The compare must be against zero.
13434 if (!isNullConstant(CmpZ
->getOperand(1)))
13437 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13438 SDValue And
= CmpZ
->getOperand(0);
13439 if (And
->getOpcode() != ISD::AND
)
13441 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13444 SDValue X
= And
->getOperand(0);
13446 if (CC
== ARMCC::EQ
) {
13447 // We're performing an "equal to zero" compare. Swap the operands so we
13448 // canonicalize on a "not equal to zero" compare.
13449 std::swap(Op0
, Op1
);
13451 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13454 if (Op1
->getOpcode() != ISD::OR
)
13457 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13460 SDValue Y
= Op1
->getOperand(0);
13465 // Now, is it profitable to continue?
13466 APInt OrCI
= OrC
->getAPIntValue();
13467 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13468 if (OrCI
.countPopulation() > Heuristic
)
13471 // Lastly, can we determine that the bits defined by OrCI
13473 KnownBits Known
= DAG
.computeKnownBits(Y
);
13474 if ((OrCI
& Known
.Zero
) != OrCI
)
13477 // OK, we can do the combine.
13480 EVT VT
= X
.getValueType();
13481 unsigned BitInX
= AndC
->logBase2();
13484 // We must shift X first.
13485 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13486 DAG
.getConstant(BitInX
, dl
, VT
));
13489 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13490 BitInY
< NumActiveBits
; ++BitInY
) {
13491 if (OrCI
[BitInY
] == 0)
13493 APInt
Mask(VT
.getSizeInBits(), 0);
13494 Mask
.setBit(BitInY
);
13495 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13496 // Confusingly, the operand is an *inverted* mask.
13497 DAG
.getConstant(~Mask
, dl
, VT
));
13503 // Given N, the value controlling the conditional branch, search for the loop
13504 // intrinsic, returning it, along with how the value is used. We need to handle
13505 // patterns such as the following:
13506 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13507 // (brcond (setcc (loop.decrement), 0, eq), exit)
13508 // (brcond (setcc (loop.decrement), 0, ne), header)
13509 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13511 switch (N
->getOpcode()) {
13515 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13517 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13520 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13523 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13526 if (Const
->isNullValue())
13528 else if (Const
->isOne())
13532 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13533 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13535 case ISD::INTRINSIC_W_CHAIN
: {
13536 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13537 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13538 IntOp
!= Intrinsic::loop_decrement_reg
)
13546 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13547 TargetLowering::DAGCombinerInfo
&DCI
,
13548 const ARMSubtarget
*ST
) {
13550 // The hwloop intrinsics that we're interested are used for control-flow,
13551 // either for entering or exiting the loop:
13552 // - test.set.loop.iterations will test whether its operand is zero. If it
13553 // is zero, the proceeding branch should not enter the loop.
13554 // - loop.decrement.reg also tests whether its operand is zero. If it is
13555 // zero, the proceeding branch should not branch back to the beginning of
13557 // So here, we need to check that how the brcond is using the result of each
13558 // of the intrinsics to ensure that we're branching to the right place at the
13564 bool Negate
= false;
13565 SDValue Chain
= N
->getOperand(0);
13568 if (N
->getOpcode() == ISD::BRCOND
) {
13570 Cond
= N
->getOperand(1);
13571 Dest
= N
->getOperand(2);
13573 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13574 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13575 Cond
= N
->getOperand(2);
13576 Dest
= N
->getOperand(4);
13577 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13578 if (!Const
->isOne() && !Const
->isNullValue())
13580 Imm
= Const
->getZExtValue();
13585 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13590 CC
= ISD::getSetCCInverse(CC
, true);
13592 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13593 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13594 (CC
== ISD::SETNE
&& Imm
== 1) ||
13595 (CC
== ISD::SETLT
&& Imm
== 1) ||
13596 (CC
== ISD::SETULT
&& Imm
== 1);
13599 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13600 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13601 (CC
== ISD::SETNE
&& Imm
== 0) ||
13602 (CC
== ISD::SETGT
&& Imm
== 0) ||
13603 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13604 (CC
== ISD::SETGE
&& Imm
== 1) ||
13605 (CC
== ISD::SETUGE
&& Imm
== 1);
13608 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13609 "unsupported condition");
13612 SelectionDAG
&DAG
= DCI
.DAG
;
13613 SDValue Elements
= Int
.getOperand(2);
13614 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13615 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13616 && "expected single br user");
13617 SDNode
*Br
= *N
->use_begin();
13618 SDValue OtherTarget
= Br
->getOperand(1);
13620 // Update the unconditional branch to branch to the given Dest.
13621 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13622 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13623 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13624 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13627 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13629 // We expect this 'instruction' to branch when the counter is zero.
13630 if (IsTrueIfZero(CC
, Imm
)) {
13631 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13632 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13634 // The logic is the reverse of what we need for WLS, so find the other
13635 // basic block target: the target of the proceeding br.
13636 UpdateUncondBr(Br
, Dest
, DAG
);
13638 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13639 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13641 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13644 SDValue Size
= DAG
.getTargetConstant(
13645 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13646 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13647 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13648 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13649 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13651 // We expect this instruction to branch when the count is not zero.
13652 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13654 // Update the unconditional branch to target the loop preheader if we've
13655 // found the condition has been reversed.
13656 if (Target
== OtherTarget
)
13657 UpdateUncondBr(Br
, Dest
, DAG
);
13659 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13660 SDValue(LoopDec
.getNode(), 1), Chain
);
13662 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13663 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13668 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13670 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13671 SDValue Cmp
= N
->getOperand(4);
13672 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13673 // Only looking at NE cases.
13676 EVT VT
= N
->getValueType(0);
13678 SDValue LHS
= Cmp
.getOperand(0);
13679 SDValue RHS
= Cmp
.getOperand(1);
13680 SDValue Chain
= N
->getOperand(0);
13681 SDValue BB
= N
->getOperand(1);
13682 SDValue ARMcc
= N
->getOperand(2);
13683 ARMCC::CondCodes CC
=
13684 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13686 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13687 // -> (brcond Chain BB CC CPSR Cmp)
13688 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13689 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13690 LHS
->getOperand(0)->hasOneUse()) {
13691 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13692 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13693 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13694 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13695 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13696 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13697 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13698 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13699 return DAG
.getNode(
13700 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13701 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13708 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13710 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13711 SDValue Cmp
= N
->getOperand(4);
13712 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13713 // Only looking at EQ and NE cases.
13716 EVT VT
= N
->getValueType(0);
13718 SDValue LHS
= Cmp
.getOperand(0);
13719 SDValue RHS
= Cmp
.getOperand(1);
13720 SDValue FalseVal
= N
->getOperand(0);
13721 SDValue TrueVal
= N
->getOperand(1);
13722 SDValue ARMcc
= N
->getOperand(2);
13723 ARMCC::CondCodes CC
=
13724 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13726 // BFI is only available on V6T2+.
13727 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13728 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13749 /// FIXME: Turn this into a target neutral optimization?
13751 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13752 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13753 N
->getOperand(3), Cmp
);
13754 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13756 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13757 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13758 N
->getOperand(3), NewCmp
);
13761 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13762 // -> (cmov F T CC CPSR Cmp)
13763 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13764 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13765 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13766 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13767 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13768 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13769 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13770 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13771 LHS
->getOperand(2), LHS
->getOperand(3),
13772 LHS
->getOperand(4));
13776 if (!VT
.isInteger())
13779 // Materialize a boolean comparison for integers so we can avoid branching.
13780 if (isNullConstant(FalseVal
)) {
13781 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13782 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13783 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13784 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13785 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13786 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13787 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13788 DAG
.getConstant(5, dl
, MVT::i32
));
13790 // CMOV 0, 1, ==, (CMPZ x, y) ->
13791 // (ADDCARRY (SUB x, y), t:0, t:1)
13792 // where t = (SUBCARRY 0, (SUB x, y), 0)
13794 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13795 // x != y. In other words, a carry C == 1 when x == y, C == 0
13797 // The final ADDCARRY computes
13798 // x - y + (0 - (x - y)) + C == C
13799 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13800 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13801 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13802 // ISD::SUBCARRY returns a borrow but we want the carry here
13805 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13806 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13807 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13809 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13810 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13811 // This seems pointless but will allow us to combine it further below.
13812 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13814 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13815 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13816 Sub
.getValue(1), SDValue());
13817 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13818 N
->getOperand(3), CPSRGlue
.getValue(1));
13821 } else if (isNullConstant(TrueVal
)) {
13822 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13823 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13824 // This seems pointless but will allow us to combine it further below
13825 // Note that we change == for != as this is the dual for the case above.
13826 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13828 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13829 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13830 Sub
.getValue(1), SDValue());
13831 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13832 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13833 N
->getOperand(3), CPSRGlue
.getValue(1));
13838 // On Thumb1, the DAG above may be further combined if z is a power of 2
13840 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13841 // t1 = (USUBO (SUB x, y), 1)
13842 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13843 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13845 // This also handles the special case of comparing against zero; it's
13846 // essentially, the same pattern, except there's no SUBS:
13847 // CMOV x, z, !=, (CMPZ x, 0) ->
13848 // t1 = (USUBO x, 1)
13849 // t2 = (SUBCARRY x, t1:0, t1:1)
13850 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13851 const APInt
*TrueConst
;
13852 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13853 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13854 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13855 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13856 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13857 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13858 unsigned ShiftAmount
= TrueConst
->logBase2();
13860 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13861 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13862 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13865 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13866 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
13869 if (Res
.getNode()) {
13870 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
13871 // Capture demanded bits information that would be otherwise lost.
13872 if (Known
.Zero
== 0xfffffffe)
13873 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13874 DAG
.getValueType(MVT::i1
));
13875 else if (Known
.Zero
== 0xffffff00)
13876 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13877 DAG
.getValueType(MVT::i8
));
13878 else if (Known
.Zero
== 0xffff0000)
13879 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13880 DAG
.getValueType(MVT::i16
));
13886 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
13887 DAGCombinerInfo
&DCI
) const {
13888 switch (N
->getOpcode()) {
13890 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
13891 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
13892 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
13893 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
13894 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
13895 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
13896 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
13897 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
13898 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
13900 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
13902 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
13903 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13904 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
13905 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
13906 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
13907 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
13908 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
13909 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
13910 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
13911 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
13912 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
13913 case ISD::FP_TO_SINT
:
13914 case ISD::FP_TO_UINT
:
13915 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
13917 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
13918 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
13922 return PerformShiftCombine(N
, DCI
, Subtarget
);
13923 case ISD::SIGN_EXTEND
:
13924 case ISD::ZERO_EXTEND
:
13925 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
13926 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
13927 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
13928 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
13929 case ARMISD::VLD1DUP
:
13930 case ARMISD::VLD2DUP
:
13931 case ARMISD::VLD3DUP
:
13932 case ARMISD::VLD4DUP
:
13933 return PerformVLDCombine(N
, DCI
);
13934 case ARMISD::BUILD_VECTOR
:
13935 return PerformARMBUILD_VECTORCombine(N
, DCI
);
13936 case ARMISD::SMULWB
: {
13937 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13938 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13939 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13943 case ARMISD::SMULWT
: {
13944 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13945 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13946 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13950 case ARMISD::SMLALBB
: {
13951 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13952 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13953 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13954 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13958 case ARMISD::SMLALBT
: {
13959 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13960 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13961 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13962 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13963 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
13964 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
13968 case ARMISD::SMLALTB
: {
13969 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13970 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13971 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13972 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13973 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
13974 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
13978 case ARMISD::SMLALTT
: {
13979 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13980 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13981 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13982 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13986 case ISD::INTRINSIC_VOID
:
13987 case ISD::INTRINSIC_W_CHAIN
:
13988 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
13989 case Intrinsic::arm_neon_vld1
:
13990 case Intrinsic::arm_neon_vld1x2
:
13991 case Intrinsic::arm_neon_vld1x3
:
13992 case Intrinsic::arm_neon_vld1x4
:
13993 case Intrinsic::arm_neon_vld2
:
13994 case Intrinsic::arm_neon_vld3
:
13995 case Intrinsic::arm_neon_vld4
:
13996 case Intrinsic::arm_neon_vld2lane
:
13997 case Intrinsic::arm_neon_vld3lane
:
13998 case Intrinsic::arm_neon_vld4lane
:
13999 case Intrinsic::arm_neon_vld2dup
:
14000 case Intrinsic::arm_neon_vld3dup
:
14001 case Intrinsic::arm_neon_vld4dup
:
14002 case Intrinsic::arm_neon_vst1
:
14003 case Intrinsic::arm_neon_vst1x2
:
14004 case Intrinsic::arm_neon_vst1x3
:
14005 case Intrinsic::arm_neon_vst1x4
:
14006 case Intrinsic::arm_neon_vst2
:
14007 case Intrinsic::arm_neon_vst3
:
14008 case Intrinsic::arm_neon_vst4
:
14009 case Intrinsic::arm_neon_vst2lane
:
14010 case Intrinsic::arm_neon_vst3lane
:
14011 case Intrinsic::arm_neon_vst4lane
:
14012 return PerformVLDCombine(N
, DCI
);
14020 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14022 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14025 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14026 unsigned Alignment
,
14027 MachineMemOperand::Flags
,
14028 bool *Fast
) const {
14029 // Depends what it gets converted into if the type is weird.
14030 if (!VT
.isSimple())
14033 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14034 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14035 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14037 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14038 // Unaligned access can use (for example) LRDB, LRDH, LDR
14039 if (AllowsUnaligned
) {
14041 *Fast
= Subtarget
->hasV7Ops();
14046 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14047 // For any little-endian targets with neon, we can support unaligned ld/st
14048 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14049 // A big-endian target may also explicitly support unaligned accesses
14050 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14057 if (!Subtarget
->hasMVEIntegerOps())
14060 // These are for predicates
14061 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14067 if (Ty
!= MVT::v16i8
&& Ty
!= MVT::v8i16
&& Ty
!= MVT::v8f16
&&
14068 Ty
!= MVT::v4i32
&& Ty
!= MVT::v4f32
&& Ty
!= MVT::v2i64
&&
14069 Ty
!= MVT::v2f64
&&
14070 // These are for truncated stores
14071 Ty
!= MVT::v4i8
&& Ty
!= MVT::v8i8
&& Ty
!= MVT::v4i16
)
14074 if (Subtarget
->isLittle()) {
14075 // In little-endian MVE, the store instructions VSTRB.U8,
14076 // VSTRH.U16 and VSTRW.U32 all store the vector register in
14077 // exactly the same format, and differ only in the range of
14078 // their immediate offset field and the required alignment.
14080 // In particular, VSTRB.U8 can store a vector at byte alignment.
14081 // So at this stage we can simply say that loads/stores of all
14082 // 128-bit wide vector types are permitted at any alignment,
14083 // because we know at least _one_ instruction can manage that.
14085 // Later on we might find that some of those loads are better
14086 // generated as VLDRW.U32 if alignment permits, to take
14087 // advantage of the larger immediate range. But for the moment,
14088 // all that matters is that if we don't lower the load then
14089 // _some_ instruction can handle it.
14094 // In big-endian MVE, those instructions aren't so similar
14095 // after all, because they reorder the bytes of the vector
14096 // differently. So this time we can only store a particular
14097 // kind of vector if its alignment is at least the element
14098 // type. And we can't store vectors of i64 or f64 at all
14099 // without having to do some postprocessing, because there's
14101 if (Ty
== MVT::v16i8
||
14102 ((Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
) && Alignment
>= 2) ||
14103 ((Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
) && Alignment
>= 4)) {
14113 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14114 unsigned AlignCheck
) {
14115 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14116 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14119 EVT
ARMTargetLowering::getOptimalMemOpType(
14120 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14121 bool ZeroMemset
, bool MemcpyStrSrc
,
14122 const AttributeList
&FuncAttributes
) const {
14123 // See if we can use NEON instructions for this...
14124 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14125 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14128 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14129 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14130 MachineMemOperand::MONone
, &Fast
) &&
14133 } else if (Size
>= 8 &&
14134 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14135 (allowsMisalignedMemoryAccesses(
14136 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14142 // Let the target-independent logic figure it out.
14146 // 64-bit integers are split into their high and low parts and held in two
14147 // different registers, so the trunc is free since the low register can just
14149 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14150 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14152 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14153 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14154 return (SrcBits
== 64 && DestBits
== 32);
14157 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14158 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14159 !DstVT
.isInteger())
14161 unsigned SrcBits
= SrcVT
.getSizeInBits();
14162 unsigned DestBits
= DstVT
.getSizeInBits();
14163 return (SrcBits
== 64 && DestBits
== 32);
14166 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14167 if (Val
.getOpcode() != ISD::LOAD
)
14170 EVT VT1
= Val
.getValueType();
14171 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14172 !VT2
.isSimple() || !VT2
.isInteger())
14175 switch (VT1
.getSimpleVT().SimpleTy
) {
14180 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14187 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14188 if (!VT
.isSimple())
14191 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14192 // negate values directly (fneg is free). So, we don't want to let the DAG
14193 // combiner rewrite fneg into xors and some other instructions. For f16 and
14194 // FullFP16 argument passing, some bitcast nodes may be introduced,
14195 // triggering this DAG combine rewrite, so we are avoiding that with this.
14196 switch (VT
.getSimpleVT().SimpleTy
) {
14199 return Subtarget
->hasFullFP16();
14205 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14206 /// of the vector elements.
14207 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14208 auto areExtDoubled
= [](Instruction
*Ext
) {
14209 return Ext
->getType()->getScalarSizeInBits() ==
14210 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14213 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14214 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14215 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14216 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14222 /// Check if sinking \p I's operands to I's basic block is profitable, because
14223 /// the operands can be folded into a target instruction, e.g.
14224 /// sext/zext can be folded into vsubl.
14225 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14226 SmallVectorImpl
<Use
*> &Ops
) const {
14227 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14230 switch (I
->getOpcode()) {
14231 case Instruction::Sub
:
14232 case Instruction::Add
: {
14233 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14235 Ops
.push_back(&I
->getOperandUse(0));
14236 Ops
.push_back(&I
->getOperandUse(1));
14245 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14246 EVT VT
= ExtVal
.getValueType();
14248 if (!isTypeLegal(VT
))
14251 // Don't create a loadext if we can fold the extension into a wide/long
14253 // If there's more than one user instruction, the loadext is desirable no
14254 // matter what. There can be two uses by the same instruction.
14255 if (ExtVal
->use_empty() ||
14256 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14259 SDNode
*U
= *ExtVal
->use_begin();
14260 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14261 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14267 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14268 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14271 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14274 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14276 // Assuming the caller doesn't have a zeroext or signext return parameter,
14277 // truncation all the way down to i1 is valid.
14281 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14282 const AddrMode
&AM
, Type
*Ty
,
14283 unsigned AS
) const {
14284 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14285 if (Subtarget
->hasFPAO())
14286 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14292 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14296 unsigned Scale
= 1;
14297 switch (VT
.getSimpleVT().SimpleTy
) {
14307 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14313 if ((V
& (Scale
- 1)) != 0)
14315 return isUInt
<5>(V
/ Scale
);
14318 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14319 const ARMSubtarget
*Subtarget
) {
14320 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14322 if (VT
.isVector() && Subtarget
->hasNEON())
14324 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14325 !Subtarget
->hasMVEFloatOps())
14328 bool IsNeg
= false;
14334 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14336 // MVE: size * imm7
14337 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14338 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14341 return isShiftedUInt
<7,2>(V
);
14344 return isShiftedUInt
<7,1>(V
);
14346 return isUInt
<7>(V
);
14352 // half VLDR: 2 * imm8
14353 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14354 return isShiftedUInt
<8, 1>(V
);
14355 // VLDR and LDRD: 4 * imm8
14356 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14357 return isShiftedUInt
<8, 2>(V
);
14359 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14360 // + imm12 or - imm8
14362 return isUInt
<8>(V
);
14363 return isUInt
<12>(V
);
14369 /// isLegalAddressImmediate - Return true if the integer value can be used
14370 /// as the offset of the target addressing mode for load / store of the
14372 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14373 const ARMSubtarget
*Subtarget
) {
14377 if (!VT
.isSimple())
14380 if (Subtarget
->isThumb1Only())
14381 return isLegalT1AddressImmediate(V
, VT
);
14382 else if (Subtarget
->isThumb2())
14383 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14388 switch (VT
.getSimpleVT().SimpleTy
) {
14389 default: return false;
14394 return isUInt
<12>(V
);
14397 return isUInt
<8>(V
);
14400 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14402 return isShiftedUInt
<8, 2>(V
);
14406 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14408 int Scale
= AM
.Scale
;
14412 switch (VT
.getSimpleVT().SimpleTy
) {
14413 default: return false;
14421 Scale
= Scale
& ~1;
14422 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14424 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14425 // version in Thumb mode.
14429 // r * 2 (this can be lowered to r + r).
14430 if (!AM
.HasBaseReg
&& Scale
== 2)
14434 // Note, we allow "void" uses (basically, uses that aren't loads or
14435 // stores), because arm allows folding a scale into many arithmetic
14436 // operations. This should be made more precise and revisited later.
14438 // Allow r << imm, but the imm has to be a multiple of two.
14439 if (Scale
& 1) return false;
14440 return isPowerOf2_32(Scale
);
14444 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14446 const int Scale
= AM
.Scale
;
14448 // Negative scales are not supported in Thumb1.
14452 // Thumb1 addressing modes do not support register scaling excepting the
14453 // following cases:
14454 // 1. Scale == 1 means no scaling.
14455 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14456 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14459 /// isLegalAddressingMode - Return true if the addressing mode represented
14460 /// by AM is legal for this target, for a load/store of the specified type.
14461 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14462 const AddrMode
&AM
, Type
*Ty
,
14463 unsigned AS
, Instruction
*I
) const {
14464 EVT VT
= getValueType(DL
, Ty
, true);
14465 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14468 // Can never fold addr of global into load/store.
14472 switch (AM
.Scale
) {
14473 case 0: // no scale reg, must be "r+i" or "r", or "i".
14476 // ARM doesn't support any R+R*scale+imm addr modes.
14480 if (!VT
.isSimple())
14483 if (Subtarget
->isThumb1Only())
14484 return isLegalT1ScaledAddressingMode(AM
, VT
);
14486 if (Subtarget
->isThumb2())
14487 return isLegalT2ScaledAddressingMode(AM
, VT
);
14489 int Scale
= AM
.Scale
;
14490 switch (VT
.getSimpleVT().SimpleTy
) {
14491 default: return false;
14495 if (Scale
< 0) Scale
= -Scale
;
14499 return isPowerOf2_32(Scale
& ~1);
14503 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14505 // r * 2 (this can be lowered to r + r).
14506 if (!AM
.HasBaseReg
&& Scale
== 2)
14511 // Note, we allow "void" uses (basically, uses that aren't loads or
14512 // stores), because arm allows folding a scale into many arithmetic
14513 // operations. This should be made more precise and revisited later.
14515 // Allow r << imm, but the imm has to be a multiple of two.
14516 if (Scale
& 1) return false;
14517 return isPowerOf2_32(Scale
);
14523 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14524 /// icmp immediate, that is the target has icmp instructions which can compare
14525 /// a register against the immediate without having to materialize the
14526 /// immediate into a register.
14527 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14528 // Thumb2 and ARM modes can use cmn for negative immediates.
14529 if (!Subtarget
->isThumb())
14530 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14531 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14532 if (Subtarget
->isThumb2())
14533 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14534 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14535 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14536 return Imm
>= 0 && Imm
<= 255;
14539 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14540 /// *or sub* immediate, that is the target has add or sub instructions which can
14541 /// add a register with the immediate without having to materialize the
14542 /// immediate into a register.
14543 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14544 // Same encoding for add/sub, just flip the sign.
14545 int64_t AbsImm
= std::abs(Imm
);
14546 if (!Subtarget
->isThumb())
14547 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14548 if (Subtarget
->isThumb2())
14549 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14550 // Thumb1 only has 8-bit unsigned immediate.
14551 return AbsImm
>= 0 && AbsImm
<= 255;
14554 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14555 bool isSEXTLoad
, SDValue
&Base
,
14556 SDValue
&Offset
, bool &isInc
,
14557 SelectionDAG
&DAG
) {
14558 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14561 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14562 // AddressingMode 3
14563 Base
= Ptr
->getOperand(0);
14564 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14565 int RHSC
= (int)RHS
->getZExtValue();
14566 if (RHSC
< 0 && RHSC
> -256) {
14567 assert(Ptr
->getOpcode() == ISD::ADD
);
14569 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14573 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14574 Offset
= Ptr
->getOperand(1);
14576 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14577 // AddressingMode 2
14578 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14579 int RHSC
= (int)RHS
->getZExtValue();
14580 if (RHSC
< 0 && RHSC
> -0x1000) {
14581 assert(Ptr
->getOpcode() == ISD::ADD
);
14583 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14584 Base
= Ptr
->getOperand(0);
14589 if (Ptr
->getOpcode() == ISD::ADD
) {
14591 ARM_AM::ShiftOpc ShOpcVal
=
14592 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14593 if (ShOpcVal
!= ARM_AM::no_shift
) {
14594 Base
= Ptr
->getOperand(1);
14595 Offset
= Ptr
->getOperand(0);
14597 Base
= Ptr
->getOperand(0);
14598 Offset
= Ptr
->getOperand(1);
14603 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14604 Base
= Ptr
->getOperand(0);
14605 Offset
= Ptr
->getOperand(1);
14609 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14613 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14614 bool isSEXTLoad
, SDValue
&Base
,
14615 SDValue
&Offset
, bool &isInc
,
14616 SelectionDAG
&DAG
) {
14617 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14620 Base
= Ptr
->getOperand(0);
14621 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14622 int RHSC
= (int)RHS
->getZExtValue();
14623 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14624 assert(Ptr
->getOpcode() == ISD::ADD
);
14626 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14628 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14629 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14630 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14638 /// getPreIndexedAddressParts - returns true by value, base pointer and
14639 /// offset pointer and addressing mode by reference if the node's address
14640 /// can be legally represented as pre-indexed load / store address.
14642 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14644 ISD::MemIndexedMode
&AM
,
14645 SelectionDAG
&DAG
) const {
14646 if (Subtarget
->isThumb1Only())
14651 bool isSEXTLoad
= false;
14652 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14653 Ptr
= LD
->getBasePtr();
14654 VT
= LD
->getMemoryVT();
14655 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14656 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14657 Ptr
= ST
->getBasePtr();
14658 VT
= ST
->getMemoryVT();
14663 bool isLegal
= false;
14664 if (Subtarget
->isThumb2())
14665 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14666 Offset
, isInc
, DAG
);
14668 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14669 Offset
, isInc
, DAG
);
14673 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14677 /// getPostIndexedAddressParts - returns true by value, base pointer and
14678 /// offset pointer and addressing mode by reference if this node can be
14679 /// combined with a load / store to form a post-indexed load / store.
14680 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14683 ISD::MemIndexedMode
&AM
,
14684 SelectionDAG
&DAG
) const {
14687 bool isSEXTLoad
= false, isNonExt
;
14688 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14689 VT
= LD
->getMemoryVT();
14690 Ptr
= LD
->getBasePtr();
14691 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14692 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14693 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14694 VT
= ST
->getMemoryVT();
14695 Ptr
= ST
->getBasePtr();
14696 isNonExt
= !ST
->isTruncatingStore();
14700 if (Subtarget
->isThumb1Only()) {
14701 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14702 // must be non-extending/truncating, i32, with an offset of 4.
14703 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14704 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14706 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14707 if (!RHS
|| RHS
->getZExtValue() != 4)
14710 Offset
= Op
->getOperand(1);
14711 Base
= Op
->getOperand(0);
14712 AM
= ISD::POST_INC
;
14717 bool isLegal
= false;
14718 if (Subtarget
->isThumb2())
14719 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14722 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14728 // Swap base ptr and offset to catch more post-index load / store when
14729 // it's legal. In Thumb2 mode, offset must be an immediate.
14730 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14731 !Subtarget
->isThumb2())
14732 std::swap(Base
, Offset
);
14734 // Post-indexed load / store update the base pointer.
14739 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14743 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14745 const APInt
&DemandedElts
,
14746 const SelectionDAG
&DAG
,
14747 unsigned Depth
) const {
14748 unsigned BitWidth
= Known
.getBitWidth();
14750 switch (Op
.getOpcode()) {
14756 // Special cases when we convert a carry to a boolean.
14757 if (Op
.getResNo() == 0) {
14758 SDValue LHS
= Op
.getOperand(0);
14759 SDValue RHS
= Op
.getOperand(1);
14760 // (ADDE 0, 0, C) will give us a single bit.
14761 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14762 isNullConstant(RHS
)) {
14763 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14768 case ARMISD::CMOV
: {
14769 // Bits are known zero/one if known on the LHS and RHS.
14770 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14771 if (Known
.isUnknown())
14774 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14775 Known
.Zero
&= KnownRHS
.Zero
;
14776 Known
.One
&= KnownRHS
.One
;
14779 case ISD::INTRINSIC_W_CHAIN
: {
14780 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14781 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14784 case Intrinsic::arm_ldaex
:
14785 case Intrinsic::arm_ldrex
: {
14786 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14787 unsigned MemBits
= VT
.getScalarSizeInBits();
14788 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14793 case ARMISD::BFI
: {
14794 // Conservatively, we can recurse down the first operand
14795 // and just mask out all affected bits.
14796 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14798 // The operand to BFI is already a mask suitable for removing the bits it
14800 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14801 const APInt
&Mask
= CI
->getAPIntValue();
14802 Known
.Zero
&= Mask
;
14806 case ARMISD::VGETLANEs
:
14807 case ARMISD::VGETLANEu
: {
14808 const SDValue
&SrcSV
= Op
.getOperand(0);
14809 EVT VecVT
= SrcSV
.getValueType();
14810 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14811 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14812 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14813 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14814 "VGETLANE index out of bounds");
14815 unsigned Idx
= Pos
->getZExtValue();
14816 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14817 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
14819 EVT VT
= Op
.getValueType();
14820 const unsigned DstSz
= VT
.getScalarSizeInBits();
14821 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
14823 assert(SrcSz
== Known
.getBitWidth());
14824 assert(DstSz
> SrcSz
);
14825 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
14826 Known
= Known
.sext(DstSz
);
14828 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
14830 assert(DstSz
== Known
.getBitWidth());
14837 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
14838 const APInt
&DemandedAPInt
,
14839 TargetLoweringOpt
&TLO
) const {
14840 // Delay optimization, so we don't have to deal with illegal types, or block
14845 // Only optimize AND for now.
14846 if (Op
.getOpcode() != ISD::AND
)
14849 EVT VT
= Op
.getValueType();
14855 assert(VT
== MVT::i32
&& "Unexpected integer type");
14857 // Make sure the RHS really is a constant.
14858 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
14862 unsigned Mask
= C
->getZExtValue();
14864 unsigned Demanded
= DemandedAPInt
.getZExtValue();
14865 unsigned ShrunkMask
= Mask
& Demanded
;
14866 unsigned ExpandedMask
= Mask
| ~Demanded
;
14868 // If the mask is all zeros, let the target-independent code replace the
14869 // result with zero.
14870 if (ShrunkMask
== 0)
14873 // If the mask is all ones, erase the AND. (Currently, the target-independent
14874 // code won't do this, so we have to do it explicitly to avoid an infinite
14875 // loop in obscure cases.)
14876 if (ExpandedMask
== ~0U)
14877 return TLO
.CombineTo(Op
, Op
.getOperand(0));
14879 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
14880 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
14882 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
14883 if (NewMask
== Mask
)
14886 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
14887 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
14888 return TLO
.CombineTo(Op
, NewOp
);
14891 // Prefer uxtb mask.
14892 if (IsLegalMask(0xFF))
14893 return UseMask(0xFF);
14895 // Prefer uxth mask.
14896 if (IsLegalMask(0xFFFF))
14897 return UseMask(0xFFFF);
14899 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14900 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14901 if (ShrunkMask
< 256)
14902 return UseMask(ShrunkMask
);
14904 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14905 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14906 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
14907 return UseMask(ExpandedMask
);
14909 // Potential improvements:
14911 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14912 // We could try to prefer Thumb1 immediates which can be lowered to a
14913 // two-instruction sequence.
14914 // We could try to recognize more legal ARM/Thumb2 immediates here.
14920 //===----------------------------------------------------------------------===//
14921 // ARM Inline Assembly Support
14922 //===----------------------------------------------------------------------===//
14924 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
14925 // Looking for "rev" which is V6+.
14926 if (!Subtarget
->hasV6Ops())
14929 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
14930 std::string AsmStr
= IA
->getAsmString();
14931 SmallVector
<StringRef
, 4> AsmPieces
;
14932 SplitString(AsmStr
, AsmPieces
, ";\n");
14934 switch (AsmPieces
.size()) {
14935 default: return false;
14937 AsmStr
= AsmPieces
[0];
14939 SplitString(AsmStr
, AsmPieces
, " \t,");
14942 if (AsmPieces
.size() == 3 &&
14943 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
14944 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
14945 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
14946 if (Ty
&& Ty
->getBitWidth() == 32)
14947 return IntrinsicLowering::LowerToByteSwap(CI
);
14955 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
14956 // At this point, we have to lower this constraint to something else, so we
14957 // lower it to an "r" or "w". However, by doing this we will force the result
14958 // to be in register, while the X constraint is much more permissive.
14960 // Although we are correct (we are free to emit anything, without
14961 // constraints), we might break use cases that would expect us to be more
14962 // efficient and emit something else.
14963 if (!Subtarget
->hasVFP2Base())
14965 if (ConstraintVT
.isFloatingPoint())
14967 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
14968 (ConstraintVT
.getSizeInBits() == 64 ||
14969 ConstraintVT
.getSizeInBits() == 128))
14975 /// getConstraintType - Given a constraint letter, return the type of
14976 /// constraint it is for this target.
14977 ARMTargetLowering::ConstraintType
14978 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
14979 unsigned S
= Constraint
.size();
14981 switch (Constraint
[0]) {
14983 case 'l': return C_RegisterClass
;
14984 case 'w': return C_RegisterClass
;
14985 case 'h': return C_RegisterClass
;
14986 case 'x': return C_RegisterClass
;
14987 case 't': return C_RegisterClass
;
14988 case 'j': return C_Immediate
; // Constant for movw.
14989 // An address with a single base register. Due to the way we
14990 // currently handle addresses it is the same as an 'r' memory constraint.
14991 case 'Q': return C_Memory
;
14993 } else if (S
== 2) {
14994 switch (Constraint
[0]) {
14996 case 'T': return C_RegisterClass
;
14997 // All 'U+' constraints are addresses.
14998 case 'U': return C_Memory
;
15001 return TargetLowering::getConstraintType(Constraint
);
15004 /// Examine constraint type and operand type and determine a weight value.
15005 /// This object must already have been set up with the operand type
15006 /// and the current alternative constraint selected.
15007 TargetLowering::ConstraintWeight
15008 ARMTargetLowering::getSingleConstraintMatchWeight(
15009 AsmOperandInfo
&info
, const char *constraint
) const {
15010 ConstraintWeight weight
= CW_Invalid
;
15011 Value
*CallOperandVal
= info
.CallOperandVal
;
15012 // If we don't have a value, we can't do a match,
15013 // but allow it at the lowest weight.
15014 if (!CallOperandVal
)
15016 Type
*type
= CallOperandVal
->getType();
15017 // Look at the constraint type.
15018 switch (*constraint
) {
15020 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15023 if (type
->isIntegerTy()) {
15024 if (Subtarget
->isThumb())
15025 weight
= CW_SpecificReg
;
15027 weight
= CW_Register
;
15031 if (type
->isFloatingPointTy())
15032 weight
= CW_Register
;
15038 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15040 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15041 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15042 switch (Constraint
.size()) {
15044 // GCC ARM Constraint Letters
15045 switch (Constraint
[0]) {
15046 case 'l': // Low regs or general regs.
15047 if (Subtarget
->isThumb())
15048 return RCPair(0U, &ARM::tGPRRegClass
);
15049 return RCPair(0U, &ARM::GPRRegClass
);
15050 case 'h': // High regs or no regs.
15051 if (Subtarget
->isThumb())
15052 return RCPair(0U, &ARM::hGPRRegClass
);
15055 if (Subtarget
->isThumb1Only())
15056 return RCPair(0U, &ARM::tGPRRegClass
);
15057 return RCPair(0U, &ARM::GPRRegClass
);
15059 if (VT
== MVT::Other
)
15061 if (VT
== MVT::f32
)
15062 return RCPair(0U, &ARM::SPRRegClass
);
15063 if (VT
.getSizeInBits() == 64)
15064 return RCPair(0U, &ARM::DPRRegClass
);
15065 if (VT
.getSizeInBits() == 128)
15066 return RCPair(0U, &ARM::QPRRegClass
);
15069 if (VT
== MVT::Other
)
15071 if (VT
== MVT::f32
)
15072 return RCPair(0U, &ARM::SPR_8RegClass
);
15073 if (VT
.getSizeInBits() == 64)
15074 return RCPair(0U, &ARM::DPR_8RegClass
);
15075 if (VT
.getSizeInBits() == 128)
15076 return RCPair(0U, &ARM::QPR_8RegClass
);
15079 if (VT
== MVT::Other
)
15081 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15082 return RCPair(0U, &ARM::SPRRegClass
);
15083 if (VT
.getSizeInBits() == 64)
15084 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15085 if (VT
.getSizeInBits() == 128)
15086 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15092 if (Constraint
[0] == 'T') {
15093 switch (Constraint
[1]) {
15097 return RCPair(0U, &ARM::tGPREvenRegClass
);
15099 return RCPair(0U, &ARM::tGPROddRegClass
);
15108 if (StringRef("{cc}").equals_lower(Constraint
))
15109 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15111 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15114 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15115 /// vector. If it is invalid, don't add anything to Ops.
15116 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15117 std::string
&Constraint
,
15118 std::vector
<SDValue
>&Ops
,
15119 SelectionDAG
&DAG
) const {
15122 // Currently only support length 1 constraints.
15123 if (Constraint
.length() != 1) return;
15125 char ConstraintLetter
= Constraint
[0];
15126 switch (ConstraintLetter
) {
15129 case 'I': case 'J': case 'K': case 'L':
15130 case 'M': case 'N': case 'O':
15131 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15135 int64_t CVal64
= C
->getSExtValue();
15136 int CVal
= (int) CVal64
;
15137 // None of these constraints allow values larger than 32 bits. Check
15138 // that the value fits in an int.
15139 if (CVal
!= CVal64
)
15142 switch (ConstraintLetter
) {
15144 // Constant suitable for movw, must be between 0 and
15146 if (Subtarget
->hasV6T2Ops())
15147 if (CVal
>= 0 && CVal
<= 65535)
15151 if (Subtarget
->isThumb1Only()) {
15152 // This must be a constant between 0 and 255, for ADD
15154 if (CVal
>= 0 && CVal
<= 255)
15156 } else if (Subtarget
->isThumb2()) {
15157 // A constant that can be used as an immediate value in a
15158 // data-processing instruction.
15159 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15162 // A constant that can be used as an immediate value in a
15163 // data-processing instruction.
15164 if (ARM_AM::getSOImmVal(CVal
) != -1)
15170 if (Subtarget
->isThumb1Only()) {
15171 // This must be a constant between -255 and -1, for negated ADD
15172 // immediates. This can be used in GCC with an "n" modifier that
15173 // prints the negated value, for use with SUB instructions. It is
15174 // not useful otherwise but is implemented for compatibility.
15175 if (CVal
>= -255 && CVal
<= -1)
15178 // This must be a constant between -4095 and 4095. It is not clear
15179 // what this constraint is intended for. Implemented for
15180 // compatibility with GCC.
15181 if (CVal
>= -4095 && CVal
<= 4095)
15187 if (Subtarget
->isThumb1Only()) {
15188 // A 32-bit value where only one byte has a nonzero value. Exclude
15189 // zero to match GCC. This constraint is used by GCC internally for
15190 // constants that can be loaded with a move/shift combination.
15191 // It is not useful otherwise but is implemented for compatibility.
15192 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15194 } else if (Subtarget
->isThumb2()) {
15195 // A constant whose bitwise inverse can be used as an immediate
15196 // value in a data-processing instruction. This can be used in GCC
15197 // with a "B" modifier that prints the inverted value, for use with
15198 // BIC and MVN instructions. It is not useful otherwise but is
15199 // implemented for compatibility.
15200 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15203 // A constant whose bitwise inverse can be used as an immediate
15204 // value in a data-processing instruction. This can be used in GCC
15205 // with a "B" modifier that prints the inverted value, for use with
15206 // BIC and MVN instructions. It is not useful otherwise but is
15207 // implemented for compatibility.
15208 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15214 if (Subtarget
->isThumb1Only()) {
15215 // This must be a constant between -7 and 7,
15216 // for 3-operand ADD/SUB immediate instructions.
15217 if (CVal
>= -7 && CVal
< 7)
15219 } else if (Subtarget
->isThumb2()) {
15220 // A constant whose negation can be used as an immediate value in a
15221 // data-processing instruction. This can be used in GCC with an "n"
15222 // modifier that prints the negated value, for use with SUB
15223 // instructions. It is not useful otherwise but is implemented for
15225 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15228 // A constant whose negation can be used as an immediate value in a
15229 // data-processing instruction. This can be used in GCC with an "n"
15230 // modifier that prints the negated value, for use with SUB
15231 // instructions. It is not useful otherwise but is implemented for
15233 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15239 if (Subtarget
->isThumb1Only()) {
15240 // This must be a multiple of 4 between 0 and 1020, for
15241 // ADD sp + immediate.
15242 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15245 // A power of two or a constant between 0 and 32. This is used in
15246 // GCC for the shift amount on shifted register operands, but it is
15247 // useful in general for any shift amounts.
15248 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15254 if (Subtarget
->isThumb()) { // FIXME thumb2
15255 // This must be a constant between 0 and 31, for shift amounts.
15256 if (CVal
>= 0 && CVal
<= 31)
15262 if (Subtarget
->isThumb()) { // FIXME thumb2
15263 // This must be a multiple of 4 between -508 and 508, for
15264 // ADD/SUB sp = sp + immediate.
15265 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15270 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15274 if (Result
.getNode()) {
15275 Ops
.push_back(Result
);
15278 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15281 static RTLIB::Libcall
getDivRemLibcall(
15282 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15283 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15284 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15285 "Unhandled Opcode in getDivRemLibcall");
15286 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15287 N
->getOpcode() == ISD::SREM
;
15290 default: llvm_unreachable("Unexpected request for libcall!");
15291 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15292 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15293 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15294 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15299 static TargetLowering::ArgListTy
getDivRemArgList(
15300 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15301 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15302 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15303 "Unhandled Opcode in getDivRemArgList");
15304 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15305 N
->getOpcode() == ISD::SREM
;
15306 TargetLowering::ArgListTy Args
;
15307 TargetLowering::ArgListEntry Entry
;
15308 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15309 EVT ArgVT
= N
->getOperand(i
).getValueType();
15310 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15311 Entry
.Node
= N
->getOperand(i
);
15313 Entry
.IsSExt
= isSigned
;
15314 Entry
.IsZExt
= !isSigned
;
15315 Args
.push_back(Entry
);
15317 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15318 std::swap(Args
[0], Args
[1]);
15322 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15323 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15324 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15325 Subtarget
->isTargetWindows()) &&
15326 "Register-based DivRem lowering only");
15327 unsigned Opcode
= Op
->getOpcode();
15328 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15329 "Invalid opcode for Div/Rem lowering");
15330 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15331 EVT VT
= Op
->getValueType(0);
15332 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15335 // If the target has hardware divide, use divide + multiply + subtract:
15337 // rem = a - b * div
15338 // return {div, rem}
15339 // This should be lowered into UDIV/SDIV + MLS later on.
15340 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15341 : Subtarget
->hasDivideInARMMode();
15342 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15343 Op
->getSimpleValueType(0) == MVT::i32
) {
15344 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15345 const SDValue Dividend
= Op
->getOperand(0);
15346 const SDValue Divisor
= Op
->getOperand(1);
15347 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15348 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15349 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15351 SDValue Values
[2] = {Div
, Rem
};
15352 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15355 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15356 VT
.getSimpleVT().SimpleTy
);
15357 SDValue InChain
= DAG
.getEntryNode();
15359 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15363 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15364 getPointerTy(DAG
.getDataLayout()));
15366 Type
*RetTy
= StructType::get(Ty
, Ty
);
15368 if (Subtarget
->isTargetWindows())
15369 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15371 TargetLowering::CallLoweringInfo
CLI(DAG
);
15372 CLI
.setDebugLoc(dl
).setChain(InChain
)
15373 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15374 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15376 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15377 return CallInfo
.first
;
15380 // Lowers REM using divmod helpers
15381 // see RTABI section 4.2/4.3
15382 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15383 // Build return types (div and rem)
15384 std::vector
<Type
*> RetTyParams
;
15385 Type
*RetTyElement
;
15387 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15388 default: llvm_unreachable("Unexpected request for libcall!");
15389 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15390 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15391 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15392 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15395 RetTyParams
.push_back(RetTyElement
);
15396 RetTyParams
.push_back(RetTyElement
);
15397 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15398 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15400 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15402 SDValue InChain
= DAG
.getEntryNode();
15403 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15405 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15406 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15407 getPointerTy(DAG
.getDataLayout()));
15409 if (Subtarget
->isTargetWindows())
15410 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15413 CallLoweringInfo
CLI(DAG
);
15414 CLI
.setChain(InChain
)
15415 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15416 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15417 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15419 // Return second (rem) result operand (first contains div)
15420 SDNode
*ResNode
= CallResult
.first
.getNode();
15421 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15422 return ResNode
->getOperand(1);
15426 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15427 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15431 SDValue Chain
= Op
.getOperand(0);
15432 SDValue Size
= Op
.getOperand(1);
15434 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15435 "no-stack-arg-probe")) {
15436 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15437 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15438 Chain
= SP
.getValue(1);
15439 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15441 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15442 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15443 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15444 SDValue Ops
[2] = { SP
, Chain
};
15445 return DAG
.getMergeValues(Ops
, DL
);
15448 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15449 DAG
.getConstant(2, DL
, MVT::i32
));
15452 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15453 Flag
= Chain
.getValue(1);
15455 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15456 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15458 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15459 Chain
= NewSP
.getValue(1);
15461 SDValue Ops
[2] = { NewSP
, Chain
};
15462 return DAG
.getMergeValues(Ops
, DL
);
15465 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15466 SDValue SrcVal
= Op
.getOperand(0);
15467 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15468 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15469 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15470 "Unexpected type for custom-lowering FP_EXTEND");
15472 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15473 "With both FP DP and 16, any FP conversion is legal!");
15475 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15476 "With FP16, 16 to 32 conversion is legal!");
15478 // Either we are converting from 16 -> 64, without FP16 and/or
15479 // FP.double-precision or without Armv8-fp. So we must do it in two
15481 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15482 // without FP16. So we must do a function call.
15486 // Instruction from 16 -> 32
15487 if (Subtarget
->hasFP16())
15488 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15489 // Lib call from 16 -> 32
15491 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15492 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15493 "Unexpected type for custom-lowering FP_EXTEND");
15495 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15501 // For sure now SrcVal is 32 bits
15502 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15503 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15505 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15506 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15507 "Unexpected type for custom-lowering FP_EXTEND");
15508 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15511 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15512 SDValue SrcVal
= Op
.getOperand(0);
15513 EVT SrcVT
= SrcVal
.getValueType();
15514 EVT DstVT
= Op
.getValueType();
15515 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15516 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15518 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15519 "Unexpected type for custom-lowering FP_ROUND");
15521 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15522 "With both FP DP and 16, any FP conversion is legal!");
15526 // Instruction from 32 -> 16 if hasFP16 is valid
15527 if (SrcSz
== 32 && Subtarget
->hasFP16())
15530 // Lib call from 32 -> 16 / 64 -> [32, 16]
15531 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15532 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15533 "Unexpected type for custom-lowering FP_ROUND");
15534 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15537 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15538 SelectionDAG
&DAG
) const {
15539 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15540 MVT HalfT
= MVT::i32
;
15542 SDValue Hi
, Lo
, Tmp
;
15544 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15545 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15548 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15549 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15551 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15552 DAG
.getConstant(0, dl
, HalfT
));
15553 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15554 DAG
.getConstant(1, dl
, HalfT
));
15556 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15557 DAG
.getConstant(OpTypeBits
- 1, dl
,
15558 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15559 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15560 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15561 SDValue(Lo
.getNode(), 1));
15562 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15563 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15565 Results
.push_back(Lo
);
15566 Results
.push_back(Hi
);
15570 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15571 // The ARM target isn't yet aware of offsets.
15575 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15576 if (v
== 0xffffffff)
15579 // there can be 1's on either or both "outsides", all the "inside"
15580 // bits must be 0's
15581 return isShiftedMask_32(~v
);
15584 /// isFPImmLegal - Returns true if the target can instruction select the
15585 /// specified FP immediate natively. If false, the legalizer will
15586 /// materialize the FP immediate as a load from a constant pool.
15587 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15588 bool ForCodeSize
) const {
15589 if (!Subtarget
->hasVFP3Base())
15591 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15592 return ARM_AM::getFP16Imm(Imm
) != -1;
15593 if (VT
== MVT::f32
)
15594 return ARM_AM::getFP32Imm(Imm
) != -1;
15595 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15596 return ARM_AM::getFP64Imm(Imm
) != -1;
15600 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15601 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15602 /// specified in the intrinsic calls.
15603 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15605 MachineFunction
&MF
,
15606 unsigned Intrinsic
) const {
15607 switch (Intrinsic
) {
15608 case Intrinsic::arm_neon_vld1
:
15609 case Intrinsic::arm_neon_vld2
:
15610 case Intrinsic::arm_neon_vld3
:
15611 case Intrinsic::arm_neon_vld4
:
15612 case Intrinsic::arm_neon_vld2lane
:
15613 case Intrinsic::arm_neon_vld3lane
:
15614 case Intrinsic::arm_neon_vld4lane
:
15615 case Intrinsic::arm_neon_vld2dup
:
15616 case Intrinsic::arm_neon_vld3dup
:
15617 case Intrinsic::arm_neon_vld4dup
: {
15618 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15619 // Conservatively set memVT to the entire set of vectors loaded.
15620 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15621 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15622 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15623 Info
.ptrVal
= I
.getArgOperand(0);
15625 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15626 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15627 // volatile loads with NEON intrinsics not supported
15628 Info
.flags
= MachineMemOperand::MOLoad
;
15631 case Intrinsic::arm_neon_vld1x2
:
15632 case Intrinsic::arm_neon_vld1x3
:
15633 case Intrinsic::arm_neon_vld1x4
: {
15634 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15635 // Conservatively set memVT to the entire set of vectors loaded.
15636 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15637 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15638 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15639 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15642 // volatile loads with NEON intrinsics not supported
15643 Info
.flags
= MachineMemOperand::MOLoad
;
15646 case Intrinsic::arm_neon_vst1
:
15647 case Intrinsic::arm_neon_vst2
:
15648 case Intrinsic::arm_neon_vst3
:
15649 case Intrinsic::arm_neon_vst4
:
15650 case Intrinsic::arm_neon_vst2lane
:
15651 case Intrinsic::arm_neon_vst3lane
:
15652 case Intrinsic::arm_neon_vst4lane
: {
15653 Info
.opc
= ISD::INTRINSIC_VOID
;
15654 // Conservatively set memVT to the entire set of vectors stored.
15655 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15656 unsigned NumElts
= 0;
15657 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15658 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15659 if (!ArgTy
->isVectorTy())
15661 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15663 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15664 Info
.ptrVal
= I
.getArgOperand(0);
15666 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15667 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15668 // volatile stores with NEON intrinsics not supported
15669 Info
.flags
= MachineMemOperand::MOStore
;
15672 case Intrinsic::arm_neon_vst1x2
:
15673 case Intrinsic::arm_neon_vst1x3
:
15674 case Intrinsic::arm_neon_vst1x4
: {
15675 Info
.opc
= ISD::INTRINSIC_VOID
;
15676 // Conservatively set memVT to the entire set of vectors stored.
15677 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15678 unsigned NumElts
= 0;
15679 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15680 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15681 if (!ArgTy
->isVectorTy())
15683 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15685 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15686 Info
.ptrVal
= I
.getArgOperand(0);
15689 // volatile stores with NEON intrinsics not supported
15690 Info
.flags
= MachineMemOperand::MOStore
;
15693 case Intrinsic::arm_ldaex
:
15694 case Intrinsic::arm_ldrex
: {
15695 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15696 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15697 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15698 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15699 Info
.ptrVal
= I
.getArgOperand(0);
15701 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15702 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15705 case Intrinsic::arm_stlex
:
15706 case Intrinsic::arm_strex
: {
15707 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15708 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15709 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15710 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15711 Info
.ptrVal
= I
.getArgOperand(1);
15713 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15714 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15717 case Intrinsic::arm_stlexd
:
15718 case Intrinsic::arm_strexd
:
15719 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15720 Info
.memVT
= MVT::i64
;
15721 Info
.ptrVal
= I
.getArgOperand(2);
15724 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15727 case Intrinsic::arm_ldaexd
:
15728 case Intrinsic::arm_ldrexd
:
15729 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15730 Info
.memVT
= MVT::i64
;
15731 Info
.ptrVal
= I
.getArgOperand(0);
15734 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15744 /// Returns true if it is beneficial to convert a load of a constant
15745 /// to just the constant itself.
15746 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15748 assert(Ty
->isIntegerTy());
15750 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15751 if (Bits
== 0 || Bits
> 32)
15756 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15757 unsigned Index
) const {
15758 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15761 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15764 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15765 ARM_MB::MemBOpt Domain
) const {
15766 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15768 // First, if the target has no DMB, see what fallback we can use.
15769 if (!Subtarget
->hasDataBarrier()) {
15770 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15771 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15773 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15774 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15775 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15776 Builder
.getInt32(0), Builder
.getInt32(7),
15777 Builder
.getInt32(10), Builder
.getInt32(5)};
15778 return Builder
.CreateCall(MCR
, args
);
15780 // Instead of using barriers, atomic accesses on these subtargets use
15782 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15785 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15786 // Only a full system barrier exists in the M-class architectures.
15787 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15788 Constant
*CDomain
= Builder
.getInt32(Domain
);
15789 return Builder
.CreateCall(DMB
, CDomain
);
15793 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15794 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15796 AtomicOrdering Ord
) const {
15798 case AtomicOrdering::NotAtomic
:
15799 case AtomicOrdering::Unordered
:
15800 llvm_unreachable("Invalid fence: unordered/non-atomic");
15801 case AtomicOrdering::Monotonic
:
15802 case AtomicOrdering::Acquire
:
15803 return nullptr; // Nothing to do
15804 case AtomicOrdering::SequentiallyConsistent
:
15805 if (!Inst
->hasAtomicStore())
15806 return nullptr; // Nothing to do
15808 case AtomicOrdering::Release
:
15809 case AtomicOrdering::AcquireRelease
:
15810 if (Subtarget
->preferISHSTBarriers())
15811 return makeDMB(Builder
, ARM_MB::ISHST
);
15812 // FIXME: add a comment with a link to documentation justifying this.
15814 return makeDMB(Builder
, ARM_MB::ISH
);
15816 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15819 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
15821 AtomicOrdering Ord
) const {
15823 case AtomicOrdering::NotAtomic
:
15824 case AtomicOrdering::Unordered
:
15825 llvm_unreachable("Invalid fence: unordered/not-atomic");
15826 case AtomicOrdering::Monotonic
:
15827 case AtomicOrdering::Release
:
15828 return nullptr; // Nothing to do
15829 case AtomicOrdering::Acquire
:
15830 case AtomicOrdering::AcquireRelease
:
15831 case AtomicOrdering::SequentiallyConsistent
:
15832 return makeDMB(Builder
, ARM_MB::ISH
);
15834 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15837 // Loads and stores less than 64-bits are already atomic; ones above that
15838 // are doomed anyway, so defer to the default libcall and blame the OS when
15839 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15840 // anything for those.
15841 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
15842 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
15843 return (Size
== 64) && !Subtarget
->isMClass();
15846 // Loads and stores less than 64-bits are already atomic; ones above that
15847 // are doomed anyway, so defer to the default libcall and blame the OS when
15848 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15849 // anything for those.
15850 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15851 // guarantee, see DDI0406C ARM architecture reference manual,
15852 // sections A8.8.72-74 LDRD)
15853 TargetLowering::AtomicExpansionKind
15854 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
15855 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
15856 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
15857 : AtomicExpansionKind::None
;
15860 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15861 // and up to 64 bits on the non-M profiles
15862 TargetLowering::AtomicExpansionKind
15863 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
15864 if (AI
->isFloatingPointOperation())
15865 return AtomicExpansionKind::CmpXChg
;
15867 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
15868 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15869 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
15870 ? AtomicExpansionKind::LLSC
15871 : AtomicExpansionKind::None
;
15874 TargetLowering::AtomicExpansionKind
15875 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
15876 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15877 // implement cmpxchg without spilling. If the address being exchanged is also
15878 // on the stack and close enough to the spill slot, this can lead to a
15879 // situation where the monitor always gets cleared and the atomic operation
15880 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15881 bool HasAtomicCmpXchg
=
15882 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15883 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
15884 return AtomicExpansionKind::LLSC
;
15885 return AtomicExpansionKind::None
;
15888 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15889 const Instruction
*I
) const {
15890 return InsertFencesForAtomic
;
15893 // This has so far only been implemented for MachO.
15894 bool ARMTargetLowering::useLoadStackGuardNode() const {
15895 return Subtarget
->isTargetMachO();
15898 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
15899 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15900 return TargetLowering::insertSSPDeclarations(M
);
15902 // MSVC CRT has a global variable holding security cookie.
15903 M
.getOrInsertGlobal("__security_cookie",
15904 Type::getInt8PtrTy(M
.getContext()));
15906 // MSVC CRT has a function to validate security cookie.
15907 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
15908 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
15909 Type::getInt8PtrTy(M
.getContext()));
15910 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
15911 F
->addAttribute(1, Attribute::AttrKind::InReg
);
15914 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
15915 // MSVC CRT has a global variable holding security cookie.
15916 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15917 return M
.getGlobalVariable("__security_cookie");
15918 return TargetLowering::getSDagStackGuard(M
);
15921 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
15922 // MSVC CRT has a function to validate security cookie.
15923 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15924 return M
.getFunction("__security_check_cookie");
15925 return TargetLowering::getSSPStackGuardCheck(M
);
15928 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
15929 unsigned &Cost
) const {
15930 // If we do not have NEON, vector types are not natively supported.
15931 if (!Subtarget
->hasNEON())
15934 // Floating point values and vector values map to the same register file.
15935 // Therefore, although we could do a store extract of a vector type, this is
15936 // better to leave at float as we have more freedom in the addressing mode for
15938 if (VectorTy
->isFPOrFPVectorTy())
15941 // If the index is unknown at compile time, this is very expensive to lower
15942 // and it is not possible to combine the store with the extract.
15943 if (!isa
<ConstantInt
>(Idx
))
15946 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
15947 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
15948 // We can do a store + vector extract on any vector that fits perfectly in a D
15950 if (BitWidth
== 64 || BitWidth
== 128) {
15957 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
15958 return Subtarget
->hasV6T2Ops();
15961 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
15962 return Subtarget
->hasV6T2Ops();
15965 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
15966 return !Subtarget
->hasMinSize();
15969 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
15970 AtomicOrdering Ord
) const {
15971 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15972 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
15973 bool IsAcquire
= isAcquireOrStronger(Ord
);
15975 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
15976 // intrinsic must return {i32, i32} and we have to recombine them into a
15977 // single i64 here.
15978 if (ValTy
->getPrimitiveSizeInBits() == 64) {
15979 Intrinsic::ID Int
=
15980 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
15981 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
15983 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15984 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
15986 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
15987 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
15988 if (!Subtarget
->isLittle())
15989 std::swap (Lo
, Hi
);
15990 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
15991 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
15992 return Builder
.CreateOr(
15993 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
15996 Type
*Tys
[] = { Addr
->getType() };
15997 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
15998 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16000 return Builder
.CreateTruncOrBitCast(
16001 Builder
.CreateCall(Ldrex
, Addr
),
16002 cast
<PointerType
>(Addr
->getType())->getElementType());
16005 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16006 IRBuilder
<> &Builder
) const {
16007 if (!Subtarget
->hasV7Ops())
16009 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16010 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16013 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16015 AtomicOrdering Ord
) const {
16016 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16017 bool IsRelease
= isReleaseOrStronger(Ord
);
16019 // Since the intrinsics must have legal type, the i64 intrinsics take two
16020 // parameters: "i32, i32". We must marshal Val into the appropriate form
16021 // before the call.
16022 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16023 Intrinsic::ID Int
=
16024 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16025 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16026 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16028 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16029 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16030 if (!Subtarget
->isLittle())
16032 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16033 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16036 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16037 Type
*Tys
[] = { Addr
->getType() };
16038 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16040 return Builder
.CreateCall(
16041 Strex
, {Builder
.CreateZExtOrBitCast(
16042 Val
, Strex
->getFunctionType()->getParamType(0)),
16047 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16048 return Subtarget
->isMClass();
16051 /// A helper function for determining the number of interleaved accesses we
16052 /// will generate when lowering accesses of the given type.
16054 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16055 const DataLayout
&DL
) const {
16056 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16059 bool ARMTargetLowering::isLegalInterleavedAccessType(
16060 VectorType
*VecTy
, const DataLayout
&DL
) const {
16062 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16063 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16065 // Ensure the vector doesn't have f16 elements. Even though we could do an
16066 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16068 if (VecTy
->getElementType()->isHalfTy())
16071 // Ensure the number of vector elements is greater than 1.
16072 if (VecTy
->getNumElements() < 2)
16075 // Ensure the element type is legal.
16076 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16079 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16080 // 128 will be split into multiple interleaved accesses.
16081 return VecSize
== 64 || VecSize
% 128 == 0;
16084 /// Lower an interleaved load into a vldN intrinsic.
16086 /// E.g. Lower an interleaved load (Factor = 2):
16087 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16088 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16089 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16092 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16093 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16094 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16095 bool ARMTargetLowering::lowerInterleavedLoad(
16096 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16097 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16098 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16099 "Invalid interleave factor");
16100 assert(!Shuffles
.empty() && "Empty shufflevector input");
16101 assert(Shuffles
.size() == Indices
.size() &&
16102 "Unmatched number of shufflevectors and indices");
16104 VectorType
*VecTy
= Shuffles
[0]->getType();
16105 Type
*EltTy
= VecTy
->getVectorElementType();
16107 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16109 // Skip if we do not have NEON and skip illegal vector types. We can
16110 // "legalize" wide vector types into multiple interleaved accesses as long as
16111 // the vector types are divisible by 128.
16112 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16115 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16117 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16118 // load integer vectors first and then convert to pointer vectors.
16119 if (EltTy
->isPointerTy())
16121 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16123 IRBuilder
<> Builder(LI
);
16125 // The base address of the load.
16126 Value
*BaseAddr
= LI
->getPointerOperand();
16128 if (NumLoads
> 1) {
16129 // If we're going to generate more than one load, reset the sub-vector type
16130 // to something legal.
16131 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16132 VecTy
->getVectorNumElements() / NumLoads
);
16134 // We will compute the pointer operand of each load from the original base
16135 // address using GEPs. Cast the base address to a pointer to the scalar
16137 BaseAddr
= Builder
.CreateBitCast(
16138 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16139 LI
->getPointerAddressSpace()));
16142 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16144 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16145 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16146 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16147 Intrinsic::arm_neon_vld3
,
16148 Intrinsic::arm_neon_vld4
};
16149 Function
*VldnFunc
=
16150 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16152 // Holds sub-vectors extracted from the load intrinsic return values. The
16153 // sub-vectors are associated with the shufflevector instructions they will
16155 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16157 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16158 // If we're generating more than one load, compute the base address of
16159 // subsequent loads as an offset from the previous.
16162 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16163 VecTy
->getVectorNumElements() * Factor
);
16165 SmallVector
<Value
*, 2> Ops
;
16166 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16167 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16169 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16171 // Replace uses of each shufflevector with the corresponding vector loaded
16173 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16174 ShuffleVectorInst
*SV
= Shuffles
[i
];
16175 unsigned Index
= Indices
[i
];
16177 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16179 // Convert the integer vector to pointer vector if the element is pointer.
16180 if (EltTy
->isPointerTy())
16181 SubVec
= Builder
.CreateIntToPtr(
16182 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16183 VecTy
->getVectorNumElements()));
16185 SubVecs
[SV
].push_back(SubVec
);
16189 // Replace uses of the shufflevector instructions with the sub-vectors
16190 // returned by the load intrinsic. If a shufflevector instruction is
16191 // associated with more than one sub-vector, those sub-vectors will be
16192 // concatenated into a single wide vector.
16193 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16194 auto &SubVec
= SubVecs
[SVI
];
16196 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16197 SVI
->replaceAllUsesWith(WideVec
);
16203 /// Lower an interleaved store into a vstN intrinsic.
16205 /// E.g. Lower an interleaved store (Factor = 3):
16206 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16207 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16208 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16211 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16212 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16213 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16214 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16216 /// Note that the new shufflevectors will be removed and we'll only generate one
16217 /// vst3 instruction in CodeGen.
16219 /// Example for a more general valid mask (Factor 3). Lower:
16220 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16221 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16222 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16225 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16226 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16227 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16228 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16229 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16230 ShuffleVectorInst
*SVI
,
16231 unsigned Factor
) const {
16232 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16233 "Invalid interleave factor");
16235 VectorType
*VecTy
= SVI
->getType();
16236 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16237 "Invalid interleaved store");
16239 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16240 Type
*EltTy
= VecTy
->getVectorElementType();
16241 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16243 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16245 // Skip if we do not have NEON and skip illegal vector types. We can
16246 // "legalize" wide vector types into multiple interleaved accesses as long as
16247 // the vector types are divisible by 128.
16248 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16251 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16253 Value
*Op0
= SVI
->getOperand(0);
16254 Value
*Op1
= SVI
->getOperand(1);
16255 IRBuilder
<> Builder(SI
);
16257 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16258 // vectors to integer vectors.
16259 if (EltTy
->isPointerTy()) {
16260 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16262 // Convert to the corresponding integer vector.
16264 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16265 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16266 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16268 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16271 // The base address of the store.
16272 Value
*BaseAddr
= SI
->getPointerOperand();
16274 if (NumStores
> 1) {
16275 // If we're going to generate more than one store, reset the lane length
16276 // and sub-vector type to something legal.
16277 LaneLen
/= NumStores
;
16278 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16280 // We will compute the pointer operand of each store from the original base
16281 // address using GEPs. Cast the base address to a pointer to the scalar
16283 BaseAddr
= Builder
.CreateBitCast(
16284 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16285 SI
->getPointerAddressSpace()));
16288 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16290 auto Mask
= SVI
->getShuffleMask();
16292 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16293 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16294 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16295 Intrinsic::arm_neon_vst3
,
16296 Intrinsic::arm_neon_vst4
};
16298 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16299 // If we generating more than one store, we compute the base address of
16300 // subsequent stores as an offset from the previous.
16301 if (StoreCount
> 0)
16302 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16303 BaseAddr
, LaneLen
* Factor
);
16305 SmallVector
<Value
*, 6> Ops
;
16306 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16308 Function
*VstNFunc
=
16309 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16311 // Split the shufflevector operands into sub vectors for the new vstN call.
16312 for (unsigned i
= 0; i
< Factor
; i
++) {
16313 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16314 if (Mask
[IdxI
] >= 0) {
16315 Ops
.push_back(Builder
.CreateShuffleVector(
16316 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16318 unsigned StartMask
= 0;
16319 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16320 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16321 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16322 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16326 // Note: If all elements in a chunk are undefs, StartMask=0!
16327 // Note: Filling undef gaps with random elements is ok, since
16328 // those elements were being written anyway (with undefs).
16329 // In the case of all undefs we're defaulting to using elems from 0
16330 // Note: StartMask cannot be negative, it's checked in
16331 // isReInterleaveMask
16332 Ops
.push_back(Builder
.CreateShuffleVector(
16333 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16337 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16338 Builder
.CreateCall(VstNFunc
, Ops
);
16351 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16352 uint64_t &Members
) {
16353 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16354 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16355 uint64_t SubMembers
= 0;
16356 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16358 Members
+= SubMembers
;
16360 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16361 uint64_t SubMembers
= 0;
16362 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16364 Members
+= SubMembers
* AT
->getNumElements();
16365 } else if (Ty
->isFloatTy()) {
16366 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16370 } else if (Ty
->isDoubleTy()) {
16371 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16375 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16382 return VT
->getBitWidth() == 64;
16384 return VT
->getBitWidth() == 128;
16386 switch (VT
->getBitWidth()) {
16399 return (Members
> 0 && Members
<= 4);
16402 /// Return the correct alignment for the current calling convention.
16404 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16405 DataLayout DL
) const {
16406 if (!ArgTy
->isVectorTy())
16407 return DL
.getABITypeAlignment(ArgTy
);
16409 // Avoid over-aligning vector parameters. It would require realigning the
16410 // stack and waste space for no real benefit.
16411 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16414 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16415 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16416 /// passing according to AAPCS rules.
16417 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16418 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16419 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16420 CallingConv::ARM_AAPCS_VFP
)
16423 HABaseType Base
= HA_UNKNOWN
;
16424 uint64_t Members
= 0;
16425 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16426 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16428 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16429 return IsHA
|| IsIntArray
;
16432 unsigned ARMTargetLowering::getExceptionPointerRegister(
16433 const Constant
*PersonalityFn
) const {
16434 // Platforms which do not use SjLj EH may return values in these registers
16435 // via the personality function.
16436 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16439 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16440 const Constant
*PersonalityFn
) const {
16441 // Platforms which do not use SjLj EH may return values in these registers
16442 // via the personality function.
16443 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16446 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16447 // Update IsSplitCSR in ARMFunctionInfo.
16448 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16449 AFI
->setIsSplitCSR(true);
16452 void ARMTargetLowering::insertCopiesSplitCSR(
16453 MachineBasicBlock
*Entry
,
16454 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16455 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16456 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16460 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16461 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16462 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16463 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16464 const TargetRegisterClass
*RC
= nullptr;
16465 if (ARM::GPRRegClass
.contains(*I
))
16466 RC
= &ARM::GPRRegClass
;
16467 else if (ARM::DPRRegClass
.contains(*I
))
16468 RC
= &ARM::DPRRegClass
;
16470 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16472 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
16473 // Create copy from CSR to a virtual register.
16474 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16475 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16476 // nounwind. If we want to generalize this later, we may need to emit
16477 // CFI pseudo-instructions.
16478 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16479 Attribute::NoUnwind
) &&
16480 "Function should be nounwind in insertCopiesSplitCSR!");
16481 Entry
->addLiveIn(*I
);
16482 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16485 // Insert the copy-back instructions right before the terminator.
16486 for (auto *Exit
: Exits
)
16487 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16488 TII
->get(TargetOpcode::COPY
), *I
)
16493 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16494 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16495 TargetLoweringBase::finalizeLowering(MF
);