[ARM] MVE big endian bitcasts
[llvm-complete.git] / lib / Target / ARM / ARMISelLowering.cpp
blobcce57a4d55fd2db5c50635fb0147b35f5d04a734
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
115 using namespace llvm;
116 using namespace llvm::PatternMatch;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls, "Number of tail calls");
121 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted,
124 "Number of constants with their storage promoted into constant pools");
126 static cl::opt<bool>
127 ARMInterworking("arm-interworking", cl::Hidden,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
129 cl::init(true));
131 static cl::opt<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
134 "constant pools"),
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
139 cl::init(64));
140 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
143 cl::init(128));
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs[] = {
147 ARM::R0, ARM::R1, ARM::R2, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
151 MVT PromotedBitwiseVT) {
152 if (VT != PromotedLdStVT) {
153 setOperationAction(ISD::LOAD, VT, Promote);
154 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
156 setOperationAction(ISD::STORE, VT, Promote);
157 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
160 MVT ElemTy = VT.getVectorElementType();
161 if (ElemTy != MVT::f64)
162 setOperationAction(ISD::SETCC, VT, Custom);
163 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
165 if (ElemTy == MVT::i32) {
166 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
167 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
168 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
169 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
170 } else {
171 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
172 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
173 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
174 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
176 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
177 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
178 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
180 setOperationAction(ISD::SELECT, VT, Expand);
181 setOperationAction(ISD::SELECT_CC, VT, Expand);
182 setOperationAction(ISD::VSELECT, VT, Expand);
183 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
184 if (VT.isInteger()) {
185 setOperationAction(ISD::SHL, VT, Custom);
186 setOperationAction(ISD::SRA, VT, Custom);
187 setOperationAction(ISD::SRL, VT, Custom);
190 // Promote all bit-wise operations.
191 if (VT.isInteger() && VT != PromotedBitwiseVT) {
192 setOperationAction(ISD::AND, VT, Promote);
193 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
194 setOperationAction(ISD::OR, VT, Promote);
195 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
196 setOperationAction(ISD::XOR, VT, Promote);
197 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV, VT, Expand);
202 setOperationAction(ISD::UDIV, VT, Expand);
203 setOperationAction(ISD::FDIV, VT, Expand);
204 setOperationAction(ISD::SREM, VT, Expand);
205 setOperationAction(ISD::UREM, VT, Expand);
206 setOperationAction(ISD::FREM, VT, Expand);
208 if (!VT.isFloatingPoint() &&
209 VT != MVT::v2i64 && VT != MVT::v1i64)
210 for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211 setOperationAction(Opcode, VT, Legal);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
215 addRegisterClass(VT, &ARM::DPRRegClass);
216 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
220 addRegisterClass(VT, &ARM::DPairRegClass);
221 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
224 void ARMTargetLowering::setAllExpand(MVT VT) {
225 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
226 setOperationAction(Opc, VT, Expand);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST, VT, Legal);
232 setOperationAction(ISD::LOAD, VT, Legal);
233 setOperationAction(ISD::STORE, VT, Legal);
234 setOperationAction(ISD::UNDEF, VT, Legal);
237 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
238 LegalizeAction Action) {
239 setLoadExtAction(ISD::EXTLOAD, From, To, Action);
240 setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
241 setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
245 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
247 for (auto VT : IntTypes) {
248 addRegisterClass(VT, &ARM::QPRRegClass);
249 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
250 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
252 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
253 setOperationAction(ISD::SHL, VT, Custom);
254 setOperationAction(ISD::SRA, VT, Custom);
255 setOperationAction(ISD::SRL, VT, Custom);
256 setOperationAction(ISD::SMIN, VT, Legal);
257 setOperationAction(ISD::SMAX, VT, Legal);
258 setOperationAction(ISD::UMIN, VT, Legal);
259 setOperationAction(ISD::UMAX, VT, Legal);
260 setOperationAction(ISD::ABS, VT, Legal);
261 setOperationAction(ISD::SETCC, VT, Custom);
263 // No native support for these.
264 setOperationAction(ISD::UDIV, VT, Expand);
265 setOperationAction(ISD::SDIV, VT, Expand);
266 setOperationAction(ISD::UREM, VT, Expand);
267 setOperationAction(ISD::SREM, VT, Expand);
269 if (!HasMVEFP) {
270 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
271 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
272 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
273 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
277 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
278 for (auto VT : FloatTypes) {
279 addRegisterClass(VT, &ARM::QPRRegClass);
280 if (!HasMVEFP)
281 setAllExpand(VT);
283 // These are legal or custom whether we have MVE.fp or not
284 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
285 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
286 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
287 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
288 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
289 setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
290 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
291 setOperationAction(ISD::SETCC, VT, Custom);
293 if (HasMVEFP) {
294 setOperationAction(ISD::FMINNUM, VT, Legal);
295 setOperationAction(ISD::FMAXNUM, VT, Legal);
296 setOperationAction(ISD::FROUND, VT, Legal);
298 // No native support for these.
299 setOperationAction(ISD::FDIV, VT, Expand);
300 setOperationAction(ISD::FREM, VT, Expand);
301 setOperationAction(ISD::FSQRT, VT, Expand);
302 setOperationAction(ISD::FSIN, VT, Expand);
303 setOperationAction(ISD::FCOS, VT, Expand);
304 setOperationAction(ISD::FPOW, VT, Expand);
305 setOperationAction(ISD::FLOG, VT, Expand);
306 setOperationAction(ISD::FLOG2, VT, Expand);
307 setOperationAction(ISD::FLOG10, VT, Expand);
308 setOperationAction(ISD::FEXP, VT, Expand);
309 setOperationAction(ISD::FEXP2, VT, Expand);
310 setOperationAction(ISD::FNEARBYINT, VT, Expand);
314 // We 'support' these types up to bitcast/load/store level, regardless of
315 // MVE integer-only / float support. Only doing FP data processing on the FP
316 // vector types is inhibited at integer-only level.
317 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
318 for (auto VT : LongTypes) {
319 addRegisterClass(VT, &ARM::QPRRegClass);
320 setAllExpand(VT);
321 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
322 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
323 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
325 // We can do bitwise operations on v2i64 vectors
326 setOperationAction(ISD::AND, MVT::v2i64, Legal);
327 setOperationAction(ISD::OR, MVT::v2i64, Legal);
328 setOperationAction(ISD::XOR, MVT::v2i64, Legal);
330 // It is legal to extload from v4i8 to v4i16 or v4i32.
331 addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
332 addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
333 addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
335 // Some truncating stores are legal too.
336 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
337 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
338 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
340 // Predicate types
341 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
342 for (auto VT : pTypes) {
343 addRegisterClass(VT, &ARM::VCCRRegClass);
344 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
345 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
346 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
347 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
348 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
349 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
350 setOperationAction(ISD::SETCC, VT, Custom);
351 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
355 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
356 const ARMSubtarget &STI)
357 : TargetLowering(TM), Subtarget(&STI) {
358 RegInfo = Subtarget->getRegisterInfo();
359 Itins = Subtarget->getInstrItineraryData();
361 setBooleanContents(ZeroOrOneBooleanContent);
362 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
364 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
365 !Subtarget->isTargetWatchOS()) {
366 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
367 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
368 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
369 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
370 : CallingConv::ARM_AAPCS);
373 if (Subtarget->isTargetMachO()) {
374 // Uses VFP for Thumb libfuncs if available.
375 if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
376 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
377 static const struct {
378 const RTLIB::Libcall Op;
379 const char * const Name;
380 const ISD::CondCode Cond;
381 } LibraryCalls[] = {
382 // Single-precision floating-point arithmetic.
383 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
384 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
385 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
386 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
388 // Double-precision floating-point arithmetic.
389 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
390 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
391 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
392 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
394 // Single-precision comparisons.
395 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
396 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
397 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
398 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
399 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
400 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
401 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
402 { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
404 // Double-precision comparisons.
405 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
406 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
407 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
408 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
409 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
410 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
411 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
412 { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
414 // Floating-point to integer conversions.
415 // i64 conversions are done via library routines even when generating VFP
416 // instructions, so use the same ones.
417 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
418 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
419 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
420 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
422 // Conversions between floating types.
423 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
424 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
426 // Integer to floating-point conversions.
427 // i64 conversions are done via library routines even when generating VFP
428 // instructions, so use the same ones.
429 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
430 // e.g., __floatunsidf vs. __floatunssidfvfp.
431 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
432 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
433 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
434 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
437 for (const auto &LC : LibraryCalls) {
438 setLibcallName(LC.Op, LC.Name);
439 if (LC.Cond != ISD::SETCC_INVALID)
440 setCmpLibcallCC(LC.Op, LC.Cond);
445 // These libcalls are not available in 32-bit.
446 setLibcallName(RTLIB::SHL_I128, nullptr);
447 setLibcallName(RTLIB::SRL_I128, nullptr);
448 setLibcallName(RTLIB::SRA_I128, nullptr);
450 // RTLIB
451 if (Subtarget->isAAPCS_ABI() &&
452 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
453 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
454 static const struct {
455 const RTLIB::Libcall Op;
456 const char * const Name;
457 const CallingConv::ID CC;
458 const ISD::CondCode Cond;
459 } LibraryCalls[] = {
460 // Double-precision floating-point arithmetic helper functions
461 // RTABI chapter 4.1.2, Table 2
462 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
463 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
464 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
465 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
467 // Double-precision floating-point comparison helper functions
468 // RTABI chapter 4.1.2, Table 3
469 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
470 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
471 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
472 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
473 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
474 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
475 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
476 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
478 // Single-precision floating-point arithmetic helper functions
479 // RTABI chapter 4.1.2, Table 4
480 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
481 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
482 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
483 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
485 // Single-precision floating-point comparison helper functions
486 // RTABI chapter 4.1.2, Table 5
487 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
488 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
489 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
490 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
491 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
492 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
493 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
494 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
496 // Floating-point to integer conversions.
497 // RTABI chapter 4.1.2, Table 6
498 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
499 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
500 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
501 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
502 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
503 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
504 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
505 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
507 // Conversions between floating types.
508 // RTABI chapter 4.1.2, Table 7
509 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
510 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
511 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
513 // Integer to floating-point conversions.
514 // RTABI chapter 4.1.2, Table 8
515 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
516 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
517 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
518 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
519 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
520 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
521 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
522 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
524 // Long long helper functions
525 // RTABI chapter 4.2, Table 9
526 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
527 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
528 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
529 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
531 // Integer division functions
532 // RTABI chapter 4.3.1
533 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
534 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
535 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
536 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
537 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
538 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
539 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
540 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
543 for (const auto &LC : LibraryCalls) {
544 setLibcallName(LC.Op, LC.Name);
545 setLibcallCallingConv(LC.Op, LC.CC);
546 if (LC.Cond != ISD::SETCC_INVALID)
547 setCmpLibcallCC(LC.Op, LC.Cond);
550 // EABI dependent RTLIB
551 if (TM.Options.EABIVersion == EABI::EABI4 ||
552 TM.Options.EABIVersion == EABI::EABI5) {
553 static const struct {
554 const RTLIB::Libcall Op;
555 const char *const Name;
556 const CallingConv::ID CC;
557 const ISD::CondCode Cond;
558 } MemOpsLibraryCalls[] = {
559 // Memory operations
560 // RTABI chapter 4.3.4
561 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
562 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
563 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
566 for (const auto &LC : MemOpsLibraryCalls) {
567 setLibcallName(LC.Op, LC.Name);
568 setLibcallCallingConv(LC.Op, LC.CC);
569 if (LC.Cond != ISD::SETCC_INVALID)
570 setCmpLibcallCC(LC.Op, LC.Cond);
575 if (Subtarget->isTargetWindows()) {
576 static const struct {
577 const RTLIB::Libcall Op;
578 const char * const Name;
579 const CallingConv::ID CC;
580 } LibraryCalls[] = {
581 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
582 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
583 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
584 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
585 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
586 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
587 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
588 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
591 for (const auto &LC : LibraryCalls) {
592 setLibcallName(LC.Op, LC.Name);
593 setLibcallCallingConv(LC.Op, LC.CC);
597 // Use divmod compiler-rt calls for iOS 5.0 and later.
598 if (Subtarget->isTargetMachO() &&
599 !(Subtarget->isTargetIOS() &&
600 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
601 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
602 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
605 // The half <-> float conversion functions are always soft-float on
606 // non-watchos platforms, but are needed for some targets which use a
607 // hard-float calling convention by default.
608 if (!Subtarget->isTargetWatchABI()) {
609 if (Subtarget->isAAPCS_ABI()) {
610 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
611 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
612 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
613 } else {
614 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
615 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
616 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
620 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
621 // a __gnu_ prefix (which is the default).
622 if (Subtarget->isTargetAEABI()) {
623 static const struct {
624 const RTLIB::Libcall Op;
625 const char * const Name;
626 const CallingConv::ID CC;
627 } LibraryCalls[] = {
628 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
629 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
630 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
633 for (const auto &LC : LibraryCalls) {
634 setLibcallName(LC.Op, LC.Name);
635 setLibcallCallingConv(LC.Op, LC.CC);
639 if (Subtarget->isThumb1Only())
640 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
641 else
642 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
644 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
645 Subtarget->hasFPRegs()) {
646 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
647 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
648 if (!Subtarget->hasVFP2Base())
649 setAllExpand(MVT::f32);
650 if (!Subtarget->hasFP64())
651 setAllExpand(MVT::f64);
654 if (Subtarget->hasFullFP16()) {
655 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
656 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
657 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
658 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
660 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
661 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
664 for (MVT VT : MVT::vector_valuetypes()) {
665 for (MVT InnerVT : MVT::vector_valuetypes()) {
666 setTruncStoreAction(VT, InnerVT, Expand);
667 addAllExtLoads(VT, InnerVT, Expand);
670 setOperationAction(ISD::MULHS, VT, Expand);
671 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
672 setOperationAction(ISD::MULHU, VT, Expand);
673 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
675 setOperationAction(ISD::BSWAP, VT, Expand);
678 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
679 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
681 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
682 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
684 if (Subtarget->hasMVEIntegerOps())
685 addMVEVectorTypes(Subtarget->hasMVEFloatOps());
687 // Combine low-overhead loop intrinsics so that we can lower i1 types.
688 if (Subtarget->hasLOB()) {
689 setTargetDAGCombine(ISD::BRCOND);
690 setTargetDAGCombine(ISD::BR_CC);
693 if (Subtarget->hasNEON()) {
694 addDRTypeForNEON(MVT::v2f32);
695 addDRTypeForNEON(MVT::v8i8);
696 addDRTypeForNEON(MVT::v4i16);
697 addDRTypeForNEON(MVT::v2i32);
698 addDRTypeForNEON(MVT::v1i64);
700 addQRTypeForNEON(MVT::v4f32);
701 addQRTypeForNEON(MVT::v2f64);
702 addQRTypeForNEON(MVT::v16i8);
703 addQRTypeForNEON(MVT::v8i16);
704 addQRTypeForNEON(MVT::v4i32);
705 addQRTypeForNEON(MVT::v2i64);
707 if (Subtarget->hasFullFP16()) {
708 addQRTypeForNEON(MVT::v8f16);
709 addDRTypeForNEON(MVT::v4f16);
713 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
714 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
715 // none of Neon, MVE or VFP supports any arithmetic operations on it.
716 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
717 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
718 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
719 // FIXME: Code duplication: FDIV and FREM are expanded always, see
720 // ARMTargetLowering::addTypeForNEON method for details.
721 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
722 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
723 // FIXME: Create unittest.
724 // In another words, find a way when "copysign" appears in DAG with vector
725 // operands.
726 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
727 // FIXME: Code duplication: SETCC has custom operation action, see
728 // ARMTargetLowering::addTypeForNEON method for details.
729 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
730 // FIXME: Create unittest for FNEG and for FABS.
731 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
732 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
733 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
734 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
735 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
736 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
737 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
738 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
739 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
740 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
741 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
742 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
743 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
744 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
745 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
746 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
747 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
748 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
751 if (Subtarget->hasNEON()) {
752 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
753 // supported for v4f32.
754 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
755 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
756 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
757 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
758 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
759 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
760 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
761 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
762 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
763 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
764 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
765 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
766 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
767 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
769 // Mark v2f32 intrinsics.
770 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
771 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
772 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
773 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
774 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
775 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
776 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
777 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
778 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
779 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
780 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
781 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
782 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
783 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
785 // Neon does not support some operations on v1i64 and v2i64 types.
786 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
787 // Custom handling for some quad-vector types to detect VMULL.
788 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
789 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
790 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
791 // Custom handling for some vector types to avoid expensive expansions
792 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
793 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
794 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
795 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
796 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
797 // a destination type that is wider than the source, and nor does
798 // it have a FP_TO_[SU]INT instruction with a narrower destination than
799 // source.
800 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
801 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
802 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
803 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
804 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
805 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
806 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
807 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
809 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
810 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
812 // NEON does not have single instruction CTPOP for vectors with element
813 // types wider than 8-bits. However, custom lowering can leverage the
814 // v8i8/v16i8 vcnt instruction.
815 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
816 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
817 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
818 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
819 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
820 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
822 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
823 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
825 // NEON does not have single instruction CTTZ for vectors.
826 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
827 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
828 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
829 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
831 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
832 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
833 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
834 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
836 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
837 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
838 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
839 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
841 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
842 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
843 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
844 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
846 // NEON only has FMA instructions as of VFP4.
847 if (!Subtarget->hasVFP4Base()) {
848 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
849 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
852 setTargetDAGCombine(ISD::INTRINSIC_VOID);
853 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
854 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
855 setTargetDAGCombine(ISD::SHL);
856 setTargetDAGCombine(ISD::SRL);
857 setTargetDAGCombine(ISD::SRA);
858 setTargetDAGCombine(ISD::SIGN_EXTEND);
859 setTargetDAGCombine(ISD::ZERO_EXTEND);
860 setTargetDAGCombine(ISD::ANY_EXTEND);
861 setTargetDAGCombine(ISD::STORE);
862 setTargetDAGCombine(ISD::FP_TO_SINT);
863 setTargetDAGCombine(ISD::FP_TO_UINT);
864 setTargetDAGCombine(ISD::FDIV);
865 setTargetDAGCombine(ISD::LOAD);
867 // It is legal to extload from v4i8 to v4i16 or v4i32.
868 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
869 MVT::v2i32}) {
870 for (MVT VT : MVT::integer_vector_valuetypes()) {
871 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
872 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
873 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
878 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
879 setTargetDAGCombine(ISD::BUILD_VECTOR);
880 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
881 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
884 if (!Subtarget->hasFP64()) {
885 // When targeting a floating-point unit with only single-precision
886 // operations, f64 is legal for the few double-precision instructions which
887 // are present However, no double-precision operations other than moves,
888 // loads and stores are provided by the hardware.
889 setOperationAction(ISD::FADD, MVT::f64, Expand);
890 setOperationAction(ISD::FSUB, MVT::f64, Expand);
891 setOperationAction(ISD::FMUL, MVT::f64, Expand);
892 setOperationAction(ISD::FMA, MVT::f64, Expand);
893 setOperationAction(ISD::FDIV, MVT::f64, Expand);
894 setOperationAction(ISD::FREM, MVT::f64, Expand);
895 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
896 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
897 setOperationAction(ISD::FNEG, MVT::f64, Expand);
898 setOperationAction(ISD::FABS, MVT::f64, Expand);
899 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
900 setOperationAction(ISD::FSIN, MVT::f64, Expand);
901 setOperationAction(ISD::FCOS, MVT::f64, Expand);
902 setOperationAction(ISD::FPOW, MVT::f64, Expand);
903 setOperationAction(ISD::FLOG, MVT::f64, Expand);
904 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
905 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
906 setOperationAction(ISD::FEXP, MVT::f64, Expand);
907 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
908 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
909 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
910 setOperationAction(ISD::FRINT, MVT::f64, Expand);
911 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
912 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
913 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
914 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
915 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
916 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
917 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
918 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
919 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
922 if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()){
923 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
924 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
927 if (!Subtarget->hasFP16())
928 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
930 if (!Subtarget->hasFP64())
931 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
933 computeRegisterProperties(Subtarget->getRegisterInfo());
935 // ARM does not have floating-point extending loads.
936 for (MVT VT : MVT::fp_valuetypes()) {
937 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
938 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
941 // ... or truncating stores
942 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
943 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
944 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
946 // ARM does not have i1 sign extending load.
947 for (MVT VT : MVT::integer_valuetypes())
948 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
950 // ARM supports all 4 flavors of integer indexed load / store.
951 if (!Subtarget->isThumb1Only()) {
952 for (unsigned im = (unsigned)ISD::PRE_INC;
953 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
954 setIndexedLoadAction(im, MVT::i1, Legal);
955 setIndexedLoadAction(im, MVT::i8, Legal);
956 setIndexedLoadAction(im, MVT::i16, Legal);
957 setIndexedLoadAction(im, MVT::i32, Legal);
958 setIndexedStoreAction(im, MVT::i1, Legal);
959 setIndexedStoreAction(im, MVT::i8, Legal);
960 setIndexedStoreAction(im, MVT::i16, Legal);
961 setIndexedStoreAction(im, MVT::i32, Legal);
963 } else {
964 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
965 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
966 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
969 setOperationAction(ISD::SADDO, MVT::i32, Custom);
970 setOperationAction(ISD::UADDO, MVT::i32, Custom);
971 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
972 setOperationAction(ISD::USUBO, MVT::i32, Custom);
974 setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
975 setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
977 // i64 operation support.
978 setOperationAction(ISD::MUL, MVT::i64, Expand);
979 setOperationAction(ISD::MULHU, MVT::i32, Expand);
980 if (Subtarget->isThumb1Only()) {
981 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
982 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
984 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
985 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
986 setOperationAction(ISD::MULHS, MVT::i32, Expand);
988 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
989 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
990 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
991 setOperationAction(ISD::SRL, MVT::i64, Custom);
992 setOperationAction(ISD::SRA, MVT::i64, Custom);
993 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
995 // MVE lowers 64 bit shifts to lsll and lsrl
996 // assuming that ISD::SRL and SRA of i64 are already marked custom
997 if (Subtarget->hasMVEIntegerOps())
998 setOperationAction(ISD::SHL, MVT::i64, Custom);
1000 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1001 if (Subtarget->isThumb1Only()) {
1002 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1003 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1004 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1007 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1008 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1010 // ARM does not have ROTL.
1011 setOperationAction(ISD::ROTL, MVT::i32, Expand);
1012 for (MVT VT : MVT::vector_valuetypes()) {
1013 setOperationAction(ISD::ROTL, VT, Expand);
1014 setOperationAction(ISD::ROTR, VT, Expand);
1016 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
1017 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1018 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1019 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1020 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1023 // @llvm.readcyclecounter requires the Performance Monitors extension.
1024 // Default to the 0 expansion on unsupported platforms.
1025 // FIXME: Technically there are older ARM CPUs that have
1026 // implementation-specific ways of obtaining this information.
1027 if (Subtarget->hasPerfMon())
1028 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1030 // Only ARMv6 has BSWAP.
1031 if (!Subtarget->hasV6Ops())
1032 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1034 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1035 : Subtarget->hasDivideInARMMode();
1036 if (!hasDivide) {
1037 // These are expanded into libcalls if the cpu doesn't have HW divider.
1038 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
1039 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
1042 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1043 setOperationAction(ISD::SDIV, MVT::i32, Custom);
1044 setOperationAction(ISD::UDIV, MVT::i32, Custom);
1046 setOperationAction(ISD::SDIV, MVT::i64, Custom);
1047 setOperationAction(ISD::UDIV, MVT::i64, Custom);
1050 setOperationAction(ISD::SREM, MVT::i32, Expand);
1051 setOperationAction(ISD::UREM, MVT::i32, Expand);
1053 // Register based DivRem for AEABI (RTABI 4.2)
1054 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1055 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1056 Subtarget->isTargetWindows()) {
1057 setOperationAction(ISD::SREM, MVT::i64, Custom);
1058 setOperationAction(ISD::UREM, MVT::i64, Custom);
1059 HasStandaloneRem = false;
1061 if (Subtarget->isTargetWindows()) {
1062 const struct {
1063 const RTLIB::Libcall Op;
1064 const char * const Name;
1065 const CallingConv::ID CC;
1066 } LibraryCalls[] = {
1067 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1068 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1069 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1070 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1072 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1073 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1074 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1075 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1078 for (const auto &LC : LibraryCalls) {
1079 setLibcallName(LC.Op, LC.Name);
1080 setLibcallCallingConv(LC.Op, LC.CC);
1082 } else {
1083 const struct {
1084 const RTLIB::Libcall Op;
1085 const char * const Name;
1086 const CallingConv::ID CC;
1087 } LibraryCalls[] = {
1088 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1089 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1090 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1091 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1093 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1094 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1095 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1096 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1099 for (const auto &LC : LibraryCalls) {
1100 setLibcallName(LC.Op, LC.Name);
1101 setLibcallCallingConv(LC.Op, LC.CC);
1105 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1106 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1107 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1108 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1109 } else {
1110 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1111 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1114 if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
1115 for (auto &VT : {MVT::f32, MVT::f64})
1116 setOperationAction(ISD::FPOWI, VT, Custom);
1118 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1119 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1120 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1121 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1123 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1124 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1126 // Use the default implementation.
1127 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1128 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1129 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1130 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1131 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1132 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1134 if (Subtarget->isTargetWindows())
1135 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1136 else
1137 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1139 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1140 // the default expansion.
1141 InsertFencesForAtomic = false;
1142 if (Subtarget->hasAnyDataBarrier() &&
1143 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1144 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1145 // to ldrex/strex loops already.
1146 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1147 if (!Subtarget->isThumb() || !Subtarget->isMClass())
1148 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
1150 // On v8, we have particularly efficient implementations of atomic fences
1151 // if they can be combined with nearby atomic loads and stores.
1152 if (!Subtarget->hasAcquireRelease() ||
1153 getTargetMachine().getOptLevel() == 0) {
1154 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1155 InsertFencesForAtomic = true;
1157 } else {
1158 // If there's anything we can use as a barrier, go through custom lowering
1159 // for ATOMIC_FENCE.
1160 // If target has DMB in thumb, Fences can be inserted.
1161 if (Subtarget->hasDataBarrier())
1162 InsertFencesForAtomic = true;
1164 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1165 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1167 // Set them all for expansion, which will force libcalls.
1168 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
1169 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
1170 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
1171 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
1172 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
1173 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
1174 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
1175 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1176 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1177 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1178 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1179 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1180 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1181 // Unordered/Monotonic case.
1182 if (!InsertFencesForAtomic) {
1183 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1184 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1188 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1190 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1191 if (!Subtarget->hasV6Ops()) {
1192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1197 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1198 !Subtarget->isThumb1Only()) {
1199 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1200 // iff target supports vfp2.
1201 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1202 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1205 // We want to custom lower some of our intrinsics.
1206 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1207 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1208 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1209 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1210 if (Subtarget->useSjLjEH())
1211 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1213 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1214 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1215 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1216 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1217 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1218 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1219 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1220 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1221 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1222 if (Subtarget->hasFullFP16()) {
1223 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1224 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1225 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1228 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1230 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1231 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1232 if (Subtarget->hasFullFP16())
1233 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1234 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1235 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1236 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1238 // We don't support sin/cos/fmod/copysign/pow
1239 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1240 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1241 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1242 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1243 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1244 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1245 setOperationAction(ISD::FREM, MVT::f64, Expand);
1246 setOperationAction(ISD::FREM, MVT::f32, Expand);
1247 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1248 !Subtarget->isThumb1Only()) {
1249 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1250 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1252 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1253 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1255 if (!Subtarget->hasVFP4Base()) {
1256 setOperationAction(ISD::FMA, MVT::f64, Expand);
1257 setOperationAction(ISD::FMA, MVT::f32, Expand);
1260 // Various VFP goodness
1261 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1262 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1263 if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1264 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1265 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1268 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1269 if (!Subtarget->hasFP16()) {
1270 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1271 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1275 // Use __sincos_stret if available.
1276 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1277 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1278 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1279 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1282 // FP-ARMv8 implements a lot of rounding-like FP operations.
1283 if (Subtarget->hasFPARMv8Base()) {
1284 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1285 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1286 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1287 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1288 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1289 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1290 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1291 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1292 if (Subtarget->hasNEON()) {
1293 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1294 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1295 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1296 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1299 if (Subtarget->hasFP64()) {
1300 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1301 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1302 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1303 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1304 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1305 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1306 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1307 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1311 // FP16 often need to be promoted to call lib functions
1312 if (Subtarget->hasFullFP16()) {
1313 setOperationAction(ISD::FREM, MVT::f16, Promote);
1314 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1315 setOperationAction(ISD::FSIN, MVT::f16, Promote);
1316 setOperationAction(ISD::FCOS, MVT::f16, Promote);
1317 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1318 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1319 setOperationAction(ISD::FPOW, MVT::f16, Promote);
1320 setOperationAction(ISD::FEXP, MVT::f16, Promote);
1321 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1322 setOperationAction(ISD::FLOG, MVT::f16, Promote);
1323 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1324 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1326 setOperationAction(ISD::FROUND, MVT::f16, Legal);
1329 if (Subtarget->hasNEON()) {
1330 // vmin and vmax aren't available in a scalar form, so we use
1331 // a NEON instruction with an undef lane instead.
1332 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1333 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1334 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1335 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1336 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1337 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1338 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1339 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1341 if (Subtarget->hasFullFP16()) {
1342 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1343 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1344 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1345 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1347 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1348 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1349 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1350 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1354 // We have target-specific dag combine patterns for the following nodes:
1355 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1356 setTargetDAGCombine(ISD::ADD);
1357 setTargetDAGCombine(ISD::SUB);
1358 setTargetDAGCombine(ISD::MUL);
1359 setTargetDAGCombine(ISD::AND);
1360 setTargetDAGCombine(ISD::OR);
1361 setTargetDAGCombine(ISD::XOR);
1363 if (Subtarget->hasV6Ops())
1364 setTargetDAGCombine(ISD::SRL);
1365 if (Subtarget->isThumb1Only())
1366 setTargetDAGCombine(ISD::SHL);
1368 setStackPointerRegisterToSaveRestore(ARM::SP);
1370 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1371 !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1372 setSchedulingPreference(Sched::RegPressure);
1373 else
1374 setSchedulingPreference(Sched::Hybrid);
1376 //// temporary - rewrite interface to use type
1377 MaxStoresPerMemset = 8;
1378 MaxStoresPerMemsetOptSize = 4;
1379 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1380 MaxStoresPerMemcpyOptSize = 2;
1381 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1382 MaxStoresPerMemmoveOptSize = 2;
1384 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1385 // are at least 4 bytes aligned.
1386 setMinStackArgumentAlignment(4);
1388 // Prefer likely predicted branches to selects on out-of-order cores.
1389 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1391 setPrefLoopAlignment(Subtarget->getPrefLoopAlignment());
1393 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1395 if (Subtarget->isThumb() || Subtarget->isThumb2())
1396 setTargetDAGCombine(ISD::ABS);
1399 bool ARMTargetLowering::useSoftFloat() const {
1400 return Subtarget->useSoftFloat();
1403 // FIXME: It might make sense to define the representative register class as the
1404 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1405 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1406 // SPR's representative would be DPR_VFP2. This should work well if register
1407 // pressure tracking were modified such that a register use would increment the
1408 // pressure of the register class's representative and all of it's super
1409 // classes' representatives transitively. We have not implemented this because
1410 // of the difficulty prior to coalescing of modeling operand register classes
1411 // due to the common occurrence of cross class copies and subregister insertions
1412 // and extractions.
1413 std::pair<const TargetRegisterClass *, uint8_t>
1414 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1415 MVT VT) const {
1416 const TargetRegisterClass *RRC = nullptr;
1417 uint8_t Cost = 1;
1418 switch (VT.SimpleTy) {
1419 default:
1420 return TargetLowering::findRepresentativeClass(TRI, VT);
1421 // Use DPR as representative register class for all floating point
1422 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1423 // the cost is 1 for both f32 and f64.
1424 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1425 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1426 RRC = &ARM::DPRRegClass;
1427 // When NEON is used for SP, only half of the register file is available
1428 // because operations that define both SP and DP results will be constrained
1429 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1430 // coalescing by double-counting the SP regs. See the FIXME above.
1431 if (Subtarget->useNEONForSinglePrecisionFP())
1432 Cost = 2;
1433 break;
1434 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1435 case MVT::v4f32: case MVT::v2f64:
1436 RRC = &ARM::DPRRegClass;
1437 Cost = 2;
1438 break;
1439 case MVT::v4i64:
1440 RRC = &ARM::DPRRegClass;
1441 Cost = 4;
1442 break;
1443 case MVT::v8i64:
1444 RRC = &ARM::DPRRegClass;
1445 Cost = 8;
1446 break;
1448 return std::make_pair(RRC, Cost);
1451 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1452 switch ((ARMISD::NodeType)Opcode) {
1453 case ARMISD::FIRST_NUMBER: break;
1454 case ARMISD::Wrapper: return "ARMISD::Wrapper";
1455 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1456 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1457 case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1458 case ARMISD::CALL: return "ARMISD::CALL";
1459 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1460 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1461 case ARMISD::BRCOND: return "ARMISD::BRCOND";
1462 case ARMISD::BR_JT: return "ARMISD::BR_JT";
1463 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1464 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1465 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1466 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1467 case ARMISD::CMP: return "ARMISD::CMP";
1468 case ARMISD::CMN: return "ARMISD::CMN";
1469 case ARMISD::CMPZ: return "ARMISD::CMPZ";
1470 case ARMISD::CMPFP: return "ARMISD::CMPFP";
1471 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1472 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1473 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1475 case ARMISD::CMOV: return "ARMISD::CMOV";
1476 case ARMISD::SUBS: return "ARMISD::SUBS";
1478 case ARMISD::SSAT: return "ARMISD::SSAT";
1479 case ARMISD::USAT: return "ARMISD::USAT";
1481 case ARMISD::ASRL: return "ARMISD::ASRL";
1482 case ARMISD::LSRL: return "ARMISD::LSRL";
1483 case ARMISD::LSLL: return "ARMISD::LSLL";
1485 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1486 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1487 case ARMISD::RRX: return "ARMISD::RRX";
1489 case ARMISD::ADDC: return "ARMISD::ADDC";
1490 case ARMISD::ADDE: return "ARMISD::ADDE";
1491 case ARMISD::SUBC: return "ARMISD::SUBC";
1492 case ARMISD::SUBE: return "ARMISD::SUBE";
1493 case ARMISD::LSLS: return "ARMISD::LSLS";
1495 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1496 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1497 case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
1498 case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
1499 case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
1501 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1502 case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1503 case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1505 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1507 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1509 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1511 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1513 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1515 case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
1516 case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
1518 case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
1519 case ARMISD::VCMP: return "ARMISD::VCMP";
1520 case ARMISD::VCMPZ: return "ARMISD::VCMPZ";
1521 case ARMISD::VTST: return "ARMISD::VTST";
1523 case ARMISD::VSHLs: return "ARMISD::VSHLs";
1524 case ARMISD::VSHLu: return "ARMISD::VSHLu";
1525 case ARMISD::VSHLIMM: return "ARMISD::VSHLIMM";
1526 case ARMISD::VSHRsIMM: return "ARMISD::VSHRsIMM";
1527 case ARMISD::VSHRuIMM: return "ARMISD::VSHRuIMM";
1528 case ARMISD::VRSHRsIMM: return "ARMISD::VRSHRsIMM";
1529 case ARMISD::VRSHRuIMM: return "ARMISD::VRSHRuIMM";
1530 case ARMISD::VRSHRNIMM: return "ARMISD::VRSHRNIMM";
1531 case ARMISD::VQSHLsIMM: return "ARMISD::VQSHLsIMM";
1532 case ARMISD::VQSHLuIMM: return "ARMISD::VQSHLuIMM";
1533 case ARMISD::VQSHLsuIMM: return "ARMISD::VQSHLsuIMM";
1534 case ARMISD::VQSHRNsIMM: return "ARMISD::VQSHRNsIMM";
1535 case ARMISD::VQSHRNuIMM: return "ARMISD::VQSHRNuIMM";
1536 case ARMISD::VQSHRNsuIMM: return "ARMISD::VQSHRNsuIMM";
1537 case ARMISD::VQRSHRNsIMM: return "ARMISD::VQRSHRNsIMM";
1538 case ARMISD::VQRSHRNuIMM: return "ARMISD::VQRSHRNuIMM";
1539 case ARMISD::VQRSHRNsuIMM: return "ARMISD::VQRSHRNsuIMM";
1540 case ARMISD::VSLIIMM: return "ARMISD::VSLIIMM";
1541 case ARMISD::VSRIIMM: return "ARMISD::VSRIIMM";
1542 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1543 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1544 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1545 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1546 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1547 case ARMISD::VDUP: return "ARMISD::VDUP";
1548 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1549 case ARMISD::VEXT: return "ARMISD::VEXT";
1550 case ARMISD::VREV64: return "ARMISD::VREV64";
1551 case ARMISD::VREV32: return "ARMISD::VREV32";
1552 case ARMISD::VREV16: return "ARMISD::VREV16";
1553 case ARMISD::VZIP: return "ARMISD::VZIP";
1554 case ARMISD::VUZP: return "ARMISD::VUZP";
1555 case ARMISD::VTRN: return "ARMISD::VTRN";
1556 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1557 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1558 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1559 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1560 case ARMISD::UMAAL: return "ARMISD::UMAAL";
1561 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1562 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1563 case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
1564 case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
1565 case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
1566 case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
1567 case ARMISD::SMULWB: return "ARMISD::SMULWB";
1568 case ARMISD::SMULWT: return "ARMISD::SMULWT";
1569 case ARMISD::SMLALD: return "ARMISD::SMLALD";
1570 case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
1571 case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
1572 case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
1573 case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
1574 case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
1575 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1576 case ARMISD::BFI: return "ARMISD::BFI";
1577 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1578 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1579 case ARMISD::VBSL: return "ARMISD::VBSL";
1580 case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
1581 case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
1582 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1583 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1584 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1585 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1586 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1587 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1588 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1589 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1590 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1591 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1592 case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
1593 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1594 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1595 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1596 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1597 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1598 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1599 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1600 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1601 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1602 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1603 case ARMISD::WLS: return "ARMISD::WLS";
1604 case ARMISD::LE: return "ARMISD::LE";
1605 case ARMISD::LOOP_DEC: return "ARMISD::LOOP_DEC";
1607 return nullptr;
1610 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1611 EVT VT) const {
1612 if (!VT.isVector())
1613 return getPointerTy(DL);
1615 // MVE has a predicate register.
1616 if (Subtarget->hasMVEIntegerOps() &&
1617 (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1618 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1619 return VT.changeVectorElementTypeToInteger();
1622 /// getRegClassFor - Return the register class that should be used for the
1623 /// specified value type.
1624 const TargetRegisterClass *
1625 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1626 (void)isDivergent;
1627 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1628 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1629 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1630 // MVE Q registers.
1631 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1632 if (VT == MVT::v4i64)
1633 return &ARM::QQPRRegClass;
1634 if (VT == MVT::v8i64)
1635 return &ARM::QQQQPRRegClass;
1637 return TargetLowering::getRegClassFor(VT);
1640 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1641 // source/dest is aligned and the copy size is large enough. We therefore want
1642 // to align such objects passed to memory intrinsics.
1643 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1644 unsigned &PrefAlign) const {
1645 if (!isa<MemIntrinsic>(CI))
1646 return false;
1647 MinSize = 8;
1648 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1649 // cycle faster than 4-byte aligned LDM.
1650 PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1651 return true;
1654 // Create a fast isel object.
1655 FastISel *
1656 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1657 const TargetLibraryInfo *libInfo) const {
1658 return ARM::createFastISel(funcInfo, libInfo);
1661 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1662 unsigned NumVals = N->getNumValues();
1663 if (!NumVals)
1664 return Sched::RegPressure;
1666 for (unsigned i = 0; i != NumVals; ++i) {
1667 EVT VT = N->getValueType(i);
1668 if (VT == MVT::Glue || VT == MVT::Other)
1669 continue;
1670 if (VT.isFloatingPoint() || VT.isVector())
1671 return Sched::ILP;
1674 if (!N->isMachineOpcode())
1675 return Sched::RegPressure;
1677 // Load are scheduled for latency even if there instruction itinerary
1678 // is not available.
1679 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1680 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1682 if (MCID.getNumDefs() == 0)
1683 return Sched::RegPressure;
1684 if (!Itins->isEmpty() &&
1685 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1686 return Sched::ILP;
1688 return Sched::RegPressure;
1691 //===----------------------------------------------------------------------===//
1692 // Lowering Code
1693 //===----------------------------------------------------------------------===//
1695 static bool isSRL16(const SDValue &Op) {
1696 if (Op.getOpcode() != ISD::SRL)
1697 return false;
1698 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1699 return Const->getZExtValue() == 16;
1700 return false;
1703 static bool isSRA16(const SDValue &Op) {
1704 if (Op.getOpcode() != ISD::SRA)
1705 return false;
1706 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1707 return Const->getZExtValue() == 16;
1708 return false;
1711 static bool isSHL16(const SDValue &Op) {
1712 if (Op.getOpcode() != ISD::SHL)
1713 return false;
1714 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1715 return Const->getZExtValue() == 16;
1716 return false;
1719 // Check for a signed 16-bit value. We special case SRA because it makes it
1720 // more simple when also looking for SRAs that aren't sign extending a
1721 // smaller value. Without the check, we'd need to take extra care with
1722 // checking order for some operations.
1723 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1724 if (isSRA16(Op))
1725 return isSHL16(Op.getOperand(0));
1726 return DAG.ComputeNumSignBits(Op) == 17;
1729 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1730 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1731 switch (CC) {
1732 default: llvm_unreachable("Unknown condition code!");
1733 case ISD::SETNE: return ARMCC::NE;
1734 case ISD::SETEQ: return ARMCC::EQ;
1735 case ISD::SETGT: return ARMCC::GT;
1736 case ISD::SETGE: return ARMCC::GE;
1737 case ISD::SETLT: return ARMCC::LT;
1738 case ISD::SETLE: return ARMCC::LE;
1739 case ISD::SETUGT: return ARMCC::HI;
1740 case ISD::SETUGE: return ARMCC::HS;
1741 case ISD::SETULT: return ARMCC::LO;
1742 case ISD::SETULE: return ARMCC::LS;
1746 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1747 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1748 ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1749 CondCode2 = ARMCC::AL;
1750 InvalidOnQNaN = true;
1751 switch (CC) {
1752 default: llvm_unreachable("Unknown FP condition!");
1753 case ISD::SETEQ:
1754 case ISD::SETOEQ:
1755 CondCode = ARMCC::EQ;
1756 InvalidOnQNaN = false;
1757 break;
1758 case ISD::SETGT:
1759 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1760 case ISD::SETGE:
1761 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1762 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1763 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1764 case ISD::SETONE:
1765 CondCode = ARMCC::MI;
1766 CondCode2 = ARMCC::GT;
1767 InvalidOnQNaN = false;
1768 break;
1769 case ISD::SETO: CondCode = ARMCC::VC; break;
1770 case ISD::SETUO: CondCode = ARMCC::VS; break;
1771 case ISD::SETUEQ:
1772 CondCode = ARMCC::EQ;
1773 CondCode2 = ARMCC::VS;
1774 InvalidOnQNaN = false;
1775 break;
1776 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1777 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1778 case ISD::SETLT:
1779 case ISD::SETULT: CondCode = ARMCC::LT; break;
1780 case ISD::SETLE:
1781 case ISD::SETULE: CondCode = ARMCC::LE; break;
1782 case ISD::SETNE:
1783 case ISD::SETUNE:
1784 CondCode = ARMCC::NE;
1785 InvalidOnQNaN = false;
1786 break;
1790 //===----------------------------------------------------------------------===//
1791 // Calling Convention Implementation
1792 //===----------------------------------------------------------------------===//
1794 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1795 /// account presence of floating point hardware and calling convention
1796 /// limitations, such as support for variadic functions.
1797 CallingConv::ID
1798 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1799 bool isVarArg) const {
1800 switch (CC) {
1801 default:
1802 report_fatal_error("Unsupported calling convention");
1803 case CallingConv::ARM_AAPCS:
1804 case CallingConv::ARM_APCS:
1805 case CallingConv::GHC:
1806 return CC;
1807 case CallingConv::PreserveMost:
1808 return CallingConv::PreserveMost;
1809 case CallingConv::ARM_AAPCS_VFP:
1810 case CallingConv::Swift:
1811 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1812 case CallingConv::C:
1813 if (!Subtarget->isAAPCS_ABI())
1814 return CallingConv::ARM_APCS;
1815 else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
1816 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1817 !isVarArg)
1818 return CallingConv::ARM_AAPCS_VFP;
1819 else
1820 return CallingConv::ARM_AAPCS;
1821 case CallingConv::Fast:
1822 case CallingConv::CXX_FAST_TLS:
1823 if (!Subtarget->isAAPCS_ABI()) {
1824 if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
1825 return CallingConv::Fast;
1826 return CallingConv::ARM_APCS;
1827 } else if (Subtarget->hasVFP2Base() &&
1828 !Subtarget->isThumb1Only() && !isVarArg)
1829 return CallingConv::ARM_AAPCS_VFP;
1830 else
1831 return CallingConv::ARM_AAPCS;
1835 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1836 bool isVarArg) const {
1837 return CCAssignFnForNode(CC, false, isVarArg);
1840 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1841 bool isVarArg) const {
1842 return CCAssignFnForNode(CC, true, isVarArg);
1845 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1846 /// CallingConvention.
1847 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1848 bool Return,
1849 bool isVarArg) const {
1850 switch (getEffectiveCallingConv(CC, isVarArg)) {
1851 default:
1852 report_fatal_error("Unsupported calling convention");
1853 case CallingConv::ARM_APCS:
1854 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1855 case CallingConv::ARM_AAPCS:
1856 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1857 case CallingConv::ARM_AAPCS_VFP:
1858 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1859 case CallingConv::Fast:
1860 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1861 case CallingConv::GHC:
1862 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1863 case CallingConv::PreserveMost:
1864 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1868 /// LowerCallResult - Lower the result values of a call into the
1869 /// appropriate copies out of appropriate physical registers.
1870 SDValue ARMTargetLowering::LowerCallResult(
1871 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1872 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1873 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1874 SDValue ThisVal) const {
1875 // Assign locations to each value returned by this call.
1876 SmallVector<CCValAssign, 16> RVLocs;
1877 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1878 *DAG.getContext());
1879 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1881 // Copy all of the result registers out of their specified physreg.
1882 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1883 CCValAssign VA = RVLocs[i];
1885 // Pass 'this' value directly from the argument to return value, to avoid
1886 // reg unit interference
1887 if (i == 0 && isThisReturn) {
1888 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1889 "unexpected return calling convention register assignment");
1890 InVals.push_back(ThisVal);
1891 continue;
1894 SDValue Val;
1895 if (VA.needsCustom()) {
1896 // Handle f64 or half of a v2f64.
1897 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1898 InFlag);
1899 Chain = Lo.getValue(1);
1900 InFlag = Lo.getValue(2);
1901 VA = RVLocs[++i]; // skip ahead to next loc
1902 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1903 InFlag);
1904 Chain = Hi.getValue(1);
1905 InFlag = Hi.getValue(2);
1906 if (!Subtarget->isLittle())
1907 std::swap (Lo, Hi);
1908 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1910 if (VA.getLocVT() == MVT::v2f64) {
1911 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1912 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1913 DAG.getConstant(0, dl, MVT::i32));
1915 VA = RVLocs[++i]; // skip ahead to next loc
1916 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1917 Chain = Lo.getValue(1);
1918 InFlag = Lo.getValue(2);
1919 VA = RVLocs[++i]; // skip ahead to next loc
1920 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1921 Chain = Hi.getValue(1);
1922 InFlag = Hi.getValue(2);
1923 if (!Subtarget->isLittle())
1924 std::swap (Lo, Hi);
1925 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1926 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1927 DAG.getConstant(1, dl, MVT::i32));
1929 } else {
1930 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1931 InFlag);
1932 Chain = Val.getValue(1);
1933 InFlag = Val.getValue(2);
1936 switch (VA.getLocInfo()) {
1937 default: llvm_unreachable("Unknown loc info!");
1938 case CCValAssign::Full: break;
1939 case CCValAssign::BCvt:
1940 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1941 break;
1944 InVals.push_back(Val);
1947 return Chain;
1950 /// LowerMemOpCallTo - Store the argument to the stack.
1951 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1952 SDValue Arg, const SDLoc &dl,
1953 SelectionDAG &DAG,
1954 const CCValAssign &VA,
1955 ISD::ArgFlagsTy Flags) const {
1956 unsigned LocMemOffset = VA.getLocMemOffset();
1957 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1958 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1959 StackPtr, PtrOff);
1960 return DAG.getStore(
1961 Chain, dl, Arg, PtrOff,
1962 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1965 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1966 SDValue Chain, SDValue &Arg,
1967 RegsToPassVector &RegsToPass,
1968 CCValAssign &VA, CCValAssign &NextVA,
1969 SDValue &StackPtr,
1970 SmallVectorImpl<SDValue> &MemOpChains,
1971 ISD::ArgFlagsTy Flags) const {
1972 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1973 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1974 unsigned id = Subtarget->isLittle() ? 0 : 1;
1975 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1977 if (NextVA.isRegLoc())
1978 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1979 else {
1980 assert(NextVA.isMemLoc());
1981 if (!StackPtr.getNode())
1982 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1983 getPointerTy(DAG.getDataLayout()));
1985 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1986 dl, DAG, NextVA,
1987 Flags));
1991 /// LowerCall - Lowering a call into a callseq_start <-
1992 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1993 /// nodes.
1994 SDValue
1995 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1996 SmallVectorImpl<SDValue> &InVals) const {
1997 SelectionDAG &DAG = CLI.DAG;
1998 SDLoc &dl = CLI.DL;
1999 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2000 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2001 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2002 SDValue Chain = CLI.Chain;
2003 SDValue Callee = CLI.Callee;
2004 bool &isTailCall = CLI.IsTailCall;
2005 CallingConv::ID CallConv = CLI.CallConv;
2006 bool doesNotRet = CLI.DoesNotReturn;
2007 bool isVarArg = CLI.IsVarArg;
2009 MachineFunction &MF = DAG.getMachineFunction();
2010 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2011 bool isThisReturn = false;
2012 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
2013 bool PreferIndirect = false;
2015 // Disable tail calls if they're not supported.
2016 if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
2017 isTailCall = false;
2019 if (isa<GlobalAddressSDNode>(Callee)) {
2020 // If we're optimizing for minimum size and the function is called three or
2021 // more times in this block, we can improve codesize by calling indirectly
2022 // as BLXr has a 16-bit encoding.
2023 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2024 if (CLI.CS) {
2025 auto *BB = CLI.CS.getParent();
2026 PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2027 count_if(GV->users(), [&BB](const User *U) {
2028 return isa<Instruction>(U) &&
2029 cast<Instruction>(U)->getParent() == BB;
2030 }) > 2;
2033 if (isTailCall) {
2034 // Check if it's really possible to do a tail call.
2035 isTailCall = IsEligibleForTailCallOptimization(
2036 Callee, CallConv, isVarArg, isStructRet,
2037 MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2038 PreferIndirect);
2039 if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
2040 report_fatal_error("failed to perform tail call elimination on a call "
2041 "site marked musttail");
2042 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2043 // detected sibcalls.
2044 if (isTailCall)
2045 ++NumTailCalls;
2048 // Analyze operands of the call, assigning locations to each operand.
2049 SmallVector<CCValAssign, 16> ArgLocs;
2050 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2051 *DAG.getContext());
2052 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2054 // Get a count of how many bytes are to be pushed on the stack.
2055 unsigned NumBytes = CCInfo.getNextStackOffset();
2057 if (isTailCall) {
2058 // For tail calls, memory operands are available in our caller's stack.
2059 NumBytes = 0;
2060 } else {
2061 // Adjust the stack pointer for the new arguments...
2062 // These operations are automatically eliminated by the prolog/epilog pass
2063 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2066 SDValue StackPtr =
2067 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2069 RegsToPassVector RegsToPass;
2070 SmallVector<SDValue, 8> MemOpChains;
2072 // Walk the register/memloc assignments, inserting copies/loads. In the case
2073 // of tail call optimization, arguments are handled later.
2074 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2075 i != e;
2076 ++i, ++realArgIdx) {
2077 CCValAssign &VA = ArgLocs[i];
2078 SDValue Arg = OutVals[realArgIdx];
2079 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2080 bool isByVal = Flags.isByVal();
2082 // Promote the value if needed.
2083 switch (VA.getLocInfo()) {
2084 default: llvm_unreachable("Unknown loc info!");
2085 case CCValAssign::Full: break;
2086 case CCValAssign::SExt:
2087 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2088 break;
2089 case CCValAssign::ZExt:
2090 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2091 break;
2092 case CCValAssign::AExt:
2093 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2094 break;
2095 case CCValAssign::BCvt:
2096 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2097 break;
2100 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2101 if (VA.needsCustom()) {
2102 if (VA.getLocVT() == MVT::v2f64) {
2103 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2104 DAG.getConstant(0, dl, MVT::i32));
2105 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2106 DAG.getConstant(1, dl, MVT::i32));
2108 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
2109 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2111 VA = ArgLocs[++i]; // skip ahead to next loc
2112 if (VA.isRegLoc()) {
2113 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
2114 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2115 } else {
2116 assert(VA.isMemLoc());
2118 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
2119 dl, DAG, VA, Flags));
2121 } else {
2122 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2123 StackPtr, MemOpChains, Flags);
2125 } else if (VA.isRegLoc()) {
2126 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2127 Outs[0].VT == MVT::i32) {
2128 assert(VA.getLocVT() == MVT::i32 &&
2129 "unexpected calling convention register assignment");
2130 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2131 "unexpected use of 'returned'");
2132 isThisReturn = true;
2134 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2135 } else if (isByVal) {
2136 assert(VA.isMemLoc());
2137 unsigned offset = 0;
2139 // True if this byval aggregate will be split between registers
2140 // and memory.
2141 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2142 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2144 if (CurByValIdx < ByValArgsCount) {
2146 unsigned RegBegin, RegEnd;
2147 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2149 EVT PtrVT =
2150 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2151 unsigned int i, j;
2152 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2153 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2154 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2155 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
2156 MachinePointerInfo(),
2157 DAG.InferPtrAlignment(AddArg));
2158 MemOpChains.push_back(Load.getValue(1));
2159 RegsToPass.push_back(std::make_pair(j, Load));
2162 // If parameter size outsides register area, "offset" value
2163 // helps us to calculate stack slot for remained part properly.
2164 offset = RegEnd - RegBegin;
2166 CCInfo.nextInRegsParam();
2169 if (Flags.getByValSize() > 4*offset) {
2170 auto PtrVT = getPointerTy(DAG.getDataLayout());
2171 unsigned LocMemOffset = VA.getLocMemOffset();
2172 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2173 SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2174 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2175 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2176 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2177 MVT::i32);
2178 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
2179 MVT::i32);
2181 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2182 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2183 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2184 Ops));
2186 } else if (!isTailCall) {
2187 assert(VA.isMemLoc());
2189 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2190 dl, DAG, VA, Flags));
2194 if (!MemOpChains.empty())
2195 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2197 // Build a sequence of copy-to-reg nodes chained together with token chain
2198 // and flag operands which copy the outgoing args into the appropriate regs.
2199 SDValue InFlag;
2200 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2201 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2202 RegsToPass[i].second, InFlag);
2203 InFlag = Chain.getValue(1);
2206 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2207 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2208 // node so that legalize doesn't hack it.
2209 bool isDirect = false;
2211 const TargetMachine &TM = getTargetMachine();
2212 const Module *Mod = MF.getFunction().getParent();
2213 const GlobalValue *GV = nullptr;
2214 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2215 GV = G->getGlobal();
2216 bool isStub =
2217 !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2219 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2220 bool isLocalARMFunc = false;
2221 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2222 auto PtrVt = getPointerTy(DAG.getDataLayout());
2224 if (Subtarget->genLongCalls()) {
2225 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2226 "long-calls codegen is not position independent!");
2227 // Handle a global address or an external symbol. If it's not one of
2228 // those, the target's already in a register, so we don't need to do
2229 // anything extra.
2230 if (isa<GlobalAddressSDNode>(Callee)) {
2231 // Create a constant pool entry for the callee address
2232 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2233 ARMConstantPoolValue *CPV =
2234 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2236 // Get the address of the callee into a register
2237 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2238 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2239 Callee = DAG.getLoad(
2240 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2241 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2242 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2243 const char *Sym = S->getSymbol();
2245 // Create a constant pool entry for the callee address
2246 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2247 ARMConstantPoolValue *CPV =
2248 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2249 ARMPCLabelIndex, 0);
2250 // Get the address of the callee into a register
2251 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2252 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2253 Callee = DAG.getLoad(
2254 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2255 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2257 } else if (isa<GlobalAddressSDNode>(Callee)) {
2258 if (!PreferIndirect) {
2259 isDirect = true;
2260 bool isDef = GV->isStrongDefinitionForLinker();
2262 // ARM call to a local ARM function is predicable.
2263 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2264 // tBX takes a register source operand.
2265 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2266 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2267 Callee = DAG.getNode(
2268 ARMISD::WrapperPIC, dl, PtrVt,
2269 DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2270 Callee = DAG.getLoad(
2271 PtrVt, dl, DAG.getEntryNode(), Callee,
2272 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2273 /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2274 MachineMemOperand::MOInvariant);
2275 } else if (Subtarget->isTargetCOFF()) {
2276 assert(Subtarget->isTargetWindows() &&
2277 "Windows is the only supported COFF target");
2278 unsigned TargetFlags = GV->hasDLLImportStorageClass()
2279 ? ARMII::MO_DLLIMPORT
2280 : ARMII::MO_NO_FLAG;
2281 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2282 TargetFlags);
2283 if (GV->hasDLLImportStorageClass())
2284 Callee =
2285 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2286 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2287 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2288 } else {
2289 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2292 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2293 isDirect = true;
2294 // tBX takes a register source operand.
2295 const char *Sym = S->getSymbol();
2296 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2297 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2298 ARMConstantPoolValue *CPV =
2299 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2300 ARMPCLabelIndex, 4);
2301 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2302 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2303 Callee = DAG.getLoad(
2304 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2305 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2306 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2307 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2308 } else {
2309 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2313 // FIXME: handle tail calls differently.
2314 unsigned CallOpc;
2315 if (Subtarget->isThumb()) {
2316 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2317 CallOpc = ARMISD::CALL_NOLINK;
2318 else
2319 CallOpc = ARMISD::CALL;
2320 } else {
2321 if (!isDirect && !Subtarget->hasV5TOps())
2322 CallOpc = ARMISD::CALL_NOLINK;
2323 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2324 // Emit regular call when code size is the priority
2325 !Subtarget->hasMinSize())
2326 // "mov lr, pc; b _foo" to avoid confusing the RSP
2327 CallOpc = ARMISD::CALL_NOLINK;
2328 else
2329 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2332 std::vector<SDValue> Ops;
2333 Ops.push_back(Chain);
2334 Ops.push_back(Callee);
2336 // Add argument registers to the end of the list so that they are known live
2337 // into the call.
2338 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2339 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2340 RegsToPass[i].second.getValueType()));
2342 // Add a register mask operand representing the call-preserved registers.
2343 if (!isTailCall) {
2344 const uint32_t *Mask;
2345 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2346 if (isThisReturn) {
2347 // For 'this' returns, use the R0-preserving mask if applicable
2348 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2349 if (!Mask) {
2350 // Set isThisReturn to false if the calling convention is not one that
2351 // allows 'returned' to be modeled in this way, so LowerCallResult does
2352 // not try to pass 'this' straight through
2353 isThisReturn = false;
2354 Mask = ARI->getCallPreservedMask(MF, CallConv);
2356 } else
2357 Mask = ARI->getCallPreservedMask(MF, CallConv);
2359 assert(Mask && "Missing call preserved mask for calling convention");
2360 Ops.push_back(DAG.getRegisterMask(Mask));
2363 if (InFlag.getNode())
2364 Ops.push_back(InFlag);
2366 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2367 if (isTailCall) {
2368 MF.getFrameInfo().setHasTailCall();
2369 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2372 // Returns a chain and a flag for retval copy to use.
2373 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2374 InFlag = Chain.getValue(1);
2376 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2377 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2378 if (!Ins.empty())
2379 InFlag = Chain.getValue(1);
2381 // Handle result values, copying them out of physregs into vregs that we
2382 // return.
2383 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2384 InVals, isThisReturn,
2385 isThisReturn ? OutVals[0] : SDValue());
2388 /// HandleByVal - Every parameter *after* a byval parameter is passed
2389 /// on the stack. Remember the next parameter register to allocate,
2390 /// and then confiscate the rest of the parameter registers to insure
2391 /// this.
2392 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2393 unsigned Align) const {
2394 // Byval (as with any stack) slots are always at least 4 byte aligned.
2395 Align = std::max(Align, 4U);
2397 unsigned Reg = State->AllocateReg(GPRArgRegs);
2398 if (!Reg)
2399 return;
2401 unsigned AlignInRegs = Align / 4;
2402 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2403 for (unsigned i = 0; i < Waste; ++i)
2404 Reg = State->AllocateReg(GPRArgRegs);
2406 if (!Reg)
2407 return;
2409 unsigned Excess = 4 * (ARM::R4 - Reg);
2411 // Special case when NSAA != SP and parameter size greater than size of
2412 // all remained GPR regs. In that case we can't split parameter, we must
2413 // send it to stack. We also must set NCRN to R4, so waste all
2414 // remained registers.
2415 const unsigned NSAAOffset = State->getNextStackOffset();
2416 if (NSAAOffset != 0 && Size > Excess) {
2417 while (State->AllocateReg(GPRArgRegs))
2419 return;
2422 // First register for byval parameter is the first register that wasn't
2423 // allocated before this method call, so it would be "reg".
2424 // If parameter is small enough to be saved in range [reg, r4), then
2425 // the end (first after last) register would be reg + param-size-in-regs,
2426 // else parameter would be splitted between registers and stack,
2427 // end register would be r4 in this case.
2428 unsigned ByValRegBegin = Reg;
2429 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2430 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2431 // Note, first register is allocated in the beginning of function already,
2432 // allocate remained amount of registers we need.
2433 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2434 State->AllocateReg(GPRArgRegs);
2435 // A byval parameter that is split between registers and memory needs its
2436 // size truncated here.
2437 // In the case where the entire structure fits in registers, we set the
2438 // size in memory to zero.
2439 Size = std::max<int>(Size - Excess, 0);
2442 /// MatchingStackOffset - Return true if the given stack call argument is
2443 /// already available in the same position (relatively) of the caller's
2444 /// incoming argument stack.
2445 static
2446 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2447 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2448 const TargetInstrInfo *TII) {
2449 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2450 int FI = std::numeric_limits<int>::max();
2451 if (Arg.getOpcode() == ISD::CopyFromReg) {
2452 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2453 if (!Register::isVirtualRegister(VR))
2454 return false;
2455 MachineInstr *Def = MRI->getVRegDef(VR);
2456 if (!Def)
2457 return false;
2458 if (!Flags.isByVal()) {
2459 if (!TII->isLoadFromStackSlot(*Def, FI))
2460 return false;
2461 } else {
2462 return false;
2464 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2465 if (Flags.isByVal())
2466 // ByVal argument is passed in as a pointer but it's now being
2467 // dereferenced. e.g.
2468 // define @foo(%struct.X* %A) {
2469 // tail call @bar(%struct.X* byval %A)
2470 // }
2471 return false;
2472 SDValue Ptr = Ld->getBasePtr();
2473 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2474 if (!FINode)
2475 return false;
2476 FI = FINode->getIndex();
2477 } else
2478 return false;
2480 assert(FI != std::numeric_limits<int>::max());
2481 if (!MFI.isFixedObjectIndex(FI))
2482 return false;
2483 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2486 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2487 /// for tail call optimization. Targets which want to do tail call
2488 /// optimization should implement this function.
2489 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2490 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2491 bool isCalleeStructRet, bool isCallerStructRet,
2492 const SmallVectorImpl<ISD::OutputArg> &Outs,
2493 const SmallVectorImpl<SDValue> &OutVals,
2494 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2495 const bool isIndirect) const {
2496 MachineFunction &MF = DAG.getMachineFunction();
2497 const Function &CallerF = MF.getFunction();
2498 CallingConv::ID CallerCC = CallerF.getCallingConv();
2500 assert(Subtarget->supportsTailCall());
2502 // Indirect tail calls cannot be optimized for Thumb1 if the args
2503 // to the call take up r0-r3. The reason is that there are no legal registers
2504 // left to hold the pointer to the function to be called.
2505 if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2506 (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2507 return false;
2509 // Look for obvious safe cases to perform tail call optimization that do not
2510 // require ABI changes. This is what gcc calls sibcall.
2512 // Exception-handling functions need a special set of instructions to indicate
2513 // a return to the hardware. Tail-calling another function would probably
2514 // break this.
2515 if (CallerF.hasFnAttribute("interrupt"))
2516 return false;
2518 // Also avoid sibcall optimization if either caller or callee uses struct
2519 // return semantics.
2520 if (isCalleeStructRet || isCallerStructRet)
2521 return false;
2523 // Externally-defined functions with weak linkage should not be
2524 // tail-called on ARM when the OS does not support dynamic
2525 // pre-emption of symbols, as the AAELF spec requires normal calls
2526 // to undefined weak functions to be replaced with a NOP or jump to the
2527 // next instruction. The behaviour of branch instructions in this
2528 // situation (as used for tail calls) is implementation-defined, so we
2529 // cannot rely on the linker replacing the tail call with a return.
2530 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2531 const GlobalValue *GV = G->getGlobal();
2532 const Triple &TT = getTargetMachine().getTargetTriple();
2533 if (GV->hasExternalWeakLinkage() &&
2534 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2535 return false;
2538 // Check that the call results are passed in the same way.
2539 LLVMContext &C = *DAG.getContext();
2540 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2541 CCAssignFnForReturn(CalleeCC, isVarArg),
2542 CCAssignFnForReturn(CallerCC, isVarArg)))
2543 return false;
2544 // The callee has to preserve all registers the caller needs to preserve.
2545 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2546 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2547 if (CalleeCC != CallerCC) {
2548 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2549 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2550 return false;
2553 // If Caller's vararg or byval argument has been split between registers and
2554 // stack, do not perform tail call, since part of the argument is in caller's
2555 // local frame.
2556 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2557 if (AFI_Caller->getArgRegsSaveSize())
2558 return false;
2560 // If the callee takes no arguments then go on to check the results of the
2561 // call.
2562 if (!Outs.empty()) {
2563 // Check if stack adjustment is needed. For now, do not do this if any
2564 // argument is passed on the stack.
2565 SmallVector<CCValAssign, 16> ArgLocs;
2566 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2567 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2568 if (CCInfo.getNextStackOffset()) {
2569 // Check if the arguments are already laid out in the right way as
2570 // the caller's fixed stack objects.
2571 MachineFrameInfo &MFI = MF.getFrameInfo();
2572 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2573 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2574 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2575 i != e;
2576 ++i, ++realArgIdx) {
2577 CCValAssign &VA = ArgLocs[i];
2578 EVT RegVT = VA.getLocVT();
2579 SDValue Arg = OutVals[realArgIdx];
2580 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2581 if (VA.getLocInfo() == CCValAssign::Indirect)
2582 return false;
2583 if (VA.needsCustom()) {
2584 // f64 and vector types are split into multiple registers or
2585 // register/stack-slot combinations. The types will not match
2586 // the registers; give up on memory f64 refs until we figure
2587 // out what to do about this.
2588 if (!VA.isRegLoc())
2589 return false;
2590 if (!ArgLocs[++i].isRegLoc())
2591 return false;
2592 if (RegVT == MVT::v2f64) {
2593 if (!ArgLocs[++i].isRegLoc())
2594 return false;
2595 if (!ArgLocs[++i].isRegLoc())
2596 return false;
2598 } else if (!VA.isRegLoc()) {
2599 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2600 MFI, MRI, TII))
2601 return false;
2606 const MachineRegisterInfo &MRI = MF.getRegInfo();
2607 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2608 return false;
2611 return true;
2614 bool
2615 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2616 MachineFunction &MF, bool isVarArg,
2617 const SmallVectorImpl<ISD::OutputArg> &Outs,
2618 LLVMContext &Context) const {
2619 SmallVector<CCValAssign, 16> RVLocs;
2620 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2621 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2624 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2625 const SDLoc &DL, SelectionDAG &DAG) {
2626 const MachineFunction &MF = DAG.getMachineFunction();
2627 const Function &F = MF.getFunction();
2629 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2631 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2632 // version of the "preferred return address". These offsets affect the return
2633 // instruction if this is a return from PL1 without hypervisor extensions.
2634 // IRQ/FIQ: +4 "subs pc, lr, #4"
2635 // SWI: 0 "subs pc, lr, #0"
2636 // ABORT: +4 "subs pc, lr, #4"
2637 // UNDEF: +4/+2 "subs pc, lr, #0"
2638 // UNDEF varies depending on where the exception came from ARM or Thumb
2639 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2641 int64_t LROffset;
2642 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2643 IntKind == "ABORT")
2644 LROffset = 4;
2645 else if (IntKind == "SWI" || IntKind == "UNDEF")
2646 LROffset = 0;
2647 else
2648 report_fatal_error("Unsupported interrupt attribute. If present, value "
2649 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2651 RetOps.insert(RetOps.begin() + 1,
2652 DAG.getConstant(LROffset, DL, MVT::i32, false));
2654 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2657 SDValue
2658 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2659 bool isVarArg,
2660 const SmallVectorImpl<ISD::OutputArg> &Outs,
2661 const SmallVectorImpl<SDValue> &OutVals,
2662 const SDLoc &dl, SelectionDAG &DAG) const {
2663 // CCValAssign - represent the assignment of the return value to a location.
2664 SmallVector<CCValAssign, 16> RVLocs;
2666 // CCState - Info about the registers and stack slots.
2667 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2668 *DAG.getContext());
2670 // Analyze outgoing return values.
2671 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2673 SDValue Flag;
2674 SmallVector<SDValue, 4> RetOps;
2675 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2676 bool isLittleEndian = Subtarget->isLittle();
2678 MachineFunction &MF = DAG.getMachineFunction();
2679 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2680 AFI->setReturnRegsCount(RVLocs.size());
2682 // Copy the result values into the output registers.
2683 for (unsigned i = 0, realRVLocIdx = 0;
2684 i != RVLocs.size();
2685 ++i, ++realRVLocIdx) {
2686 CCValAssign &VA = RVLocs[i];
2687 assert(VA.isRegLoc() && "Can only return in registers!");
2689 SDValue Arg = OutVals[realRVLocIdx];
2690 bool ReturnF16 = false;
2692 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2693 // Half-precision return values can be returned like this:
2695 // t11 f16 = fadd ...
2696 // t12: i16 = bitcast t11
2697 // t13: i32 = zero_extend t12
2698 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2700 // to avoid code generation for bitcasts, we simply set Arg to the node
2701 // that produces the f16 value, t11 in this case.
2703 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2704 SDValue ZE = Arg.getOperand(0);
2705 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2706 SDValue BC = ZE.getOperand(0);
2707 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2708 Arg = BC.getOperand(0);
2709 ReturnF16 = true;
2715 switch (VA.getLocInfo()) {
2716 default: llvm_unreachable("Unknown loc info!");
2717 case CCValAssign::Full: break;
2718 case CCValAssign::BCvt:
2719 if (!ReturnF16)
2720 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2721 break;
2724 if (VA.needsCustom()) {
2725 if (VA.getLocVT() == MVT::v2f64) {
2726 // Extract the first half and return it in two registers.
2727 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2728 DAG.getConstant(0, dl, MVT::i32));
2729 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2730 DAG.getVTList(MVT::i32, MVT::i32), Half);
2732 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2733 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2734 Flag);
2735 Flag = Chain.getValue(1);
2736 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2737 VA = RVLocs[++i]; // skip ahead to next loc
2738 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2739 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2740 Flag);
2741 Flag = Chain.getValue(1);
2742 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2743 VA = RVLocs[++i]; // skip ahead to next loc
2745 // Extract the 2nd half and fall through to handle it as an f64 value.
2746 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2747 DAG.getConstant(1, dl, MVT::i32));
2749 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2750 // available.
2751 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2752 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2753 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2754 fmrrd.getValue(isLittleEndian ? 0 : 1),
2755 Flag);
2756 Flag = Chain.getValue(1);
2757 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2758 VA = RVLocs[++i]; // skip ahead to next loc
2759 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2760 fmrrd.getValue(isLittleEndian ? 1 : 0),
2761 Flag);
2762 } else
2763 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2765 // Guarantee that all emitted copies are
2766 // stuck together, avoiding something bad.
2767 Flag = Chain.getValue(1);
2768 RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2769 ReturnF16 ? MVT::f16 : VA.getLocVT()));
2771 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2772 const MCPhysReg *I =
2773 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2774 if (I) {
2775 for (; *I; ++I) {
2776 if (ARM::GPRRegClass.contains(*I))
2777 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2778 else if (ARM::DPRRegClass.contains(*I))
2779 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2780 else
2781 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2785 // Update chain and glue.
2786 RetOps[0] = Chain;
2787 if (Flag.getNode())
2788 RetOps.push_back(Flag);
2790 // CPUs which aren't M-class use a special sequence to return from
2791 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2792 // though we use "subs pc, lr, #N").
2794 // M-class CPUs actually use a normal return sequence with a special
2795 // (hardware-provided) value in LR, so the normal code path works.
2796 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2797 !Subtarget->isMClass()) {
2798 if (Subtarget->isThumb1Only())
2799 report_fatal_error("interrupt attribute is not supported in Thumb1");
2800 return LowerInterruptReturn(RetOps, dl, DAG);
2803 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2806 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2807 if (N->getNumValues() != 1)
2808 return false;
2809 if (!N->hasNUsesOfValue(1, 0))
2810 return false;
2812 SDValue TCChain = Chain;
2813 SDNode *Copy = *N->use_begin();
2814 if (Copy->getOpcode() == ISD::CopyToReg) {
2815 // If the copy has a glue operand, we conservatively assume it isn't safe to
2816 // perform a tail call.
2817 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2818 return false;
2819 TCChain = Copy->getOperand(0);
2820 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2821 SDNode *VMov = Copy;
2822 // f64 returned in a pair of GPRs.
2823 SmallPtrSet<SDNode*, 2> Copies;
2824 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2825 UI != UE; ++UI) {
2826 if (UI->getOpcode() != ISD::CopyToReg)
2827 return false;
2828 Copies.insert(*UI);
2830 if (Copies.size() > 2)
2831 return false;
2833 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2834 UI != UE; ++UI) {
2835 SDValue UseChain = UI->getOperand(0);
2836 if (Copies.count(UseChain.getNode()))
2837 // Second CopyToReg
2838 Copy = *UI;
2839 else {
2840 // We are at the top of this chain.
2841 // If the copy has a glue operand, we conservatively assume it
2842 // isn't safe to perform a tail call.
2843 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2844 return false;
2845 // First CopyToReg
2846 TCChain = UseChain;
2849 } else if (Copy->getOpcode() == ISD::BITCAST) {
2850 // f32 returned in a single GPR.
2851 if (!Copy->hasOneUse())
2852 return false;
2853 Copy = *Copy->use_begin();
2854 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2855 return false;
2856 // If the copy has a glue operand, we conservatively assume it isn't safe to
2857 // perform a tail call.
2858 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2859 return false;
2860 TCChain = Copy->getOperand(0);
2861 } else {
2862 return false;
2865 bool HasRet = false;
2866 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2867 UI != UE; ++UI) {
2868 if (UI->getOpcode() != ARMISD::RET_FLAG &&
2869 UI->getOpcode() != ARMISD::INTRET_FLAG)
2870 return false;
2871 HasRet = true;
2874 if (!HasRet)
2875 return false;
2877 Chain = TCChain;
2878 return true;
2881 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2882 if (!Subtarget->supportsTailCall())
2883 return false;
2885 auto Attr =
2886 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2887 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2888 return false;
2890 return true;
2893 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2894 // and pass the lower and high parts through.
2895 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2896 SDLoc DL(Op);
2897 SDValue WriteValue = Op->getOperand(2);
2899 // This function is only supposed to be called for i64 type argument.
2900 assert(WriteValue.getValueType() == MVT::i64
2901 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2903 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2904 DAG.getConstant(0, DL, MVT::i32));
2905 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2906 DAG.getConstant(1, DL, MVT::i32));
2907 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2908 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2911 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2912 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2913 // one of the above mentioned nodes. It has to be wrapped because otherwise
2914 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2915 // be used to form addressing mode. These wrapped nodes will be selected
2916 // into MOVi.
2917 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2918 SelectionDAG &DAG) const {
2919 EVT PtrVT = Op.getValueType();
2920 // FIXME there is no actual debug info here
2921 SDLoc dl(Op);
2922 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2923 SDValue Res;
2925 // When generating execute-only code Constant Pools must be promoted to the
2926 // global data section. It's a bit ugly that we can't share them across basic
2927 // blocks, but this way we guarantee that execute-only behaves correct with
2928 // position-independent addressing modes.
2929 if (Subtarget->genExecuteOnly()) {
2930 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2931 auto T = const_cast<Type*>(CP->getType());
2932 auto C = const_cast<Constant*>(CP->getConstVal());
2933 auto M = const_cast<Module*>(DAG.getMachineFunction().
2934 getFunction().getParent());
2935 auto GV = new GlobalVariable(
2936 *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
2937 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2938 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2939 Twine(AFI->createPICLabelUId())
2941 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2942 dl, PtrVT);
2943 return LowerGlobalAddress(GA, DAG);
2946 if (CP->isMachineConstantPoolEntry())
2947 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2948 CP->getAlignment());
2949 else
2950 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2951 CP->getAlignment());
2952 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2955 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2956 return MachineJumpTableInfo::EK_Inline;
2959 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2960 SelectionDAG &DAG) const {
2961 MachineFunction &MF = DAG.getMachineFunction();
2962 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2963 unsigned ARMPCLabelIndex = 0;
2964 SDLoc DL(Op);
2965 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2966 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2967 SDValue CPAddr;
2968 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2969 if (!IsPositionIndependent) {
2970 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2971 } else {
2972 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2973 ARMPCLabelIndex = AFI->createPICLabelUId();
2974 ARMConstantPoolValue *CPV =
2975 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2976 ARMCP::CPBlockAddress, PCAdj);
2977 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2979 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2980 SDValue Result = DAG.getLoad(
2981 PtrVT, DL, DAG.getEntryNode(), CPAddr,
2982 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2983 if (!IsPositionIndependent)
2984 return Result;
2985 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2986 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2989 /// Convert a TLS address reference into the correct sequence of loads
2990 /// and calls to compute the variable's address for Darwin, and return an
2991 /// SDValue containing the final node.
2993 /// Darwin only has one TLS scheme which must be capable of dealing with the
2994 /// fully general situation, in the worst case. This means:
2995 /// + "extern __thread" declaration.
2996 /// + Defined in a possibly unknown dynamic library.
2998 /// The general system is that each __thread variable has a [3 x i32] descriptor
2999 /// which contains information used by the runtime to calculate the address. The
3000 /// only part of this the compiler needs to know about is the first word, which
3001 /// contains a function pointer that must be called with the address of the
3002 /// entire descriptor in "r0".
3004 /// Since this descriptor may be in a different unit, in general access must
3005 /// proceed along the usual ARM rules. A common sequence to produce is:
3007 /// movw rT1, :lower16:_var$non_lazy_ptr
3008 /// movt rT1, :upper16:_var$non_lazy_ptr
3009 /// ldr r0, [rT1]
3010 /// ldr rT2, [r0]
3011 /// blx rT2
3012 /// [...address now in r0...]
3013 SDValue
3014 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3015 SelectionDAG &DAG) const {
3016 assert(Subtarget->isTargetDarwin() &&
3017 "This function expects a Darwin target");
3018 SDLoc DL(Op);
3020 // First step is to get the address of the actua global symbol. This is where
3021 // the TLS descriptor lives.
3022 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3024 // The first entry in the descriptor is a function pointer that we must call
3025 // to obtain the address of the variable.
3026 SDValue Chain = DAG.getEntryNode();
3027 SDValue FuncTLVGet = DAG.getLoad(
3028 MVT::i32, DL, Chain, DescAddr,
3029 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
3030 /* Alignment = */ 4,
3031 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3032 MachineMemOperand::MOInvariant);
3033 Chain = FuncTLVGet.getValue(1);
3035 MachineFunction &F = DAG.getMachineFunction();
3036 MachineFrameInfo &MFI = F.getFrameInfo();
3037 MFI.setAdjustsStack(true);
3039 // TLS calls preserve all registers except those that absolutely must be
3040 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3041 // silly).
3042 auto TRI =
3043 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3044 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3045 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3047 // Finally, we can make the call. This is just a degenerate version of a
3048 // normal AArch64 call node: r0 takes the address of the descriptor, and
3049 // returns the address of the variable in this thread.
3050 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3051 Chain =
3052 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3053 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3054 DAG.getRegisterMask(Mask), Chain.getValue(1));
3055 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3058 SDValue
3059 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3060 SelectionDAG &DAG) const {
3061 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3063 SDValue Chain = DAG.getEntryNode();
3064 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3065 SDLoc DL(Op);
3067 // Load the current TEB (thread environment block)
3068 SDValue Ops[] = {Chain,
3069 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3070 DAG.getConstant(15, DL, MVT::i32),
3071 DAG.getConstant(0, DL, MVT::i32),
3072 DAG.getConstant(13, DL, MVT::i32),
3073 DAG.getConstant(0, DL, MVT::i32),
3074 DAG.getConstant(2, DL, MVT::i32)};
3075 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3076 DAG.getVTList(MVT::i32, MVT::Other), Ops);
3078 SDValue TEB = CurrentTEB.getValue(0);
3079 Chain = CurrentTEB.getValue(1);
3081 // Load the ThreadLocalStoragePointer from the TEB
3082 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3083 SDValue TLSArray =
3084 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3085 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3087 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3088 // offset into the TLSArray.
3090 // Load the TLS index from the C runtime
3091 SDValue TLSIndex =
3092 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3093 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3094 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3096 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3097 DAG.getConstant(2, DL, MVT::i32));
3098 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3099 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3100 MachinePointerInfo());
3102 // Get the offset of the start of the .tls section (section base)
3103 const auto *GA = cast<GlobalAddressSDNode>(Op);
3104 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3105 SDValue Offset = DAG.getLoad(
3106 PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3107 DAG.getTargetConstantPool(CPV, PtrVT, 4)),
3108 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3110 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3113 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3114 SDValue
3115 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3116 SelectionDAG &DAG) const {
3117 SDLoc dl(GA);
3118 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3119 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3120 MachineFunction &MF = DAG.getMachineFunction();
3121 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3122 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3123 ARMConstantPoolValue *CPV =
3124 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3125 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3126 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3127 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3128 Argument = DAG.getLoad(
3129 PtrVT, dl, DAG.getEntryNode(), Argument,
3130 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3131 SDValue Chain = Argument.getValue(1);
3133 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3134 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3136 // call __tls_get_addr.
3137 ArgListTy Args;
3138 ArgListEntry Entry;
3139 Entry.Node = Argument;
3140 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3141 Args.push_back(Entry);
3143 // FIXME: is there useful debug info available here?
3144 TargetLowering::CallLoweringInfo CLI(DAG);
3145 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3146 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3147 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3149 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3150 return CallResult.first;
3153 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3154 // "local exec" model.
3155 SDValue
3156 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3157 SelectionDAG &DAG,
3158 TLSModel::Model model) const {
3159 const GlobalValue *GV = GA->getGlobal();
3160 SDLoc dl(GA);
3161 SDValue Offset;
3162 SDValue Chain = DAG.getEntryNode();
3163 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3164 // Get the Thread Pointer
3165 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3167 if (model == TLSModel::InitialExec) {
3168 MachineFunction &MF = DAG.getMachineFunction();
3169 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3170 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3171 // Initial exec model.
3172 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3173 ARMConstantPoolValue *CPV =
3174 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3175 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3176 true);
3177 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3178 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3179 Offset = DAG.getLoad(
3180 PtrVT, dl, Chain, Offset,
3181 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3182 Chain = Offset.getValue(1);
3184 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3185 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3187 Offset = DAG.getLoad(
3188 PtrVT, dl, Chain, Offset,
3189 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3190 } else {
3191 // local exec model
3192 assert(model == TLSModel::LocalExec);
3193 ARMConstantPoolValue *CPV =
3194 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3195 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3196 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3197 Offset = DAG.getLoad(
3198 PtrVT, dl, Chain, Offset,
3199 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3202 // The address of the thread local variable is the add of the thread
3203 // pointer with the offset of the variable.
3204 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3207 SDValue
3208 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3209 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3210 if (DAG.getTarget().useEmulatedTLS())
3211 return LowerToTLSEmulatedModel(GA, DAG);
3213 if (Subtarget->isTargetDarwin())
3214 return LowerGlobalTLSAddressDarwin(Op, DAG);
3216 if (Subtarget->isTargetWindows())
3217 return LowerGlobalTLSAddressWindows(Op, DAG);
3219 // TODO: implement the "local dynamic" model
3220 assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3221 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3223 switch (model) {
3224 case TLSModel::GeneralDynamic:
3225 case TLSModel::LocalDynamic:
3226 return LowerToTLSGeneralDynamicModel(GA, DAG);
3227 case TLSModel::InitialExec:
3228 case TLSModel::LocalExec:
3229 return LowerToTLSExecModels(GA, DAG, model);
3231 llvm_unreachable("bogus TLS model");
3234 /// Return true if all users of V are within function F, looking through
3235 /// ConstantExprs.
3236 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3237 SmallVector<const User*,4> Worklist;
3238 for (auto *U : V->users())
3239 Worklist.push_back(U);
3240 while (!Worklist.empty()) {
3241 auto *U = Worklist.pop_back_val();
3242 if (isa<ConstantExpr>(U)) {
3243 for (auto *UU : U->users())
3244 Worklist.push_back(UU);
3245 continue;
3248 auto *I = dyn_cast<Instruction>(U);
3249 if (!I || I->getParent()->getParent() != F)
3250 return false;
3252 return true;
3255 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3256 const GlobalValue *GV, SelectionDAG &DAG,
3257 EVT PtrVT, const SDLoc &dl) {
3258 // If we're creating a pool entry for a constant global with unnamed address,
3259 // and the global is small enough, we can emit it inline into the constant pool
3260 // to save ourselves an indirection.
3262 // This is a win if the constant is only used in one function (so it doesn't
3263 // need to be duplicated) or duplicating the constant wouldn't increase code
3264 // size (implying the constant is no larger than 4 bytes).
3265 const Function &F = DAG.getMachineFunction().getFunction();
3267 // We rely on this decision to inline being idemopotent and unrelated to the
3268 // use-site. We know that if we inline a variable at one use site, we'll
3269 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3270 // doesn't know about this optimization, so bail out if it's enabled else
3271 // we could decide to inline here (and thus never emit the GV) but require
3272 // the GV from fast-isel generated code.
3273 if (!EnableConstpoolPromotion ||
3274 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3275 return SDValue();
3277 auto *GVar = dyn_cast<GlobalVariable>(GV);
3278 if (!GVar || !GVar->hasInitializer() ||
3279 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3280 !GVar->hasLocalLinkage())
3281 return SDValue();
3283 // If we inline a value that contains relocations, we move the relocations
3284 // from .data to .text. This is not allowed in position-independent code.
3285 auto *Init = GVar->getInitializer();
3286 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3287 Init->needsRelocation())
3288 return SDValue();
3290 // The constant islands pass can only really deal with alignment requests
3291 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3292 // any type wanting greater alignment requirements than 4 bytes. We also
3293 // can only promote constants that are multiples of 4 bytes in size or
3294 // are paddable to a multiple of 4. Currently we only try and pad constants
3295 // that are strings for simplicity.
3296 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3297 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3298 unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3299 unsigned RequiredPadding = 4 - (Size % 4);
3300 bool PaddingPossible =
3301 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3302 if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3303 Size == 0)
3304 return SDValue();
3306 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3307 MachineFunction &MF = DAG.getMachineFunction();
3308 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3310 // We can't bloat the constant pool too much, else the ConstantIslands pass
3311 // may fail to converge. If we haven't promoted this global yet (it may have
3312 // multiple uses), and promoting it would increase the constant pool size (Sz
3313 // > 4), ensure we have space to do so up to MaxTotal.
3314 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3315 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3316 ConstpoolPromotionMaxTotal)
3317 return SDValue();
3319 // This is only valid if all users are in a single function; we can't clone
3320 // the constant in general. The LLVM IR unnamed_addr allows merging
3321 // constants, but not cloning them.
3323 // We could potentially allow cloning if we could prove all uses of the
3324 // constant in the current function don't care about the address, like
3325 // printf format strings. But that isn't implemented for now.
3326 if (!allUsersAreInFunction(GVar, &F))
3327 return SDValue();
3329 // We're going to inline this global. Pad it out if needed.
3330 if (RequiredPadding != 4) {
3331 StringRef S = CDAInit->getAsString();
3333 SmallVector<uint8_t,16> V(S.size());
3334 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3335 while (RequiredPadding--)
3336 V.push_back(0);
3337 Init = ConstantDataArray::get(*DAG.getContext(), V);
3340 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3341 SDValue CPAddr =
3342 DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3343 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3344 AFI->markGlobalAsPromotedToConstantPool(GVar);
3345 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3346 PaddedSize - 4);
3348 ++NumConstpoolPromoted;
3349 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3352 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3353 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3354 if (!(GV = GA->getBaseObject()))
3355 return false;
3356 if (const auto *V = dyn_cast<GlobalVariable>(GV))
3357 return V->isConstant();
3358 return isa<Function>(GV);
3361 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3362 SelectionDAG &DAG) const {
3363 switch (Subtarget->getTargetTriple().getObjectFormat()) {
3364 default: llvm_unreachable("unknown object format");
3365 case Triple::COFF:
3366 return LowerGlobalAddressWindows(Op, DAG);
3367 case Triple::ELF:
3368 return LowerGlobalAddressELF(Op, DAG);
3369 case Triple::MachO:
3370 return LowerGlobalAddressDarwin(Op, DAG);
3374 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3375 SelectionDAG &DAG) const {
3376 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3377 SDLoc dl(Op);
3378 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3379 const TargetMachine &TM = getTargetMachine();
3380 bool IsRO = isReadOnly(GV);
3382 // promoteToConstantPool only if not generating XO text section
3383 if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3384 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3385 return V;
3387 if (isPositionIndependent()) {
3388 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3389 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3390 UseGOT_PREL ? ARMII::MO_GOT : 0);
3391 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3392 if (UseGOT_PREL)
3393 Result =
3394 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3395 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3396 return Result;
3397 } else if (Subtarget->isROPI() && IsRO) {
3398 // PC-relative.
3399 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3400 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3401 return Result;
3402 } else if (Subtarget->isRWPI() && !IsRO) {
3403 // SB-relative.
3404 SDValue RelAddr;
3405 if (Subtarget->useMovt()) {
3406 ++NumMovwMovt;
3407 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3408 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3409 } else { // use literal pool for address constant
3410 ARMConstantPoolValue *CPV =
3411 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3412 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3413 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3414 RelAddr = DAG.getLoad(
3415 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3416 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3418 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3419 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3420 return Result;
3423 // If we have T2 ops, we can materialize the address directly via movt/movw
3424 // pair. This is always cheaper.
3425 if (Subtarget->useMovt()) {
3426 ++NumMovwMovt;
3427 // FIXME: Once remat is capable of dealing with instructions with register
3428 // operands, expand this into two nodes.
3429 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3430 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3431 } else {
3432 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3433 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3434 return DAG.getLoad(
3435 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3436 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3440 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3441 SelectionDAG &DAG) const {
3442 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3443 "ROPI/RWPI not currently supported for Darwin");
3444 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3445 SDLoc dl(Op);
3446 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3448 if (Subtarget->useMovt())
3449 ++NumMovwMovt;
3451 // FIXME: Once remat is capable of dealing with instructions with register
3452 // operands, expand this into multiple nodes
3453 unsigned Wrapper =
3454 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3456 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3457 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3459 if (Subtarget->isGVIndirectSymbol(GV))
3460 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3461 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3462 return Result;
3465 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3466 SelectionDAG &DAG) const {
3467 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3468 assert(Subtarget->useMovt() &&
3469 "Windows on ARM expects to use movw/movt");
3470 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3471 "ROPI/RWPI not currently supported for Windows");
3473 const TargetMachine &TM = getTargetMachine();
3474 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3475 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3476 if (GV->hasDLLImportStorageClass())
3477 TargetFlags = ARMII::MO_DLLIMPORT;
3478 else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3479 TargetFlags = ARMII::MO_COFFSTUB;
3480 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3481 SDValue Result;
3482 SDLoc DL(Op);
3484 ++NumMovwMovt;
3486 // FIXME: Once remat is capable of dealing with instructions with register
3487 // operands, expand this into two nodes.
3488 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3489 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3490 TargetFlags));
3491 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3492 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3493 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3494 return Result;
3497 SDValue
3498 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3499 SDLoc dl(Op);
3500 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3501 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3502 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3503 Op.getOperand(1), Val);
3506 SDValue
3507 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3508 SDLoc dl(Op);
3509 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3510 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3513 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3514 SelectionDAG &DAG) const {
3515 SDLoc dl(Op);
3516 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3517 Op.getOperand(0));
3520 SDValue
3521 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3522 const ARMSubtarget *Subtarget) const {
3523 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3524 SDLoc dl(Op);
3525 switch (IntNo) {
3526 default: return SDValue(); // Don't custom lower most intrinsics.
3527 case Intrinsic::thread_pointer: {
3528 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3529 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3531 case Intrinsic::eh_sjlj_lsda: {
3532 MachineFunction &MF = DAG.getMachineFunction();
3533 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3534 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3535 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3536 SDValue CPAddr;
3537 bool IsPositionIndependent = isPositionIndependent();
3538 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3539 ARMConstantPoolValue *CPV =
3540 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3541 ARMCP::CPLSDA, PCAdj);
3542 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3543 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3544 SDValue Result = DAG.getLoad(
3545 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3546 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3548 if (IsPositionIndependent) {
3549 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3550 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3552 return Result;
3554 case Intrinsic::arm_neon_vabs:
3555 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3556 Op.getOperand(1));
3557 case Intrinsic::arm_neon_vmulls:
3558 case Intrinsic::arm_neon_vmullu: {
3559 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3560 ? ARMISD::VMULLs : ARMISD::VMULLu;
3561 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3562 Op.getOperand(1), Op.getOperand(2));
3564 case Intrinsic::arm_neon_vminnm:
3565 case Intrinsic::arm_neon_vmaxnm: {
3566 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3567 ? ISD::FMINNUM : ISD::FMAXNUM;
3568 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3569 Op.getOperand(1), Op.getOperand(2));
3571 case Intrinsic::arm_neon_vminu:
3572 case Intrinsic::arm_neon_vmaxu: {
3573 if (Op.getValueType().isFloatingPoint())
3574 return SDValue();
3575 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3576 ? ISD::UMIN : ISD::UMAX;
3577 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3578 Op.getOperand(1), Op.getOperand(2));
3580 case Intrinsic::arm_neon_vmins:
3581 case Intrinsic::arm_neon_vmaxs: {
3582 // v{min,max}s is overloaded between signed integers and floats.
3583 if (!Op.getValueType().isFloatingPoint()) {
3584 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3585 ? ISD::SMIN : ISD::SMAX;
3586 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3587 Op.getOperand(1), Op.getOperand(2));
3589 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3590 ? ISD::FMINIMUM : ISD::FMAXIMUM;
3591 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3592 Op.getOperand(1), Op.getOperand(2));
3594 case Intrinsic::arm_neon_vtbl1:
3595 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3596 Op.getOperand(1), Op.getOperand(2));
3597 case Intrinsic::arm_neon_vtbl2:
3598 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3599 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3603 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3604 const ARMSubtarget *Subtarget) {
3605 SDLoc dl(Op);
3606 ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3607 auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3608 if (SSID == SyncScope::SingleThread)
3609 return Op;
3611 if (!Subtarget->hasDataBarrier()) {
3612 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3613 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3614 // here.
3615 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3616 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3617 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3618 DAG.getConstant(0, dl, MVT::i32));
3621 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3622 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3623 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3624 if (Subtarget->isMClass()) {
3625 // Only a full system barrier exists in the M-class architectures.
3626 Domain = ARM_MB::SY;
3627 } else if (Subtarget->preferISHSTBarriers() &&
3628 Ord == AtomicOrdering::Release) {
3629 // Swift happens to implement ISHST barriers in a way that's compatible with
3630 // Release semantics but weaker than ISH so we'd be fools not to use
3631 // it. Beware: other processors probably don't!
3632 Domain = ARM_MB::ISHST;
3635 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3636 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3637 DAG.getConstant(Domain, dl, MVT::i32));
3640 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3641 const ARMSubtarget *Subtarget) {
3642 // ARM pre v5TE and Thumb1 does not have preload instructions.
3643 if (!(Subtarget->isThumb2() ||
3644 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3645 // Just preserve the chain.
3646 return Op.getOperand(0);
3648 SDLoc dl(Op);
3649 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3650 if (!isRead &&
3651 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3652 // ARMv7 with MP extension has PLDW.
3653 return Op.getOperand(0);
3655 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3656 if (Subtarget->isThumb()) {
3657 // Invert the bits.
3658 isRead = ~isRead & 1;
3659 isData = ~isData & 1;
3662 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3663 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3664 DAG.getConstant(isData, dl, MVT::i32));
3667 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3668 MachineFunction &MF = DAG.getMachineFunction();
3669 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3671 // vastart just stores the address of the VarArgsFrameIndex slot into the
3672 // memory location argument.
3673 SDLoc dl(Op);
3674 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3675 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3676 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3677 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3678 MachinePointerInfo(SV));
3681 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3682 CCValAssign &NextVA,
3683 SDValue &Root,
3684 SelectionDAG &DAG,
3685 const SDLoc &dl) const {
3686 MachineFunction &MF = DAG.getMachineFunction();
3687 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3689 const TargetRegisterClass *RC;
3690 if (AFI->isThumb1OnlyFunction())
3691 RC = &ARM::tGPRRegClass;
3692 else
3693 RC = &ARM::GPRRegClass;
3695 // Transform the arguments stored in physical registers into virtual ones.
3696 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3697 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3699 SDValue ArgValue2;
3700 if (NextVA.isMemLoc()) {
3701 MachineFrameInfo &MFI = MF.getFrameInfo();
3702 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3704 // Create load node to retrieve arguments from the stack.
3705 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3706 ArgValue2 = DAG.getLoad(
3707 MVT::i32, dl, Root, FIN,
3708 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3709 } else {
3710 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3711 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3713 if (!Subtarget->isLittle())
3714 std::swap (ArgValue, ArgValue2);
3715 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3718 // The remaining GPRs hold either the beginning of variable-argument
3719 // data, or the beginning of an aggregate passed by value (usually
3720 // byval). Either way, we allocate stack slots adjacent to the data
3721 // provided by our caller, and store the unallocated registers there.
3722 // If this is a variadic function, the va_list pointer will begin with
3723 // these values; otherwise, this reassembles a (byval) structure that
3724 // was split between registers and memory.
3725 // Return: The frame index registers were stored into.
3726 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3727 const SDLoc &dl, SDValue &Chain,
3728 const Value *OrigArg,
3729 unsigned InRegsParamRecordIdx,
3730 int ArgOffset, unsigned ArgSize) const {
3731 // Currently, two use-cases possible:
3732 // Case #1. Non-var-args function, and we meet first byval parameter.
3733 // Setup first unallocated register as first byval register;
3734 // eat all remained registers
3735 // (these two actions are performed by HandleByVal method).
3736 // Then, here, we initialize stack frame with
3737 // "store-reg" instructions.
3738 // Case #2. Var-args function, that doesn't contain byval parameters.
3739 // The same: eat all remained unallocated registers,
3740 // initialize stack frame.
3742 MachineFunction &MF = DAG.getMachineFunction();
3743 MachineFrameInfo &MFI = MF.getFrameInfo();
3744 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3745 unsigned RBegin, REnd;
3746 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3747 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3748 } else {
3749 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3750 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3751 REnd = ARM::R4;
3754 if (REnd != RBegin)
3755 ArgOffset = -4 * (ARM::R4 - RBegin);
3757 auto PtrVT = getPointerTy(DAG.getDataLayout());
3758 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3759 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3761 SmallVector<SDValue, 4> MemOps;
3762 const TargetRegisterClass *RC =
3763 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3765 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3766 unsigned VReg = MF.addLiveIn(Reg, RC);
3767 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3768 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3769 MachinePointerInfo(OrigArg, 4 * i));
3770 MemOps.push_back(Store);
3771 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3774 if (!MemOps.empty())
3775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3776 return FrameIndex;
3779 // Setup stack frame, the va_list pointer will start from.
3780 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3781 const SDLoc &dl, SDValue &Chain,
3782 unsigned ArgOffset,
3783 unsigned TotalArgRegsSaveSize,
3784 bool ForceMutable) const {
3785 MachineFunction &MF = DAG.getMachineFunction();
3786 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3788 // Try to store any remaining integer argument regs
3789 // to their spots on the stack so that they may be loaded by dereferencing
3790 // the result of va_next.
3791 // If there is no regs to be stored, just point address after last
3792 // argument passed via stack.
3793 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3794 CCInfo.getInRegsParamsCount(),
3795 CCInfo.getNextStackOffset(),
3796 std::max(4U, TotalArgRegsSaveSize));
3797 AFI->setVarArgsFrameIndex(FrameIndex);
3800 SDValue ARMTargetLowering::LowerFormalArguments(
3801 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3802 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3803 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3804 MachineFunction &MF = DAG.getMachineFunction();
3805 MachineFrameInfo &MFI = MF.getFrameInfo();
3807 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3809 // Assign locations to all of the incoming arguments.
3810 SmallVector<CCValAssign, 16> ArgLocs;
3811 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3812 *DAG.getContext());
3813 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3815 SmallVector<SDValue, 16> ArgValues;
3816 SDValue ArgValue;
3817 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3818 unsigned CurArgIdx = 0;
3820 // Initially ArgRegsSaveSize is zero.
3821 // Then we increase this value each time we meet byval parameter.
3822 // We also increase this value in case of varargs function.
3823 AFI->setArgRegsSaveSize(0);
3825 // Calculate the amount of stack space that we need to allocate to store
3826 // byval and variadic arguments that are passed in registers.
3827 // We need to know this before we allocate the first byval or variadic
3828 // argument, as they will be allocated a stack slot below the CFA (Canonical
3829 // Frame Address, the stack pointer at entry to the function).
3830 unsigned ArgRegBegin = ARM::R4;
3831 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3832 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3833 break;
3835 CCValAssign &VA = ArgLocs[i];
3836 unsigned Index = VA.getValNo();
3837 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3838 if (!Flags.isByVal())
3839 continue;
3841 assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3842 unsigned RBegin, REnd;
3843 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3844 ArgRegBegin = std::min(ArgRegBegin, RBegin);
3846 CCInfo.nextInRegsParam();
3848 CCInfo.rewindByValRegsInfo();
3850 int lastInsIndex = -1;
3851 if (isVarArg && MFI.hasVAStart()) {
3852 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3853 if (RegIdx != array_lengthof(GPRArgRegs))
3854 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3857 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3858 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3859 auto PtrVT = getPointerTy(DAG.getDataLayout());
3861 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3862 CCValAssign &VA = ArgLocs[i];
3863 if (Ins[VA.getValNo()].isOrigArg()) {
3864 std::advance(CurOrigArg,
3865 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3866 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3868 // Arguments stored in registers.
3869 if (VA.isRegLoc()) {
3870 EVT RegVT = VA.getLocVT();
3872 if (VA.needsCustom()) {
3873 // f64 and vector types are split up into multiple registers or
3874 // combinations of registers and stack slots.
3875 if (VA.getLocVT() == MVT::v2f64) {
3876 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3877 Chain, DAG, dl);
3878 VA = ArgLocs[++i]; // skip ahead to next loc
3879 SDValue ArgValue2;
3880 if (VA.isMemLoc()) {
3881 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3882 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3883 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3884 MachinePointerInfo::getFixedStack(
3885 DAG.getMachineFunction(), FI));
3886 } else {
3887 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3888 Chain, DAG, dl);
3890 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3891 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3892 ArgValue, ArgValue1,
3893 DAG.getIntPtrConstant(0, dl));
3894 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3895 ArgValue, ArgValue2,
3896 DAG.getIntPtrConstant(1, dl));
3897 } else
3898 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3899 } else {
3900 const TargetRegisterClass *RC;
3903 if (RegVT == MVT::f16)
3904 RC = &ARM::HPRRegClass;
3905 else if (RegVT == MVT::f32)
3906 RC = &ARM::SPRRegClass;
3907 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3908 RC = &ARM::DPRRegClass;
3909 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3910 RC = &ARM::QPRRegClass;
3911 else if (RegVT == MVT::i32)
3912 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3913 : &ARM::GPRRegClass;
3914 else
3915 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3917 // Transform the arguments in physical registers into virtual ones.
3918 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3919 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3921 // If this value is passed in r0 and has the returned attribute (e.g.
3922 // C++ 'structors), record this fact for later use.
3923 if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
3924 AFI->setPreservesR0();
3928 // If this is an 8 or 16-bit value, it is really passed promoted
3929 // to 32 bits. Insert an assert[sz]ext to capture this, then
3930 // truncate to the right size.
3931 switch (VA.getLocInfo()) {
3932 default: llvm_unreachable("Unknown loc info!");
3933 case CCValAssign::Full: break;
3934 case CCValAssign::BCvt:
3935 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3936 break;
3937 case CCValAssign::SExt:
3938 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3939 DAG.getValueType(VA.getValVT()));
3940 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3941 break;
3942 case CCValAssign::ZExt:
3943 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3944 DAG.getValueType(VA.getValVT()));
3945 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3946 break;
3949 InVals.push_back(ArgValue);
3950 } else { // VA.isRegLoc()
3951 // sanity check
3952 assert(VA.isMemLoc());
3953 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3955 int index = VA.getValNo();
3957 // Some Ins[] entries become multiple ArgLoc[] entries.
3958 // Process them only once.
3959 if (index != lastInsIndex)
3961 ISD::ArgFlagsTy Flags = Ins[index].Flags;
3962 // FIXME: For now, all byval parameter objects are marked mutable.
3963 // This can be changed with more analysis.
3964 // In case of tail call optimization mark all arguments mutable.
3965 // Since they could be overwritten by lowering of arguments in case of
3966 // a tail call.
3967 if (Flags.isByVal()) {
3968 assert(Ins[index].isOrigArg() &&
3969 "Byval arguments cannot be implicit");
3970 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3972 int FrameIndex = StoreByValRegs(
3973 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3974 VA.getLocMemOffset(), Flags.getByValSize());
3975 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3976 CCInfo.nextInRegsParam();
3977 } else {
3978 unsigned FIOffset = VA.getLocMemOffset();
3979 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3980 FIOffset, true);
3982 // Create load nodes to retrieve arguments from the stack.
3983 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3984 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3985 MachinePointerInfo::getFixedStack(
3986 DAG.getMachineFunction(), FI)));
3988 lastInsIndex = index;
3993 // varargs
3994 if (isVarArg && MFI.hasVAStart())
3995 VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3996 CCInfo.getNextStackOffset(),
3997 TotalArgRegsSaveSize);
3999 AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4001 return Chain;
4004 /// isFloatingPointZero - Return true if this is +0.0.
4005 static bool isFloatingPointZero(SDValue Op) {
4006 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4007 return CFP->getValueAPF().isPosZero();
4008 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4009 // Maybe this has already been legalized into the constant pool?
4010 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4011 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4012 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4013 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4014 return CFP->getValueAPF().isPosZero();
4016 } else if (Op->getOpcode() == ISD::BITCAST &&
4017 Op->getValueType(0) == MVT::f64) {
4018 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4019 // created by LowerConstantFP().
4020 SDValue BitcastOp = Op->getOperand(0);
4021 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4022 isNullConstant(BitcastOp->getOperand(0)))
4023 return true;
4025 return false;
4028 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4029 /// the given operands.
4030 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4031 SDValue &ARMcc, SelectionDAG &DAG,
4032 const SDLoc &dl) const {
4033 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4034 unsigned C = RHSC->getZExtValue();
4035 if (!isLegalICmpImmediate((int32_t)C)) {
4036 // Constant does not fit, try adjusting it by one.
4037 switch (CC) {
4038 default: break;
4039 case ISD::SETLT:
4040 case ISD::SETGE:
4041 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4042 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4043 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4045 break;
4046 case ISD::SETULT:
4047 case ISD::SETUGE:
4048 if (C != 0 && isLegalICmpImmediate(C-1)) {
4049 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4050 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4052 break;
4053 case ISD::SETLE:
4054 case ISD::SETGT:
4055 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4056 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4057 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4059 break;
4060 case ISD::SETULE:
4061 case ISD::SETUGT:
4062 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4063 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4064 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4066 break;
4069 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4070 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4071 // In ARM and Thumb-2, the compare instructions can shift their second
4072 // operand.
4073 CC = ISD::getSetCCSwappedOperands(CC);
4074 std::swap(LHS, RHS);
4077 // Thumb1 has very limited immediate modes, so turning an "and" into a
4078 // shift can save multiple instructions.
4080 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4081 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4082 // own. If it's the operand to an unsigned comparison with an immediate,
4083 // we can eliminate one of the shifts: we transform
4084 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4086 // We avoid transforming cases which aren't profitable due to encoding
4087 // details:
4089 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4090 // would not; in that case, we're essentially trading one immediate load for
4091 // another.
4092 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4093 // 3. C2 is zero; we have other code for this special case.
4095 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4096 // instruction, since the AND is always one instruction anyway, but we could
4097 // use narrow instructions in some cases.
4098 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4099 LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4100 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4101 !isSignedIntSetCC(CC)) {
4102 unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4103 auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4104 uint64_t RHSV = RHSC->getZExtValue();
4105 if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4106 unsigned ShiftBits = countLeadingZeros(Mask);
4107 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4108 SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4109 LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4110 RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4115 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4116 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4117 // way a cmp would.
4118 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4119 // some tweaks to the heuristics for the previous and->shift transform.
4120 // FIXME: Optimize cases where the LHS isn't a shift.
4121 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4122 isa<ConstantSDNode>(RHS) &&
4123 cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4124 CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4125 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4126 unsigned ShiftAmt =
4127 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4128 SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4129 DAG.getVTList(MVT::i32, MVT::i32),
4130 LHS.getOperand(0),
4131 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4132 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4133 Shift.getValue(1), SDValue());
4134 ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4135 return Chain.getValue(1);
4138 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4140 // If the RHS is a constant zero then the V (overflow) flag will never be
4141 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4142 // simpler for other passes (like the peephole optimiser) to deal with.
4143 if (isNullConstant(RHS)) {
4144 switch (CondCode) {
4145 default: break;
4146 case ARMCC::GE:
4147 CondCode = ARMCC::PL;
4148 break;
4149 case ARMCC::LT:
4150 CondCode = ARMCC::MI;
4151 break;
4155 ARMISD::NodeType CompareType;
4156 switch (CondCode) {
4157 default:
4158 CompareType = ARMISD::CMP;
4159 break;
4160 case ARMCC::EQ:
4161 case ARMCC::NE:
4162 // Uses only Z Flag
4163 CompareType = ARMISD::CMPZ;
4164 break;
4166 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4167 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4170 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4171 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4172 SelectionDAG &DAG, const SDLoc &dl,
4173 bool InvalidOnQNaN) const {
4174 assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4175 SDValue Cmp;
4176 SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
4177 if (!isFloatingPointZero(RHS))
4178 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
4179 else
4180 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
4181 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4184 /// duplicateCmp - Glue values can have only one use, so this function
4185 /// duplicates a comparison node.
4186 SDValue
4187 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4188 unsigned Opc = Cmp.getOpcode();
4189 SDLoc DL(Cmp);
4190 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4191 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4193 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4194 Cmp = Cmp.getOperand(0);
4195 Opc = Cmp.getOpcode();
4196 if (Opc == ARMISD::CMPFP)
4197 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
4198 Cmp.getOperand(1), Cmp.getOperand(2));
4199 else {
4200 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4201 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
4202 Cmp.getOperand(1));
4204 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4207 // This function returns three things: the arithmetic computation itself
4208 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4209 // comparison and the condition code define the case in which the arithmetic
4210 // computation *does not* overflow.
4211 std::pair<SDValue, SDValue>
4212 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4213 SDValue &ARMcc) const {
4214 assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
4216 SDValue Value, OverflowCmp;
4217 SDValue LHS = Op.getOperand(0);
4218 SDValue RHS = Op.getOperand(1);
4219 SDLoc dl(Op);
4221 // FIXME: We are currently always generating CMPs because we don't support
4222 // generating CMN through the backend. This is not as good as the natural
4223 // CMP case because it causes a register dependency and cannot be folded
4224 // later.
4226 switch (Op.getOpcode()) {
4227 default:
4228 llvm_unreachable("Unknown overflow instruction!");
4229 case ISD::SADDO:
4230 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4231 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4232 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4233 break;
4234 case ISD::UADDO:
4235 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4236 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4237 // We do not use it in the USUBO case as Value may not be used.
4238 Value = DAG.getNode(ARMISD::ADDC, dl,
4239 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4240 .getValue(0);
4241 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4242 break;
4243 case ISD::SSUBO:
4244 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4245 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4246 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4247 break;
4248 case ISD::USUBO:
4249 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4250 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4251 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4252 break;
4253 case ISD::UMULO:
4254 // We generate a UMUL_LOHI and then check if the high word is 0.
4255 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4256 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4257 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4258 LHS, RHS);
4259 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4260 DAG.getConstant(0, dl, MVT::i32));
4261 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4262 break;
4263 case ISD::SMULO:
4264 // We generate a SMUL_LOHI and then check if all the bits of the high word
4265 // are the same as the sign bit of the low word.
4266 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4267 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4268 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4269 LHS, RHS);
4270 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4271 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4272 Value.getValue(0),
4273 DAG.getConstant(31, dl, MVT::i32)));
4274 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4275 break;
4276 } // switch (...)
4278 return std::make_pair(Value, OverflowCmp);
4281 SDValue
4282 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4283 // Let legalize expand this if it isn't a legal type yet.
4284 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4285 return SDValue();
4287 SDValue Value, OverflowCmp;
4288 SDValue ARMcc;
4289 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4290 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4291 SDLoc dl(Op);
4292 // We use 0 and 1 as false and true values.
4293 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4294 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4295 EVT VT = Op.getValueType();
4297 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4298 ARMcc, CCR, OverflowCmp);
4300 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4301 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4304 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4305 SelectionDAG &DAG) {
4306 SDLoc DL(BoolCarry);
4307 EVT CarryVT = BoolCarry.getValueType();
4309 // This converts the boolean value carry into the carry flag by doing
4310 // ARMISD::SUBC Carry, 1
4311 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4312 DAG.getVTList(CarryVT, MVT::i32),
4313 BoolCarry, DAG.getConstant(1, DL, CarryVT));
4314 return Carry.getValue(1);
4317 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4318 SelectionDAG &DAG) {
4319 SDLoc DL(Flags);
4321 // Now convert the carry flag into a boolean carry. We do this
4322 // using ARMISD:ADDE 0, 0, Carry
4323 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4324 DAG.getConstant(0, DL, MVT::i32),
4325 DAG.getConstant(0, DL, MVT::i32), Flags);
4328 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4329 SelectionDAG &DAG) const {
4330 // Let legalize expand this if it isn't a legal type yet.
4331 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4332 return SDValue();
4334 SDValue LHS = Op.getOperand(0);
4335 SDValue RHS = Op.getOperand(1);
4336 SDLoc dl(Op);
4338 EVT VT = Op.getValueType();
4339 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4340 SDValue Value;
4341 SDValue Overflow;
4342 switch (Op.getOpcode()) {
4343 default:
4344 llvm_unreachable("Unknown overflow instruction!");
4345 case ISD::UADDO:
4346 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4347 // Convert the carry flag into a boolean value.
4348 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4349 break;
4350 case ISD::USUBO: {
4351 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4352 // Convert the carry flag into a boolean value.
4353 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4354 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4355 // value. So compute 1 - C.
4356 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4357 DAG.getConstant(1, dl, MVT::i32), Overflow);
4358 break;
4362 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4365 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4366 SDValue Cond = Op.getOperand(0);
4367 SDValue SelectTrue = Op.getOperand(1);
4368 SDValue SelectFalse = Op.getOperand(2);
4369 SDLoc dl(Op);
4370 unsigned Opc = Cond.getOpcode();
4372 if (Cond.getResNo() == 1 &&
4373 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4374 Opc == ISD::USUBO)) {
4375 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4376 return SDValue();
4378 SDValue Value, OverflowCmp;
4379 SDValue ARMcc;
4380 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4381 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4382 EVT VT = Op.getValueType();
4384 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4385 OverflowCmp, DAG);
4388 // Convert:
4390 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4391 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4393 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4394 const ConstantSDNode *CMOVTrue =
4395 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4396 const ConstantSDNode *CMOVFalse =
4397 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4399 if (CMOVTrue && CMOVFalse) {
4400 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4401 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4403 SDValue True;
4404 SDValue False;
4405 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4406 True = SelectTrue;
4407 False = SelectFalse;
4408 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4409 True = SelectFalse;
4410 False = SelectTrue;
4413 if (True.getNode() && False.getNode()) {
4414 EVT VT = Op.getValueType();
4415 SDValue ARMcc = Cond.getOperand(2);
4416 SDValue CCR = Cond.getOperand(3);
4417 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4418 assert(True.getValueType() == VT);
4419 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4424 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4425 // undefined bits before doing a full-word comparison with zero.
4426 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4427 DAG.getConstant(1, dl, Cond.getValueType()));
4429 return DAG.getSelectCC(dl, Cond,
4430 DAG.getConstant(0, dl, Cond.getValueType()),
4431 SelectTrue, SelectFalse, ISD::SETNE);
4434 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4435 bool &swpCmpOps, bool &swpVselOps) {
4436 // Start by selecting the GE condition code for opcodes that return true for
4437 // 'equality'
4438 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4439 CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
4440 CondCode = ARMCC::GE;
4442 // and GT for opcodes that return false for 'equality'.
4443 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4444 CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
4445 CondCode = ARMCC::GT;
4447 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4448 // to swap the compare operands.
4449 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4450 CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
4451 swpCmpOps = true;
4453 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4454 // If we have an unordered opcode, we need to swap the operands to the VSEL
4455 // instruction (effectively negating the condition).
4457 // This also has the effect of swapping which one of 'less' or 'greater'
4458 // returns true, so we also swap the compare operands. It also switches
4459 // whether we return true for 'equality', so we compensate by picking the
4460 // opposite condition code to our original choice.
4461 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4462 CC == ISD::SETUGT) {
4463 swpCmpOps = !swpCmpOps;
4464 swpVselOps = !swpVselOps;
4465 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4468 // 'ordered' is 'anything but unordered', so use the VS condition code and
4469 // swap the VSEL operands.
4470 if (CC == ISD::SETO) {
4471 CondCode = ARMCC::VS;
4472 swpVselOps = true;
4475 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4476 // code and swap the VSEL operands. Also do this if we don't care about the
4477 // unordered case.
4478 if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4479 CondCode = ARMCC::EQ;
4480 swpVselOps = true;
4484 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4485 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4486 SDValue Cmp, SelectionDAG &DAG) const {
4487 if (!Subtarget->hasFP64() && VT == MVT::f64) {
4488 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4489 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4490 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4491 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4493 SDValue TrueLow = TrueVal.getValue(0);
4494 SDValue TrueHigh = TrueVal.getValue(1);
4495 SDValue FalseLow = FalseVal.getValue(0);
4496 SDValue FalseHigh = FalseVal.getValue(1);
4498 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4499 ARMcc, CCR, Cmp);
4500 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4501 ARMcc, CCR, duplicateCmp(Cmp, DAG));
4503 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4504 } else {
4505 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4506 Cmp);
4510 static bool isGTorGE(ISD::CondCode CC) {
4511 return CC == ISD::SETGT || CC == ISD::SETGE;
4514 static bool isLTorLE(ISD::CondCode CC) {
4515 return CC == ISD::SETLT || CC == ISD::SETLE;
4518 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4519 // All of these conditions (and their <= and >= counterparts) will do:
4520 // x < k ? k : x
4521 // x > k ? x : k
4522 // k < x ? x : k
4523 // k > x ? k : x
4524 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4525 const SDValue TrueVal, const SDValue FalseVal,
4526 const ISD::CondCode CC, const SDValue K) {
4527 return (isGTorGE(CC) &&
4528 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4529 (isLTorLE(CC) &&
4530 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4533 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4534 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4535 const SDValue TrueVal, const SDValue FalseVal,
4536 const ISD::CondCode CC, const SDValue K) {
4537 return (isGTorGE(CC) &&
4538 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4539 (isLTorLE(CC) &&
4540 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4543 // Check if two chained conditionals could be converted into SSAT or USAT.
4545 // SSAT can replace a set of two conditional selectors that bound a number to an
4546 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4548 // x < -k ? -k : (x > k ? k : x)
4549 // x < -k ? -k : (x < k ? x : k)
4550 // x > -k ? (x > k ? k : x) : -k
4551 // x < k ? (x < -k ? -k : x) : k
4552 // etc.
4554 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4555 // a power of 2.
4557 // It returns true if the conversion can be done, false otherwise.
4558 // Additionally, the variable is returned in parameter V, the constant in K and
4559 // usat is set to true if the conditional represents an unsigned saturation
4560 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4561 uint64_t &K, bool &usat) {
4562 SDValue LHS1 = Op.getOperand(0);
4563 SDValue RHS1 = Op.getOperand(1);
4564 SDValue TrueVal1 = Op.getOperand(2);
4565 SDValue FalseVal1 = Op.getOperand(3);
4566 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4568 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4569 if (Op2.getOpcode() != ISD::SELECT_CC)
4570 return false;
4572 SDValue LHS2 = Op2.getOperand(0);
4573 SDValue RHS2 = Op2.getOperand(1);
4574 SDValue TrueVal2 = Op2.getOperand(2);
4575 SDValue FalseVal2 = Op2.getOperand(3);
4576 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4578 // Find out which are the constants and which are the variables
4579 // in each conditional
4580 SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4581 ? &RHS1
4582 : nullptr;
4583 SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4584 ? &RHS2
4585 : nullptr;
4586 SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4587 SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4588 SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4589 SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4591 // We must detect cases where the original operations worked with 16- or
4592 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4593 // must work with sign-extended values but the select operations return
4594 // the original non-extended value.
4595 SDValue V2TmpReg = V2Tmp;
4596 if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4597 V2TmpReg = V2Tmp->getOperand(0);
4599 // Check that the registers and the constants have the correct values
4600 // in both conditionals
4601 if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4602 V2TmpReg != V2)
4603 return false;
4605 // Figure out which conditional is saturating the lower/upper bound.
4606 const SDValue *LowerCheckOp =
4607 isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4608 ? &Op
4609 : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4610 ? &Op2
4611 : nullptr;
4612 const SDValue *UpperCheckOp =
4613 isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4614 ? &Op
4615 : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4616 ? &Op2
4617 : nullptr;
4619 if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4620 return false;
4622 // Check that the constant in the lower-bound check is
4623 // the opposite of the constant in the upper-bound check
4624 // in 1's complement.
4625 int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4626 int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4627 int64_t PosVal = std::max(Val1, Val2);
4628 int64_t NegVal = std::min(Val1, Val2);
4630 if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4631 (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4632 isPowerOf2_64(PosVal + 1)) {
4634 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4635 if (Val1 == ~Val2)
4636 usat = false;
4637 else if (NegVal == 0)
4638 usat = true;
4639 else
4640 return false;
4642 V = V2;
4643 K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4645 return true;
4648 return false;
4651 // Check if a condition of the type x < k ? k : x can be converted into a
4652 // bit operation instead of conditional moves.
4653 // Currently this is allowed given:
4654 // - The conditions and values match up
4655 // - k is 0 or -1 (all ones)
4656 // This function will not check the last condition, thats up to the caller
4657 // It returns true if the transformation can be made, and in such case
4658 // returns x in V, and k in SatK.
4659 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4660 SDValue &SatK)
4662 SDValue LHS = Op.getOperand(0);
4663 SDValue RHS = Op.getOperand(1);
4664 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4665 SDValue TrueVal = Op.getOperand(2);
4666 SDValue FalseVal = Op.getOperand(3);
4668 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4669 ? &RHS
4670 : nullptr;
4672 // No constant operation in comparison, early out
4673 if (!K)
4674 return false;
4676 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4677 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4678 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4680 // If the constant on left and right side, or variable on left and right,
4681 // does not match, early out
4682 if (*K != KTmp || V != VTmp)
4683 return false;
4685 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4686 SatK = *K;
4687 return true;
4690 return false;
4693 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
4694 if (VT == MVT::f32)
4695 return !Subtarget->hasVFP2Base();
4696 if (VT == MVT::f64)
4697 return !Subtarget->hasFP64();
4698 if (VT == MVT::f16)
4699 return !Subtarget->hasFullFP16();
4700 return false;
4703 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4704 EVT VT = Op.getValueType();
4705 SDLoc dl(Op);
4707 // Try to convert two saturating conditional selects into a single SSAT
4708 SDValue SatValue;
4709 uint64_t SatConstant;
4710 bool SatUSat;
4711 if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4712 isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4713 if (SatUSat)
4714 return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4715 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4716 else
4717 return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4718 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4721 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4722 // into more efficient bit operations, which is possible when k is 0 or -1
4723 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4724 // single instructions. On Thumb the shift and the bit operation will be two
4725 // instructions.
4726 // Only allow this transformation on full-width (32-bit) operations
4727 SDValue LowerSatConstant;
4728 if (VT == MVT::i32 &&
4729 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4730 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4731 DAG.getConstant(31, dl, VT));
4732 if (isNullConstant(LowerSatConstant)) {
4733 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4734 DAG.getAllOnesConstant(dl, VT));
4735 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4736 } else if (isAllOnesConstant(LowerSatConstant))
4737 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4740 SDValue LHS = Op.getOperand(0);
4741 SDValue RHS = Op.getOperand(1);
4742 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4743 SDValue TrueVal = Op.getOperand(2);
4744 SDValue FalseVal = Op.getOperand(3);
4746 if (isUnsupportedFloatingType(LHS.getValueType())) {
4747 DAG.getTargetLoweringInfo().softenSetCCOperands(
4748 DAG, LHS.getValueType(), LHS, RHS, CC, dl);
4750 // If softenSetCCOperands only returned one value, we should compare it to
4751 // zero.
4752 if (!RHS.getNode()) {
4753 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4754 CC = ISD::SETNE;
4758 if (LHS.getValueType() == MVT::i32) {
4759 // Try to generate VSEL on ARMv8.
4760 // The VSEL instruction can't use all the usual ARM condition
4761 // codes: it only has two bits to select the condition code, so it's
4762 // constrained to use only GE, GT, VS and EQ.
4764 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4765 // swap the operands of the previous compare instruction (effectively
4766 // inverting the compare condition, swapping 'less' and 'greater') and
4767 // sometimes need to swap the operands to the VSEL (which inverts the
4768 // condition in the sense of firing whenever the previous condition didn't)
4769 if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
4770 TrueVal.getValueType() == MVT::f32 ||
4771 TrueVal.getValueType() == MVT::f64)) {
4772 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4773 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4774 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4775 CC = ISD::getSetCCInverse(CC, true);
4776 std::swap(TrueVal, FalseVal);
4780 SDValue ARMcc;
4781 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4782 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4783 // Choose GE over PL, which vsel does now support
4784 if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
4785 ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
4786 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4789 ARMCC::CondCodes CondCode, CondCode2;
4790 bool InvalidOnQNaN;
4791 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4793 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4794 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4795 // must use VSEL (limited condition codes), due to not having conditional f16
4796 // moves.
4797 if (Subtarget->hasFPARMv8Base() &&
4798 !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
4799 (TrueVal.getValueType() == MVT::f16 ||
4800 TrueVal.getValueType() == MVT::f32 ||
4801 TrueVal.getValueType() == MVT::f64)) {
4802 bool swpCmpOps = false;
4803 bool swpVselOps = false;
4804 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4806 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4807 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4808 if (swpCmpOps)
4809 std::swap(LHS, RHS);
4810 if (swpVselOps)
4811 std::swap(TrueVal, FalseVal);
4815 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4816 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4817 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4818 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4819 if (CondCode2 != ARMCC::AL) {
4820 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4821 // FIXME: Needs another CMP because flag can have but one use.
4822 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4823 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4825 return Result;
4828 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4829 /// to morph to an integer compare sequence.
4830 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4831 const ARMSubtarget *Subtarget) {
4832 SDNode *N = Op.getNode();
4833 if (!N->hasOneUse())
4834 // Otherwise it requires moving the value from fp to integer registers.
4835 return false;
4836 if (!N->getNumValues())
4837 return false;
4838 EVT VT = Op.getValueType();
4839 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4840 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4841 // vmrs are very slow, e.g. cortex-a8.
4842 return false;
4844 if (isFloatingPointZero(Op)) {
4845 SeenZero = true;
4846 return true;
4848 return ISD::isNormalLoad(N);
4851 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4852 if (isFloatingPointZero(Op))
4853 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4855 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4856 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4857 Ld->getPointerInfo(), Ld->getAlignment(),
4858 Ld->getMemOperand()->getFlags());
4860 llvm_unreachable("Unknown VFP cmp argument!");
4863 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4864 SDValue &RetVal1, SDValue &RetVal2) {
4865 SDLoc dl(Op);
4867 if (isFloatingPointZero(Op)) {
4868 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4869 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4870 return;
4873 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4874 SDValue Ptr = Ld->getBasePtr();
4875 RetVal1 =
4876 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4877 Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4879 EVT PtrType = Ptr.getValueType();
4880 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4881 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4882 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4883 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4884 Ld->getPointerInfo().getWithOffset(4), NewAlign,
4885 Ld->getMemOperand()->getFlags());
4886 return;
4889 llvm_unreachable("Unknown VFP cmp argument!");
4892 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4893 /// f32 and even f64 comparisons to integer ones.
4894 SDValue
4895 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4896 SDValue Chain = Op.getOperand(0);
4897 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4898 SDValue LHS = Op.getOperand(2);
4899 SDValue RHS = Op.getOperand(3);
4900 SDValue Dest = Op.getOperand(4);
4901 SDLoc dl(Op);
4903 bool LHSSeenZero = false;
4904 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4905 bool RHSSeenZero = false;
4906 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4907 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4908 // If unsafe fp math optimization is enabled and there are no other uses of
4909 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4910 // to an integer comparison.
4911 if (CC == ISD::SETOEQ)
4912 CC = ISD::SETEQ;
4913 else if (CC == ISD::SETUNE)
4914 CC = ISD::SETNE;
4916 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4917 SDValue ARMcc;
4918 if (LHS.getValueType() == MVT::f32) {
4919 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4920 bitcastf32Toi32(LHS, DAG), Mask);
4921 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4922 bitcastf32Toi32(RHS, DAG), Mask);
4923 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4924 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4925 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4926 Chain, Dest, ARMcc, CCR, Cmp);
4929 SDValue LHS1, LHS2;
4930 SDValue RHS1, RHS2;
4931 expandf64Toi32(LHS, DAG, LHS1, LHS2);
4932 expandf64Toi32(RHS, DAG, RHS1, RHS2);
4933 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4934 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4935 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4936 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4937 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4938 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4939 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4942 return SDValue();
4945 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4946 SDValue Chain = Op.getOperand(0);
4947 SDValue Cond = Op.getOperand(1);
4948 SDValue Dest = Op.getOperand(2);
4949 SDLoc dl(Op);
4951 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4952 // instruction.
4953 unsigned Opc = Cond.getOpcode();
4954 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4955 !Subtarget->isThumb1Only();
4956 if (Cond.getResNo() == 1 &&
4957 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4958 Opc == ISD::USUBO || OptimizeMul)) {
4959 // Only lower legal XALUO ops.
4960 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4961 return SDValue();
4963 // The actual operation with overflow check.
4964 SDValue Value, OverflowCmp;
4965 SDValue ARMcc;
4966 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4968 // Reverse the condition code.
4969 ARMCC::CondCodes CondCode =
4970 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4971 CondCode = ARMCC::getOppositeCondition(CondCode);
4972 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4973 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4975 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4976 OverflowCmp);
4979 return SDValue();
4982 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4983 SDValue Chain = Op.getOperand(0);
4984 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4985 SDValue LHS = Op.getOperand(2);
4986 SDValue RHS = Op.getOperand(3);
4987 SDValue Dest = Op.getOperand(4);
4988 SDLoc dl(Op);
4990 if (isUnsupportedFloatingType(LHS.getValueType())) {
4991 DAG.getTargetLoweringInfo().softenSetCCOperands(
4992 DAG, LHS.getValueType(), LHS, RHS, CC, dl);
4994 // If softenSetCCOperands only returned one value, we should compare it to
4995 // zero.
4996 if (!RHS.getNode()) {
4997 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4998 CC = ISD::SETNE;
5002 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5003 // instruction.
5004 unsigned Opc = LHS.getOpcode();
5005 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5006 !Subtarget->isThumb1Only();
5007 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5008 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5009 Opc == ISD::USUBO || OptimizeMul) &&
5010 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5011 // Only lower legal XALUO ops.
5012 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5013 return SDValue();
5015 // The actual operation with overflow check.
5016 SDValue Value, OverflowCmp;
5017 SDValue ARMcc;
5018 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5020 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5021 // Reverse the condition code.
5022 ARMCC::CondCodes CondCode =
5023 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5024 CondCode = ARMCC::getOppositeCondition(CondCode);
5025 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5027 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5029 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5030 OverflowCmp);
5033 if (LHS.getValueType() == MVT::i32) {
5034 SDValue ARMcc;
5035 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5036 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5037 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5038 Chain, Dest, ARMcc, CCR, Cmp);
5041 if (getTargetMachine().Options.UnsafeFPMath &&
5042 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5043 CC == ISD::SETNE || CC == ISD::SETUNE)) {
5044 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5045 return Result;
5048 ARMCC::CondCodes CondCode, CondCode2;
5049 bool InvalidOnQNaN;
5050 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
5052 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5053 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
5054 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5055 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5056 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5057 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5058 if (CondCode2 != ARMCC::AL) {
5059 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5060 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5061 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5063 return Res;
5066 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5067 SDValue Chain = Op.getOperand(0);
5068 SDValue Table = Op.getOperand(1);
5069 SDValue Index = Op.getOperand(2);
5070 SDLoc dl(Op);
5072 EVT PTy = getPointerTy(DAG.getDataLayout());
5073 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5074 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5075 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5076 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5077 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5078 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5079 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5080 // which does another jump to the destination. This also makes it easier
5081 // to translate it to TBB / TBH later (Thumb2 only).
5082 // FIXME: This might not work if the function is extremely large.
5083 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5084 Addr, Op.getOperand(2), JTI);
5086 if (isPositionIndependent() || Subtarget->isROPI()) {
5087 Addr =
5088 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5089 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5090 Chain = Addr.getValue(1);
5091 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5092 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5093 } else {
5094 Addr =
5095 DAG.getLoad(PTy, dl, Chain, Addr,
5096 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5097 Chain = Addr.getValue(1);
5098 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5102 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5103 EVT VT = Op.getValueType();
5104 SDLoc dl(Op);
5106 if (Op.getValueType().getVectorElementType() == MVT::i32) {
5107 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5108 return Op;
5109 return DAG.UnrollVectorOp(Op.getNode());
5112 const bool HasFullFP16 =
5113 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5115 EVT NewTy;
5116 const EVT OpTy = Op.getOperand(0).getValueType();
5117 if (OpTy == MVT::v4f32)
5118 NewTy = MVT::v4i32;
5119 else if (OpTy == MVT::v4f16 && HasFullFP16)
5120 NewTy = MVT::v4i16;
5121 else if (OpTy == MVT::v8f16 && HasFullFP16)
5122 NewTy = MVT::v8i16;
5123 else
5124 llvm_unreachable("Invalid type for custom lowering!");
5126 if (VT != MVT::v4i16 && VT != MVT::v8i16)
5127 return DAG.UnrollVectorOp(Op.getNode());
5129 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5130 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5133 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5134 EVT VT = Op.getValueType();
5135 if (VT.isVector())
5136 return LowerVectorFP_TO_INT(Op, DAG);
5137 if (isUnsupportedFloatingType(Op.getOperand(0).getValueType())) {
5138 RTLIB::Libcall LC;
5139 if (Op.getOpcode() == ISD::FP_TO_SINT)
5140 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
5141 Op.getValueType());
5142 else
5143 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
5144 Op.getValueType());
5145 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5146 /*isSigned*/ false, SDLoc(Op)).first;
5149 return Op;
5152 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5153 EVT VT = Op.getValueType();
5154 SDLoc dl(Op);
5156 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5157 if (VT.getVectorElementType() == MVT::f32)
5158 return Op;
5159 return DAG.UnrollVectorOp(Op.getNode());
5162 assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5163 Op.getOperand(0).getValueType() == MVT::v8i16) &&
5164 "Invalid type for custom lowering!");
5166 const bool HasFullFP16 =
5167 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5169 EVT DestVecType;
5170 if (VT == MVT::v4f32)
5171 DestVecType = MVT::v4i32;
5172 else if (VT == MVT::v4f16 && HasFullFP16)
5173 DestVecType = MVT::v4i16;
5174 else if (VT == MVT::v8f16 && HasFullFP16)
5175 DestVecType = MVT::v8i16;
5176 else
5177 return DAG.UnrollVectorOp(Op.getNode());
5179 unsigned CastOpc;
5180 unsigned Opc;
5181 switch (Op.getOpcode()) {
5182 default: llvm_unreachable("Invalid opcode!");
5183 case ISD::SINT_TO_FP:
5184 CastOpc = ISD::SIGN_EXTEND;
5185 Opc = ISD::SINT_TO_FP;
5186 break;
5187 case ISD::UINT_TO_FP:
5188 CastOpc = ISD::ZERO_EXTEND;
5189 Opc = ISD::UINT_TO_FP;
5190 break;
5193 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5194 return DAG.getNode(Opc, dl, VT, Op);
5197 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5198 EVT VT = Op.getValueType();
5199 if (VT.isVector())
5200 return LowerVectorINT_TO_FP(Op, DAG);
5201 if (isUnsupportedFloatingType(VT)) {
5202 RTLIB::Libcall LC;
5203 if (Op.getOpcode() == ISD::SINT_TO_FP)
5204 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5205 Op.getValueType());
5206 else
5207 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5208 Op.getValueType());
5209 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5210 /*isSigned*/ false, SDLoc(Op)).first;
5213 return Op;
5216 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5217 // Implement fcopysign with a fabs and a conditional fneg.
5218 SDValue Tmp0 = Op.getOperand(0);
5219 SDValue Tmp1 = Op.getOperand(1);
5220 SDLoc dl(Op);
5221 EVT VT = Op.getValueType();
5222 EVT SrcVT = Tmp1.getValueType();
5223 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5224 Tmp0.getOpcode() == ARMISD::VMOVDRR;
5225 bool UseNEON = !InGPR && Subtarget->hasNEON();
5227 if (UseNEON) {
5228 // Use VBSL to copy the sign bit.
5229 unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5230 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5231 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5232 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5233 if (VT == MVT::f64)
5234 Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5235 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5236 DAG.getConstant(32, dl, MVT::i32));
5237 else /*if (VT == MVT::f32)*/
5238 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5239 if (SrcVT == MVT::f32) {
5240 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5241 if (VT == MVT::f64)
5242 Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5243 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5244 DAG.getConstant(32, dl, MVT::i32));
5245 } else if (VT == MVT::f32)
5246 Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5247 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5248 DAG.getConstant(32, dl, MVT::i32));
5249 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5250 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5252 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5253 dl, MVT::i32);
5254 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5255 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5256 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5258 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5259 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5260 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5261 if (VT == MVT::f32) {
5262 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5263 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5264 DAG.getConstant(0, dl, MVT::i32));
5265 } else {
5266 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5269 return Res;
5272 // Bitcast operand 1 to i32.
5273 if (SrcVT == MVT::f64)
5274 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5275 Tmp1).getValue(1);
5276 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5278 // Or in the signbit with integer operations.
5279 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5280 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5281 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5282 if (VT == MVT::f32) {
5283 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5284 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5285 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5286 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5289 // f64: Or the high part with signbit and then combine two parts.
5290 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5291 Tmp0);
5292 SDValue Lo = Tmp0.getValue(0);
5293 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5294 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5295 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5298 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5299 MachineFunction &MF = DAG.getMachineFunction();
5300 MachineFrameInfo &MFI = MF.getFrameInfo();
5301 MFI.setReturnAddressIsTaken(true);
5303 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5304 return SDValue();
5306 EVT VT = Op.getValueType();
5307 SDLoc dl(Op);
5308 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5309 if (Depth) {
5310 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5311 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5312 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5313 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5314 MachinePointerInfo());
5317 // Return LR, which contains the return address. Mark it an implicit live-in.
5318 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5319 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5322 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5323 const ARMBaseRegisterInfo &ARI =
5324 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5325 MachineFunction &MF = DAG.getMachineFunction();
5326 MachineFrameInfo &MFI = MF.getFrameInfo();
5327 MFI.setFrameAddressIsTaken(true);
5329 EVT VT = Op.getValueType();
5330 SDLoc dl(Op); // FIXME probably not meaningful
5331 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5332 unsigned FrameReg = ARI.getFrameRegister(MF);
5333 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5334 while (Depth--)
5335 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5336 MachinePointerInfo());
5337 return FrameAddr;
5340 // FIXME? Maybe this could be a TableGen attribute on some registers and
5341 // this table could be generated automatically from RegInfo.
5342 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5343 SelectionDAG &DAG) const {
5344 unsigned Reg = StringSwitch<unsigned>(RegName)
5345 .Case("sp", ARM::SP)
5346 .Default(0);
5347 if (Reg)
5348 return Reg;
5349 report_fatal_error(Twine("Invalid register name \""
5350 + StringRef(RegName) + "\"."));
5353 // Result is 64 bit value so split into two 32 bit values and return as a
5354 // pair of values.
5355 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5356 SelectionDAG &DAG) {
5357 SDLoc DL(N);
5359 // This function is only supposed to be called for i64 type destination.
5360 assert(N->getValueType(0) == MVT::i64
5361 && "ExpandREAD_REGISTER called for non-i64 type result.");
5363 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5364 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5365 N->getOperand(0),
5366 N->getOperand(1));
5368 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5369 Read.getValue(1)));
5370 Results.push_back(Read.getOperand(0));
5373 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5374 /// When \p DstVT, the destination type of \p BC, is on the vector
5375 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5376 /// it might be possible to combine them, such that everything stays on the
5377 /// vector register bank.
5378 /// \p return The node that would replace \p BT, if the combine
5379 /// is possible.
5380 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5381 SelectionDAG &DAG) {
5382 SDValue Op = BC->getOperand(0);
5383 EVT DstVT = BC->getValueType(0);
5385 // The only vector instruction that can produce a scalar (remember,
5386 // since the bitcast was about to be turned into VMOVDRR, the source
5387 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5388 // Moreover, we can do this combine only if there is one use.
5389 // Finally, if the destination type is not a vector, there is not
5390 // much point on forcing everything on the vector bank.
5391 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5392 !Op.hasOneUse())
5393 return SDValue();
5395 // If the index is not constant, we will introduce an additional
5396 // multiply that will stick.
5397 // Give up in that case.
5398 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5399 if (!Index)
5400 return SDValue();
5401 unsigned DstNumElt = DstVT.getVectorNumElements();
5403 // Compute the new index.
5404 const APInt &APIntIndex = Index->getAPIntValue();
5405 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5406 NewIndex *= APIntIndex;
5407 // Check if the new constant index fits into i32.
5408 if (NewIndex.getBitWidth() > 32)
5409 return SDValue();
5411 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5412 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5413 SDLoc dl(Op);
5414 SDValue ExtractSrc = Op.getOperand(0);
5415 EVT VecVT = EVT::getVectorVT(
5416 *DAG.getContext(), DstVT.getScalarType(),
5417 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5418 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5419 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5420 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5423 /// ExpandBITCAST - If the target supports VFP, this function is called to
5424 /// expand a bit convert where either the source or destination type is i64 to
5425 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5426 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5427 /// vectors), since the legalizer won't know what to do with that.
5428 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5429 const ARMSubtarget *Subtarget) {
5430 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5431 SDLoc dl(N);
5432 SDValue Op = N->getOperand(0);
5434 // This function is only supposed to be called for i64 types, either as the
5435 // source or destination of the bit convert.
5436 EVT SrcVT = Op.getValueType();
5437 EVT DstVT = N->getValueType(0);
5438 const bool HasFullFP16 = Subtarget->hasFullFP16();
5440 if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5441 // FullFP16: half values are passed in S-registers, and we don't
5442 // need any of the bitcast and moves:
5444 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5445 // t5: i32 = bitcast t2
5446 // t18: f16 = ARMISD::VMOVhr t5
5447 if (Op.getOpcode() != ISD::CopyFromReg ||
5448 Op.getValueType() != MVT::f32)
5449 return SDValue();
5451 auto Move = N->use_begin();
5452 if (Move->getOpcode() != ARMISD::VMOVhr)
5453 return SDValue();
5455 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5456 SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5457 DAG.ReplaceAllUsesWith(*Move, &Copy);
5458 return Copy;
5461 if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5462 if (!HasFullFP16)
5463 return SDValue();
5464 // SoftFP: read half-precision arguments:
5466 // t2: i32,ch = ...
5467 // t7: i16 = truncate t2 <~~~~ Op
5468 // t8: f16 = bitcast t7 <~~~~ N
5470 if (Op.getOperand(0).getValueType() == MVT::i32)
5471 return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5472 MVT::f16, Op.getOperand(0));
5474 return SDValue();
5477 // Half-precision return values
5478 if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5479 if (!HasFullFP16)
5480 return SDValue();
5482 // t11: f16 = fadd t8, t10
5483 // t12: i16 = bitcast t11 <~~~ SDNode N
5484 // t13: i32 = zero_extend t12
5485 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5486 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5488 // transform this into:
5490 // t20: i32 = ARMISD::VMOVrh t11
5491 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5493 auto ZeroExtend = N->use_begin();
5494 if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5495 ZeroExtend->getValueType(0) != MVT::i32)
5496 return SDValue();
5498 auto Copy = ZeroExtend->use_begin();
5499 if (Copy->getOpcode() == ISD::CopyToReg &&
5500 Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5501 SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5502 DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5503 return Cvt;
5505 return SDValue();
5508 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5509 return SDValue();
5511 // Turn i64->f64 into VMOVDRR.
5512 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5513 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5514 // if we can combine the bitcast with its source.
5515 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5516 return Val;
5518 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5519 DAG.getConstant(0, dl, MVT::i32));
5520 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5521 DAG.getConstant(1, dl, MVT::i32));
5522 return DAG.getNode(ISD::BITCAST, dl, DstVT,
5523 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5526 // Turn f64->i64 into VMOVRRD.
5527 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5528 SDValue Cvt;
5529 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5530 SrcVT.getVectorNumElements() > 1)
5531 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5532 DAG.getVTList(MVT::i32, MVT::i32),
5533 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5534 else
5535 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5536 DAG.getVTList(MVT::i32, MVT::i32), Op);
5537 // Merge the pieces into a single i64 value.
5538 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5541 return SDValue();
5544 /// getZeroVector - Returns a vector of specified type with all zero elements.
5545 /// Zero vectors are used to represent vector negation and in those cases
5546 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5547 /// not support i64 elements, so sometimes the zero vectors will need to be
5548 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5549 /// zero vector.
5550 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5551 assert(VT.isVector() && "Expected a vector type");
5552 // The canonical modified immediate encoding of a zero vector is....0!
5553 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5554 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5555 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5556 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5559 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5560 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5561 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5562 SelectionDAG &DAG) const {
5563 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5564 EVT VT = Op.getValueType();
5565 unsigned VTBits = VT.getSizeInBits();
5566 SDLoc dl(Op);
5567 SDValue ShOpLo = Op.getOperand(0);
5568 SDValue ShOpHi = Op.getOperand(1);
5569 SDValue ShAmt = Op.getOperand(2);
5570 SDValue ARMcc;
5571 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5572 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5574 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5576 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5577 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5578 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5579 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5580 DAG.getConstant(VTBits, dl, MVT::i32));
5581 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5582 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5583 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5584 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5585 ISD::SETGE, ARMcc, DAG, dl);
5586 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5587 ARMcc, CCR, CmpLo);
5589 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5590 SDValue HiBigShift = Opc == ISD::SRA
5591 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5592 DAG.getConstant(VTBits - 1, dl, VT))
5593 : DAG.getConstant(0, dl, VT);
5594 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5595 ISD::SETGE, ARMcc, DAG, dl);
5596 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5597 ARMcc, CCR, CmpHi);
5599 SDValue Ops[2] = { Lo, Hi };
5600 return DAG.getMergeValues(Ops, dl);
5603 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5604 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5605 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5606 SelectionDAG &DAG) const {
5607 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5608 EVT VT = Op.getValueType();
5609 unsigned VTBits = VT.getSizeInBits();
5610 SDLoc dl(Op);
5611 SDValue ShOpLo = Op.getOperand(0);
5612 SDValue ShOpHi = Op.getOperand(1);
5613 SDValue ShAmt = Op.getOperand(2);
5614 SDValue ARMcc;
5615 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5617 assert(Op.getOpcode() == ISD::SHL_PARTS);
5618 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5619 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5620 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5621 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5622 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5624 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5625 DAG.getConstant(VTBits, dl, MVT::i32));
5626 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5627 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5628 ISD::SETGE, ARMcc, DAG, dl);
5629 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5630 ARMcc, CCR, CmpHi);
5632 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5633 ISD::SETGE, ARMcc, DAG, dl);
5634 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5635 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5636 DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5638 SDValue Ops[2] = { Lo, Hi };
5639 return DAG.getMergeValues(Ops, dl);
5642 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5643 SelectionDAG &DAG) const {
5644 // The rounding mode is in bits 23:22 of the FPSCR.
5645 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5646 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5647 // so that the shift + and get folded into a bitfield extract.
5648 SDLoc dl(Op);
5649 SDValue Ops[] = { DAG.getEntryNode(),
5650 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5652 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5653 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5654 DAG.getConstant(1U << 22, dl, MVT::i32));
5655 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5656 DAG.getConstant(22, dl, MVT::i32));
5657 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5658 DAG.getConstant(3, dl, MVT::i32));
5661 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5662 const ARMSubtarget *ST) {
5663 SDLoc dl(N);
5664 EVT VT = N->getValueType(0);
5665 if (VT.isVector()) {
5666 assert(ST->hasNEON());
5668 // Compute the least significant set bit: LSB = X & -X
5669 SDValue X = N->getOperand(0);
5670 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5671 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5673 EVT ElemTy = VT.getVectorElementType();
5675 if (ElemTy == MVT::i8) {
5676 // Compute with: cttz(x) = ctpop(lsb - 1)
5677 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5678 DAG.getTargetConstant(1, dl, ElemTy));
5679 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5680 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5683 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5684 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5685 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5686 unsigned NumBits = ElemTy.getSizeInBits();
5687 SDValue WidthMinus1 =
5688 DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5689 DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5690 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5691 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5694 // Compute with: cttz(x) = ctpop(lsb - 1)
5696 // Compute LSB - 1.
5697 SDValue Bits;
5698 if (ElemTy == MVT::i64) {
5699 // Load constant 0xffff'ffff'ffff'ffff to register.
5700 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5701 DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5702 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5703 } else {
5704 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5705 DAG.getTargetConstant(1, dl, ElemTy));
5706 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5708 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5711 if (!ST->hasV6T2Ops())
5712 return SDValue();
5714 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5715 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5718 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5719 const ARMSubtarget *ST) {
5720 EVT VT = N->getValueType(0);
5721 SDLoc DL(N);
5723 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5724 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5725 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5726 "Unexpected type for custom ctpop lowering");
5728 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5729 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5730 SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
5731 Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
5733 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5734 unsigned EltSize = 8;
5735 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
5736 while (EltSize != VT.getScalarSizeInBits()) {
5737 SmallVector<SDValue, 8> Ops;
5738 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
5739 TLI.getPointerTy(DAG.getDataLayout())));
5740 Ops.push_back(Res);
5742 EltSize *= 2;
5743 NumElts /= 2;
5744 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
5745 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
5748 return Res;
5751 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5752 /// operand of a vector shift operation, where all the elements of the
5753 /// build_vector must have the same constant integer value.
5754 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5755 // Ignore bit_converts.
5756 while (Op.getOpcode() == ISD::BITCAST)
5757 Op = Op.getOperand(0);
5758 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5759 APInt SplatBits, SplatUndef;
5760 unsigned SplatBitSize;
5761 bool HasAnyUndefs;
5762 if (!BVN ||
5763 !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5764 ElementBits) ||
5765 SplatBitSize > ElementBits)
5766 return false;
5767 Cnt = SplatBits.getSExtValue();
5768 return true;
5771 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5772 /// operand of a vector shift left operation. That value must be in the range:
5773 /// 0 <= Value < ElementBits for a left shift; or
5774 /// 0 <= Value <= ElementBits for a long left shift.
5775 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5776 assert(VT.isVector() && "vector shift count is not a vector type");
5777 int64_t ElementBits = VT.getScalarSizeInBits();
5778 if (!getVShiftImm(Op, ElementBits, Cnt))
5779 return false;
5780 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
5783 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5784 /// operand of a vector shift right operation. For a shift opcode, the value
5785 /// is positive, but for an intrinsic the value count must be negative. The
5786 /// absolute value must be in the range:
5787 /// 1 <= |Value| <= ElementBits for a right shift; or
5788 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5789 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5790 int64_t &Cnt) {
5791 assert(VT.isVector() && "vector shift count is not a vector type");
5792 int64_t ElementBits = VT.getScalarSizeInBits();
5793 if (!getVShiftImm(Op, ElementBits, Cnt))
5794 return false;
5795 if (!isIntrinsic)
5796 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
5797 if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
5798 Cnt = -Cnt;
5799 return true;
5801 return false;
5804 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5805 const ARMSubtarget *ST) {
5806 EVT VT = N->getValueType(0);
5807 SDLoc dl(N);
5808 int64_t Cnt;
5810 if (!VT.isVector())
5811 return SDValue();
5813 // We essentially have two forms here. Shift by an immediate and shift by a
5814 // vector register (there are also shift by a gpr, but that is just handled
5815 // with a tablegen pattern). We cannot easily match shift by an immediate in
5816 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5817 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5818 // signed or unsigned, and a negative shift indicates a shift right).
5819 if (N->getOpcode() == ISD::SHL) {
5820 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
5821 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
5822 DAG.getConstant(Cnt, dl, MVT::i32));
5823 return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
5824 N->getOperand(1));
5827 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
5828 "unexpected vector shift opcode");
5830 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
5831 unsigned VShiftOpc =
5832 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
5833 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
5834 DAG.getConstant(Cnt, dl, MVT::i32));
5837 // Other right shifts we don't have operations for (we use a shift left by a
5838 // negative number).
5839 EVT ShiftVT = N->getOperand(1).getValueType();
5840 SDValue NegatedCount = DAG.getNode(
5841 ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
5842 unsigned VShiftOpc =
5843 (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
5844 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
5847 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5848 const ARMSubtarget *ST) {
5849 EVT VT = N->getValueType(0);
5850 SDLoc dl(N);
5852 // We can get here for a node like i32 = ISD::SHL i32, i64
5853 if (VT != MVT::i64)
5854 return SDValue();
5856 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
5857 N->getOpcode() == ISD::SHL) &&
5858 "Unknown shift to lower!");
5860 unsigned ShOpc = N->getOpcode();
5861 if (ST->hasMVEIntegerOps()) {
5862 SDValue ShAmt = N->getOperand(1);
5863 unsigned ShPartsOpc = ARMISD::LSLL;
5864 ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
5866 // If the shift amount is greater than 32 then do the default optimisation
5867 if (Con && Con->getZExtValue() > 32)
5868 return SDValue();
5870 // Extract the lower 32 bits of the shift amount if it's an i64
5871 if (ShAmt->getValueType(0) == MVT::i64)
5872 ShAmt = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, ShAmt,
5873 DAG.getConstant(0, dl, MVT::i32));
5875 if (ShOpc == ISD::SRL) {
5876 if (!Con)
5877 // There is no t2LSRLr instruction so negate and perform an lsll if the
5878 // shift amount is in a register, emulating a right shift.
5879 ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5880 DAG.getConstant(0, dl, MVT::i32), ShAmt);
5881 else
5882 // Else generate an lsrl on the immediate shift amount
5883 ShPartsOpc = ARMISD::LSRL;
5884 } else if (ShOpc == ISD::SRA)
5885 ShPartsOpc = ARMISD::ASRL;
5887 // Lower 32 bits of the destination/source
5888 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5889 DAG.getConstant(0, dl, MVT::i32));
5890 // Upper 32 bits of the destination/source
5891 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5892 DAG.getConstant(1, dl, MVT::i32));
5894 // Generate the shift operation as computed above
5895 Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
5896 ShAmt);
5897 // The upper 32 bits come from the second return value of lsll
5898 Hi = SDValue(Lo.getNode(), 1);
5899 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5902 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5903 if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
5904 return SDValue();
5906 // If we are in thumb mode, we don't have RRX.
5907 if (ST->isThumb1Only())
5908 return SDValue();
5910 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5911 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5912 DAG.getConstant(0, dl, MVT::i32));
5913 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5914 DAG.getConstant(1, dl, MVT::i32));
5916 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5917 // captures the result into a carry flag.
5918 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5919 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5921 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5922 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5924 // Merge the pieces into a single i64 value.
5925 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5928 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
5929 const ARMSubtarget *ST) {
5930 bool Invert = false;
5931 bool Swap = false;
5932 unsigned Opc = ARMCC::AL;
5934 SDValue Op0 = Op.getOperand(0);
5935 SDValue Op1 = Op.getOperand(1);
5936 SDValue CC = Op.getOperand(2);
5937 EVT VT = Op.getValueType();
5938 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5939 SDLoc dl(Op);
5941 EVT CmpVT;
5942 if (ST->hasNEON())
5943 CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5944 else {
5945 assert(ST->hasMVEIntegerOps() &&
5946 "No hardware support for integer vector comparison!");
5948 if (Op.getValueType().getVectorElementType() != MVT::i1)
5949 return SDValue();
5951 // Make sure we expand floating point setcc to scalar if we do not have
5952 // mve.fp, so that we can handle them from there.
5953 if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
5954 return SDValue();
5956 CmpVT = VT;
5959 if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5960 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5961 // Special-case integer 64-bit equality comparisons. They aren't legal,
5962 // but they can be lowered with a few vector instructions.
5963 unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5964 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5965 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5966 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5967 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5968 DAG.getCondCode(ISD::SETEQ));
5969 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5970 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5971 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5972 if (SetCCOpcode == ISD::SETNE)
5973 Merged = DAG.getNOT(dl, Merged, CmpVT);
5974 Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5975 return Merged;
5978 if (CmpVT.getVectorElementType() == MVT::i64)
5979 // 64-bit comparisons are not legal in general.
5980 return SDValue();
5982 if (Op1.getValueType().isFloatingPoint()) {
5983 switch (SetCCOpcode) {
5984 default: llvm_unreachable("Illegal FP comparison");
5985 case ISD::SETUNE:
5986 case ISD::SETNE:
5987 if (ST->hasMVEFloatOps()) {
5988 Opc = ARMCC::NE; break;
5989 } else {
5990 Invert = true; LLVM_FALLTHROUGH;
5992 case ISD::SETOEQ:
5993 case ISD::SETEQ: Opc = ARMCC::EQ; break;
5994 case ISD::SETOLT:
5995 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5996 case ISD::SETOGT:
5997 case ISD::SETGT: Opc = ARMCC::GT; break;
5998 case ISD::SETOLE:
5999 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
6000 case ISD::SETOGE:
6001 case ISD::SETGE: Opc = ARMCC::GE; break;
6002 case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6003 case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6004 case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6005 case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6006 case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6007 case ISD::SETONE: {
6008 // Expand this to (OLT | OGT).
6009 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6010 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6011 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6012 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6013 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6014 if (Invert)
6015 Result = DAG.getNOT(dl, Result, VT);
6016 return Result;
6018 case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6019 case ISD::SETO: {
6020 // Expand this to (OLT | OGE).
6021 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6022 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6023 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6024 DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6025 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6026 if (Invert)
6027 Result = DAG.getNOT(dl, Result, VT);
6028 return Result;
6031 } else {
6032 // Integer comparisons.
6033 switch (SetCCOpcode) {
6034 default: llvm_unreachable("Illegal integer comparison");
6035 case ISD::SETNE:
6036 if (ST->hasMVEIntegerOps()) {
6037 Opc = ARMCC::NE; break;
6038 } else {
6039 Invert = true; LLVM_FALLTHROUGH;
6041 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6042 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6043 case ISD::SETGT: Opc = ARMCC::GT; break;
6044 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
6045 case ISD::SETGE: Opc = ARMCC::GE; break;
6046 case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6047 case ISD::SETUGT: Opc = ARMCC::HI; break;
6048 case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6049 case ISD::SETUGE: Opc = ARMCC::HS; break;
6052 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6053 if (ST->hasNEON() && Opc == ARMCC::EQ) {
6054 SDValue AndOp;
6055 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6056 AndOp = Op0;
6057 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6058 AndOp = Op1;
6060 // Ignore bitconvert.
6061 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6062 AndOp = AndOp.getOperand(0);
6064 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6065 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6066 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6067 SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6068 if (!Invert)
6069 Result = DAG.getNOT(dl, Result, VT);
6070 return Result;
6075 if (Swap)
6076 std::swap(Op0, Op1);
6078 // If one of the operands is a constant vector zero, attempt to fold the
6079 // comparison to a specialized compare-against-zero form.
6080 SDValue SingleOp;
6081 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6082 SingleOp = Op0;
6083 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6084 if (Opc == ARMCC::GE)
6085 Opc = ARMCC::LE;
6086 else if (Opc == ARMCC::GT)
6087 Opc = ARMCC::LT;
6088 SingleOp = Op1;
6091 SDValue Result;
6092 if (SingleOp.getNode()) {
6093 Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6094 DAG.getConstant(Opc, dl, MVT::i32));
6095 } else {
6096 Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6097 DAG.getConstant(Opc, dl, MVT::i32));
6100 Result = DAG.getSExtOrTrunc(Result, dl, VT);
6102 if (Invert)
6103 Result = DAG.getNOT(dl, Result, VT);
6105 return Result;
6108 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6109 SDValue LHS = Op.getOperand(0);
6110 SDValue RHS = Op.getOperand(1);
6111 SDValue Carry = Op.getOperand(2);
6112 SDValue Cond = Op.getOperand(3);
6113 SDLoc DL(Op);
6115 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6117 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6118 // have to invert the carry first.
6119 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6120 DAG.getConstant(1, DL, MVT::i32), Carry);
6121 // This converts the boolean value carry into the carry flag.
6122 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6124 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6125 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6127 SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6128 SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6129 SDValue ARMcc = DAG.getConstant(
6130 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6131 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6132 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6133 Cmp.getValue(1), SDValue());
6134 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6135 CCR, Chain.getValue(1));
6138 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6139 /// valid vector constant for a NEON or MVE instruction with a "modified
6140 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6141 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6142 unsigned SplatBitSize, SelectionDAG &DAG,
6143 const SDLoc &dl, EVT &VT, bool is128Bits,
6144 VMOVModImmType type) {
6145 unsigned OpCmode, Imm;
6147 // SplatBitSize is set to the smallest size that splats the vector, so a
6148 // zero vector will always have SplatBitSize == 8. However, NEON modified
6149 // immediate instructions others than VMOV do not support the 8-bit encoding
6150 // of a zero vector, and the default encoding of zero is supposed to be the
6151 // 32-bit version.
6152 if (SplatBits == 0)
6153 SplatBitSize = 32;
6155 switch (SplatBitSize) {
6156 case 8:
6157 if (type != VMOVModImm)
6158 return SDValue();
6159 // Any 1-byte value is OK. Op=0, Cmode=1110.
6160 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6161 OpCmode = 0xe;
6162 Imm = SplatBits;
6163 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6164 break;
6166 case 16:
6167 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6168 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6169 if ((SplatBits & ~0xff) == 0) {
6170 // Value = 0x00nn: Op=x, Cmode=100x.
6171 OpCmode = 0x8;
6172 Imm = SplatBits;
6173 break;
6175 if ((SplatBits & ~0xff00) == 0) {
6176 // Value = 0xnn00: Op=x, Cmode=101x.
6177 OpCmode = 0xa;
6178 Imm = SplatBits >> 8;
6179 break;
6181 return SDValue();
6183 case 32:
6184 // NEON's 32-bit VMOV supports splat values where:
6185 // * only one byte is nonzero, or
6186 // * the least significant byte is 0xff and the second byte is nonzero, or
6187 // * the least significant 2 bytes are 0xff and the third is nonzero.
6188 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6189 if ((SplatBits & ~0xff) == 0) {
6190 // Value = 0x000000nn: Op=x, Cmode=000x.
6191 OpCmode = 0;
6192 Imm = SplatBits;
6193 break;
6195 if ((SplatBits & ~0xff00) == 0) {
6196 // Value = 0x0000nn00: Op=x, Cmode=001x.
6197 OpCmode = 0x2;
6198 Imm = SplatBits >> 8;
6199 break;
6201 if ((SplatBits & ~0xff0000) == 0) {
6202 // Value = 0x00nn0000: Op=x, Cmode=010x.
6203 OpCmode = 0x4;
6204 Imm = SplatBits >> 16;
6205 break;
6207 if ((SplatBits & ~0xff000000) == 0) {
6208 // Value = 0xnn000000: Op=x, Cmode=011x.
6209 OpCmode = 0x6;
6210 Imm = SplatBits >> 24;
6211 break;
6214 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6215 if (type == OtherModImm) return SDValue();
6217 if ((SplatBits & ~0xffff) == 0 &&
6218 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6219 // Value = 0x0000nnff: Op=x, Cmode=1100.
6220 OpCmode = 0xc;
6221 Imm = SplatBits >> 8;
6222 break;
6225 // cmode == 0b1101 is not supported for MVE VMVN
6226 if (type == MVEVMVNModImm)
6227 return SDValue();
6229 if ((SplatBits & ~0xffffff) == 0 &&
6230 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6231 // Value = 0x00nnffff: Op=x, Cmode=1101.
6232 OpCmode = 0xd;
6233 Imm = SplatBits >> 16;
6234 break;
6237 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6238 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6239 // VMOV.I32. A (very) minor optimization would be to replicate the value
6240 // and fall through here to test for a valid 64-bit splat. But, then the
6241 // caller would also need to check and handle the change in size.
6242 return SDValue();
6244 case 64: {
6245 if (type != VMOVModImm)
6246 return SDValue();
6247 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6248 uint64_t BitMask = 0xff;
6249 uint64_t Val = 0;
6250 unsigned ImmMask = 1;
6251 Imm = 0;
6252 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6253 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6254 Val |= BitMask;
6255 Imm |= ImmMask;
6256 } else if ((SplatBits & BitMask) != 0) {
6257 return SDValue();
6259 BitMask <<= 8;
6260 ImmMask <<= 1;
6263 if (DAG.getDataLayout().isBigEndian())
6264 // swap higher and lower 32 bit word
6265 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
6267 // Op=1, Cmode=1110.
6268 OpCmode = 0x1e;
6269 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6270 break;
6273 default:
6274 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6277 unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6278 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6281 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6282 const ARMSubtarget *ST) const {
6283 EVT VT = Op.getValueType();
6284 bool IsDouble = (VT == MVT::f64);
6285 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6286 const APFloat &FPVal = CFP->getValueAPF();
6288 // Prevent floating-point constants from using literal loads
6289 // when execute-only is enabled.
6290 if (ST->genExecuteOnly()) {
6291 // If we can represent the constant as an immediate, don't lower it
6292 if (isFPImmLegal(FPVal, VT))
6293 return Op;
6294 // Otherwise, construct as integer, and move to float register
6295 APInt INTVal = FPVal.bitcastToAPInt();
6296 SDLoc DL(CFP);
6297 switch (VT.getSimpleVT().SimpleTy) {
6298 default:
6299 llvm_unreachable("Unknown floating point type!");
6300 break;
6301 case MVT::f64: {
6302 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6303 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6304 if (!ST->isLittle())
6305 std::swap(Lo, Hi);
6306 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6308 case MVT::f32:
6309 return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6310 DAG.getConstant(INTVal, DL, MVT::i32));
6314 if (!ST->hasVFP3Base())
6315 return SDValue();
6317 // Use the default (constant pool) lowering for double constants when we have
6318 // an SP-only FPU
6319 if (IsDouble && !Subtarget->hasFP64())
6320 return SDValue();
6322 // Try splatting with a VMOV.f32...
6323 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6325 if (ImmVal != -1) {
6326 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6327 // We have code in place to select a valid ConstantFP already, no need to
6328 // do any mangling.
6329 return Op;
6332 // It's a float and we are trying to use NEON operations where
6333 // possible. Lower it to a splat followed by an extract.
6334 SDLoc DL(Op);
6335 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6336 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6337 NewVal);
6338 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6339 DAG.getConstant(0, DL, MVT::i32));
6342 // The rest of our options are NEON only, make sure that's allowed before
6343 // proceeding..
6344 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6345 return SDValue();
6347 EVT VMovVT;
6348 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6350 // It wouldn't really be worth bothering for doubles except for one very
6351 // important value, which does happen to match: 0.0. So make sure we don't do
6352 // anything stupid.
6353 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6354 return SDValue();
6356 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6357 SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6358 VMovVT, false, VMOVModImm);
6359 if (NewVal != SDValue()) {
6360 SDLoc DL(Op);
6361 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6362 NewVal);
6363 if (IsDouble)
6364 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6366 // It's a float: cast and extract a vector element.
6367 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6368 VecConstant);
6369 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6370 DAG.getConstant(0, DL, MVT::i32));
6373 // Finally, try a VMVN.i32
6374 NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6375 false, VMVNModImm);
6376 if (NewVal != SDValue()) {
6377 SDLoc DL(Op);
6378 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6380 if (IsDouble)
6381 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6383 // It's a float: cast and extract a vector element.
6384 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6385 VecConstant);
6386 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6387 DAG.getConstant(0, DL, MVT::i32));
6390 return SDValue();
6393 // check if an VEXT instruction can handle the shuffle mask when the
6394 // vector sources of the shuffle are the same.
6395 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6396 unsigned NumElts = VT.getVectorNumElements();
6398 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6399 if (M[0] < 0)
6400 return false;
6402 Imm = M[0];
6404 // If this is a VEXT shuffle, the immediate value is the index of the first
6405 // element. The other shuffle indices must be the successive elements after
6406 // the first one.
6407 unsigned ExpectedElt = Imm;
6408 for (unsigned i = 1; i < NumElts; ++i) {
6409 // Increment the expected index. If it wraps around, just follow it
6410 // back to index zero and keep going.
6411 ++ExpectedElt;
6412 if (ExpectedElt == NumElts)
6413 ExpectedElt = 0;
6415 if (M[i] < 0) continue; // ignore UNDEF indices
6416 if (ExpectedElt != static_cast<unsigned>(M[i]))
6417 return false;
6420 return true;
6423 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6424 bool &ReverseVEXT, unsigned &Imm) {
6425 unsigned NumElts = VT.getVectorNumElements();
6426 ReverseVEXT = false;
6428 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6429 if (M[0] < 0)
6430 return false;
6432 Imm = M[0];
6434 // If this is a VEXT shuffle, the immediate value is the index of the first
6435 // element. The other shuffle indices must be the successive elements after
6436 // the first one.
6437 unsigned ExpectedElt = Imm;
6438 for (unsigned i = 1; i < NumElts; ++i) {
6439 // Increment the expected index. If it wraps around, it may still be
6440 // a VEXT but the source vectors must be swapped.
6441 ExpectedElt += 1;
6442 if (ExpectedElt == NumElts * 2) {
6443 ExpectedElt = 0;
6444 ReverseVEXT = true;
6447 if (M[i] < 0) continue; // ignore UNDEF indices
6448 if (ExpectedElt != static_cast<unsigned>(M[i]))
6449 return false;
6452 // Adjust the index value if the source operands will be swapped.
6453 if (ReverseVEXT)
6454 Imm -= NumElts;
6456 return true;
6459 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6460 /// instruction with the specified blocksize. (The order of the elements
6461 /// within each block of the vector is reversed.)
6462 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6463 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6464 "Only possible block sizes for VREV are: 16, 32, 64");
6466 unsigned EltSz = VT.getScalarSizeInBits();
6467 if (EltSz == 64)
6468 return false;
6470 unsigned NumElts = VT.getVectorNumElements();
6471 unsigned BlockElts = M[0] + 1;
6472 // If the first shuffle index is UNDEF, be optimistic.
6473 if (M[0] < 0)
6474 BlockElts = BlockSize / EltSz;
6476 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6477 return false;
6479 for (unsigned i = 0; i < NumElts; ++i) {
6480 if (M[i] < 0) continue; // ignore UNDEF indices
6481 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6482 return false;
6485 return true;
6488 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6489 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6490 // range, then 0 is placed into the resulting vector. So pretty much any mask
6491 // of 8 elements can work here.
6492 return VT == MVT::v8i8 && M.size() == 8;
6495 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6496 unsigned Index) {
6497 if (Mask.size() == Elements * 2)
6498 return Index / Elements;
6499 return Mask[Index] == 0 ? 0 : 1;
6502 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6503 // checking that pairs of elements in the shuffle mask represent the same index
6504 // in each vector, incrementing the expected index by 2 at each step.
6505 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6506 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6507 // v2={e,f,g,h}
6508 // WhichResult gives the offset for each element in the mask based on which
6509 // of the two results it belongs to.
6511 // The transpose can be represented either as:
6512 // result1 = shufflevector v1, v2, result1_shuffle_mask
6513 // result2 = shufflevector v1, v2, result2_shuffle_mask
6514 // where v1/v2 and the shuffle masks have the same number of elements
6515 // (here WhichResult (see below) indicates which result is being checked)
6517 // or as:
6518 // results = shufflevector v1, v2, shuffle_mask
6519 // where both results are returned in one vector and the shuffle mask has twice
6520 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6521 // want to check the low half and high half of the shuffle mask as if it were
6522 // the other case
6523 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6524 unsigned EltSz = VT.getScalarSizeInBits();
6525 if (EltSz == 64)
6526 return false;
6528 unsigned NumElts = VT.getVectorNumElements();
6529 if (M.size() != NumElts && M.size() != NumElts*2)
6530 return false;
6532 // If the mask is twice as long as the input vector then we need to check the
6533 // upper and lower parts of the mask with a matching value for WhichResult
6534 // FIXME: A mask with only even values will be rejected in case the first
6535 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6536 // M[0] is used to determine WhichResult
6537 for (unsigned i = 0; i < M.size(); i += NumElts) {
6538 WhichResult = SelectPairHalf(NumElts, M, i);
6539 for (unsigned j = 0; j < NumElts; j += 2) {
6540 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6541 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6542 return false;
6546 if (M.size() == NumElts*2)
6547 WhichResult = 0;
6549 return true;
6552 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6553 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6554 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6555 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6556 unsigned EltSz = VT.getScalarSizeInBits();
6557 if (EltSz == 64)
6558 return false;
6560 unsigned NumElts = VT.getVectorNumElements();
6561 if (M.size() != NumElts && M.size() != NumElts*2)
6562 return false;
6564 for (unsigned i = 0; i < M.size(); i += NumElts) {
6565 WhichResult = SelectPairHalf(NumElts, M, i);
6566 for (unsigned j = 0; j < NumElts; j += 2) {
6567 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6568 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6569 return false;
6573 if (M.size() == NumElts*2)
6574 WhichResult = 0;
6576 return true;
6579 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6580 // that the mask elements are either all even and in steps of size 2 or all odd
6581 // and in steps of size 2.
6582 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6583 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6584 // v2={e,f,g,h}
6585 // Requires similar checks to that of isVTRNMask with
6586 // respect the how results are returned.
6587 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6588 unsigned EltSz = VT.getScalarSizeInBits();
6589 if (EltSz == 64)
6590 return false;
6592 unsigned NumElts = VT.getVectorNumElements();
6593 if (M.size() != NumElts && M.size() != NumElts*2)
6594 return false;
6596 for (unsigned i = 0; i < M.size(); i += NumElts) {
6597 WhichResult = SelectPairHalf(NumElts, M, i);
6598 for (unsigned j = 0; j < NumElts; ++j) {
6599 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6600 return false;
6604 if (M.size() == NumElts*2)
6605 WhichResult = 0;
6607 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6608 if (VT.is64BitVector() && EltSz == 32)
6609 return false;
6611 return true;
6614 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6615 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6616 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6617 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6618 unsigned EltSz = VT.getScalarSizeInBits();
6619 if (EltSz == 64)
6620 return false;
6622 unsigned NumElts = VT.getVectorNumElements();
6623 if (M.size() != NumElts && M.size() != NumElts*2)
6624 return false;
6626 unsigned Half = NumElts / 2;
6627 for (unsigned i = 0; i < M.size(); i += NumElts) {
6628 WhichResult = SelectPairHalf(NumElts, M, i);
6629 for (unsigned j = 0; j < NumElts; j += Half) {
6630 unsigned Idx = WhichResult;
6631 for (unsigned k = 0; k < Half; ++k) {
6632 int MIdx = M[i + j + k];
6633 if (MIdx >= 0 && (unsigned) MIdx != Idx)
6634 return false;
6635 Idx += 2;
6640 if (M.size() == NumElts*2)
6641 WhichResult = 0;
6643 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6644 if (VT.is64BitVector() && EltSz == 32)
6645 return false;
6647 return true;
6650 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6651 // that pairs of elements of the shufflemask represent the same index in each
6652 // vector incrementing sequentially through the vectors.
6653 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6654 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6655 // v2={e,f,g,h}
6656 // Requires similar checks to that of isVTRNMask with respect the how results
6657 // are returned.
6658 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6659 unsigned EltSz = VT.getScalarSizeInBits();
6660 if (EltSz == 64)
6661 return false;
6663 unsigned NumElts = VT.getVectorNumElements();
6664 if (M.size() != NumElts && M.size() != NumElts*2)
6665 return false;
6667 for (unsigned i = 0; i < M.size(); i += NumElts) {
6668 WhichResult = SelectPairHalf(NumElts, M, i);
6669 unsigned Idx = WhichResult * NumElts / 2;
6670 for (unsigned j = 0; j < NumElts; j += 2) {
6671 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6672 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6673 return false;
6674 Idx += 1;
6678 if (M.size() == NumElts*2)
6679 WhichResult = 0;
6681 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6682 if (VT.is64BitVector() && EltSz == 32)
6683 return false;
6685 return true;
6688 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6689 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6690 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6691 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6692 unsigned EltSz = VT.getScalarSizeInBits();
6693 if (EltSz == 64)
6694 return false;
6696 unsigned NumElts = VT.getVectorNumElements();
6697 if (M.size() != NumElts && M.size() != NumElts*2)
6698 return false;
6700 for (unsigned i = 0; i < M.size(); i += NumElts) {
6701 WhichResult = SelectPairHalf(NumElts, M, i);
6702 unsigned Idx = WhichResult * NumElts / 2;
6703 for (unsigned j = 0; j < NumElts; j += 2) {
6704 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6705 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6706 return false;
6707 Idx += 1;
6711 if (M.size() == NumElts*2)
6712 WhichResult = 0;
6714 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6715 if (VT.is64BitVector() && EltSz == 32)
6716 return false;
6718 return true;
6721 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6722 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6723 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6724 unsigned &WhichResult,
6725 bool &isV_UNDEF) {
6726 isV_UNDEF = false;
6727 if (isVTRNMask(ShuffleMask, VT, WhichResult))
6728 return ARMISD::VTRN;
6729 if (isVUZPMask(ShuffleMask, VT, WhichResult))
6730 return ARMISD::VUZP;
6731 if (isVZIPMask(ShuffleMask, VT, WhichResult))
6732 return ARMISD::VZIP;
6734 isV_UNDEF = true;
6735 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6736 return ARMISD::VTRN;
6737 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6738 return ARMISD::VUZP;
6739 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6740 return ARMISD::VZIP;
6742 return 0;
6745 /// \return true if this is a reverse operation on an vector.
6746 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6747 unsigned NumElts = VT.getVectorNumElements();
6748 // Make sure the mask has the right size.
6749 if (NumElts != M.size())
6750 return false;
6752 // Look for <15, ..., 3, -1, 1, 0>.
6753 for (unsigned i = 0; i != NumElts; ++i)
6754 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6755 return false;
6757 return true;
6760 // If N is an integer constant that can be moved into a register in one
6761 // instruction, return an SDValue of such a constant (will become a MOV
6762 // instruction). Otherwise return null.
6763 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6764 const ARMSubtarget *ST, const SDLoc &dl) {
6765 uint64_t Val;
6766 if (!isa<ConstantSDNode>(N))
6767 return SDValue();
6768 Val = cast<ConstantSDNode>(N)->getZExtValue();
6770 if (ST->isThumb1Only()) {
6771 if (Val <= 255 || ~Val <= 255)
6772 return DAG.getConstant(Val, dl, MVT::i32);
6773 } else {
6774 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6775 return DAG.getConstant(Val, dl, MVT::i32);
6777 return SDValue();
6780 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
6781 const ARMSubtarget *ST) {
6782 SDLoc dl(Op);
6783 EVT VT = Op.getValueType();
6785 assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6787 unsigned NumElts = VT.getVectorNumElements();
6788 unsigned BoolMask;
6789 unsigned BitsPerBool;
6790 if (NumElts == 4) {
6791 BitsPerBool = 4;
6792 BoolMask = 0xf;
6793 } else if (NumElts == 8) {
6794 BitsPerBool = 2;
6795 BoolMask = 0x3;
6796 } else if (NumElts == 16) {
6797 BitsPerBool = 1;
6798 BoolMask = 0x1;
6799 } else
6800 return SDValue();
6802 // First create base with bits set where known
6803 unsigned Bits32 = 0;
6804 for (unsigned i = 0; i < NumElts; ++i) {
6805 SDValue V = Op.getOperand(i);
6806 if (!isa<ConstantSDNode>(V) && !V.isUndef())
6807 continue;
6808 bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
6809 if (BitSet)
6810 Bits32 |= BoolMask << (i * BitsPerBool);
6813 // Add in unknown nodes
6814 // FIXME: Handle splats of the same value better.
6815 SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
6816 DAG.getConstant(Bits32, dl, MVT::i32));
6817 for (unsigned i = 0; i < NumElts; ++i) {
6818 SDValue V = Op.getOperand(i);
6819 if (isa<ConstantSDNode>(V) || V.isUndef())
6820 continue;
6821 Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
6822 DAG.getConstant(i, dl, MVT::i32));
6825 return Base;
6828 // If this is a case we can't handle, return null and let the default
6829 // expansion code take care of it.
6830 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6831 const ARMSubtarget *ST) const {
6832 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6833 SDLoc dl(Op);
6834 EVT VT = Op.getValueType();
6836 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
6837 return LowerBUILD_VECTOR_i1(Op, DAG, ST);
6839 APInt SplatBits, SplatUndef;
6840 unsigned SplatBitSize;
6841 bool HasAnyUndefs;
6842 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6843 if (SplatUndef.isAllOnesValue())
6844 return DAG.getUNDEF(VT);
6846 if ((ST->hasNEON() && SplatBitSize <= 64) ||
6847 (ST->hasMVEIntegerOps() && SplatBitSize <= 32)) {
6848 // Check if an immediate VMOV works.
6849 EVT VmovVT;
6850 SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
6851 SplatUndef.getZExtValue(), SplatBitSize,
6852 DAG, dl, VmovVT, VT.is128BitVector(),
6853 VMOVModImm);
6855 if (Val.getNode()) {
6856 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6857 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6860 // Try an immediate VMVN.
6861 uint64_t NegatedImm = (~SplatBits).getZExtValue();
6862 Val = isVMOVModifiedImm(
6863 NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
6864 DAG, dl, VmovVT, VT.is128BitVector(),
6865 ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
6866 if (Val.getNode()) {
6867 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6868 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6871 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6872 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6873 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6874 if (ImmVal != -1) {
6875 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6876 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6882 // Scan through the operands to see if only one value is used.
6884 // As an optimisation, even if more than one value is used it may be more
6885 // profitable to splat with one value then change some lanes.
6887 // Heuristically we decide to do this if the vector has a "dominant" value,
6888 // defined as splatted to more than half of the lanes.
6889 unsigned NumElts = VT.getVectorNumElements();
6890 bool isOnlyLowElement = true;
6891 bool usesOnlyOneValue = true;
6892 bool hasDominantValue = false;
6893 bool isConstant = true;
6895 // Map of the number of times a particular SDValue appears in the
6896 // element list.
6897 DenseMap<SDValue, unsigned> ValueCounts;
6898 SDValue Value;
6899 for (unsigned i = 0; i < NumElts; ++i) {
6900 SDValue V = Op.getOperand(i);
6901 if (V.isUndef())
6902 continue;
6903 if (i > 0)
6904 isOnlyLowElement = false;
6905 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6906 isConstant = false;
6908 ValueCounts.insert(std::make_pair(V, 0));
6909 unsigned &Count = ValueCounts[V];
6911 // Is this value dominant? (takes up more than half of the lanes)
6912 if (++Count > (NumElts / 2)) {
6913 hasDominantValue = true;
6914 Value = V;
6917 if (ValueCounts.size() != 1)
6918 usesOnlyOneValue = false;
6919 if (!Value.getNode() && !ValueCounts.empty())
6920 Value = ValueCounts.begin()->first;
6922 if (ValueCounts.empty())
6923 return DAG.getUNDEF(VT);
6925 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6926 // Keep going if we are hitting this case.
6927 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6928 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6930 unsigned EltSize = VT.getScalarSizeInBits();
6932 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6933 // i32 and try again.
6934 if (hasDominantValue && EltSize <= 32) {
6935 if (!isConstant) {
6936 SDValue N;
6938 // If we are VDUPing a value that comes directly from a vector, that will
6939 // cause an unnecessary move to and from a GPR, where instead we could
6940 // just use VDUPLANE. We can only do this if the lane being extracted
6941 // is at a constant index, as the VDUP from lane instructions only have
6942 // constant-index forms.
6943 ConstantSDNode *constIndex;
6944 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6945 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6946 // We need to create a new undef vector to use for the VDUPLANE if the
6947 // size of the vector from which we get the value is different than the
6948 // size of the vector that we need to create. We will insert the element
6949 // such that the register coalescer will remove unnecessary copies.
6950 if (VT != Value->getOperand(0).getValueType()) {
6951 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6952 VT.getVectorNumElements();
6953 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6954 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6955 Value, DAG.getConstant(index, dl, MVT::i32)),
6956 DAG.getConstant(index, dl, MVT::i32));
6957 } else
6958 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6959 Value->getOperand(0), Value->getOperand(1));
6960 } else
6961 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6963 if (!usesOnlyOneValue) {
6964 // The dominant value was splatted as 'N', but we now have to insert
6965 // all differing elements.
6966 for (unsigned I = 0; I < NumElts; ++I) {
6967 if (Op.getOperand(I) == Value)
6968 continue;
6969 SmallVector<SDValue, 3> Ops;
6970 Ops.push_back(N);
6971 Ops.push_back(Op.getOperand(I));
6972 Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6973 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6976 return N;
6978 if (VT.getVectorElementType().isFloatingPoint()) {
6979 SmallVector<SDValue, 8> Ops;
6980 MVT FVT = VT.getVectorElementType().getSimpleVT();
6981 assert(FVT == MVT::f32 || FVT == MVT::f16);
6982 MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
6983 for (unsigned i = 0; i < NumElts; ++i)
6984 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
6985 Op.getOperand(i)));
6986 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
6987 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6988 Val = LowerBUILD_VECTOR(Val, DAG, ST);
6989 if (Val.getNode())
6990 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6992 if (usesOnlyOneValue) {
6993 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6994 if (isConstant && Val.getNode())
6995 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6999 // If all elements are constants and the case above didn't get hit, fall back
7000 // to the default expansion, which will generate a load from the constant
7001 // pool.
7002 if (isConstant)
7003 return SDValue();
7005 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7006 if (NumElts >= 4) {
7007 SDValue shuffle = ReconstructShuffle(Op, DAG);
7008 if (shuffle != SDValue())
7009 return shuffle;
7012 if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7013 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7014 // into two 64-bit vectors; we might discover a better way to lower it.
7015 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7016 EVT ExtVT = VT.getVectorElementType();
7017 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7018 SDValue Lower =
7019 DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7020 if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7021 Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7022 SDValue Upper = DAG.getBuildVector(
7023 HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7024 if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7025 Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7026 if (Lower && Upper)
7027 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7030 // Vectors with 32- or 64-bit elements can be built by directly assigning
7031 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7032 // will be legalized.
7033 if (EltSize >= 32) {
7034 // Do the expansion with floating-point types, since that is what the VFP
7035 // registers are defined to use, and since i64 is not legal.
7036 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7037 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7038 SmallVector<SDValue, 8> Ops;
7039 for (unsigned i = 0; i < NumElts; ++i)
7040 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7041 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7042 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7045 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7046 // know the default expansion would otherwise fall back on something even
7047 // worse. For a vector with one or two non-undef values, that's
7048 // scalar_to_vector for the elements followed by a shuffle (provided the
7049 // shuffle is valid for the target) and materialization element by element
7050 // on the stack followed by a load for everything else.
7051 if (!isConstant && !usesOnlyOneValue) {
7052 SDValue Vec = DAG.getUNDEF(VT);
7053 for (unsigned i = 0 ; i < NumElts; ++i) {
7054 SDValue V = Op.getOperand(i);
7055 if (V.isUndef())
7056 continue;
7057 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7058 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7060 return Vec;
7063 return SDValue();
7066 // Gather data to see if the operation can be modelled as a
7067 // shuffle in combination with VEXTs.
7068 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7069 SelectionDAG &DAG) const {
7070 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7071 SDLoc dl(Op);
7072 EVT VT = Op.getValueType();
7073 unsigned NumElts = VT.getVectorNumElements();
7075 struct ShuffleSourceInfo {
7076 SDValue Vec;
7077 unsigned MinElt = std::numeric_limits<unsigned>::max();
7078 unsigned MaxElt = 0;
7080 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7081 // be compatible with the shuffle we intend to construct. As a result
7082 // ShuffleVec will be some sliding window into the original Vec.
7083 SDValue ShuffleVec;
7085 // Code should guarantee that element i in Vec starts at element "WindowBase
7086 // + i * WindowScale in ShuffleVec".
7087 int WindowBase = 0;
7088 int WindowScale = 1;
7090 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7092 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7095 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7096 // node.
7097 SmallVector<ShuffleSourceInfo, 2> Sources;
7098 for (unsigned i = 0; i < NumElts; ++i) {
7099 SDValue V = Op.getOperand(i);
7100 if (V.isUndef())
7101 continue;
7102 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7103 // A shuffle can only come from building a vector from various
7104 // elements of other vectors.
7105 return SDValue();
7106 } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7107 // Furthermore, shuffles require a constant mask, whereas extractelts
7108 // accept variable indices.
7109 return SDValue();
7112 // Add this element source to the list if it's not already there.
7113 SDValue SourceVec = V.getOperand(0);
7114 auto Source = llvm::find(Sources, SourceVec);
7115 if (Source == Sources.end())
7116 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7118 // Update the minimum and maximum lane number seen.
7119 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7120 Source->MinElt = std::min(Source->MinElt, EltNo);
7121 Source->MaxElt = std::max(Source->MaxElt, EltNo);
7124 // Currently only do something sane when at most two source vectors
7125 // are involved.
7126 if (Sources.size() > 2)
7127 return SDValue();
7129 // Find out the smallest element size among result and two sources, and use
7130 // it as element size to build the shuffle_vector.
7131 EVT SmallestEltTy = VT.getVectorElementType();
7132 for (auto &Source : Sources) {
7133 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7134 if (SrcEltTy.bitsLT(SmallestEltTy))
7135 SmallestEltTy = SrcEltTy;
7137 unsigned ResMultiplier =
7138 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7139 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7140 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7142 // If the source vector is too wide or too narrow, we may nevertheless be able
7143 // to construct a compatible shuffle either by concatenating it with UNDEF or
7144 // extracting a suitable range of elements.
7145 for (auto &Src : Sources) {
7146 EVT SrcVT = Src.ShuffleVec.getValueType();
7148 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
7149 continue;
7151 // This stage of the search produces a source with the same element type as
7152 // the original, but with a total width matching the BUILD_VECTOR output.
7153 EVT EltVT = SrcVT.getVectorElementType();
7154 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
7155 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7157 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
7158 if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
7159 return SDValue();
7160 // We can pad out the smaller vector for free, so if it's part of a
7161 // shuffle...
7162 Src.ShuffleVec =
7163 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7164 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7165 continue;
7168 if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
7169 return SDValue();
7171 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7172 // Span too large for a VEXT to cope
7173 return SDValue();
7176 if (Src.MinElt >= NumSrcElts) {
7177 // The extraction can just take the second half
7178 Src.ShuffleVec =
7179 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7180 DAG.getConstant(NumSrcElts, dl, MVT::i32));
7181 Src.WindowBase = -NumSrcElts;
7182 } else if (Src.MaxElt < NumSrcElts) {
7183 // The extraction can just take the first half
7184 Src.ShuffleVec =
7185 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7186 DAG.getConstant(0, dl, MVT::i32));
7187 } else {
7188 // An actual VEXT is needed
7189 SDValue VEXTSrc1 =
7190 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7191 DAG.getConstant(0, dl, MVT::i32));
7192 SDValue VEXTSrc2 =
7193 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7194 DAG.getConstant(NumSrcElts, dl, MVT::i32));
7196 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7197 VEXTSrc2,
7198 DAG.getConstant(Src.MinElt, dl, MVT::i32));
7199 Src.WindowBase = -Src.MinElt;
7203 // Another possible incompatibility occurs from the vector element types. We
7204 // can fix this by bitcasting the source vectors to the same type we intend
7205 // for the shuffle.
7206 for (auto &Src : Sources) {
7207 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7208 if (SrcEltTy == SmallestEltTy)
7209 continue;
7210 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7211 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
7212 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7213 Src.WindowBase *= Src.WindowScale;
7216 // Final sanity check before we try to actually produce a shuffle.
7217 LLVM_DEBUG(for (auto Src
7218 : Sources)
7219 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7221 // The stars all align, our next step is to produce the mask for the shuffle.
7222 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7223 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7224 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7225 SDValue Entry = Op.getOperand(i);
7226 if (Entry.isUndef())
7227 continue;
7229 auto Src = llvm::find(Sources, Entry.getOperand(0));
7230 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7232 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7233 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7234 // segment.
7235 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7236 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
7237 VT.getScalarSizeInBits());
7238 int LanesDefined = BitsDefined / BitsPerShuffleLane;
7240 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7241 // starting at the appropriate offset.
7242 int *LaneMask = &Mask[i * ResMultiplier];
7244 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7245 ExtractBase += NumElts * (Src - Sources.begin());
7246 for (int j = 0; j < LanesDefined; ++j)
7247 LaneMask[j] = ExtractBase + j;
7250 // Final check before we try to produce nonsense...
7251 if (!isShuffleMaskLegal(Mask, ShuffleVT))
7252 return SDValue();
7254 // We can't handle more than two sources. This should have already
7255 // been checked before this point.
7256 assert(Sources.size() <= 2 && "Too many sources!");
7258 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7259 for (unsigned i = 0; i < Sources.size(); ++i)
7260 ShuffleOps[i] = Sources[i].ShuffleVec;
7262 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7263 ShuffleOps[1], Mask);
7264 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
7267 enum ShuffleOpCodes {
7268 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7269 OP_VREV,
7270 OP_VDUP0,
7271 OP_VDUP1,
7272 OP_VDUP2,
7273 OP_VDUP3,
7274 OP_VEXT1,
7275 OP_VEXT2,
7276 OP_VEXT3,
7277 OP_VUZPL, // VUZP, left result
7278 OP_VUZPR, // VUZP, right result
7279 OP_VZIPL, // VZIP, left result
7280 OP_VZIPR, // VZIP, right result
7281 OP_VTRNL, // VTRN, left result
7282 OP_VTRNR // VTRN, right result
7285 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7286 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7287 switch (OpNum) {
7288 case OP_COPY:
7289 case OP_VREV:
7290 case OP_VDUP0:
7291 case OP_VDUP1:
7292 case OP_VDUP2:
7293 case OP_VDUP3:
7294 return true;
7296 return false;
7299 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7300 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7301 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7302 /// are assumed to be legal.
7303 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7304 if (VT.getVectorNumElements() == 4 &&
7305 (VT.is128BitVector() || VT.is64BitVector())) {
7306 unsigned PFIndexes[4];
7307 for (unsigned i = 0; i != 4; ++i) {
7308 if (M[i] < 0)
7309 PFIndexes[i] = 8;
7310 else
7311 PFIndexes[i] = M[i];
7314 // Compute the index in the perfect shuffle table.
7315 unsigned PFTableIndex =
7316 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7317 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7318 unsigned Cost = (PFEntry >> 30);
7320 if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7321 return true;
7324 bool ReverseVEXT, isV_UNDEF;
7325 unsigned Imm, WhichResult;
7327 unsigned EltSize = VT.getScalarSizeInBits();
7328 if (EltSize >= 32 ||
7329 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7330 isVREVMask(M, VT, 64) ||
7331 isVREVMask(M, VT, 32) ||
7332 isVREVMask(M, VT, 16))
7333 return true;
7334 else if (Subtarget->hasNEON() &&
7335 (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7336 isVTBLMask(M, VT) ||
7337 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7338 return true;
7339 else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7340 isReverseMask(M, VT))
7341 return true;
7342 else
7343 return false;
7346 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7347 /// the specified operations to build the shuffle.
7348 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7349 SDValue RHS, SelectionDAG &DAG,
7350 const SDLoc &dl) {
7351 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7352 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7353 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
7355 if (OpNum == OP_COPY) {
7356 if (LHSID == (1*9+2)*9+3) return LHS;
7357 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7358 return RHS;
7361 SDValue OpLHS, OpRHS;
7362 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7363 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7364 EVT VT = OpLHS.getValueType();
7366 switch (OpNum) {
7367 default: llvm_unreachable("Unknown shuffle opcode!");
7368 case OP_VREV:
7369 // VREV divides the vector in half and swaps within the half.
7370 if (VT.getVectorElementType() == MVT::i32 ||
7371 VT.getVectorElementType() == MVT::f32)
7372 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
7373 // vrev <4 x i16> -> VREV32
7374 if (VT.getVectorElementType() == MVT::i16)
7375 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
7376 // vrev <4 x i8> -> VREV16
7377 assert(VT.getVectorElementType() == MVT::i8);
7378 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
7379 case OP_VDUP0:
7380 case OP_VDUP1:
7381 case OP_VDUP2:
7382 case OP_VDUP3:
7383 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7384 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
7385 case OP_VEXT1:
7386 case OP_VEXT2:
7387 case OP_VEXT3:
7388 return DAG.getNode(ARMISD::VEXT, dl, VT,
7389 OpLHS, OpRHS,
7390 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
7391 case OP_VUZPL:
7392 case OP_VUZPR:
7393 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
7394 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
7395 case OP_VZIPL:
7396 case OP_VZIPR:
7397 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
7398 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
7399 case OP_VTRNL:
7400 case OP_VTRNR:
7401 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
7402 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
7406 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7407 ArrayRef<int> ShuffleMask,
7408 SelectionDAG &DAG) {
7409 // Check to see if we can use the VTBL instruction.
7410 SDValue V1 = Op.getOperand(0);
7411 SDValue V2 = Op.getOperand(1);
7412 SDLoc DL(Op);
7414 SmallVector<SDValue, 8> VTBLMask;
7415 for (ArrayRef<int>::iterator
7416 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7417 VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7419 if (V2.getNode()->isUndef())
7420 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7421 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7423 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7424 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7427 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7428 SelectionDAG &DAG) {
7429 SDLoc DL(Op);
7430 SDValue OpLHS = Op.getOperand(0);
7431 EVT VT = OpLHS.getValueType();
7433 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7434 "Expect an v8i16/v16i8 type");
7435 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7436 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7437 // extract the first 8 bytes into the top double word and the last 8 bytes
7438 // into the bottom double word. The v8i16 case is similar.
7439 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7440 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7441 DAG.getConstant(ExtractNum, DL, MVT::i32));
7444 static EVT getVectorTyFromPredicateVector(EVT VT) {
7445 switch (VT.getSimpleVT().SimpleTy) {
7446 case MVT::v4i1:
7447 return MVT::v4i32;
7448 case MVT::v8i1:
7449 return MVT::v8i16;
7450 case MVT::v16i1:
7451 return MVT::v16i8;
7452 default:
7453 llvm_unreachable("Unexpected vector predicate type");
7457 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
7458 SelectionDAG &DAG) {
7459 // Converting from boolean predicates to integers involves creating a vector
7460 // of all ones or all zeroes and selecting the lanes based upon the real
7461 // predicate.
7462 SDValue AllOnes =
7463 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
7464 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
7466 SDValue AllZeroes =
7467 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
7468 AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
7470 // Get full vector type from predicate type
7471 EVT NewVT = getVectorTyFromPredicateVector(VT);
7473 SDValue RecastV1;
7474 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7475 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7476 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7477 // since we know in hardware the sizes are really the same.
7478 if (VT != MVT::v16i1)
7479 RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
7480 else
7481 RecastV1 = Pred;
7483 // Select either all ones or zeroes depending upon the real predicate bits.
7484 SDValue PredAsVector =
7485 DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
7487 // Recast our new predicate-as-integer v16i8 vector into something
7488 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7489 return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
7492 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
7493 const ARMSubtarget *ST) {
7494 EVT VT = Op.getValueType();
7495 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7496 ArrayRef<int> ShuffleMask = SVN->getMask();
7498 assert(ST->hasMVEIntegerOps() &&
7499 "No support for vector shuffle of boolean predicates");
7501 SDValue V1 = Op.getOperand(0);
7502 SDLoc dl(Op);
7503 if (isReverseMask(ShuffleMask, VT)) {
7504 SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
7505 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
7506 SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
7507 DAG.getConstant(16, dl, MVT::i32));
7508 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
7511 // Until we can come up with optimised cases for every single vector
7512 // shuffle in existence we have chosen the least painful strategy. This is
7513 // to essentially promote the boolean predicate to a 8-bit integer, where
7514 // each predicate represents a byte. Then we fall back on a normal integer
7515 // vector shuffle and convert the result back into a predicate vector. In
7516 // many cases the generated code might be even better than scalar code
7517 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7518 // fields in a register into 8 other arbitrary 2-bit fields!
7519 SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
7520 EVT NewVT = PredAsVector.getValueType();
7522 // Do the shuffle!
7523 SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
7524 DAG.getUNDEF(NewVT), ShuffleMask);
7526 // Now return the result of comparing the shuffled vector with zero,
7527 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7528 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
7529 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7532 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
7533 const ARMSubtarget *ST) {
7534 SDValue V1 = Op.getOperand(0);
7535 SDValue V2 = Op.getOperand(1);
7536 SDLoc dl(Op);
7537 EVT VT = Op.getValueType();
7538 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7539 unsigned EltSize = VT.getScalarSizeInBits();
7541 if (ST->hasMVEIntegerOps() && EltSize == 1)
7542 return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
7544 // Convert shuffles that are directly supported on NEON to target-specific
7545 // DAG nodes, instead of keeping them as shuffles and matching them again
7546 // during code selection. This is more efficient and avoids the possibility
7547 // of inconsistencies between legalization and selection.
7548 // FIXME: floating-point vectors should be canonicalized to integer vectors
7549 // of the same time so that they get CSEd properly.
7550 ArrayRef<int> ShuffleMask = SVN->getMask();
7552 if (EltSize <= 32) {
7553 if (SVN->isSplat()) {
7554 int Lane = SVN->getSplatIndex();
7555 // If this is undef splat, generate it via "just" vdup, if possible.
7556 if (Lane == -1) Lane = 0;
7558 // Test if V1 is a SCALAR_TO_VECTOR.
7559 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7560 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7562 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7563 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7564 // reaches it).
7565 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7566 !isa<ConstantSDNode>(V1.getOperand(0))) {
7567 bool IsScalarToVector = true;
7568 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7569 if (!V1.getOperand(i).isUndef()) {
7570 IsScalarToVector = false;
7571 break;
7573 if (IsScalarToVector)
7574 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7576 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7577 DAG.getConstant(Lane, dl, MVT::i32));
7580 bool ReverseVEXT = false;
7581 unsigned Imm = 0;
7582 if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7583 if (ReverseVEXT)
7584 std::swap(V1, V2);
7585 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7586 DAG.getConstant(Imm, dl, MVT::i32));
7589 if (isVREVMask(ShuffleMask, VT, 64))
7590 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7591 if (isVREVMask(ShuffleMask, VT, 32))
7592 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7593 if (isVREVMask(ShuffleMask, VT, 16))
7594 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7596 if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7597 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7598 DAG.getConstant(Imm, dl, MVT::i32));
7601 // Check for Neon shuffles that modify both input vectors in place.
7602 // If both results are used, i.e., if there are two shuffles with the same
7603 // source operands and with masks corresponding to both results of one of
7604 // these operations, DAG memoization will ensure that a single node is
7605 // used for both shuffles.
7606 unsigned WhichResult = 0;
7607 bool isV_UNDEF = false;
7608 if (ST->hasNEON()) {
7609 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7610 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7611 if (isV_UNDEF)
7612 V2 = V1;
7613 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7614 .getValue(WhichResult);
7618 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7619 // shuffles that produce a result larger than their operands with:
7620 // shuffle(concat(v1, undef), concat(v2, undef))
7621 // ->
7622 // shuffle(concat(v1, v2), undef)
7623 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7625 // This is useful in the general case, but there are special cases where
7626 // native shuffles produce larger results: the two-result ops.
7628 // Look through the concat when lowering them:
7629 // shuffle(concat(v1, v2), undef)
7630 // ->
7631 // concat(VZIP(v1, v2):0, :1)
7633 if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7634 SDValue SubV1 = V1->getOperand(0);
7635 SDValue SubV2 = V1->getOperand(1);
7636 EVT SubVT = SubV1.getValueType();
7638 // We expect these to have been canonicalized to -1.
7639 assert(llvm::all_of(ShuffleMask, [&](int i) {
7640 return i < (int)VT.getVectorNumElements();
7641 }) && "Unexpected shuffle index into UNDEF operand!");
7643 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7644 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7645 if (isV_UNDEF)
7646 SubV2 = SubV1;
7647 assert((WhichResult == 0) &&
7648 "In-place shuffle of concat can only have one result!");
7649 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7650 SubV1, SubV2);
7651 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7652 Res.getValue(1));
7657 // If the shuffle is not directly supported and it has 4 elements, use
7658 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7659 unsigned NumElts = VT.getVectorNumElements();
7660 if (NumElts == 4) {
7661 unsigned PFIndexes[4];
7662 for (unsigned i = 0; i != 4; ++i) {
7663 if (ShuffleMask[i] < 0)
7664 PFIndexes[i] = 8;
7665 else
7666 PFIndexes[i] = ShuffleMask[i];
7669 // Compute the index in the perfect shuffle table.
7670 unsigned PFTableIndex =
7671 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7672 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7673 unsigned Cost = (PFEntry >> 30);
7675 if (Cost <= 4) {
7676 if (ST->hasNEON())
7677 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7678 else if (isLegalMVEShuffleOp(PFEntry)) {
7679 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7680 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
7681 unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
7682 unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
7683 if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
7684 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7689 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7690 if (EltSize >= 32) {
7691 // Do the expansion with floating-point types, since that is what the VFP
7692 // registers are defined to use, and since i64 is not legal.
7693 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7694 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7695 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7696 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7697 SmallVector<SDValue, 8> Ops;
7698 for (unsigned i = 0; i < NumElts; ++i) {
7699 if (ShuffleMask[i] < 0)
7700 Ops.push_back(DAG.getUNDEF(EltVT));
7701 else
7702 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7703 ShuffleMask[i] < (int)NumElts ? V1 : V2,
7704 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7705 dl, MVT::i32)));
7707 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7708 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7711 if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7712 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7714 if (ST->hasNEON() && VT == MVT::v8i8)
7715 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7716 return NewOp;
7718 return SDValue();
7721 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
7722 const ARMSubtarget *ST) {
7723 EVT VecVT = Op.getOperand(0).getValueType();
7724 SDLoc dl(Op);
7726 assert(ST->hasMVEIntegerOps() &&
7727 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7729 SDValue Conv =
7730 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
7731 unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7732 unsigned LaneWidth =
7733 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
7734 unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
7735 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
7736 Op.getOperand(1), DAG.getValueType(MVT::i1));
7737 SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
7738 DAG.getConstant(~Mask, dl, MVT::i32));
7739 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
7742 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7743 SelectionDAG &DAG) const {
7744 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7745 SDValue Lane = Op.getOperand(2);
7746 if (!isa<ConstantSDNode>(Lane))
7747 return SDValue();
7749 SDValue Elt = Op.getOperand(1);
7750 EVT EltVT = Elt.getValueType();
7752 if (Subtarget->hasMVEIntegerOps() &&
7753 Op.getValueType().getScalarSizeInBits() == 1)
7754 return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
7756 if (getTypeAction(*DAG.getContext(), EltVT) ==
7757 TargetLowering::TypePromoteFloat) {
7758 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7759 // but the type system will try to do that if we don't intervene.
7760 // Reinterpret any such vector-element insertion as one with the
7761 // corresponding integer types.
7763 SDLoc dl(Op);
7765 EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
7766 assert(getTypeAction(*DAG.getContext(), IEltVT) !=
7767 TargetLowering::TypePromoteFloat);
7769 SDValue VecIn = Op.getOperand(0);
7770 EVT VecVT = VecIn.getValueType();
7771 EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
7772 VecVT.getVectorNumElements());
7774 SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
7775 SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
7776 SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
7777 IVecIn, IElt, Lane);
7778 return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
7781 return Op;
7784 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
7785 const ARMSubtarget *ST) {
7786 EVT VecVT = Op.getOperand(0).getValueType();
7787 SDLoc dl(Op);
7789 assert(ST->hasMVEIntegerOps() &&
7790 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7792 SDValue Conv =
7793 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
7794 unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7795 unsigned LaneWidth =
7796 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
7797 SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
7798 DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
7799 return Shift;
7802 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
7803 const ARMSubtarget *ST) {
7804 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7805 SDValue Lane = Op.getOperand(1);
7806 if (!isa<ConstantSDNode>(Lane))
7807 return SDValue();
7809 SDValue Vec = Op.getOperand(0);
7810 EVT VT = Vec.getValueType();
7812 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7813 return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
7815 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7816 SDLoc dl(Op);
7817 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7820 return Op;
7823 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
7824 const ARMSubtarget *ST) {
7825 SDValue V1 = Op.getOperand(0);
7826 SDValue V2 = Op.getOperand(1);
7827 SDLoc dl(Op);
7828 EVT VT = Op.getValueType();
7829 EVT Op1VT = V1.getValueType();
7830 EVT Op2VT = V2.getValueType();
7831 unsigned NumElts = VT.getVectorNumElements();
7833 assert(Op1VT == Op2VT && "Operand types don't match!");
7834 assert(VT.getScalarSizeInBits() == 1 &&
7835 "Unexpected custom CONCAT_VECTORS lowering");
7836 assert(ST->hasMVEIntegerOps() &&
7837 "CONCAT_VECTORS lowering only supported for MVE");
7839 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
7840 SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
7842 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7843 // promoted to v8i16, etc.
7845 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
7847 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7848 // to be the right size for the destination. For example, if Op1 is v4i1 then
7849 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7850 // which when promoted is v8i16. That means each i32 element from Op1 needs
7851 // truncating to i16 and inserting in the result.
7852 EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
7853 SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
7854 auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
7855 EVT NewVT = NewV.getValueType();
7856 EVT ConcatVT = ConVec.getValueType();
7857 for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
7858 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
7859 DAG.getIntPtrConstant(i, dl));
7860 ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
7861 DAG.getConstant(j, dl, MVT::i32));
7863 return ConVec;
7865 unsigned j = 0;
7866 ConVec = ExractInto(NewV1, ConVec, j);
7867 ConVec = ExractInto(NewV2, ConVec, j);
7869 // Now return the result of comparing the subvector with zero,
7870 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7871 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
7872 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7875 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
7876 const ARMSubtarget *ST) {
7877 EVT VT = Op->getValueType(0);
7878 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7879 return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
7881 // The only time a CONCAT_VECTORS operation can have legal types is when
7882 // two 64-bit vectors are concatenated to a 128-bit vector.
7883 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7884 "unexpected CONCAT_VECTORS");
7885 SDLoc dl(Op);
7886 SDValue Val = DAG.getUNDEF(MVT::v2f64);
7887 SDValue Op0 = Op.getOperand(0);
7888 SDValue Op1 = Op.getOperand(1);
7889 if (!Op0.isUndef())
7890 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7891 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7892 DAG.getIntPtrConstant(0, dl));
7893 if (!Op1.isUndef())
7894 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7895 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7896 DAG.getIntPtrConstant(1, dl));
7897 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7900 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
7901 const ARMSubtarget *ST) {
7902 SDValue V1 = Op.getOperand(0);
7903 SDValue V2 = Op.getOperand(1);
7904 SDLoc dl(Op);
7905 EVT VT = Op.getValueType();
7906 EVT Op1VT = V1.getValueType();
7907 unsigned NumElts = VT.getVectorNumElements();
7908 unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
7910 assert(VT.getScalarSizeInBits() == 1 &&
7911 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7912 assert(ST->hasMVEIntegerOps() &&
7913 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7915 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
7917 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7918 // promoted to v8i16, etc.
7920 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
7922 EVT SubVT = MVT::getVectorVT(ElType, NumElts);
7923 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
7924 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
7925 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
7926 DAG.getIntPtrConstant(i, dl));
7927 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
7928 DAG.getConstant(j, dl, MVT::i32));
7931 // Now return the result of comparing the subvector with zero,
7932 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7933 return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
7934 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7937 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7938 /// element has been zero/sign-extended, depending on the isSigned parameter,
7939 /// from an integer type half its size.
7940 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7941 bool isSigned) {
7942 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7943 EVT VT = N->getValueType(0);
7944 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7945 SDNode *BVN = N->getOperand(0).getNode();
7946 if (BVN->getValueType(0) != MVT::v4i32 ||
7947 BVN->getOpcode() != ISD::BUILD_VECTOR)
7948 return false;
7949 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7950 unsigned HiElt = 1 - LoElt;
7951 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7952 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7953 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7954 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7955 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7956 return false;
7957 if (isSigned) {
7958 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7959 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7960 return true;
7961 } else {
7962 if (Hi0->isNullValue() && Hi1->isNullValue())
7963 return true;
7965 return false;
7968 if (N->getOpcode() != ISD::BUILD_VECTOR)
7969 return false;
7971 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7972 SDNode *Elt = N->getOperand(i).getNode();
7973 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7974 unsigned EltSize = VT.getScalarSizeInBits();
7975 unsigned HalfSize = EltSize / 2;
7976 if (isSigned) {
7977 if (!isIntN(HalfSize, C->getSExtValue()))
7978 return false;
7979 } else {
7980 if (!isUIntN(HalfSize, C->getZExtValue()))
7981 return false;
7983 continue;
7985 return false;
7988 return true;
7991 /// isSignExtended - Check if a node is a vector value that is sign-extended
7992 /// or a constant BUILD_VECTOR with sign-extended elements.
7993 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7994 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7995 return true;
7996 if (isExtendedBUILD_VECTOR(N, DAG, true))
7997 return true;
7998 return false;
8001 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8002 /// or a constant BUILD_VECTOR with zero-extended elements.
8003 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8004 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
8005 return true;
8006 if (isExtendedBUILD_VECTOR(N, DAG, false))
8007 return true;
8008 return false;
8011 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8012 if (OrigVT.getSizeInBits() >= 64)
8013 return OrigVT;
8015 assert(OrigVT.isSimple() && "Expecting a simple value type");
8017 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8018 switch (OrigSimpleTy) {
8019 default: llvm_unreachable("Unexpected Vector Type");
8020 case MVT::v2i8:
8021 case MVT::v2i16:
8022 return MVT::v2i32;
8023 case MVT::v4i8:
8024 return MVT::v4i16;
8028 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8029 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8030 /// We insert the required extension here to get the vector to fill a D register.
8031 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8032 const EVT &OrigTy,
8033 const EVT &ExtTy,
8034 unsigned ExtOpcode) {
8035 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8036 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8037 // 64-bits we need to insert a new extension so that it will be 64-bits.
8038 assert(ExtTy.is128BitVector() && "Unexpected extension size");
8039 if (OrigTy.getSizeInBits() >= 64)
8040 return N;
8042 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8043 EVT NewVT = getExtensionTo64Bits(OrigTy);
8045 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8048 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8049 /// does not do any sign/zero extension. If the original vector is less
8050 /// than 64 bits, an appropriate extension will be added after the load to
8051 /// reach a total size of 64 bits. We have to add the extension separately
8052 /// because ARM does not have a sign/zero extending load for vectors.
8053 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8054 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8056 // The load already has the right type.
8057 if (ExtendedTy == LD->getMemoryVT())
8058 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8059 LD->getBasePtr(), LD->getPointerInfo(),
8060 LD->getAlignment(), LD->getMemOperand()->getFlags());
8062 // We need to create a zextload/sextload. We cannot just create a load
8063 // followed by a zext/zext node because LowerMUL is also run during normal
8064 // operation legalization where we can't create illegal types.
8065 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8066 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8067 LD->getMemoryVT(), LD->getAlignment(),
8068 LD->getMemOperand()->getFlags());
8071 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8072 /// extending load, or BUILD_VECTOR with extended elements, return the
8073 /// unextended value. The unextended vector should be 64 bits so that it can
8074 /// be used as an operand to a VMULL instruction. If the original vector size
8075 /// before extension is less than 64 bits we add a an extension to resize
8076 /// the vector to 64 bits.
8077 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8078 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
8079 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8080 N->getOperand(0)->getValueType(0),
8081 N->getValueType(0),
8082 N->getOpcode());
8084 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8085 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8086 "Expected extending load");
8088 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8089 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8090 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8091 SDValue extLoad =
8092 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8093 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8095 return newLoad;
8098 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8099 // have been legalized as a BITCAST from v4i32.
8100 if (N->getOpcode() == ISD::BITCAST) {
8101 SDNode *BVN = N->getOperand(0).getNode();
8102 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8103 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8104 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8105 return DAG.getBuildVector(
8106 MVT::v2i32, SDLoc(N),
8107 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8109 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8110 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8111 EVT VT = N->getValueType(0);
8112 unsigned EltSize = VT.getScalarSizeInBits() / 2;
8113 unsigned NumElts = VT.getVectorNumElements();
8114 MVT TruncVT = MVT::getIntegerVT(EltSize);
8115 SmallVector<SDValue, 8> Ops;
8116 SDLoc dl(N);
8117 for (unsigned i = 0; i != NumElts; ++i) {
8118 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8119 const APInt &CInt = C->getAPIntValue();
8120 // Element types smaller than 32 bits are not legal, so use i32 elements.
8121 // The values are implicitly truncated so sext vs. zext doesn't matter.
8122 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8124 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8127 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8128 unsigned Opcode = N->getOpcode();
8129 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8130 SDNode *N0 = N->getOperand(0).getNode();
8131 SDNode *N1 = N->getOperand(1).getNode();
8132 return N0->hasOneUse() && N1->hasOneUse() &&
8133 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8135 return false;
8138 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8139 unsigned Opcode = N->getOpcode();
8140 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8141 SDNode *N0 = N->getOperand(0).getNode();
8142 SDNode *N1 = N->getOperand(1).getNode();
8143 return N0->hasOneUse() && N1->hasOneUse() &&
8144 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8146 return false;
8149 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8150 // Multiplications are only custom-lowered for 128-bit vectors so that
8151 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8152 EVT VT = Op.getValueType();
8153 assert(VT.is128BitVector() && VT.isInteger() &&
8154 "unexpected type for custom-lowering ISD::MUL");
8155 SDNode *N0 = Op.getOperand(0).getNode();
8156 SDNode *N1 = Op.getOperand(1).getNode();
8157 unsigned NewOpc = 0;
8158 bool isMLA = false;
8159 bool isN0SExt = isSignExtended(N0, DAG);
8160 bool isN1SExt = isSignExtended(N1, DAG);
8161 if (isN0SExt && isN1SExt)
8162 NewOpc = ARMISD::VMULLs;
8163 else {
8164 bool isN0ZExt = isZeroExtended(N0, DAG);
8165 bool isN1ZExt = isZeroExtended(N1, DAG);
8166 if (isN0ZExt && isN1ZExt)
8167 NewOpc = ARMISD::VMULLu;
8168 else if (isN1SExt || isN1ZExt) {
8169 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8170 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8171 if (isN1SExt && isAddSubSExt(N0, DAG)) {
8172 NewOpc = ARMISD::VMULLs;
8173 isMLA = true;
8174 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
8175 NewOpc = ARMISD::VMULLu;
8176 isMLA = true;
8177 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
8178 std::swap(N0, N1);
8179 NewOpc = ARMISD::VMULLu;
8180 isMLA = true;
8184 if (!NewOpc) {
8185 if (VT == MVT::v2i64)
8186 // Fall through to expand this. It is not legal.
8187 return SDValue();
8188 else
8189 // Other vector multiplications are legal.
8190 return Op;
8194 // Legalize to a VMULL instruction.
8195 SDLoc DL(Op);
8196 SDValue Op0;
8197 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
8198 if (!isMLA) {
8199 Op0 = SkipExtensionForVMULL(N0, DAG);
8200 assert(Op0.getValueType().is64BitVector() &&
8201 Op1.getValueType().is64BitVector() &&
8202 "unexpected types for extended operands to VMULL");
8203 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
8206 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8207 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8208 // vmull q0, d4, d6
8209 // vmlal q0, d5, d6
8210 // is faster than
8211 // vaddl q0, d4, d5
8212 // vmovl q1, d6
8213 // vmul q0, q0, q1
8214 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
8215 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
8216 EVT Op1VT = Op1.getValueType();
8217 return DAG.getNode(N0->getOpcode(), DL, VT,
8218 DAG.getNode(NewOpc, DL, VT,
8219 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
8220 DAG.getNode(NewOpc, DL, VT,
8221 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
8224 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
8225 SelectionDAG &DAG) {
8226 // TODO: Should this propagate fast-math-flags?
8228 // Convert to float
8229 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8230 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8231 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
8232 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
8233 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
8234 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
8235 // Get reciprocal estimate.
8236 // float4 recip = vrecpeq_f32(yf);
8237 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8238 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8240 // Because char has a smaller range than uchar, we can actually get away
8241 // without any newton steps. This requires that we use a weird bias
8242 // of 0xb000, however (again, this has been exhaustively tested).
8243 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8244 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
8245 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
8246 Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
8247 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
8248 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
8249 // Convert back to short.
8250 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
8251 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
8252 return X;
8255 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
8256 SelectionDAG &DAG) {
8257 // TODO: Should this propagate fast-math-flags?
8259 SDValue N2;
8260 // Convert to float.
8261 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8262 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8263 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
8264 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
8265 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8266 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8268 // Use reciprocal estimate and one refinement step.
8269 // float4 recip = vrecpeq_f32(yf);
8270 // recip *= vrecpsq_f32(yf, recip);
8271 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8272 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8273 N1);
8274 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8275 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8276 N1, N2);
8277 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8278 // Because short has a smaller range than ushort, we can actually get away
8279 // with only a single newton step. This requires that we use a weird bias
8280 // of 89, however (again, this has been exhaustively tested).
8281 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8282 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8283 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8284 N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
8285 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8286 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8287 // Convert back to integer and return.
8288 // return vmovn_s32(vcvt_s32_f32(result));
8289 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8290 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8291 return N0;
8294 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
8295 const ARMSubtarget *ST) {
8296 EVT VT = Op.getValueType();
8297 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8298 "unexpected type for custom-lowering ISD::SDIV");
8300 SDLoc dl(Op);
8301 SDValue N0 = Op.getOperand(0);
8302 SDValue N1 = Op.getOperand(1);
8303 SDValue N2, N3;
8305 if (VT == MVT::v8i8) {
8306 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
8307 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
8309 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8310 DAG.getIntPtrConstant(4, dl));
8311 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8312 DAG.getIntPtrConstant(4, dl));
8313 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8314 DAG.getIntPtrConstant(0, dl));
8315 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8316 DAG.getIntPtrConstant(0, dl));
8318 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
8319 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
8321 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8322 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8324 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
8325 return N0;
8327 return LowerSDIV_v4i16(N0, N1, dl, DAG);
8330 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
8331 const ARMSubtarget *ST) {
8332 // TODO: Should this propagate fast-math-flags?
8333 EVT VT = Op.getValueType();
8334 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8335 "unexpected type for custom-lowering ISD::UDIV");
8337 SDLoc dl(Op);
8338 SDValue N0 = Op.getOperand(0);
8339 SDValue N1 = Op.getOperand(1);
8340 SDValue N2, N3;
8342 if (VT == MVT::v8i8) {
8343 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
8344 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
8346 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8347 DAG.getIntPtrConstant(4, dl));
8348 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8349 DAG.getIntPtrConstant(4, dl));
8350 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8351 DAG.getIntPtrConstant(0, dl));
8352 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8353 DAG.getIntPtrConstant(0, dl));
8355 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
8356 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
8358 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8359 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8361 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
8362 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
8363 MVT::i32),
8364 N0);
8365 return N0;
8368 // v4i16 sdiv ... Convert to float.
8369 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8370 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8371 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
8372 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
8373 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8374 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8376 // Use reciprocal estimate and two refinement steps.
8377 // float4 recip = vrecpeq_f32(yf);
8378 // recip *= vrecpsq_f32(yf, recip);
8379 // recip *= vrecpsq_f32(yf, recip);
8380 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8381 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8382 BN1);
8383 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8384 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8385 BN1, N2);
8386 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8387 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8388 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8389 BN1, N2);
8390 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8391 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8392 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8393 // and that it will never cause us to return an answer too large).
8394 // float4 result = as_float4(as_int4(xf*recip) + 2);
8395 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8396 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8397 N1 = DAG.getConstant(2, dl, MVT::v4i32);
8398 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8399 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8400 // Convert back to integer and return.
8401 // return vmovn_u32(vcvt_s32_f32(result));
8402 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8403 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8404 return N0;
8407 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
8408 SDNode *N = Op.getNode();
8409 EVT VT = N->getValueType(0);
8410 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
8412 SDValue Carry = Op.getOperand(2);
8414 SDLoc DL(Op);
8416 SDValue Result;
8417 if (Op.getOpcode() == ISD::ADDCARRY) {
8418 // This converts the boolean value carry into the carry flag.
8419 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8421 // Do the addition proper using the carry flag we wanted.
8422 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
8423 Op.getOperand(1), Carry);
8425 // Now convert the carry flag into a boolean value.
8426 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8427 } else {
8428 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8429 // have to invert the carry first.
8430 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8431 DAG.getConstant(1, DL, MVT::i32), Carry);
8432 // This converts the boolean value carry into the carry flag.
8433 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8435 // Do the subtraction proper using the carry flag we wanted.
8436 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
8437 Op.getOperand(1), Carry);
8439 // Now convert the carry flag into a boolean value.
8440 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8441 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8442 // by ISD::SUBCARRY, so compute 1 - C.
8443 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8444 DAG.getConstant(1, DL, MVT::i32), Carry);
8447 // Return both values.
8448 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
8451 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
8452 assert(Subtarget->isTargetDarwin());
8454 // For iOS, we want to call an alternative entry point: __sincos_stret,
8455 // return values are passed via sret.
8456 SDLoc dl(Op);
8457 SDValue Arg = Op.getOperand(0);
8458 EVT ArgVT = Arg.getValueType();
8459 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8460 auto PtrVT = getPointerTy(DAG.getDataLayout());
8462 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8463 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8465 // Pair of floats / doubles used to pass the result.
8466 Type *RetTy = StructType::get(ArgTy, ArgTy);
8467 auto &DL = DAG.getDataLayout();
8469 ArgListTy Args;
8470 bool ShouldUseSRet = Subtarget->isAPCS_ABI();
8471 SDValue SRet;
8472 if (ShouldUseSRet) {
8473 // Create stack object for sret.
8474 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
8475 const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
8476 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
8477 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
8479 ArgListEntry Entry;
8480 Entry.Node = SRet;
8481 Entry.Ty = RetTy->getPointerTo();
8482 Entry.IsSExt = false;
8483 Entry.IsZExt = false;
8484 Entry.IsSRet = true;
8485 Args.push_back(Entry);
8486 RetTy = Type::getVoidTy(*DAG.getContext());
8489 ArgListEntry Entry;
8490 Entry.Node = Arg;
8491 Entry.Ty = ArgTy;
8492 Entry.IsSExt = false;
8493 Entry.IsZExt = false;
8494 Args.push_back(Entry);
8496 RTLIB::Libcall LC =
8497 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
8498 const char *LibcallName = getLibcallName(LC);
8499 CallingConv::ID CC = getLibcallCallingConv(LC);
8500 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
8502 TargetLowering::CallLoweringInfo CLI(DAG);
8503 CLI.setDebugLoc(dl)
8504 .setChain(DAG.getEntryNode())
8505 .setCallee(CC, RetTy, Callee, std::move(Args))
8506 .setDiscardResult(ShouldUseSRet);
8507 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8509 if (!ShouldUseSRet)
8510 return CallResult.first;
8512 SDValue LoadSin =
8513 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
8515 // Address of cos field.
8516 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
8517 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
8518 SDValue LoadCos =
8519 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
8521 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
8522 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
8523 LoadSin.getValue(0), LoadCos.getValue(0));
8526 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
8527 bool Signed,
8528 SDValue &Chain) const {
8529 EVT VT = Op.getValueType();
8530 assert((VT == MVT::i32 || VT == MVT::i64) &&
8531 "unexpected type for custom lowering DIV");
8532 SDLoc dl(Op);
8534 const auto &DL = DAG.getDataLayout();
8535 const auto &TLI = DAG.getTargetLoweringInfo();
8537 const char *Name = nullptr;
8538 if (Signed)
8539 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
8540 else
8541 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
8543 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
8545 ARMTargetLowering::ArgListTy Args;
8547 for (auto AI : {1, 0}) {
8548 ArgListEntry Arg;
8549 Arg.Node = Op.getOperand(AI);
8550 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
8551 Args.push_back(Arg);
8554 CallLoweringInfo CLI(DAG);
8555 CLI.setDebugLoc(dl)
8556 .setChain(Chain)
8557 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
8558 ES, std::move(Args));
8560 return LowerCallTo(CLI).first;
8563 // This is a code size optimisation: return the original SDIV node to
8564 // DAGCombiner when we don't want to expand SDIV into a sequence of
8565 // instructions, and an empty node otherwise which will cause the
8566 // SDIV to be expanded in DAGCombine.
8567 SDValue
8568 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8569 SelectionDAG &DAG,
8570 SmallVectorImpl<SDNode *> &Created) const {
8571 // TODO: Support SREM
8572 if (N->getOpcode() != ISD::SDIV)
8573 return SDValue();
8575 const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
8576 const bool MinSize = ST.hasMinSize();
8577 const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
8578 : ST.hasDivideInARMMode();
8580 // Don't touch vector types; rewriting this may lead to scalarizing
8581 // the int divs.
8582 if (N->getOperand(0).getValueType().isVector())
8583 return SDValue();
8585 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8586 // hwdiv support for this to be really profitable.
8587 if (!(MinSize && HasDivide))
8588 return SDValue();
8590 // ARM mode is a bit simpler than Thumb: we can handle large power
8591 // of 2 immediates with 1 mov instruction; no further checks required,
8592 // just return the sdiv node.
8593 if (!ST.isThumb())
8594 return SDValue(N, 0);
8596 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8597 // and thus lose the code size benefits of a MOVS that requires only 2.
8598 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8599 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8600 if (Divisor.sgt(128))
8601 return SDValue();
8603 return SDValue(N, 0);
8606 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
8607 bool Signed) const {
8608 assert(Op.getValueType() == MVT::i32 &&
8609 "unexpected type for custom lowering DIV");
8610 SDLoc dl(Op);
8612 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
8613 DAG.getEntryNode(), Op.getOperand(1));
8615 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
8618 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
8619 SDLoc DL(N);
8620 SDValue Op = N->getOperand(1);
8621 if (N->getValueType(0) == MVT::i32)
8622 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
8623 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
8624 DAG.getConstant(0, DL, MVT::i32));
8625 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
8626 DAG.getConstant(1, DL, MVT::i32));
8627 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
8628 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
8631 void ARMTargetLowering::ExpandDIV_Windows(
8632 SDValue Op, SelectionDAG &DAG, bool Signed,
8633 SmallVectorImpl<SDValue> &Results) const {
8634 const auto &DL = DAG.getDataLayout();
8635 const auto &TLI = DAG.getTargetLoweringInfo();
8637 assert(Op.getValueType() == MVT::i64 &&
8638 "unexpected type for custom lowering DIV");
8639 SDLoc dl(Op);
8641 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
8643 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
8645 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
8646 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
8647 DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
8648 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
8650 Results.push_back(Lower);
8651 Results.push_back(Upper);
8654 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
8655 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
8656 // Acquire/Release load/store is not legal for targets without a dmb or
8657 // equivalent available.
8658 return SDValue();
8660 // Monotonic load/store is legal for all targets.
8661 return Op;
8664 static void ReplaceREADCYCLECOUNTER(SDNode *N,
8665 SmallVectorImpl<SDValue> &Results,
8666 SelectionDAG &DAG,
8667 const ARMSubtarget *Subtarget) {
8668 SDLoc DL(N);
8669 // Under Power Management extensions, the cycle-count is:
8670 // mrc p15, #0, <Rt>, c9, c13, #0
8671 SDValue Ops[] = { N->getOperand(0), // Chain
8672 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
8673 DAG.getConstant(15, DL, MVT::i32),
8674 DAG.getConstant(0, DL, MVT::i32),
8675 DAG.getConstant(9, DL, MVT::i32),
8676 DAG.getConstant(13, DL, MVT::i32),
8677 DAG.getConstant(0, DL, MVT::i32)
8680 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
8681 DAG.getVTList(MVT::i32, MVT::Other), Ops);
8682 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
8683 DAG.getConstant(0, DL, MVT::i32)));
8684 Results.push_back(Cycles32.getValue(1));
8687 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
8688 SDLoc dl(V.getNode());
8689 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
8690 SDValue VHi = DAG.getAnyExtOrTrunc(
8691 DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
8692 dl, MVT::i32);
8693 bool isBigEndian = DAG.getDataLayout().isBigEndian();
8694 if (isBigEndian)
8695 std::swap (VLo, VHi);
8696 SDValue RegClass =
8697 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
8698 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
8699 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
8700 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
8701 return SDValue(
8702 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
8705 static void ReplaceCMP_SWAP_64Results(SDNode *N,
8706 SmallVectorImpl<SDValue> & Results,
8707 SelectionDAG &DAG) {
8708 assert(N->getValueType(0) == MVT::i64 &&
8709 "AtomicCmpSwap on types less than 64 should be legal");
8710 SDValue Ops[] = {N->getOperand(1),
8711 createGPRPairNode(DAG, N->getOperand(2)),
8712 createGPRPairNode(DAG, N->getOperand(3)),
8713 N->getOperand(0)};
8714 SDNode *CmpSwap = DAG.getMachineNode(
8715 ARM::CMP_SWAP_64, SDLoc(N),
8716 DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
8718 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
8719 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
8721 bool isBigEndian = DAG.getDataLayout().isBigEndian();
8723 Results.push_back(
8724 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8725 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8726 Results.push_back(
8727 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8728 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8729 Results.push_back(SDValue(CmpSwap, 2));
8732 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8733 SelectionDAG &DAG) {
8734 const auto &TLI = DAG.getTargetLoweringInfo();
8736 assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8737 "Custom lowering is MSVCRT specific!");
8739 SDLoc dl(Op);
8740 SDValue Val = Op.getOperand(0);
8741 MVT Ty = Val->getSimpleValueType(0);
8742 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8743 SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8744 TLI.getPointerTy(DAG.getDataLayout()));
8746 TargetLowering::ArgListTy Args;
8747 TargetLowering::ArgListEntry Entry;
8749 Entry.Node = Val;
8750 Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8751 Entry.IsZExt = true;
8752 Args.push_back(Entry);
8754 Entry.Node = Exponent;
8755 Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8756 Entry.IsZExt = true;
8757 Args.push_back(Entry);
8759 Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8761 // In the in-chain to the call is the entry node If we are emitting a
8762 // tailcall, the chain will be mutated if the node has a non-entry input
8763 // chain.
8764 SDValue InChain = DAG.getEntryNode();
8765 SDValue TCChain = InChain;
8767 const Function &F = DAG.getMachineFunction().getFunction();
8768 bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8769 F.getReturnType() == LCRTy;
8770 if (IsTC)
8771 InChain = TCChain;
8773 TargetLowering::CallLoweringInfo CLI(DAG);
8774 CLI.setDebugLoc(dl)
8775 .setChain(InChain)
8776 .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8777 .setTailCall(IsTC);
8778 std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8780 // Return the chain (the DAG root) if it is a tail call
8781 return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8784 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8785 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8786 switch (Op.getOpcode()) {
8787 default: llvm_unreachable("Don't know how to custom lower this!");
8788 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8789 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8790 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8791 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8792 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8793 case ISD::SELECT: return LowerSELECT(Op, DAG);
8794 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
8795 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
8796 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
8797 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
8798 case ISD::VASTART: return LowerVASTART(Op, DAG);
8799 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8800 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
8801 case ISD::SINT_TO_FP:
8802 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
8803 case ISD::FP_TO_SINT:
8804 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
8805 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
8806 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8807 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8808 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8809 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8810 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8811 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8812 Subtarget);
8813 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8814 case ISD::SHL:
8815 case ISD::SRL:
8816 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
8817 case ISD::SREM: return LowerREM(Op.getNode(), DAG);
8818 case ISD::UREM: return LowerREM(Op.getNode(), DAG);
8819 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
8820 case ISD::SRL_PARTS:
8821 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
8822 case ISD::CTTZ:
8823 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8824 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8825 case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
8826 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
8827 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
8828 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8829 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
8830 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
8831 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8832 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
8833 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
8834 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8835 case ISD::MUL: return LowerMUL(Op, DAG);
8836 case ISD::SDIV:
8837 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8838 return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8839 return LowerSDIV(Op, DAG, Subtarget);
8840 case ISD::UDIV:
8841 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8842 return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8843 return LowerUDIV(Op, DAG, Subtarget);
8844 case ISD::ADDCARRY:
8845 case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
8846 case ISD::SADDO:
8847 case ISD::SSUBO:
8848 return LowerSignedALUO(Op, DAG);
8849 case ISD::UADDO:
8850 case ISD::USUBO:
8851 return LowerUnsignedALUO(Op, DAG);
8852 case ISD::ATOMIC_LOAD:
8853 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
8854 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
8855 case ISD::SDIVREM:
8856 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
8857 case ISD::DYNAMIC_STACKALLOC:
8858 if (Subtarget->isTargetWindows())
8859 return LowerDYNAMIC_STACKALLOC(Op, DAG);
8860 llvm_unreachable("Don't know how to custom lower this!");
8861 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8862 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8863 case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8864 case ARMISD::WIN__DBZCHK: return SDValue();
8868 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8869 SelectionDAG &DAG) {
8870 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8871 unsigned Opc = 0;
8872 if (IntNo == Intrinsic::arm_smlald)
8873 Opc = ARMISD::SMLALD;
8874 else if (IntNo == Intrinsic::arm_smlaldx)
8875 Opc = ARMISD::SMLALDX;
8876 else if (IntNo == Intrinsic::arm_smlsld)
8877 Opc = ARMISD::SMLSLD;
8878 else if (IntNo == Intrinsic::arm_smlsldx)
8879 Opc = ARMISD::SMLSLDX;
8880 else
8881 return;
8883 SDLoc dl(N);
8884 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8885 N->getOperand(3),
8886 DAG.getConstant(0, dl, MVT::i32));
8887 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8888 N->getOperand(3),
8889 DAG.getConstant(1, dl, MVT::i32));
8891 SDValue LongMul = DAG.getNode(Opc, dl,
8892 DAG.getVTList(MVT::i32, MVT::i32),
8893 N->getOperand(1), N->getOperand(2),
8894 Lo, Hi);
8895 Results.push_back(LongMul.getValue(0));
8896 Results.push_back(LongMul.getValue(1));
8899 /// ReplaceNodeResults - Replace the results of node with an illegal result
8900 /// type with new values built out of custom code.
8901 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8902 SmallVectorImpl<SDValue> &Results,
8903 SelectionDAG &DAG) const {
8904 SDValue Res;
8905 switch (N->getOpcode()) {
8906 default:
8907 llvm_unreachable("Don't know how to custom expand this!");
8908 case ISD::READ_REGISTER:
8909 ExpandREAD_REGISTER(N, Results, DAG);
8910 break;
8911 case ISD::BITCAST:
8912 Res = ExpandBITCAST(N, DAG, Subtarget);
8913 break;
8914 case ISD::SRL:
8915 case ISD::SRA:
8916 case ISD::SHL:
8917 Res = Expand64BitShift(N, DAG, Subtarget);
8918 break;
8919 case ISD::SREM:
8920 case ISD::UREM:
8921 Res = LowerREM(N, DAG);
8922 break;
8923 case ISD::SDIVREM:
8924 case ISD::UDIVREM:
8925 Res = LowerDivRem(SDValue(N, 0), DAG);
8926 assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8927 Results.push_back(Res.getValue(0));
8928 Results.push_back(Res.getValue(1));
8929 return;
8930 case ISD::READCYCLECOUNTER:
8931 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8932 return;
8933 case ISD::UDIV:
8934 case ISD::SDIV:
8935 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8936 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8937 Results);
8938 case ISD::ATOMIC_CMP_SWAP:
8939 ReplaceCMP_SWAP_64Results(N, Results, DAG);
8940 return;
8941 case ISD::INTRINSIC_WO_CHAIN:
8942 return ReplaceLongIntrinsic(N, Results, DAG);
8943 case ISD::ABS:
8944 lowerABS(N, Results, DAG);
8945 return ;
8948 if (Res.getNode())
8949 Results.push_back(Res);
8952 //===----------------------------------------------------------------------===//
8953 // ARM Scheduler Hooks
8954 //===----------------------------------------------------------------------===//
8956 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8957 /// registers the function context.
8958 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8959 MachineBasicBlock *MBB,
8960 MachineBasicBlock *DispatchBB,
8961 int FI) const {
8962 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8963 "ROPI/RWPI not currently supported with SjLj");
8964 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8965 DebugLoc dl = MI.getDebugLoc();
8966 MachineFunction *MF = MBB->getParent();
8967 MachineRegisterInfo *MRI = &MF->getRegInfo();
8968 MachineConstantPool *MCP = MF->getConstantPool();
8969 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8970 const Function &F = MF->getFunction();
8972 bool isThumb = Subtarget->isThumb();
8973 bool isThumb2 = Subtarget->isThumb2();
8975 unsigned PCLabelId = AFI->createPICLabelUId();
8976 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8977 ARMConstantPoolValue *CPV =
8978 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8979 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8981 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8982 : &ARM::GPRRegClass;
8984 // Grab constant pool and fixed stack memory operands.
8985 MachineMemOperand *CPMMO =
8986 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8987 MachineMemOperand::MOLoad, 4, 4);
8989 MachineMemOperand *FIMMOSt =
8990 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8991 MachineMemOperand::MOStore, 4, 4);
8993 // Load the address of the dispatch MBB into the jump buffer.
8994 if (isThumb2) {
8995 // Incoming value: jbuf
8996 // ldr.n r5, LCPI1_1
8997 // orr r5, r5, #1
8998 // add r5, pc
8999 // str r5, [$jbuf, #+4] ; &jbuf[1]
9000 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9001 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
9002 .addConstantPoolIndex(CPI)
9003 .addMemOperand(CPMMO)
9004 .add(predOps(ARMCC::AL));
9005 // Set the low bit because of thumb mode.
9006 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9007 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
9008 .addReg(NewVReg1, RegState::Kill)
9009 .addImm(0x01)
9010 .add(predOps(ARMCC::AL))
9011 .add(condCodeOp());
9012 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9013 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
9014 .addReg(NewVReg2, RegState::Kill)
9015 .addImm(PCLabelId);
9016 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
9017 .addReg(NewVReg3, RegState::Kill)
9018 .addFrameIndex(FI)
9019 .addImm(36) // &jbuf[1] :: pc
9020 .addMemOperand(FIMMOSt)
9021 .add(predOps(ARMCC::AL));
9022 } else if (isThumb) {
9023 // Incoming value: jbuf
9024 // ldr.n r1, LCPI1_4
9025 // add r1, pc
9026 // mov r2, #1
9027 // orrs r1, r2
9028 // add r2, $jbuf, #+4 ; &jbuf[1]
9029 // str r1, [r2]
9030 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9031 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
9032 .addConstantPoolIndex(CPI)
9033 .addMemOperand(CPMMO)
9034 .add(predOps(ARMCC::AL));
9035 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9036 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
9037 .addReg(NewVReg1, RegState::Kill)
9038 .addImm(PCLabelId);
9039 // Set the low bit because of thumb mode.
9040 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9041 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
9042 .addReg(ARM::CPSR, RegState::Define)
9043 .addImm(1)
9044 .add(predOps(ARMCC::AL));
9045 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9046 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
9047 .addReg(ARM::CPSR, RegState::Define)
9048 .addReg(NewVReg2, RegState::Kill)
9049 .addReg(NewVReg3, RegState::Kill)
9050 .add(predOps(ARMCC::AL));
9051 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
9052 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
9053 .addFrameIndex(FI)
9054 .addImm(36); // &jbuf[1] :: pc
9055 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
9056 .addReg(NewVReg4, RegState::Kill)
9057 .addReg(NewVReg5, RegState::Kill)
9058 .addImm(0)
9059 .addMemOperand(FIMMOSt)
9060 .add(predOps(ARMCC::AL));
9061 } else {
9062 // Incoming value: jbuf
9063 // ldr r1, LCPI1_1
9064 // add r1, pc, r1
9065 // str r1, [$jbuf, #+4] ; &jbuf[1]
9066 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9067 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
9068 .addConstantPoolIndex(CPI)
9069 .addImm(0)
9070 .addMemOperand(CPMMO)
9071 .add(predOps(ARMCC::AL));
9072 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9073 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
9074 .addReg(NewVReg1, RegState::Kill)
9075 .addImm(PCLabelId)
9076 .add(predOps(ARMCC::AL));
9077 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
9078 .addReg(NewVReg2, RegState::Kill)
9079 .addFrameIndex(FI)
9080 .addImm(36) // &jbuf[1] :: pc
9081 .addMemOperand(FIMMOSt)
9082 .add(predOps(ARMCC::AL));
9086 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
9087 MachineBasicBlock *MBB) const {
9088 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9089 DebugLoc dl = MI.getDebugLoc();
9090 MachineFunction *MF = MBB->getParent();
9091 MachineRegisterInfo *MRI = &MF->getRegInfo();
9092 MachineFrameInfo &MFI = MF->getFrameInfo();
9093 int FI = MFI.getFunctionContextIndex();
9095 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
9096 : &ARM::GPRnopcRegClass;
9098 // Get a mapping of the call site numbers to all of the landing pads they're
9099 // associated with.
9100 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
9101 unsigned MaxCSNum = 0;
9102 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
9103 ++BB) {
9104 if (!BB->isEHPad()) continue;
9106 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9107 // pad.
9108 for (MachineBasicBlock::iterator
9109 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
9110 if (!II->isEHLabel()) continue;
9112 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
9113 if (!MF->hasCallSiteLandingPad(Sym)) continue;
9115 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
9116 for (SmallVectorImpl<unsigned>::iterator
9117 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
9118 CSI != CSE; ++CSI) {
9119 CallSiteNumToLPad[*CSI].push_back(&*BB);
9120 MaxCSNum = std::max(MaxCSNum, *CSI);
9122 break;
9126 // Get an ordered list of the machine basic blocks for the jump table.
9127 std::vector<MachineBasicBlock*> LPadList;
9128 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
9129 LPadList.reserve(CallSiteNumToLPad.size());
9130 for (unsigned I = 1; I <= MaxCSNum; ++I) {
9131 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
9132 for (SmallVectorImpl<MachineBasicBlock*>::iterator
9133 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
9134 LPadList.push_back(*II);
9135 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
9139 assert(!LPadList.empty() &&
9140 "No landing pad destinations for the dispatch jump table!");
9142 // Create the jump table and associated information.
9143 MachineJumpTableInfo *JTI =
9144 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
9145 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
9147 // Create the MBBs for the dispatch code.
9149 // Shove the dispatch's address into the return slot in the function context.
9150 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
9151 DispatchBB->setIsEHPad();
9153 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9154 unsigned trap_opcode;
9155 if (Subtarget->isThumb())
9156 trap_opcode = ARM::tTRAP;
9157 else
9158 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
9160 BuildMI(TrapBB, dl, TII->get(trap_opcode));
9161 DispatchBB->addSuccessor(TrapBB);
9163 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
9164 DispatchBB->addSuccessor(DispContBB);
9166 // Insert and MBBs.
9167 MF->insert(MF->end(), DispatchBB);
9168 MF->insert(MF->end(), DispContBB);
9169 MF->insert(MF->end(), TrapBB);
9171 // Insert code into the entry block that creates and registers the function
9172 // context.
9173 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
9175 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
9176 MachinePointerInfo::getFixedStack(*MF, FI),
9177 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
9179 MachineInstrBuilder MIB;
9180 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
9182 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
9183 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
9185 // Add a register mask with no preserved registers. This results in all
9186 // registers being marked as clobbered. This can't work if the dispatch block
9187 // is in a Thumb1 function and is linked with ARM code which uses the FP
9188 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9189 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
9191 bool IsPositionIndependent = isPositionIndependent();
9192 unsigned NumLPads = LPadList.size();
9193 if (Subtarget->isThumb2()) {
9194 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9195 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
9196 .addFrameIndex(FI)
9197 .addImm(4)
9198 .addMemOperand(FIMMOLd)
9199 .add(predOps(ARMCC::AL));
9201 if (NumLPads < 256) {
9202 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
9203 .addReg(NewVReg1)
9204 .addImm(LPadList.size())
9205 .add(predOps(ARMCC::AL));
9206 } else {
9207 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9208 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
9209 .addImm(NumLPads & 0xFFFF)
9210 .add(predOps(ARMCC::AL));
9212 unsigned VReg2 = VReg1;
9213 if ((NumLPads & 0xFFFF0000) != 0) {
9214 VReg2 = MRI->createVirtualRegister(TRC);
9215 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
9216 .addReg(VReg1)
9217 .addImm(NumLPads >> 16)
9218 .add(predOps(ARMCC::AL));
9221 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
9222 .addReg(NewVReg1)
9223 .addReg(VReg2)
9224 .add(predOps(ARMCC::AL));
9227 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
9228 .addMBB(TrapBB)
9229 .addImm(ARMCC::HI)
9230 .addReg(ARM::CPSR);
9232 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9233 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
9234 .addJumpTableIndex(MJTI)
9235 .add(predOps(ARMCC::AL));
9237 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9238 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
9239 .addReg(NewVReg3, RegState::Kill)
9240 .addReg(NewVReg1)
9241 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9242 .add(predOps(ARMCC::AL))
9243 .add(condCodeOp());
9245 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
9246 .addReg(NewVReg4, RegState::Kill)
9247 .addReg(NewVReg1)
9248 .addJumpTableIndex(MJTI);
9249 } else if (Subtarget->isThumb()) {
9250 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9251 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
9252 .addFrameIndex(FI)
9253 .addImm(1)
9254 .addMemOperand(FIMMOLd)
9255 .add(predOps(ARMCC::AL));
9257 if (NumLPads < 256) {
9258 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
9259 .addReg(NewVReg1)
9260 .addImm(NumLPads)
9261 .add(predOps(ARMCC::AL));
9262 } else {
9263 MachineConstantPool *ConstantPool = MF->getConstantPool();
9264 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9265 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9267 // MachineConstantPool wants an explicit alignment.
9268 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9269 if (Align == 0)
9270 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9271 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9273 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9274 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
9275 .addReg(VReg1, RegState::Define)
9276 .addConstantPoolIndex(Idx)
9277 .add(predOps(ARMCC::AL));
9278 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
9279 .addReg(NewVReg1)
9280 .addReg(VReg1)
9281 .add(predOps(ARMCC::AL));
9284 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
9285 .addMBB(TrapBB)
9286 .addImm(ARMCC::HI)
9287 .addReg(ARM::CPSR);
9289 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9290 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
9291 .addReg(ARM::CPSR, RegState::Define)
9292 .addReg(NewVReg1)
9293 .addImm(2)
9294 .add(predOps(ARMCC::AL));
9296 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9297 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
9298 .addJumpTableIndex(MJTI)
9299 .add(predOps(ARMCC::AL));
9301 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9302 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
9303 .addReg(ARM::CPSR, RegState::Define)
9304 .addReg(NewVReg2, RegState::Kill)
9305 .addReg(NewVReg3)
9306 .add(predOps(ARMCC::AL));
9308 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9309 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9311 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
9312 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
9313 .addReg(NewVReg4, RegState::Kill)
9314 .addImm(0)
9315 .addMemOperand(JTMMOLd)
9316 .add(predOps(ARMCC::AL));
9318 unsigned NewVReg6 = NewVReg5;
9319 if (IsPositionIndependent) {
9320 NewVReg6 = MRI->createVirtualRegister(TRC);
9321 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
9322 .addReg(ARM::CPSR, RegState::Define)
9323 .addReg(NewVReg5, RegState::Kill)
9324 .addReg(NewVReg3)
9325 .add(predOps(ARMCC::AL));
9328 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
9329 .addReg(NewVReg6, RegState::Kill)
9330 .addJumpTableIndex(MJTI);
9331 } else {
9332 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9333 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
9334 .addFrameIndex(FI)
9335 .addImm(4)
9336 .addMemOperand(FIMMOLd)
9337 .add(predOps(ARMCC::AL));
9339 if (NumLPads < 256) {
9340 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
9341 .addReg(NewVReg1)
9342 .addImm(NumLPads)
9343 .add(predOps(ARMCC::AL));
9344 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
9345 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9346 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
9347 .addImm(NumLPads & 0xFFFF)
9348 .add(predOps(ARMCC::AL));
9350 unsigned VReg2 = VReg1;
9351 if ((NumLPads & 0xFFFF0000) != 0) {
9352 VReg2 = MRI->createVirtualRegister(TRC);
9353 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
9354 .addReg(VReg1)
9355 .addImm(NumLPads >> 16)
9356 .add(predOps(ARMCC::AL));
9359 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9360 .addReg(NewVReg1)
9361 .addReg(VReg2)
9362 .add(predOps(ARMCC::AL));
9363 } else {
9364 MachineConstantPool *ConstantPool = MF->getConstantPool();
9365 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9366 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9368 // MachineConstantPool wants an explicit alignment.
9369 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9370 if (Align == 0)
9371 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9372 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9374 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9375 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
9376 .addReg(VReg1, RegState::Define)
9377 .addConstantPoolIndex(Idx)
9378 .addImm(0)
9379 .add(predOps(ARMCC::AL));
9380 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9381 .addReg(NewVReg1)
9382 .addReg(VReg1, RegState::Kill)
9383 .add(predOps(ARMCC::AL));
9386 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
9387 .addMBB(TrapBB)
9388 .addImm(ARMCC::HI)
9389 .addReg(ARM::CPSR);
9391 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9392 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
9393 .addReg(NewVReg1)
9394 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9395 .add(predOps(ARMCC::AL))
9396 .add(condCodeOp());
9397 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9398 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
9399 .addJumpTableIndex(MJTI)
9400 .add(predOps(ARMCC::AL));
9402 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9403 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9404 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
9405 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
9406 .addReg(NewVReg3, RegState::Kill)
9407 .addReg(NewVReg4)
9408 .addImm(0)
9409 .addMemOperand(JTMMOLd)
9410 .add(predOps(ARMCC::AL));
9412 if (IsPositionIndependent) {
9413 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
9414 .addReg(NewVReg5, RegState::Kill)
9415 .addReg(NewVReg4)
9416 .addJumpTableIndex(MJTI);
9417 } else {
9418 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
9419 .addReg(NewVReg5, RegState::Kill)
9420 .addJumpTableIndex(MJTI);
9424 // Add the jump table entries as successors to the MBB.
9425 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
9426 for (std::vector<MachineBasicBlock*>::iterator
9427 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
9428 MachineBasicBlock *CurMBB = *I;
9429 if (SeenMBBs.insert(CurMBB).second)
9430 DispContBB->addSuccessor(CurMBB);
9433 // N.B. the order the invoke BBs are processed in doesn't matter here.
9434 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
9435 SmallVector<MachineBasicBlock*, 64> MBBLPads;
9436 for (MachineBasicBlock *BB : InvokeBBs) {
9438 // Remove the landing pad successor from the invoke block and replace it
9439 // with the new dispatch block.
9440 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
9441 BB->succ_end());
9442 while (!Successors.empty()) {
9443 MachineBasicBlock *SMBB = Successors.pop_back_val();
9444 if (SMBB->isEHPad()) {
9445 BB->removeSuccessor(SMBB);
9446 MBBLPads.push_back(SMBB);
9450 BB->addSuccessor(DispatchBB, BranchProbability::getZero());
9451 BB->normalizeSuccProbs();
9453 // Find the invoke call and mark all of the callee-saved registers as
9454 // 'implicit defined' so that they're spilled. This prevents code from
9455 // moving instructions to before the EH block, where they will never be
9456 // executed.
9457 for (MachineBasicBlock::reverse_iterator
9458 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
9459 if (!II->isCall()) continue;
9461 DenseMap<unsigned, bool> DefRegs;
9462 for (MachineInstr::mop_iterator
9463 OI = II->operands_begin(), OE = II->operands_end();
9464 OI != OE; ++OI) {
9465 if (!OI->isReg()) continue;
9466 DefRegs[OI->getReg()] = true;
9469 MachineInstrBuilder MIB(*MF, &*II);
9471 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
9472 unsigned Reg = SavedRegs[i];
9473 if (Subtarget->isThumb2() &&
9474 !ARM::tGPRRegClass.contains(Reg) &&
9475 !ARM::hGPRRegClass.contains(Reg))
9476 continue;
9477 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
9478 continue;
9479 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
9480 continue;
9481 if (!DefRegs[Reg])
9482 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
9485 break;
9489 // Mark all former landing pads as non-landing pads. The dispatch is the only
9490 // landing pad now.
9491 for (SmallVectorImpl<MachineBasicBlock*>::iterator
9492 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
9493 (*I)->setIsEHPad(false);
9495 // The instruction is gone now.
9496 MI.eraseFromParent();
9499 static
9500 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
9501 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
9502 E = MBB->succ_end(); I != E; ++I)
9503 if (*I != Succ)
9504 return *I;
9505 llvm_unreachable("Expecting a BB with two successors!");
9508 /// Return the load opcode for a given load size. If load size >= 8,
9509 /// neon opcode will be returned.
9510 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
9511 if (LdSize >= 8)
9512 return LdSize == 16 ? ARM::VLD1q32wb_fixed
9513 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
9514 if (IsThumb1)
9515 return LdSize == 4 ? ARM::tLDRi
9516 : LdSize == 2 ? ARM::tLDRHi
9517 : LdSize == 1 ? ARM::tLDRBi : 0;
9518 if (IsThumb2)
9519 return LdSize == 4 ? ARM::t2LDR_POST
9520 : LdSize == 2 ? ARM::t2LDRH_POST
9521 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
9522 return LdSize == 4 ? ARM::LDR_POST_IMM
9523 : LdSize == 2 ? ARM::LDRH_POST
9524 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
9527 /// Return the store opcode for a given store size. If store size >= 8,
9528 /// neon opcode will be returned.
9529 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
9530 if (StSize >= 8)
9531 return StSize == 16 ? ARM::VST1q32wb_fixed
9532 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
9533 if (IsThumb1)
9534 return StSize == 4 ? ARM::tSTRi
9535 : StSize == 2 ? ARM::tSTRHi
9536 : StSize == 1 ? ARM::tSTRBi : 0;
9537 if (IsThumb2)
9538 return StSize == 4 ? ARM::t2STR_POST
9539 : StSize == 2 ? ARM::t2STRH_POST
9540 : StSize == 1 ? ARM::t2STRB_POST : 0;
9541 return StSize == 4 ? ARM::STR_POST_IMM
9542 : StSize == 2 ? ARM::STRH_POST
9543 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
9546 /// Emit a post-increment load operation with given size. The instructions
9547 /// will be added to BB at Pos.
9548 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
9549 const TargetInstrInfo *TII, const DebugLoc &dl,
9550 unsigned LdSize, unsigned Data, unsigned AddrIn,
9551 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
9552 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
9553 assert(LdOpc != 0 && "Should have a load opcode");
9554 if (LdSize >= 8) {
9555 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9556 .addReg(AddrOut, RegState::Define)
9557 .addReg(AddrIn)
9558 .addImm(0)
9559 .add(predOps(ARMCC::AL));
9560 } else if (IsThumb1) {
9561 // load + update AddrIn
9562 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9563 .addReg(AddrIn)
9564 .addImm(0)
9565 .add(predOps(ARMCC::AL));
9566 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
9567 .add(t1CondCodeOp())
9568 .addReg(AddrIn)
9569 .addImm(LdSize)
9570 .add(predOps(ARMCC::AL));
9571 } else if (IsThumb2) {
9572 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9573 .addReg(AddrOut, RegState::Define)
9574 .addReg(AddrIn)
9575 .addImm(LdSize)
9576 .add(predOps(ARMCC::AL));
9577 } else { // arm
9578 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9579 .addReg(AddrOut, RegState::Define)
9580 .addReg(AddrIn)
9581 .addReg(0)
9582 .addImm(LdSize)
9583 .add(predOps(ARMCC::AL));
9587 /// Emit a post-increment store operation with given size. The instructions
9588 /// will be added to BB at Pos.
9589 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
9590 const TargetInstrInfo *TII, const DebugLoc &dl,
9591 unsigned StSize, unsigned Data, unsigned AddrIn,
9592 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
9593 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
9594 assert(StOpc != 0 && "Should have a store opcode");
9595 if (StSize >= 8) {
9596 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9597 .addReg(AddrIn)
9598 .addImm(0)
9599 .addReg(Data)
9600 .add(predOps(ARMCC::AL));
9601 } else if (IsThumb1) {
9602 // store + update AddrIn
9603 BuildMI(*BB, Pos, dl, TII->get(StOpc))
9604 .addReg(Data)
9605 .addReg(AddrIn)
9606 .addImm(0)
9607 .add(predOps(ARMCC::AL));
9608 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
9609 .add(t1CondCodeOp())
9610 .addReg(AddrIn)
9611 .addImm(StSize)
9612 .add(predOps(ARMCC::AL));
9613 } else if (IsThumb2) {
9614 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9615 .addReg(Data)
9616 .addReg(AddrIn)
9617 .addImm(StSize)
9618 .add(predOps(ARMCC::AL));
9619 } else { // arm
9620 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9621 .addReg(Data)
9622 .addReg(AddrIn)
9623 .addReg(0)
9624 .addImm(StSize)
9625 .add(predOps(ARMCC::AL));
9629 MachineBasicBlock *
9630 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
9631 MachineBasicBlock *BB) const {
9632 // This pseudo instruction has 3 operands: dst, src, size
9633 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9634 // Otherwise, we will generate unrolled scalar copies.
9635 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9636 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9637 MachineFunction::iterator It = ++BB->getIterator();
9639 unsigned dest = MI.getOperand(0).getReg();
9640 unsigned src = MI.getOperand(1).getReg();
9641 unsigned SizeVal = MI.getOperand(2).getImm();
9642 unsigned Align = MI.getOperand(3).getImm();
9643 DebugLoc dl = MI.getDebugLoc();
9645 MachineFunction *MF = BB->getParent();
9646 MachineRegisterInfo &MRI = MF->getRegInfo();
9647 unsigned UnitSize = 0;
9648 const TargetRegisterClass *TRC = nullptr;
9649 const TargetRegisterClass *VecTRC = nullptr;
9651 bool IsThumb1 = Subtarget->isThumb1Only();
9652 bool IsThumb2 = Subtarget->isThumb2();
9653 bool IsThumb = Subtarget->isThumb();
9655 if (Align & 1) {
9656 UnitSize = 1;
9657 } else if (Align & 2) {
9658 UnitSize = 2;
9659 } else {
9660 // Check whether we can use NEON instructions.
9661 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
9662 Subtarget->hasNEON()) {
9663 if ((Align % 16 == 0) && SizeVal >= 16)
9664 UnitSize = 16;
9665 else if ((Align % 8 == 0) && SizeVal >= 8)
9666 UnitSize = 8;
9668 // Can't use NEON instructions.
9669 if (UnitSize == 0)
9670 UnitSize = 4;
9673 // Select the correct opcode and register class for unit size load/store
9674 bool IsNeon = UnitSize >= 8;
9675 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
9676 if (IsNeon)
9677 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
9678 : UnitSize == 8 ? &ARM::DPRRegClass
9679 : nullptr;
9681 unsigned BytesLeft = SizeVal % UnitSize;
9682 unsigned LoopSize = SizeVal - BytesLeft;
9684 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
9685 // Use LDR and STR to copy.
9686 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9687 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9688 unsigned srcIn = src;
9689 unsigned destIn = dest;
9690 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
9691 unsigned srcOut = MRI.createVirtualRegister(TRC);
9692 unsigned destOut = MRI.createVirtualRegister(TRC);
9693 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9694 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
9695 IsThumb1, IsThumb2);
9696 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
9697 IsThumb1, IsThumb2);
9698 srcIn = srcOut;
9699 destIn = destOut;
9702 // Handle the leftover bytes with LDRB and STRB.
9703 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9704 // [destOut] = STRB_POST(scratch, destIn, 1)
9705 for (unsigned i = 0; i < BytesLeft; i++) {
9706 unsigned srcOut = MRI.createVirtualRegister(TRC);
9707 unsigned destOut = MRI.createVirtualRegister(TRC);
9708 unsigned scratch = MRI.createVirtualRegister(TRC);
9709 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
9710 IsThumb1, IsThumb2);
9711 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
9712 IsThumb1, IsThumb2);
9713 srcIn = srcOut;
9714 destIn = destOut;
9716 MI.eraseFromParent(); // The instruction is gone now.
9717 return BB;
9720 // Expand the pseudo op to a loop.
9721 // thisMBB:
9722 // ...
9723 // movw varEnd, # --> with thumb2
9724 // movt varEnd, #
9725 // ldrcp varEnd, idx --> without thumb2
9726 // fallthrough --> loopMBB
9727 // loopMBB:
9728 // PHI varPhi, varEnd, varLoop
9729 // PHI srcPhi, src, srcLoop
9730 // PHI destPhi, dst, destLoop
9731 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9732 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9733 // subs varLoop, varPhi, #UnitSize
9734 // bne loopMBB
9735 // fallthrough --> exitMBB
9736 // exitMBB:
9737 // epilogue to handle left-over bytes
9738 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9739 // [destOut] = STRB_POST(scratch, destLoop, 1)
9740 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9741 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9742 MF->insert(It, loopMBB);
9743 MF->insert(It, exitMBB);
9745 // Transfer the remainder of BB and its successor edges to exitMBB.
9746 exitMBB->splice(exitMBB->begin(), BB,
9747 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9748 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9750 // Load an immediate to varEnd.
9751 unsigned varEnd = MRI.createVirtualRegister(TRC);
9752 if (Subtarget->useMovt()) {
9753 unsigned Vtmp = varEnd;
9754 if ((LoopSize & 0xFFFF0000) != 0)
9755 Vtmp = MRI.createVirtualRegister(TRC);
9756 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9757 .addImm(LoopSize & 0xFFFF)
9758 .add(predOps(ARMCC::AL));
9760 if ((LoopSize & 0xFFFF0000) != 0)
9761 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9762 .addReg(Vtmp)
9763 .addImm(LoopSize >> 16)
9764 .add(predOps(ARMCC::AL));
9765 } else {
9766 MachineConstantPool *ConstantPool = MF->getConstantPool();
9767 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9768 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9770 // MachineConstantPool wants an explicit alignment.
9771 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9772 if (Align == 0)
9773 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9774 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9775 MachineMemOperand *CPMMO =
9776 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9777 MachineMemOperand::MOLoad, 4, 4);
9779 if (IsThumb)
9780 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9781 .addReg(varEnd, RegState::Define)
9782 .addConstantPoolIndex(Idx)
9783 .add(predOps(ARMCC::AL))
9784 .addMemOperand(CPMMO);
9785 else
9786 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9787 .addReg(varEnd, RegState::Define)
9788 .addConstantPoolIndex(Idx)
9789 .addImm(0)
9790 .add(predOps(ARMCC::AL))
9791 .addMemOperand(CPMMO);
9793 BB->addSuccessor(loopMBB);
9795 // Generate the loop body:
9796 // varPhi = PHI(varLoop, varEnd)
9797 // srcPhi = PHI(srcLoop, src)
9798 // destPhi = PHI(destLoop, dst)
9799 MachineBasicBlock *entryBB = BB;
9800 BB = loopMBB;
9801 unsigned varLoop = MRI.createVirtualRegister(TRC);
9802 unsigned varPhi = MRI.createVirtualRegister(TRC);
9803 unsigned srcLoop = MRI.createVirtualRegister(TRC);
9804 unsigned srcPhi = MRI.createVirtualRegister(TRC);
9805 unsigned destLoop = MRI.createVirtualRegister(TRC);
9806 unsigned destPhi = MRI.createVirtualRegister(TRC);
9808 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9809 .addReg(varLoop).addMBB(loopMBB)
9810 .addReg(varEnd).addMBB(entryBB);
9811 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9812 .addReg(srcLoop).addMBB(loopMBB)
9813 .addReg(src).addMBB(entryBB);
9814 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9815 .addReg(destLoop).addMBB(loopMBB)
9816 .addReg(dest).addMBB(entryBB);
9818 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9819 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9820 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9821 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9822 IsThumb1, IsThumb2);
9823 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9824 IsThumb1, IsThumb2);
9826 // Decrement loop variable by UnitSize.
9827 if (IsThumb1) {
9828 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9829 .add(t1CondCodeOp())
9830 .addReg(varPhi)
9831 .addImm(UnitSize)
9832 .add(predOps(ARMCC::AL));
9833 } else {
9834 MachineInstrBuilder MIB =
9835 BuildMI(*BB, BB->end(), dl,
9836 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9837 MIB.addReg(varPhi)
9838 .addImm(UnitSize)
9839 .add(predOps(ARMCC::AL))
9840 .add(condCodeOp());
9841 MIB->getOperand(5).setReg(ARM::CPSR);
9842 MIB->getOperand(5).setIsDef(true);
9844 BuildMI(*BB, BB->end(), dl,
9845 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9846 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9848 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9849 BB->addSuccessor(loopMBB);
9850 BB->addSuccessor(exitMBB);
9852 // Add epilogue to handle BytesLeft.
9853 BB = exitMBB;
9854 auto StartOfExit = exitMBB->begin();
9856 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9857 // [destOut] = STRB_POST(scratch, destLoop, 1)
9858 unsigned srcIn = srcLoop;
9859 unsigned destIn = destLoop;
9860 for (unsigned i = 0; i < BytesLeft; i++) {
9861 unsigned srcOut = MRI.createVirtualRegister(TRC);
9862 unsigned destOut = MRI.createVirtualRegister(TRC);
9863 unsigned scratch = MRI.createVirtualRegister(TRC);
9864 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9865 IsThumb1, IsThumb2);
9866 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9867 IsThumb1, IsThumb2);
9868 srcIn = srcOut;
9869 destIn = destOut;
9872 MI.eraseFromParent(); // The instruction is gone now.
9873 return BB;
9876 MachineBasicBlock *
9877 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9878 MachineBasicBlock *MBB) const {
9879 const TargetMachine &TM = getTargetMachine();
9880 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9881 DebugLoc DL = MI.getDebugLoc();
9883 assert(Subtarget->isTargetWindows() &&
9884 "__chkstk is only supported on Windows");
9885 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9887 // __chkstk takes the number of words to allocate on the stack in R4, and
9888 // returns the stack adjustment in number of bytes in R4. This will not
9889 // clober any other registers (other than the obvious lr).
9891 // Although, technically, IP should be considered a register which may be
9892 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9893 // thumb-2 environment, so there is no interworking required. As a result, we
9894 // do not expect a veneer to be emitted by the linker, clobbering IP.
9896 // Each module receives its own copy of __chkstk, so no import thunk is
9897 // required, again, ensuring that IP is not clobbered.
9899 // Finally, although some linkers may theoretically provide a trampoline for
9900 // out of range calls (which is quite common due to a 32M range limitation of
9901 // branches for Thumb), we can generate the long-call version via
9902 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9903 // IP.
9905 switch (TM.getCodeModel()) {
9906 case CodeModel::Tiny:
9907 llvm_unreachable("Tiny code model not available on ARM.");
9908 case CodeModel::Small:
9909 case CodeModel::Medium:
9910 case CodeModel::Kernel:
9911 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9912 .add(predOps(ARMCC::AL))
9913 .addExternalSymbol("__chkstk")
9914 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9915 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9916 .addReg(ARM::R12,
9917 RegState::Implicit | RegState::Define | RegState::Dead)
9918 .addReg(ARM::CPSR,
9919 RegState::Implicit | RegState::Define | RegState::Dead);
9920 break;
9921 case CodeModel::Large: {
9922 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9923 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9925 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9926 .addExternalSymbol("__chkstk");
9927 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9928 .add(predOps(ARMCC::AL))
9929 .addReg(Reg, RegState::Kill)
9930 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9931 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9932 .addReg(ARM::R12,
9933 RegState::Implicit | RegState::Define | RegState::Dead)
9934 .addReg(ARM::CPSR,
9935 RegState::Implicit | RegState::Define | RegState::Dead);
9936 break;
9940 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9941 .addReg(ARM::SP, RegState::Kill)
9942 .addReg(ARM::R4, RegState::Kill)
9943 .setMIFlags(MachineInstr::FrameSetup)
9944 .add(predOps(ARMCC::AL))
9945 .add(condCodeOp());
9947 MI.eraseFromParent();
9948 return MBB;
9951 MachineBasicBlock *
9952 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9953 MachineBasicBlock *MBB) const {
9954 DebugLoc DL = MI.getDebugLoc();
9955 MachineFunction *MF = MBB->getParent();
9956 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9958 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9959 MF->insert(++MBB->getIterator(), ContBB);
9960 ContBB->splice(ContBB->begin(), MBB,
9961 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9962 ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9963 MBB->addSuccessor(ContBB);
9965 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9966 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9967 MF->push_back(TrapBB);
9968 MBB->addSuccessor(TrapBB);
9970 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9971 .addReg(MI.getOperand(0).getReg())
9972 .addImm(0)
9973 .add(predOps(ARMCC::AL));
9974 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9975 .addMBB(TrapBB)
9976 .addImm(ARMCC::EQ)
9977 .addReg(ARM::CPSR);
9979 MI.eraseFromParent();
9980 return ContBB;
9983 // The CPSR operand of SelectItr might be missing a kill marker
9984 // because there were multiple uses of CPSR, and ISel didn't know
9985 // which to mark. Figure out whether SelectItr should have had a
9986 // kill marker, and set it if it should. Returns the correct kill
9987 // marker value.
9988 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
9989 MachineBasicBlock* BB,
9990 const TargetRegisterInfo* TRI) {
9991 // Scan forward through BB for a use/def of CPSR.
9992 MachineBasicBlock::iterator miI(std::next(SelectItr));
9993 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
9994 const MachineInstr& mi = *miI;
9995 if (mi.readsRegister(ARM::CPSR))
9996 return false;
9997 if (mi.definesRegister(ARM::CPSR))
9998 break; // Should have kill-flag - update below.
10001 // If we hit the end of the block, check whether CPSR is live into a
10002 // successor.
10003 if (miI == BB->end()) {
10004 for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
10005 sEnd = BB->succ_end();
10006 sItr != sEnd; ++sItr) {
10007 MachineBasicBlock* succ = *sItr;
10008 if (succ->isLiveIn(ARM::CPSR))
10009 return false;
10013 // We found a def, or hit the end of the basic block and CPSR wasn't live
10014 // out. SelectMI should have a kill flag on CPSR.
10015 SelectItr->addRegisterKilled(ARM::CPSR, TRI);
10016 return true;
10019 MachineBasicBlock *
10020 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10021 MachineBasicBlock *BB) const {
10022 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10023 DebugLoc dl = MI.getDebugLoc();
10024 bool isThumb2 = Subtarget->isThumb2();
10025 switch (MI.getOpcode()) {
10026 default: {
10027 MI.print(errs());
10028 llvm_unreachable("Unexpected instr type to insert");
10031 // Thumb1 post-indexed loads are really just single-register LDMs.
10032 case ARM::tLDR_postidx: {
10033 MachineOperand Def(MI.getOperand(1));
10034 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
10035 .add(Def) // Rn_wb
10036 .add(MI.getOperand(2)) // Rn
10037 .add(MI.getOperand(3)) // PredImm
10038 .add(MI.getOperand(4)) // PredReg
10039 .add(MI.getOperand(0)) // Rt
10040 .cloneMemRefs(MI);
10041 MI.eraseFromParent();
10042 return BB;
10045 // The Thumb2 pre-indexed stores have the same MI operands, they just
10046 // define them differently in the .td files from the isel patterns, so
10047 // they need pseudos.
10048 case ARM::t2STR_preidx:
10049 MI.setDesc(TII->get(ARM::t2STR_PRE));
10050 return BB;
10051 case ARM::t2STRB_preidx:
10052 MI.setDesc(TII->get(ARM::t2STRB_PRE));
10053 return BB;
10054 case ARM::t2STRH_preidx:
10055 MI.setDesc(TII->get(ARM::t2STRH_PRE));
10056 return BB;
10058 case ARM::STRi_preidx:
10059 case ARM::STRBi_preidx: {
10060 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
10061 : ARM::STRB_PRE_IMM;
10062 // Decode the offset.
10063 unsigned Offset = MI.getOperand(4).getImm();
10064 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
10065 Offset = ARM_AM::getAM2Offset(Offset);
10066 if (isSub)
10067 Offset = -Offset;
10069 MachineMemOperand *MMO = *MI.memoperands_begin();
10070 BuildMI(*BB, MI, dl, TII->get(NewOpc))
10071 .add(MI.getOperand(0)) // Rn_wb
10072 .add(MI.getOperand(1)) // Rt
10073 .add(MI.getOperand(2)) // Rn
10074 .addImm(Offset) // offset (skip GPR==zero_reg)
10075 .add(MI.getOperand(5)) // pred
10076 .add(MI.getOperand(6))
10077 .addMemOperand(MMO);
10078 MI.eraseFromParent();
10079 return BB;
10081 case ARM::STRr_preidx:
10082 case ARM::STRBr_preidx:
10083 case ARM::STRH_preidx: {
10084 unsigned NewOpc;
10085 switch (MI.getOpcode()) {
10086 default: llvm_unreachable("unexpected opcode!");
10087 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
10088 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
10089 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
10091 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
10092 for (unsigned i = 0; i < MI.getNumOperands(); ++i)
10093 MIB.add(MI.getOperand(i));
10094 MI.eraseFromParent();
10095 return BB;
10098 case ARM::tMOVCCr_pseudo: {
10099 // To "insert" a SELECT_CC instruction, we actually have to insert the
10100 // diamond control-flow pattern. The incoming instruction knows the
10101 // destination vreg to set, the condition code register to branch on, the
10102 // true/false values to select between, and a branch opcode to use.
10103 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10104 MachineFunction::iterator It = ++BB->getIterator();
10106 // thisMBB:
10107 // ...
10108 // TrueVal = ...
10109 // cmpTY ccX, r1, r2
10110 // bCC copy1MBB
10111 // fallthrough --> copy0MBB
10112 MachineBasicBlock *thisMBB = BB;
10113 MachineFunction *F = BB->getParent();
10114 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10115 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10116 F->insert(It, copy0MBB);
10117 F->insert(It, sinkMBB);
10119 // Check whether CPSR is live past the tMOVCCr_pseudo.
10120 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
10121 if (!MI.killsRegister(ARM::CPSR) &&
10122 !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
10123 copy0MBB->addLiveIn(ARM::CPSR);
10124 sinkMBB->addLiveIn(ARM::CPSR);
10127 // Transfer the remainder of BB and its successor edges to sinkMBB.
10128 sinkMBB->splice(sinkMBB->begin(), BB,
10129 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10130 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10132 BB->addSuccessor(copy0MBB);
10133 BB->addSuccessor(sinkMBB);
10135 BuildMI(BB, dl, TII->get(ARM::tBcc))
10136 .addMBB(sinkMBB)
10137 .addImm(MI.getOperand(3).getImm())
10138 .addReg(MI.getOperand(4).getReg());
10140 // copy0MBB:
10141 // %FalseValue = ...
10142 // # fallthrough to sinkMBB
10143 BB = copy0MBB;
10145 // Update machine-CFG edges
10146 BB->addSuccessor(sinkMBB);
10148 // sinkMBB:
10149 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10150 // ...
10151 BB = sinkMBB;
10152 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
10153 .addReg(MI.getOperand(1).getReg())
10154 .addMBB(copy0MBB)
10155 .addReg(MI.getOperand(2).getReg())
10156 .addMBB(thisMBB);
10158 MI.eraseFromParent(); // The pseudo instruction is gone now.
10159 return BB;
10162 case ARM::BCCi64:
10163 case ARM::BCCZi64: {
10164 // If there is an unconditional branch to the other successor, remove it.
10165 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
10167 // Compare both parts that make up the double comparison separately for
10168 // equality.
10169 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
10171 unsigned LHS1 = MI.getOperand(1).getReg();
10172 unsigned LHS2 = MI.getOperand(2).getReg();
10173 if (RHSisZero) {
10174 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10175 .addReg(LHS1)
10176 .addImm(0)
10177 .add(predOps(ARMCC::AL));
10178 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10179 .addReg(LHS2).addImm(0)
10180 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10181 } else {
10182 unsigned RHS1 = MI.getOperand(3).getReg();
10183 unsigned RHS2 = MI.getOperand(4).getReg();
10184 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10185 .addReg(LHS1)
10186 .addReg(RHS1)
10187 .add(predOps(ARMCC::AL));
10188 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10189 .addReg(LHS2).addReg(RHS2)
10190 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10193 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
10194 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
10195 if (MI.getOperand(0).getImm() == ARMCC::NE)
10196 std::swap(destMBB, exitMBB);
10198 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
10199 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
10200 if (isThumb2)
10201 BuildMI(BB, dl, TII->get(ARM::t2B))
10202 .addMBB(exitMBB)
10203 .add(predOps(ARMCC::AL));
10204 else
10205 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
10207 MI.eraseFromParent(); // The pseudo instruction is gone now.
10208 return BB;
10211 case ARM::Int_eh_sjlj_setjmp:
10212 case ARM::Int_eh_sjlj_setjmp_nofp:
10213 case ARM::tInt_eh_sjlj_setjmp:
10214 case ARM::t2Int_eh_sjlj_setjmp:
10215 case ARM::t2Int_eh_sjlj_setjmp_nofp:
10216 return BB;
10218 case ARM::Int_eh_sjlj_setup_dispatch:
10219 EmitSjLjDispatchBlock(MI, BB);
10220 return BB;
10222 case ARM::ABS:
10223 case ARM::t2ABS: {
10224 // To insert an ABS instruction, we have to insert the
10225 // diamond control-flow pattern. The incoming instruction knows the
10226 // source vreg to test against 0, the destination vreg to set,
10227 // the condition code register to branch on, the
10228 // true/false values to select between, and a branch opcode to use.
10229 // It transforms
10230 // V1 = ABS V0
10231 // into
10232 // V2 = MOVS V0
10233 // BCC (branch to SinkBB if V0 >= 0)
10234 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10235 // SinkBB: V1 = PHI(V2, V3)
10236 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10237 MachineFunction::iterator BBI = ++BB->getIterator();
10238 MachineFunction *Fn = BB->getParent();
10239 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10240 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10241 Fn->insert(BBI, RSBBB);
10242 Fn->insert(BBI, SinkBB);
10244 unsigned int ABSSrcReg = MI.getOperand(1).getReg();
10245 unsigned int ABSDstReg = MI.getOperand(0).getReg();
10246 bool ABSSrcKIll = MI.getOperand(1).isKill();
10247 bool isThumb2 = Subtarget->isThumb2();
10248 MachineRegisterInfo &MRI = Fn->getRegInfo();
10249 // In Thumb mode S must not be specified if source register is the SP or
10250 // PC and if destination register is the SP, so restrict register class
10251 unsigned NewRsbDstReg =
10252 MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
10254 // Transfer the remainder of BB and its successor edges to sinkMBB.
10255 SinkBB->splice(SinkBB->begin(), BB,
10256 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10257 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
10259 BB->addSuccessor(RSBBB);
10260 BB->addSuccessor(SinkBB);
10262 // fall through to SinkMBB
10263 RSBBB->addSuccessor(SinkBB);
10265 // insert a cmp at the end of BB
10266 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10267 .addReg(ABSSrcReg)
10268 .addImm(0)
10269 .add(predOps(ARMCC::AL));
10271 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10272 BuildMI(BB, dl,
10273 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
10274 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
10276 // insert rsbri in RSBBB
10277 // Note: BCC and rsbri will be converted into predicated rsbmi
10278 // by if-conversion pass
10279 BuildMI(*RSBBB, RSBBB->begin(), dl,
10280 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
10281 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
10282 .addImm(0)
10283 .add(predOps(ARMCC::AL))
10284 .add(condCodeOp());
10286 // insert PHI in SinkBB,
10287 // reuse ABSDstReg to not change uses of ABS instruction
10288 BuildMI(*SinkBB, SinkBB->begin(), dl,
10289 TII->get(ARM::PHI), ABSDstReg)
10290 .addReg(NewRsbDstReg).addMBB(RSBBB)
10291 .addReg(ABSSrcReg).addMBB(BB);
10293 // remove ABS instruction
10294 MI.eraseFromParent();
10296 // return last added BB
10297 return SinkBB;
10299 case ARM::COPY_STRUCT_BYVAL_I32:
10300 ++NumLoopByVals;
10301 return EmitStructByval(MI, BB);
10302 case ARM::WIN__CHKSTK:
10303 return EmitLowered__chkstk(MI, BB);
10304 case ARM::WIN__DBZCHK:
10305 return EmitLowered__dbzchk(MI, BB);
10309 /// Attaches vregs to MEMCPY that it will use as scratch registers
10310 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10311 /// instead of as a custom inserter because we need the use list from the SDNode.
10312 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
10313 MachineInstr &MI, const SDNode *Node) {
10314 bool isThumb1 = Subtarget->isThumb1Only();
10316 DebugLoc DL = MI.getDebugLoc();
10317 MachineFunction *MF = MI.getParent()->getParent();
10318 MachineRegisterInfo &MRI = MF->getRegInfo();
10319 MachineInstrBuilder MIB(*MF, MI);
10321 // If the new dst/src is unused mark it as dead.
10322 if (!Node->hasAnyUseOfValue(0)) {
10323 MI.getOperand(0).setIsDead(true);
10325 if (!Node->hasAnyUseOfValue(1)) {
10326 MI.getOperand(1).setIsDead(true);
10329 // The MEMCPY both defines and kills the scratch registers.
10330 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
10331 unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
10332 : &ARM::GPRRegClass);
10333 MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
10337 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10338 SDNode *Node) const {
10339 if (MI.getOpcode() == ARM::MEMCPY) {
10340 attachMEMCPYScratchRegs(Subtarget, MI, Node);
10341 return;
10344 const MCInstrDesc *MCID = &MI.getDesc();
10345 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10346 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10347 // operand is still set to noreg. If needed, set the optional operand's
10348 // register to CPSR, and remove the redundant implicit def.
10350 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10352 // Rename pseudo opcodes.
10353 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
10354 unsigned ccOutIdx;
10355 if (NewOpc) {
10356 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
10357 MCID = &TII->get(NewOpc);
10359 assert(MCID->getNumOperands() ==
10360 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
10361 && "converted opcode should be the same except for cc_out"
10362 " (and, on Thumb1, pred)");
10364 MI.setDesc(*MCID);
10366 // Add the optional cc_out operand
10367 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10369 // On Thumb1, move all input operands to the end, then add the predicate
10370 if (Subtarget->isThumb1Only()) {
10371 for (unsigned c = MCID->getNumOperands() - 4; c--;) {
10372 MI.addOperand(MI.getOperand(1));
10373 MI.RemoveOperand(1);
10376 // Restore the ties
10377 for (unsigned i = MI.getNumOperands(); i--;) {
10378 const MachineOperand& op = MI.getOperand(i);
10379 if (op.isReg() && op.isUse()) {
10380 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
10381 if (DefIdx != -1)
10382 MI.tieOperands(DefIdx, i);
10386 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
10387 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10388 ccOutIdx = 1;
10389 } else
10390 ccOutIdx = MCID->getNumOperands() - 1;
10391 } else
10392 ccOutIdx = MCID->getNumOperands() - 1;
10394 // Any ARM instruction that sets the 's' bit should specify an optional
10395 // "cc_out" operand in the last operand position.
10396 if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
10397 assert(!NewOpc && "Optional cc_out operand required");
10398 return;
10400 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10401 // since we already have an optional CPSR def.
10402 bool definesCPSR = false;
10403 bool deadCPSR = false;
10404 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
10405 ++i) {
10406 const MachineOperand &MO = MI.getOperand(i);
10407 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
10408 definesCPSR = true;
10409 if (MO.isDead())
10410 deadCPSR = true;
10411 MI.RemoveOperand(i);
10412 break;
10415 if (!definesCPSR) {
10416 assert(!NewOpc && "Optional cc_out operand required");
10417 return;
10419 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
10420 if (deadCPSR) {
10421 assert(!MI.getOperand(ccOutIdx).getReg() &&
10422 "expect uninitialized optional cc_out operand");
10423 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10424 if (!Subtarget->isThumb1Only())
10425 return;
10428 // If this instruction was defined with an optional CPSR def and its dag node
10429 // had a live implicit CPSR def, then activate the optional CPSR def.
10430 MachineOperand &MO = MI.getOperand(ccOutIdx);
10431 MO.setReg(ARM::CPSR);
10432 MO.setIsDef(true);
10435 //===----------------------------------------------------------------------===//
10436 // ARM Optimization Hooks
10437 //===----------------------------------------------------------------------===//
10439 // Helper function that checks if N is a null or all ones constant.
10440 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
10441 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
10444 // Return true if N is conditionally 0 or all ones.
10445 // Detects these expressions where cc is an i1 value:
10447 // (select cc 0, y) [AllOnes=0]
10448 // (select cc y, 0) [AllOnes=0]
10449 // (zext cc) [AllOnes=0]
10450 // (sext cc) [AllOnes=0/1]
10451 // (select cc -1, y) [AllOnes=1]
10452 // (select cc y, -1) [AllOnes=1]
10454 // Invert is set when N is the null/all ones constant when CC is false.
10455 // OtherOp is set to the alternative value of N.
10456 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
10457 SDValue &CC, bool &Invert,
10458 SDValue &OtherOp,
10459 SelectionDAG &DAG) {
10460 switch (N->getOpcode()) {
10461 default: return false;
10462 case ISD::SELECT: {
10463 CC = N->getOperand(0);
10464 SDValue N1 = N->getOperand(1);
10465 SDValue N2 = N->getOperand(2);
10466 if (isZeroOrAllOnes(N1, AllOnes)) {
10467 Invert = false;
10468 OtherOp = N2;
10469 return true;
10471 if (isZeroOrAllOnes(N2, AllOnes)) {
10472 Invert = true;
10473 OtherOp = N1;
10474 return true;
10476 return false;
10478 case ISD::ZERO_EXTEND:
10479 // (zext cc) can never be the all ones value.
10480 if (AllOnes)
10481 return false;
10482 LLVM_FALLTHROUGH;
10483 case ISD::SIGN_EXTEND: {
10484 SDLoc dl(N);
10485 EVT VT = N->getValueType(0);
10486 CC = N->getOperand(0);
10487 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
10488 return false;
10489 Invert = !AllOnes;
10490 if (AllOnes)
10491 // When looking for an AllOnes constant, N is an sext, and the 'other'
10492 // value is 0.
10493 OtherOp = DAG.getConstant(0, dl, VT);
10494 else if (N->getOpcode() == ISD::ZERO_EXTEND)
10495 // When looking for a 0 constant, N can be zext or sext.
10496 OtherOp = DAG.getConstant(1, dl, VT);
10497 else
10498 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
10499 VT);
10500 return true;
10505 // Combine a constant select operand into its use:
10507 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10508 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10509 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10510 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10511 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10513 // The transform is rejected if the select doesn't have a constant operand that
10514 // is null, or all ones when AllOnes is set.
10516 // Also recognize sext/zext from i1:
10518 // (add (zext cc), x) -> (select cc (add x, 1), x)
10519 // (add (sext cc), x) -> (select cc (add x, -1), x)
10521 // These transformations eventually create predicated instructions.
10523 // @param N The node to transform.
10524 // @param Slct The N operand that is a select.
10525 // @param OtherOp The other N operand (x above).
10526 // @param DCI Context.
10527 // @param AllOnes Require the select constant to be all ones instead of null.
10528 // @returns The new node, or SDValue() on failure.
10529 static
10530 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
10531 TargetLowering::DAGCombinerInfo &DCI,
10532 bool AllOnes = false) {
10533 SelectionDAG &DAG = DCI.DAG;
10534 EVT VT = N->getValueType(0);
10535 SDValue NonConstantVal;
10536 SDValue CCOp;
10537 bool SwapSelectOps;
10538 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
10539 NonConstantVal, DAG))
10540 return SDValue();
10542 // Slct is now know to be the desired identity constant when CC is true.
10543 SDValue TrueVal = OtherOp;
10544 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
10545 OtherOp, NonConstantVal);
10546 // Unless SwapSelectOps says CC should be false.
10547 if (SwapSelectOps)
10548 std::swap(TrueVal, FalseVal);
10550 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
10551 CCOp, TrueVal, FalseVal);
10554 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10555 static
10556 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
10557 TargetLowering::DAGCombinerInfo &DCI) {
10558 SDValue N0 = N->getOperand(0);
10559 SDValue N1 = N->getOperand(1);
10560 if (N0.getNode()->hasOneUse())
10561 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
10562 return Result;
10563 if (N1.getNode()->hasOneUse())
10564 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
10565 return Result;
10566 return SDValue();
10569 static bool IsVUZPShuffleNode(SDNode *N) {
10570 // VUZP shuffle node.
10571 if (N->getOpcode() == ARMISD::VUZP)
10572 return true;
10574 // "VUZP" on i32 is an alias for VTRN.
10575 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
10576 return true;
10578 return false;
10581 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
10582 TargetLowering::DAGCombinerInfo &DCI,
10583 const ARMSubtarget *Subtarget) {
10584 // Look for ADD(VUZP.0, VUZP.1).
10585 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
10586 N0 == N1)
10587 return SDValue();
10589 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10590 if (!N->getValueType(0).is64BitVector())
10591 return SDValue();
10593 // Generate vpadd.
10594 SelectionDAG &DAG = DCI.DAG;
10595 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10596 SDLoc dl(N);
10597 SDNode *Unzip = N0.getNode();
10598 EVT VT = N->getValueType(0);
10600 SmallVector<SDValue, 8> Ops;
10601 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
10602 TLI.getPointerTy(DAG.getDataLayout())));
10603 Ops.push_back(Unzip->getOperand(0));
10604 Ops.push_back(Unzip->getOperand(1));
10606 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
10609 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
10610 TargetLowering::DAGCombinerInfo &DCI,
10611 const ARMSubtarget *Subtarget) {
10612 // Check for two extended operands.
10613 if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
10614 N1.getOpcode() == ISD::SIGN_EXTEND) &&
10615 !(N0.getOpcode() == ISD::ZERO_EXTEND &&
10616 N1.getOpcode() == ISD::ZERO_EXTEND))
10617 return SDValue();
10619 SDValue N00 = N0.getOperand(0);
10620 SDValue N10 = N1.getOperand(0);
10622 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10623 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
10624 N00 == N10)
10625 return SDValue();
10627 // We only recognize Q register paddl here; this can't be reached until
10628 // after type legalization.
10629 if (!N00.getValueType().is64BitVector() ||
10630 !N0.getValueType().is128BitVector())
10631 return SDValue();
10633 // Generate vpaddl.
10634 SelectionDAG &DAG = DCI.DAG;
10635 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10636 SDLoc dl(N);
10637 EVT VT = N->getValueType(0);
10639 SmallVector<SDValue, 8> Ops;
10640 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10641 unsigned Opcode;
10642 if (N0.getOpcode() == ISD::SIGN_EXTEND)
10643 Opcode = Intrinsic::arm_neon_vpaddls;
10644 else
10645 Opcode = Intrinsic::arm_neon_vpaddlu;
10646 Ops.push_back(DAG.getConstant(Opcode, dl,
10647 TLI.getPointerTy(DAG.getDataLayout())));
10648 EVT ElemTy = N00.getValueType().getVectorElementType();
10649 unsigned NumElts = VT.getVectorNumElements();
10650 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
10651 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
10652 N00.getOperand(0), N00.getOperand(1));
10653 Ops.push_back(Concat);
10655 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
10658 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10659 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10660 // much easier to match.
10661 static SDValue
10662 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
10663 TargetLowering::DAGCombinerInfo &DCI,
10664 const ARMSubtarget *Subtarget) {
10665 // Only perform optimization if after legalize, and if NEON is available. We
10666 // also expected both operands to be BUILD_VECTORs.
10667 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
10668 || N0.getOpcode() != ISD::BUILD_VECTOR
10669 || N1.getOpcode() != ISD::BUILD_VECTOR)
10670 return SDValue();
10672 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10673 EVT VT = N->getValueType(0);
10674 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
10675 return SDValue();
10677 // Check that the vector operands are of the right form.
10678 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10679 // operands, where N is the size of the formed vector.
10680 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10681 // index such that we have a pair wise add pattern.
10683 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10684 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10685 return SDValue();
10686 SDValue Vec = N0->getOperand(0)->getOperand(0);
10687 SDNode *V = Vec.getNode();
10688 unsigned nextIndex = 0;
10690 // For each operands to the ADD which are BUILD_VECTORs,
10691 // check to see if each of their operands are an EXTRACT_VECTOR with
10692 // the same vector and appropriate index.
10693 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
10694 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10695 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10697 SDValue ExtVec0 = N0->getOperand(i);
10698 SDValue ExtVec1 = N1->getOperand(i);
10700 // First operand is the vector, verify its the same.
10701 if (V != ExtVec0->getOperand(0).getNode() ||
10702 V != ExtVec1->getOperand(0).getNode())
10703 return SDValue();
10705 // Second is the constant, verify its correct.
10706 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
10707 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
10709 // For the constant, we want to see all the even or all the odd.
10710 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
10711 || C1->getZExtValue() != nextIndex+1)
10712 return SDValue();
10714 // Increment index.
10715 nextIndex+=2;
10716 } else
10717 return SDValue();
10720 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10721 // we're using the entire input vector, otherwise there's a size/legality
10722 // mismatch somewhere.
10723 if (nextIndex != Vec.getValueType().getVectorNumElements() ||
10724 Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
10725 return SDValue();
10727 // Create VPADDL node.
10728 SelectionDAG &DAG = DCI.DAG;
10729 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10731 SDLoc dl(N);
10733 // Build operand list.
10734 SmallVector<SDValue, 8> Ops;
10735 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
10736 TLI.getPointerTy(DAG.getDataLayout())));
10738 // Input is the vector.
10739 Ops.push_back(Vec);
10741 // Get widened type and narrowed type.
10742 MVT widenType;
10743 unsigned numElem = VT.getVectorNumElements();
10745 EVT inputLaneType = Vec.getValueType().getVectorElementType();
10746 switch (inputLaneType.getSimpleVT().SimpleTy) {
10747 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
10748 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
10749 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
10750 default:
10751 llvm_unreachable("Invalid vector element type for padd optimization.");
10754 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
10755 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
10756 return DAG.getNode(ExtOp, dl, VT, tmp);
10759 static SDValue findMUL_LOHI(SDValue V) {
10760 if (V->getOpcode() == ISD::UMUL_LOHI ||
10761 V->getOpcode() == ISD::SMUL_LOHI)
10762 return V;
10763 return SDValue();
10766 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
10767 TargetLowering::DAGCombinerInfo &DCI,
10768 const ARMSubtarget *Subtarget) {
10769 if (Subtarget->isThumb()) {
10770 if (!Subtarget->hasDSP())
10771 return SDValue();
10772 } else if (!Subtarget->hasV5TEOps())
10773 return SDValue();
10775 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10776 // accumulates the product into a 64-bit value. The 16-bit values will
10777 // be sign extended somehow or SRA'd into 32-bit values
10778 // (addc (adde (mul 16bit, 16bit), lo), hi)
10779 SDValue Mul = AddcNode->getOperand(0);
10780 SDValue Lo = AddcNode->getOperand(1);
10781 if (Mul.getOpcode() != ISD::MUL) {
10782 Lo = AddcNode->getOperand(0);
10783 Mul = AddcNode->getOperand(1);
10784 if (Mul.getOpcode() != ISD::MUL)
10785 return SDValue();
10788 SDValue SRA = AddeNode->getOperand(0);
10789 SDValue Hi = AddeNode->getOperand(1);
10790 if (SRA.getOpcode() != ISD::SRA) {
10791 SRA = AddeNode->getOperand(1);
10792 Hi = AddeNode->getOperand(0);
10793 if (SRA.getOpcode() != ISD::SRA)
10794 return SDValue();
10796 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10797 if (Const->getZExtValue() != 31)
10798 return SDValue();
10799 } else
10800 return SDValue();
10802 if (SRA.getOperand(0) != Mul)
10803 return SDValue();
10805 SelectionDAG &DAG = DCI.DAG;
10806 SDLoc dl(AddcNode);
10807 unsigned Opcode = 0;
10808 SDValue Op0;
10809 SDValue Op1;
10811 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10812 Opcode = ARMISD::SMLALBB;
10813 Op0 = Mul.getOperand(0);
10814 Op1 = Mul.getOperand(1);
10815 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10816 Opcode = ARMISD::SMLALBT;
10817 Op0 = Mul.getOperand(0);
10818 Op1 = Mul.getOperand(1).getOperand(0);
10819 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10820 Opcode = ARMISD::SMLALTB;
10821 Op0 = Mul.getOperand(0).getOperand(0);
10822 Op1 = Mul.getOperand(1);
10823 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10824 Opcode = ARMISD::SMLALTT;
10825 Op0 = Mul->getOperand(0).getOperand(0);
10826 Op1 = Mul->getOperand(1).getOperand(0);
10829 if (!Op0 || !Op1)
10830 return SDValue();
10832 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10833 Op0, Op1, Lo, Hi);
10834 // Replace the ADDs' nodes uses by the MLA node's values.
10835 SDValue HiMLALResult(SMLAL.getNode(), 1);
10836 SDValue LoMLALResult(SMLAL.getNode(), 0);
10838 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10839 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10841 // Return original node to notify the driver to stop replacing.
10842 SDValue resNode(AddcNode, 0);
10843 return resNode;
10846 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10847 TargetLowering::DAGCombinerInfo &DCI,
10848 const ARMSubtarget *Subtarget) {
10849 // Look for multiply add opportunities.
10850 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10851 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10852 // a glue link from the first add to the second add.
10853 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10854 // a S/UMLAL instruction.
10855 // UMUL_LOHI
10856 // / :lo \ :hi
10857 // V \ [no multiline comment]
10858 // loAdd -> ADDC |
10859 // \ :carry /
10860 // V V
10861 // ADDE <- hiAdd
10863 // In the special case where only the higher part of a signed result is used
10864 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10865 // a constant with the exact value of 0x80000000, we recognize we are dealing
10866 // with a "rounded multiply and add" (or subtract) and transform it into
10867 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10869 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10870 AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10871 "Expect an ADDE or SUBE");
10873 assert(AddeSubeNode->getNumOperands() == 3 &&
10874 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10875 "ADDE node has the wrong inputs");
10877 // Check that we are chained to the right ADDC or SUBC node.
10878 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10879 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10880 AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10881 (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10882 AddcSubcNode->getOpcode() != ARMISD::SUBC))
10883 return SDValue();
10885 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10886 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10888 // Check if the two operands are from the same mul_lohi node.
10889 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10890 return SDValue();
10892 assert(AddcSubcNode->getNumValues() == 2 &&
10893 AddcSubcNode->getValueType(0) == MVT::i32 &&
10894 "Expect ADDC with two result values. First: i32");
10896 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10897 // maybe a SMLAL which multiplies two 16-bit values.
10898 if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10899 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10900 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10901 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10902 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10903 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10905 // Check for the triangle shape.
10906 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10907 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10909 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10910 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10911 return SDValue();
10913 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10914 bool IsLeftOperandMUL = false;
10915 SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10916 if (MULOp == SDValue())
10917 MULOp = findMUL_LOHI(AddeSubeOp1);
10918 else
10919 IsLeftOperandMUL = true;
10920 if (MULOp == SDValue())
10921 return SDValue();
10923 // Figure out the right opcode.
10924 unsigned Opc = MULOp->getOpcode();
10925 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10927 // Figure out the high and low input values to the MLAL node.
10928 SDValue *HiAddSub = nullptr;
10929 SDValue *LoMul = nullptr;
10930 SDValue *LowAddSub = nullptr;
10932 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10933 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10934 return SDValue();
10936 if (IsLeftOperandMUL)
10937 HiAddSub = &AddeSubeOp1;
10938 else
10939 HiAddSub = &AddeSubeOp0;
10941 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10942 // whose low result is fed to the ADDC/SUBC we are checking.
10944 if (AddcSubcOp0 == MULOp.getValue(0)) {
10945 LoMul = &AddcSubcOp0;
10946 LowAddSub = &AddcSubcOp1;
10948 if (AddcSubcOp1 == MULOp.getValue(0)) {
10949 LoMul = &AddcSubcOp1;
10950 LowAddSub = &AddcSubcOp0;
10953 if (!LoMul)
10954 return SDValue();
10956 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10957 // the replacement below will create a cycle.
10958 if (AddcSubcNode == HiAddSub->getNode() ||
10959 AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10960 return SDValue();
10962 // Create the merged node.
10963 SelectionDAG &DAG = DCI.DAG;
10965 // Start building operand list.
10966 SmallVector<SDValue, 8> Ops;
10967 Ops.push_back(LoMul->getOperand(0));
10968 Ops.push_back(LoMul->getOperand(1));
10970 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10971 // the case, we must be doing signed multiplication and only use the higher
10972 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10973 // addition or subtraction with the value of 0x800000.
10974 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10975 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10976 LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10977 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10978 0x80000000) {
10979 Ops.push_back(*HiAddSub);
10980 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10981 FinalOpc = ARMISD::SMMLSR;
10982 } else {
10983 FinalOpc = ARMISD::SMMLAR;
10985 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10986 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10988 return SDValue(AddeSubeNode, 0);
10989 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10990 // SMMLS is generated during instruction selection and the rest of this
10991 // function can not handle the case where AddcSubcNode is a SUBC.
10992 return SDValue();
10994 // Finish building the operand list for {U/S}MLAL
10995 Ops.push_back(*LowAddSub);
10996 Ops.push_back(*HiAddSub);
10998 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10999 DAG.getVTList(MVT::i32, MVT::i32), Ops);
11001 // Replace the ADDs' nodes uses by the MLA node's values.
11002 SDValue HiMLALResult(MLALNode.getNode(), 1);
11003 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
11005 SDValue LoMLALResult(MLALNode.getNode(), 0);
11006 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
11008 // Return original node to notify the driver to stop replacing.
11009 return SDValue(AddeSubeNode, 0);
11012 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
11013 TargetLowering::DAGCombinerInfo &DCI,
11014 const ARMSubtarget *Subtarget) {
11015 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11016 // While trying to combine for the other MLAL nodes, first search for the
11017 // chance to use UMAAL. Check if Addc uses a node which has already
11018 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11019 // as the addend, and it's handled in PerformUMLALCombine.
11021 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11022 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11024 // Check that we have a glued ADDC node.
11025 SDNode* AddcNode = AddeNode->getOperand(2).getNode();
11026 if (AddcNode->getOpcode() != ARMISD::ADDC)
11027 return SDValue();
11029 // Find the converted UMAAL or quit if it doesn't exist.
11030 SDNode *UmlalNode = nullptr;
11031 SDValue AddHi;
11032 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
11033 UmlalNode = AddcNode->getOperand(0).getNode();
11034 AddHi = AddcNode->getOperand(1);
11035 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
11036 UmlalNode = AddcNode->getOperand(1).getNode();
11037 AddHi = AddcNode->getOperand(0);
11038 } else {
11039 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11042 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11043 // the ADDC as well as Zero.
11044 if (!isNullConstant(UmlalNode->getOperand(3)))
11045 return SDValue();
11047 if ((isNullConstant(AddeNode->getOperand(0)) &&
11048 AddeNode->getOperand(1).getNode() == UmlalNode) ||
11049 (AddeNode->getOperand(0).getNode() == UmlalNode &&
11050 isNullConstant(AddeNode->getOperand(1)))) {
11051 SelectionDAG &DAG = DCI.DAG;
11052 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
11053 UmlalNode->getOperand(2), AddHi };
11054 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
11055 DAG.getVTList(MVT::i32, MVT::i32), Ops);
11057 // Replace the ADDs' nodes uses by the UMAAL node's values.
11058 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
11059 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
11061 // Return original node to notify the driver to stop replacing.
11062 return SDValue(AddeNode, 0);
11064 return SDValue();
11067 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
11068 const ARMSubtarget *Subtarget) {
11069 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11070 return SDValue();
11072 // Check that we have a pair of ADDC and ADDE as operands.
11073 // Both addends of the ADDE must be zero.
11074 SDNode* AddcNode = N->getOperand(2).getNode();
11075 SDNode* AddeNode = N->getOperand(3).getNode();
11076 if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
11077 (AddeNode->getOpcode() == ARMISD::ADDE) &&
11078 isNullConstant(AddeNode->getOperand(0)) &&
11079 isNullConstant(AddeNode->getOperand(1)) &&
11080 (AddeNode->getOperand(2).getNode() == AddcNode))
11081 return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
11082 DAG.getVTList(MVT::i32, MVT::i32),
11083 {N->getOperand(0), N->getOperand(1),
11084 AddcNode->getOperand(0), AddcNode->getOperand(1)});
11085 else
11086 return SDValue();
11089 static SDValue PerformAddcSubcCombine(SDNode *N,
11090 TargetLowering::DAGCombinerInfo &DCI,
11091 const ARMSubtarget *Subtarget) {
11092 SelectionDAG &DAG(DCI.DAG);
11094 if (N->getOpcode() == ARMISD::SUBC) {
11095 // (SUBC (ADDE 0, 0, C), 1) -> C
11096 SDValue LHS = N->getOperand(0);
11097 SDValue RHS = N->getOperand(1);
11098 if (LHS->getOpcode() == ARMISD::ADDE &&
11099 isNullConstant(LHS->getOperand(0)) &&
11100 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
11101 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
11105 if (Subtarget->isThumb1Only()) {
11106 SDValue RHS = N->getOperand(1);
11107 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11108 int32_t imm = C->getSExtValue();
11109 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
11110 SDLoc DL(N);
11111 RHS = DAG.getConstant(-imm, DL, MVT::i32);
11112 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
11113 : ARMISD::ADDC;
11114 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
11119 return SDValue();
11122 static SDValue PerformAddeSubeCombine(SDNode *N,
11123 TargetLowering::DAGCombinerInfo &DCI,
11124 const ARMSubtarget *Subtarget) {
11125 if (Subtarget->isThumb1Only()) {
11126 SelectionDAG &DAG = DCI.DAG;
11127 SDValue RHS = N->getOperand(1);
11128 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11129 int64_t imm = C->getSExtValue();
11130 if (imm < 0) {
11131 SDLoc DL(N);
11133 // The with-carry-in form matches bitwise not instead of the negation.
11134 // Effectively, the inverse interpretation of the carry flag already
11135 // accounts for part of the negation.
11136 RHS = DAG.getConstant(~imm, DL, MVT::i32);
11138 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
11139 : ARMISD::ADDE;
11140 return DAG.getNode(Opcode, DL, N->getVTList(),
11141 N->getOperand(0), RHS, N->getOperand(2));
11144 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
11145 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
11147 return SDValue();
11150 static SDValue PerformABSCombine(SDNode *N,
11151 TargetLowering::DAGCombinerInfo &DCI,
11152 const ARMSubtarget *Subtarget) {
11153 SDValue res;
11154 SelectionDAG &DAG = DCI.DAG;
11155 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11157 if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
11158 return SDValue();
11160 if (!TLI.expandABS(N, res, DAG))
11161 return SDValue();
11163 return res;
11166 /// PerformADDECombine - Target-specific dag combine transform from
11167 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11168 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11169 static SDValue PerformADDECombine(SDNode *N,
11170 TargetLowering::DAGCombinerInfo &DCI,
11171 const ARMSubtarget *Subtarget) {
11172 // Only ARM and Thumb2 support UMLAL/SMLAL.
11173 if (Subtarget->isThumb1Only())
11174 return PerformAddeSubeCombine(N, DCI, Subtarget);
11176 // Only perform the checks after legalize when the pattern is available.
11177 if (DCI.isBeforeLegalize()) return SDValue();
11179 return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
11182 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11183 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11184 /// called with the default operands, and if that fails, with commuted
11185 /// operands.
11186 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
11187 TargetLowering::DAGCombinerInfo &DCI,
11188 const ARMSubtarget *Subtarget){
11189 // Attempt to create vpadd for this add.
11190 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
11191 return Result;
11193 // Attempt to create vpaddl for this add.
11194 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
11195 return Result;
11196 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
11197 Subtarget))
11198 return Result;
11200 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11201 if (N0.getNode()->hasOneUse())
11202 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
11203 return Result;
11204 return SDValue();
11207 bool
11208 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
11209 CombineLevel Level) const {
11210 if (Level == BeforeLegalizeTypes)
11211 return true;
11213 if (N->getOpcode() != ISD::SHL)
11214 return true;
11216 if (Subtarget->isThumb1Only()) {
11217 // Avoid making expensive immediates by commuting shifts. (This logic
11218 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11219 // for free.)
11220 if (N->getOpcode() != ISD::SHL)
11221 return true;
11222 SDValue N1 = N->getOperand(0);
11223 if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
11224 N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
11225 return true;
11226 if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
11227 if (Const->getAPIntValue().ult(256))
11228 return false;
11229 if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
11230 Const->getAPIntValue().sgt(-256))
11231 return false;
11233 return true;
11236 // Turn off commute-with-shift transform after legalization, so it doesn't
11237 // conflict with PerformSHLSimplify. (We could try to detect when
11238 // PerformSHLSimplify would trigger more precisely, but it isn't
11239 // really necessary.)
11240 return false;
11243 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11244 const SDNode *N, CombineLevel Level) const {
11245 if (!Subtarget->isThumb1Only())
11246 return true;
11248 if (Level == BeforeLegalizeTypes)
11249 return true;
11251 return false;
11254 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
11255 if (!Subtarget->hasNEON()) {
11256 if (Subtarget->isThumb1Only())
11257 return VT.getScalarSizeInBits() <= 32;
11258 return true;
11260 return VT.isScalarInteger();
11263 static SDValue PerformSHLSimplify(SDNode *N,
11264 TargetLowering::DAGCombinerInfo &DCI,
11265 const ARMSubtarget *ST) {
11266 // Allow the generic combiner to identify potential bswaps.
11267 if (DCI.isBeforeLegalize())
11268 return SDValue();
11270 // DAG combiner will fold:
11271 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11272 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11273 // Other code patterns that can be also be modified have the following form:
11274 // b + ((a << 1) | 510)
11275 // b + ((a << 1) & 510)
11276 // b + ((a << 1) ^ 510)
11277 // b + ((a << 1) + 510)
11279 // Many instructions can perform the shift for free, but it requires both
11280 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11281 // instruction will needed. So, unfold back to the original pattern if:
11282 // - if c1 and c2 are small enough that they don't require mov imms.
11283 // - the user(s) of the node can perform an shl
11285 // No shifted operands for 16-bit instructions.
11286 if (ST->isThumb() && ST->isThumb1Only())
11287 return SDValue();
11289 // Check that all the users could perform the shl themselves.
11290 for (auto U : N->uses()) {
11291 switch(U->getOpcode()) {
11292 default:
11293 return SDValue();
11294 case ISD::SUB:
11295 case ISD::ADD:
11296 case ISD::AND:
11297 case ISD::OR:
11298 case ISD::XOR:
11299 case ISD::SETCC:
11300 case ARMISD::CMP:
11301 // Check that the user isn't already using a constant because there
11302 // aren't any instructions that support an immediate operand and a
11303 // shifted operand.
11304 if (isa<ConstantSDNode>(U->getOperand(0)) ||
11305 isa<ConstantSDNode>(U->getOperand(1)))
11306 return SDValue();
11308 // Check that it's not already using a shift.
11309 if (U->getOperand(0).getOpcode() == ISD::SHL ||
11310 U->getOperand(1).getOpcode() == ISD::SHL)
11311 return SDValue();
11312 break;
11316 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
11317 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
11318 return SDValue();
11320 if (N->getOperand(0).getOpcode() != ISD::SHL)
11321 return SDValue();
11323 SDValue SHL = N->getOperand(0);
11325 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
11326 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
11327 if (!C1ShlC2 || !C2)
11328 return SDValue();
11330 APInt C2Int = C2->getAPIntValue();
11331 APInt C1Int = C1ShlC2->getAPIntValue();
11333 // Check that performing a lshr will not lose any information.
11334 APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
11335 C2Int.getBitWidth() - C2->getZExtValue());
11336 if ((C1Int & Mask) != C1Int)
11337 return SDValue();
11339 // Shift the first constant.
11340 C1Int.lshrInPlace(C2Int);
11342 // The immediates are encoded as an 8-bit value that can be rotated.
11343 auto LargeImm = [](const APInt &Imm) {
11344 unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
11345 return Imm.getBitWidth() - Zeros > 8;
11348 if (LargeImm(C1Int) || LargeImm(C2Int))
11349 return SDValue();
11351 SelectionDAG &DAG = DCI.DAG;
11352 SDLoc dl(N);
11353 SDValue X = SHL.getOperand(0);
11354 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
11355 DAG.getConstant(C1Int, dl, MVT::i32));
11356 // Shift left to compensate for the lshr of C1Int.
11357 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
11359 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
11360 SHL.dump(); N->dump());
11361 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
11362 return Res;
11366 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11368 static SDValue PerformADDCombine(SDNode *N,
11369 TargetLowering::DAGCombinerInfo &DCI,
11370 const ARMSubtarget *Subtarget) {
11371 SDValue N0 = N->getOperand(0);
11372 SDValue N1 = N->getOperand(1);
11374 // Only works one way, because it needs an immediate operand.
11375 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11376 return Result;
11378 // First try with the default operand order.
11379 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
11380 return Result;
11382 // If that didn't work, try again with the operands commuted.
11383 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
11386 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11388 static SDValue PerformSUBCombine(SDNode *N,
11389 TargetLowering::DAGCombinerInfo &DCI) {
11390 SDValue N0 = N->getOperand(0);
11391 SDValue N1 = N->getOperand(1);
11393 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11394 if (N1.getNode()->hasOneUse())
11395 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
11396 return Result;
11398 return SDValue();
11401 /// PerformVMULCombine
11402 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11403 /// special multiplier accumulator forwarding.
11404 /// vmul d3, d0, d2
11405 /// vmla d3, d1, d2
11406 /// is faster than
11407 /// vadd d3, d0, d1
11408 /// vmul d3, d3, d2
11409 // However, for (A + B) * (A + B),
11410 // vadd d2, d0, d1
11411 // vmul d3, d0, d2
11412 // vmla d3, d1, d2
11413 // is slower than
11414 // vadd d2, d0, d1
11415 // vmul d3, d2, d2
11416 static SDValue PerformVMULCombine(SDNode *N,
11417 TargetLowering::DAGCombinerInfo &DCI,
11418 const ARMSubtarget *Subtarget) {
11419 if (!Subtarget->hasVMLxForwarding())
11420 return SDValue();
11422 SelectionDAG &DAG = DCI.DAG;
11423 SDValue N0 = N->getOperand(0);
11424 SDValue N1 = N->getOperand(1);
11425 unsigned Opcode = N0.getOpcode();
11426 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11427 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
11428 Opcode = N1.getOpcode();
11429 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11430 Opcode != ISD::FADD && Opcode != ISD::FSUB)
11431 return SDValue();
11432 std::swap(N0, N1);
11435 if (N0 == N1)
11436 return SDValue();
11438 EVT VT = N->getValueType(0);
11439 SDLoc DL(N);
11440 SDValue N00 = N0->getOperand(0);
11441 SDValue N01 = N0->getOperand(1);
11442 return DAG.getNode(Opcode, DL, VT,
11443 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
11444 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
11447 static SDValue PerformMULCombine(SDNode *N,
11448 TargetLowering::DAGCombinerInfo &DCI,
11449 const ARMSubtarget *Subtarget) {
11450 SelectionDAG &DAG = DCI.DAG;
11452 if (Subtarget->isThumb1Only())
11453 return SDValue();
11455 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11456 return SDValue();
11458 EVT VT = N->getValueType(0);
11459 if (VT.is64BitVector() || VT.is128BitVector())
11460 return PerformVMULCombine(N, DCI, Subtarget);
11461 if (VT != MVT::i32)
11462 return SDValue();
11464 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11465 if (!C)
11466 return SDValue();
11468 int64_t MulAmt = C->getSExtValue();
11469 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
11471 ShiftAmt = ShiftAmt & (32 - 1);
11472 SDValue V = N->getOperand(0);
11473 SDLoc DL(N);
11475 SDValue Res;
11476 MulAmt >>= ShiftAmt;
11478 if (MulAmt >= 0) {
11479 if (isPowerOf2_32(MulAmt - 1)) {
11480 // (mul x, 2^N + 1) => (add (shl x, N), x)
11481 Res = DAG.getNode(ISD::ADD, DL, VT,
11483 DAG.getNode(ISD::SHL, DL, VT,
11485 DAG.getConstant(Log2_32(MulAmt - 1), DL,
11486 MVT::i32)));
11487 } else if (isPowerOf2_32(MulAmt + 1)) {
11488 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11489 Res = DAG.getNode(ISD::SUB, DL, VT,
11490 DAG.getNode(ISD::SHL, DL, VT,
11492 DAG.getConstant(Log2_32(MulAmt + 1), DL,
11493 MVT::i32)),
11495 } else
11496 return SDValue();
11497 } else {
11498 uint64_t MulAmtAbs = -MulAmt;
11499 if (isPowerOf2_32(MulAmtAbs + 1)) {
11500 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11501 Res = DAG.getNode(ISD::SUB, DL, VT,
11503 DAG.getNode(ISD::SHL, DL, VT,
11505 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
11506 MVT::i32)));
11507 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
11508 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11509 Res = DAG.getNode(ISD::ADD, DL, VT,
11511 DAG.getNode(ISD::SHL, DL, VT,
11513 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
11514 MVT::i32)));
11515 Res = DAG.getNode(ISD::SUB, DL, VT,
11516 DAG.getConstant(0, DL, MVT::i32), Res);
11517 } else
11518 return SDValue();
11521 if (ShiftAmt != 0)
11522 Res = DAG.getNode(ISD::SHL, DL, VT,
11523 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
11525 // Do not add new nodes to DAG combiner worklist.
11526 DCI.CombineTo(N, Res, false);
11527 return SDValue();
11530 static SDValue CombineANDShift(SDNode *N,
11531 TargetLowering::DAGCombinerInfo &DCI,
11532 const ARMSubtarget *Subtarget) {
11533 // Allow DAGCombine to pattern-match before we touch the canonical form.
11534 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11535 return SDValue();
11537 if (N->getValueType(0) != MVT::i32)
11538 return SDValue();
11540 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11541 if (!N1C)
11542 return SDValue();
11544 uint32_t C1 = (uint32_t)N1C->getZExtValue();
11545 // Don't transform uxtb/uxth.
11546 if (C1 == 255 || C1 == 65535)
11547 return SDValue();
11549 SDNode *N0 = N->getOperand(0).getNode();
11550 if (!N0->hasOneUse())
11551 return SDValue();
11553 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
11554 return SDValue();
11556 bool LeftShift = N0->getOpcode() == ISD::SHL;
11558 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
11559 if (!N01C)
11560 return SDValue();
11562 uint32_t C2 = (uint32_t)N01C->getZExtValue();
11563 if (!C2 || C2 >= 32)
11564 return SDValue();
11566 // Clear irrelevant bits in the mask.
11567 if (LeftShift)
11568 C1 &= (-1U << C2);
11569 else
11570 C1 &= (-1U >> C2);
11572 SelectionDAG &DAG = DCI.DAG;
11573 SDLoc DL(N);
11575 // We have a pattern of the form "(and (shl x, c2) c1)" or
11576 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11577 // transform to a pair of shifts, to save materializing c1.
11579 // First pattern: right shift, then mask off leading bits.
11580 // FIXME: Use demanded bits?
11581 if (!LeftShift && isMask_32(C1)) {
11582 uint32_t C3 = countLeadingZeros(C1);
11583 if (C2 < C3) {
11584 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
11585 DAG.getConstant(C3 - C2, DL, MVT::i32));
11586 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
11587 DAG.getConstant(C3, DL, MVT::i32));
11591 // First pattern, reversed: left shift, then mask off trailing bits.
11592 if (LeftShift && isMask_32(~C1)) {
11593 uint32_t C3 = countTrailingZeros(C1);
11594 if (C2 < C3) {
11595 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
11596 DAG.getConstant(C3 - C2, DL, MVT::i32));
11597 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
11598 DAG.getConstant(C3, DL, MVT::i32));
11602 // Second pattern: left shift, then mask off leading bits.
11603 // FIXME: Use demanded bits?
11604 if (LeftShift && isShiftedMask_32(C1)) {
11605 uint32_t Trailing = countTrailingZeros(C1);
11606 uint32_t C3 = countLeadingZeros(C1);
11607 if (Trailing == C2 && C2 + C3 < 32) {
11608 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
11609 DAG.getConstant(C2 + C3, DL, MVT::i32));
11610 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
11611 DAG.getConstant(C3, DL, MVT::i32));
11615 // Second pattern, reversed: right shift, then mask off trailing bits.
11616 // FIXME: Handle other patterns of known/demanded bits.
11617 if (!LeftShift && isShiftedMask_32(C1)) {
11618 uint32_t Leading = countLeadingZeros(C1);
11619 uint32_t C3 = countTrailingZeros(C1);
11620 if (Leading == C2 && C2 + C3 < 32) {
11621 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
11622 DAG.getConstant(C2 + C3, DL, MVT::i32));
11623 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
11624 DAG.getConstant(C3, DL, MVT::i32));
11628 // FIXME: Transform "(and (shl x, c2) c1)" ->
11629 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11630 // c1.
11631 return SDValue();
11634 static SDValue PerformANDCombine(SDNode *N,
11635 TargetLowering::DAGCombinerInfo &DCI,
11636 const ARMSubtarget *Subtarget) {
11637 // Attempt to use immediate-form VBIC
11638 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11639 SDLoc dl(N);
11640 EVT VT = N->getValueType(0);
11641 SelectionDAG &DAG = DCI.DAG;
11643 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11644 return SDValue();
11646 APInt SplatBits, SplatUndef;
11647 unsigned SplatBitSize;
11648 bool HasAnyUndefs;
11649 if (BVN && Subtarget->hasNEON() &&
11650 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11651 if (SplatBitSize <= 64) {
11652 EVT VbicVT;
11653 SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
11654 SplatUndef.getZExtValue(), SplatBitSize,
11655 DAG, dl, VbicVT, VT.is128BitVector(),
11656 OtherModImm);
11657 if (Val.getNode()) {
11658 SDValue Input =
11659 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
11660 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
11661 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
11666 if (!Subtarget->isThumb1Only()) {
11667 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11668 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
11669 return Result;
11671 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11672 return Result;
11675 if (Subtarget->isThumb1Only())
11676 if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
11677 return Result;
11679 return SDValue();
11682 // Try combining OR nodes to SMULWB, SMULWT.
11683 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
11684 TargetLowering::DAGCombinerInfo &DCI,
11685 const ARMSubtarget *Subtarget) {
11686 if (!Subtarget->hasV6Ops() ||
11687 (Subtarget->isThumb() &&
11688 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
11689 return SDValue();
11691 SDValue SRL = OR->getOperand(0);
11692 SDValue SHL = OR->getOperand(1);
11694 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
11695 SRL = OR->getOperand(1);
11696 SHL = OR->getOperand(0);
11698 if (!isSRL16(SRL) || !isSHL16(SHL))
11699 return SDValue();
11701 // The first operands to the shifts need to be the two results from the
11702 // same smul_lohi node.
11703 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
11704 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
11705 return SDValue();
11707 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
11708 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
11709 SHL.getOperand(0) != SDValue(SMULLOHI, 1))
11710 return SDValue();
11712 // Now we have:
11713 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11714 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11715 // For SMUWB the 16-bit value will signed extended somehow.
11716 // For SMULWT only the SRA is required.
11717 // Check both sides of SMUL_LOHI
11718 SDValue OpS16 = SMULLOHI->getOperand(0);
11719 SDValue OpS32 = SMULLOHI->getOperand(1);
11721 SelectionDAG &DAG = DCI.DAG;
11722 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
11723 OpS16 = OpS32;
11724 OpS32 = SMULLOHI->getOperand(0);
11727 SDLoc dl(OR);
11728 unsigned Opcode = 0;
11729 if (isS16(OpS16, DAG))
11730 Opcode = ARMISD::SMULWB;
11731 else if (isSRA16(OpS16)) {
11732 Opcode = ARMISD::SMULWT;
11733 OpS16 = OpS16->getOperand(0);
11735 else
11736 return SDValue();
11738 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
11739 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
11740 return SDValue(OR, 0);
11743 static SDValue PerformORCombineToBFI(SDNode *N,
11744 TargetLowering::DAGCombinerInfo &DCI,
11745 const ARMSubtarget *Subtarget) {
11746 // BFI is only available on V6T2+
11747 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
11748 return SDValue();
11750 EVT VT = N->getValueType(0);
11751 SDValue N0 = N->getOperand(0);
11752 SDValue N1 = N->getOperand(1);
11753 SelectionDAG &DAG = DCI.DAG;
11754 SDLoc DL(N);
11755 // 1) or (and A, mask), val => ARMbfi A, val, mask
11756 // iff (val & mask) == val
11758 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11759 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11760 // && mask == ~mask2
11761 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11762 // && ~mask == mask2
11763 // (i.e., copy a bitfield value into another bitfield of the same width)
11765 if (VT != MVT::i32)
11766 return SDValue();
11768 SDValue N00 = N0.getOperand(0);
11770 // The value and the mask need to be constants so we can verify this is
11771 // actually a bitfield set. If the mask is 0xffff, we can do better
11772 // via a movt instruction, so don't use BFI in that case.
11773 SDValue MaskOp = N0.getOperand(1);
11774 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
11775 if (!MaskC)
11776 return SDValue();
11777 unsigned Mask = MaskC->getZExtValue();
11778 if (Mask == 0xffff)
11779 return SDValue();
11780 SDValue Res;
11781 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11782 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11783 if (N1C) {
11784 unsigned Val = N1C->getZExtValue();
11785 if ((Val & ~Mask) != Val)
11786 return SDValue();
11788 if (ARM::isBitFieldInvertedMask(Mask)) {
11789 Val >>= countTrailingZeros(~Mask);
11791 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
11792 DAG.getConstant(Val, DL, MVT::i32),
11793 DAG.getConstant(Mask, DL, MVT::i32));
11795 DCI.CombineTo(N, Res, false);
11796 // Return value from the original node to inform the combiner than N is
11797 // now dead.
11798 return SDValue(N, 0);
11800 } else if (N1.getOpcode() == ISD::AND) {
11801 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11802 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11803 if (!N11C)
11804 return SDValue();
11805 unsigned Mask2 = N11C->getZExtValue();
11807 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11808 // as is to match.
11809 if (ARM::isBitFieldInvertedMask(Mask) &&
11810 (Mask == ~Mask2)) {
11811 // The pack halfword instruction works better for masks that fit it,
11812 // so use that when it's available.
11813 if (Subtarget->hasDSP() &&
11814 (Mask == 0xffff || Mask == 0xffff0000))
11815 return SDValue();
11816 // 2a
11817 unsigned amt = countTrailingZeros(Mask2);
11818 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
11819 DAG.getConstant(amt, DL, MVT::i32));
11820 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
11821 DAG.getConstant(Mask, DL, MVT::i32));
11822 DCI.CombineTo(N, Res, false);
11823 // Return value from the original node to inform the combiner than N is
11824 // now dead.
11825 return SDValue(N, 0);
11826 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
11827 (~Mask == Mask2)) {
11828 // The pack halfword instruction works better for masks that fit it,
11829 // so use that when it's available.
11830 if (Subtarget->hasDSP() &&
11831 (Mask2 == 0xffff || Mask2 == 0xffff0000))
11832 return SDValue();
11833 // 2b
11834 unsigned lsb = countTrailingZeros(Mask);
11835 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
11836 DAG.getConstant(lsb, DL, MVT::i32));
11837 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
11838 DAG.getConstant(Mask2, DL, MVT::i32));
11839 DCI.CombineTo(N, Res, false);
11840 // Return value from the original node to inform the combiner than N is
11841 // now dead.
11842 return SDValue(N, 0);
11846 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
11847 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
11848 ARM::isBitFieldInvertedMask(~Mask)) {
11849 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11850 // where lsb(mask) == #shamt and masked bits of B are known zero.
11851 SDValue ShAmt = N00.getOperand(1);
11852 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
11853 unsigned LSB = countTrailingZeros(Mask);
11854 if (ShAmtC != LSB)
11855 return SDValue();
11857 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
11858 DAG.getConstant(~Mask, DL, MVT::i32));
11860 DCI.CombineTo(N, Res, false);
11861 // Return value from the original node to inform the combiner than N is
11862 // now dead.
11863 return SDValue(N, 0);
11866 return SDValue();
11869 static bool isValidMVECond(unsigned CC, bool IsFloat) {
11870 switch (CC) {
11871 case ARMCC::EQ:
11872 case ARMCC::NE:
11873 case ARMCC::LE:
11874 case ARMCC::GT:
11875 case ARMCC::GE:
11876 case ARMCC::LT:
11877 return true;
11878 case ARMCC::HS:
11879 case ARMCC::HI:
11880 return !IsFloat;
11881 default:
11882 return false;
11886 static SDValue PerformORCombine_i1(SDNode *N,
11887 TargetLowering::DAGCombinerInfo &DCI,
11888 const ARMSubtarget *Subtarget) {
11889 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11890 // together with predicates
11891 EVT VT = N->getValueType(0);
11892 SDValue N0 = N->getOperand(0);
11893 SDValue N1 = N->getOperand(1);
11895 ARMCC::CondCodes CondCode0 = ARMCC::AL;
11896 ARMCC::CondCodes CondCode1 = ARMCC::AL;
11897 if (N0->getOpcode() == ARMISD::VCMP)
11898 CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(2))
11899 ->getZExtValue();
11900 else if (N0->getOpcode() == ARMISD::VCMPZ)
11901 CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(1))
11902 ->getZExtValue();
11903 if (N1->getOpcode() == ARMISD::VCMP)
11904 CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(2))
11905 ->getZExtValue();
11906 else if (N1->getOpcode() == ARMISD::VCMPZ)
11907 CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(1))
11908 ->getZExtValue();
11910 if (CondCode0 == ARMCC::AL || CondCode1 == ARMCC::AL)
11911 return SDValue();
11913 unsigned Opposite0 = ARMCC::getOppositeCondition(CondCode0);
11914 unsigned Opposite1 = ARMCC::getOppositeCondition(CondCode1);
11916 if (!isValidMVECond(Opposite0,
11917 N0->getOperand(0)->getValueType(0).isFloatingPoint()) ||
11918 !isValidMVECond(Opposite1,
11919 N1->getOperand(0)->getValueType(0).isFloatingPoint()))
11920 return SDValue();
11922 SmallVector<SDValue, 4> Ops0;
11923 Ops0.push_back(N0->getOperand(0));
11924 if (N0->getOpcode() == ARMISD::VCMP)
11925 Ops0.push_back(N0->getOperand(1));
11926 Ops0.push_back(DCI.DAG.getConstant(Opposite0, SDLoc(N0), MVT::i32));
11927 SmallVector<SDValue, 4> Ops1;
11928 Ops1.push_back(N1->getOperand(0));
11929 if (N1->getOpcode() == ARMISD::VCMP)
11930 Ops1.push_back(N1->getOperand(1));
11931 Ops1.push_back(DCI.DAG.getConstant(Opposite1, SDLoc(N1), MVT::i32));
11933 SDValue NewN0 = DCI.DAG.getNode(N0->getOpcode(), SDLoc(N0), VT, Ops0);
11934 SDValue NewN1 = DCI.DAG.getNode(N1->getOpcode(), SDLoc(N1), VT, Ops1);
11935 SDValue And = DCI.DAG.getNode(ISD::AND, SDLoc(N), VT, NewN0, NewN1);
11936 return DCI.DAG.getNode(ISD::XOR, SDLoc(N), VT, And,
11937 DCI.DAG.getAllOnesConstant(SDLoc(N), VT));
11940 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11941 static SDValue PerformORCombine(SDNode *N,
11942 TargetLowering::DAGCombinerInfo &DCI,
11943 const ARMSubtarget *Subtarget) {
11944 // Attempt to use immediate-form VORR
11945 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11946 SDLoc dl(N);
11947 EVT VT = N->getValueType(0);
11948 SelectionDAG &DAG = DCI.DAG;
11950 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11951 return SDValue();
11953 APInt SplatBits, SplatUndef;
11954 unsigned SplatBitSize;
11955 bool HasAnyUndefs;
11956 if (BVN && Subtarget->hasNEON() &&
11957 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11958 if (SplatBitSize <= 64) {
11959 EVT VorrVT;
11960 SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
11961 SplatUndef.getZExtValue(), SplatBitSize,
11962 DAG, dl, VorrVT, VT.is128BitVector(),
11963 OtherModImm);
11964 if (Val.getNode()) {
11965 SDValue Input =
11966 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11967 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11968 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
11973 if (!Subtarget->isThumb1Only()) {
11974 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11975 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11976 return Result;
11977 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
11978 return Result;
11981 SDValue N0 = N->getOperand(0);
11982 SDValue N1 = N->getOperand(1);
11984 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11985 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
11986 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11988 // The code below optimizes (or (and X, Y), Z).
11989 // The AND operand needs to have a single user to make these optimizations
11990 // profitable.
11991 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
11992 return SDValue();
11994 APInt SplatUndef;
11995 unsigned SplatBitSize;
11996 bool HasAnyUndefs;
11998 APInt SplatBits0, SplatBits1;
11999 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
12000 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
12001 // Ensure that the second operand of both ands are constants
12002 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
12003 HasAnyUndefs) && !HasAnyUndefs) {
12004 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
12005 HasAnyUndefs) && !HasAnyUndefs) {
12006 // Ensure that the bit width of the constants are the same and that
12007 // the splat arguments are logical inverses as per the pattern we
12008 // are trying to simplify.
12009 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
12010 SplatBits0 == ~SplatBits1) {
12011 // Canonicalize the vector type to make instruction selection
12012 // simpler.
12013 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
12014 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
12015 N0->getOperand(1),
12016 N0->getOperand(0),
12017 N1->getOperand(0));
12018 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
12024 if (Subtarget->hasMVEIntegerOps() &&
12025 (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
12026 return PerformORCombine_i1(N, DCI, Subtarget);
12028 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12029 // reasonable.
12030 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
12031 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
12032 return Res;
12035 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12036 return Result;
12038 return SDValue();
12041 static SDValue PerformXORCombine(SDNode *N,
12042 TargetLowering::DAGCombinerInfo &DCI,
12043 const ARMSubtarget *Subtarget) {
12044 EVT VT = N->getValueType(0);
12045 SelectionDAG &DAG = DCI.DAG;
12047 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12048 return SDValue();
12050 if (!Subtarget->isThumb1Only()) {
12051 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12052 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12053 return Result;
12055 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12056 return Result;
12059 return SDValue();
12062 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12063 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12064 // their position in "to" (Rd).
12065 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
12066 assert(N->getOpcode() == ARMISD::BFI);
12068 SDValue From = N->getOperand(1);
12069 ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
12070 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
12072 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12073 // #C in the base of the SHR.
12074 if (From->getOpcode() == ISD::SRL &&
12075 isa<ConstantSDNode>(From->getOperand(1))) {
12076 APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
12077 assert(Shift.getLimitedValue() < 32 && "Shift too large!");
12078 FromMask <<= Shift.getLimitedValue(31);
12079 From = From->getOperand(0);
12082 return From;
12085 // If A and B contain one contiguous set of bits, does A | B == A . B?
12087 // Neither A nor B must be zero.
12088 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
12089 unsigned LastActiveBitInA = A.countTrailingZeros();
12090 unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
12091 return LastActiveBitInA - 1 == FirstActiveBitInB;
12094 static SDValue FindBFIToCombineWith(SDNode *N) {
12095 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12096 // if one exists.
12097 APInt ToMask, FromMask;
12098 SDValue From = ParseBFI(N, ToMask, FromMask);
12099 SDValue To = N->getOperand(0);
12101 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12102 // aren't compatible, but not if they set the same bit in their destination as
12103 // we do (or that of any BFI we're going to combine with).
12104 SDValue V = To;
12105 APInt CombinedToMask = ToMask;
12106 while (V.getOpcode() == ARMISD::BFI) {
12107 APInt NewToMask, NewFromMask;
12108 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
12109 if (NewFrom != From) {
12110 // This BFI has a different base. Keep going.
12111 CombinedToMask |= NewToMask;
12112 V = V.getOperand(0);
12113 continue;
12116 // Do the written bits conflict with any we've seen so far?
12117 if ((NewToMask & CombinedToMask).getBoolValue())
12118 // Conflicting bits - bail out because going further is unsafe.
12119 return SDValue();
12121 // Are the new bits contiguous when combined with the old bits?
12122 if (BitsProperlyConcatenate(ToMask, NewToMask) &&
12123 BitsProperlyConcatenate(FromMask, NewFromMask))
12124 return V;
12125 if (BitsProperlyConcatenate(NewToMask, ToMask) &&
12126 BitsProperlyConcatenate(NewFromMask, FromMask))
12127 return V;
12129 // We've seen a write to some bits, so track it.
12130 CombinedToMask |= NewToMask;
12131 // Keep going...
12132 V = V.getOperand(0);
12135 return SDValue();
12138 static SDValue PerformBFICombine(SDNode *N,
12139 TargetLowering::DAGCombinerInfo &DCI) {
12140 SDValue N1 = N->getOperand(1);
12141 if (N1.getOpcode() == ISD::AND) {
12142 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12143 // the bits being cleared by the AND are not demanded by the BFI.
12144 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
12145 if (!N11C)
12146 return SDValue();
12147 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12148 unsigned LSB = countTrailingZeros(~InvMask);
12149 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
12150 assert(Width <
12151 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
12152 "undefined behavior");
12153 unsigned Mask = (1u << Width) - 1;
12154 unsigned Mask2 = N11C->getZExtValue();
12155 if ((Mask & (~Mask2)) == 0)
12156 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
12157 N->getOperand(0), N1.getOperand(0),
12158 N->getOperand(2));
12159 } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
12160 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12161 // Keep track of any consecutive bits set that all come from the same base
12162 // value. We can combine these together into a single BFI.
12163 SDValue CombineBFI = FindBFIToCombineWith(N);
12164 if (CombineBFI == SDValue())
12165 return SDValue();
12167 // We've found a BFI.
12168 APInt ToMask1, FromMask1;
12169 SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
12171 APInt ToMask2, FromMask2;
12172 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
12173 assert(From1 == From2);
12174 (void)From2;
12176 // First, unlink CombineBFI.
12177 DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
12178 // Then create a new BFI, combining the two together.
12179 APInt NewFromMask = FromMask1 | FromMask2;
12180 APInt NewToMask = ToMask1 | ToMask2;
12182 EVT VT = N->getValueType(0);
12183 SDLoc dl(N);
12185 if (NewFromMask[0] == 0)
12186 From1 = DCI.DAG.getNode(
12187 ISD::SRL, dl, VT, From1,
12188 DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
12189 return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
12190 DCI.DAG.getConstant(~NewToMask, dl, VT));
12192 return SDValue();
12195 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12196 /// ARMISD::VMOVRRD.
12197 static SDValue PerformVMOVRRDCombine(SDNode *N,
12198 TargetLowering::DAGCombinerInfo &DCI,
12199 const ARMSubtarget *Subtarget) {
12200 // vmovrrd(vmovdrr x, y) -> x,y
12201 SDValue InDouble = N->getOperand(0);
12202 if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
12203 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
12205 // vmovrrd(load f64) -> (load i32), (load i32)
12206 SDNode *InNode = InDouble.getNode();
12207 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
12208 InNode->getValueType(0) == MVT::f64 &&
12209 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
12210 !cast<LoadSDNode>(InNode)->isVolatile()) {
12211 // TODO: Should this be done for non-FrameIndex operands?
12212 LoadSDNode *LD = cast<LoadSDNode>(InNode);
12214 SelectionDAG &DAG = DCI.DAG;
12215 SDLoc DL(LD);
12216 SDValue BasePtr = LD->getBasePtr();
12217 SDValue NewLD1 =
12218 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
12219 LD->getAlignment(), LD->getMemOperand()->getFlags());
12221 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12222 DAG.getConstant(4, DL, MVT::i32));
12224 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
12225 LD->getPointerInfo().getWithOffset(4),
12226 std::min(4U, LD->getAlignment()),
12227 LD->getMemOperand()->getFlags());
12229 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
12230 if (DCI.DAG.getDataLayout().isBigEndian())
12231 std::swap (NewLD1, NewLD2);
12232 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
12233 return Result;
12236 return SDValue();
12239 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12240 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12241 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
12242 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12243 SDValue Op0 = N->getOperand(0);
12244 SDValue Op1 = N->getOperand(1);
12245 if (Op0.getOpcode() == ISD::BITCAST)
12246 Op0 = Op0.getOperand(0);
12247 if (Op1.getOpcode() == ISD::BITCAST)
12248 Op1 = Op1.getOperand(0);
12249 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
12250 Op0.getNode() == Op1.getNode() &&
12251 Op0.getResNo() == 0 && Op1.getResNo() == 1)
12252 return DAG.getNode(ISD::BITCAST, SDLoc(N),
12253 N->getValueType(0), Op0.getOperand(0));
12254 return SDValue();
12257 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12258 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12259 /// i64 vector to have f64 elements, since the value can then be loaded
12260 /// directly into a VFP register.
12261 static bool hasNormalLoadOperand(SDNode *N) {
12262 unsigned NumElts = N->getValueType(0).getVectorNumElements();
12263 for (unsigned i = 0; i < NumElts; ++i) {
12264 SDNode *Elt = N->getOperand(i).getNode();
12265 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
12266 return true;
12268 return false;
12271 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12272 /// ISD::BUILD_VECTOR.
12273 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
12274 TargetLowering::DAGCombinerInfo &DCI,
12275 const ARMSubtarget *Subtarget) {
12276 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12277 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12278 // into a pair of GPRs, which is fine when the value is used as a scalar,
12279 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12280 SelectionDAG &DAG = DCI.DAG;
12281 if (N->getNumOperands() == 2)
12282 if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
12283 return RV;
12285 // Load i64 elements as f64 values so that type legalization does not split
12286 // them up into i32 values.
12287 EVT VT = N->getValueType(0);
12288 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
12289 return SDValue();
12290 SDLoc dl(N);
12291 SmallVector<SDValue, 8> Ops;
12292 unsigned NumElts = VT.getVectorNumElements();
12293 for (unsigned i = 0; i < NumElts; ++i) {
12294 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
12295 Ops.push_back(V);
12296 // Make the DAGCombiner fold the bitcast.
12297 DCI.AddToWorklist(V.getNode());
12299 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
12300 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
12301 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
12304 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12305 static SDValue
12306 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12307 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12308 // At that time, we may have inserted bitcasts from integer to float.
12309 // If these bitcasts have survived DAGCombine, change the lowering of this
12310 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12311 // force to use floating point types.
12313 // Make sure we can change the type of the vector.
12314 // This is possible iff:
12315 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12316 // 1.1. Vector is used only once.
12317 // 1.2. Use is a bit convert to an integer type.
12318 // 2. The size of its operands are 32-bits (64-bits are not legal).
12319 EVT VT = N->getValueType(0);
12320 EVT EltVT = VT.getVectorElementType();
12322 // Check 1.1. and 2.
12323 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
12324 return SDValue();
12326 // By construction, the input type must be float.
12327 assert(EltVT == MVT::f32 && "Unexpected type!");
12329 // Check 1.2.
12330 SDNode *Use = *N->use_begin();
12331 if (Use->getOpcode() != ISD::BITCAST ||
12332 Use->getValueType(0).isFloatingPoint())
12333 return SDValue();
12335 // Check profitability.
12336 // Model is, if more than half of the relevant operands are bitcast from
12337 // i32, turn the build_vector into a sequence of insert_vector_elt.
12338 // Relevant operands are everything that is not statically
12339 // (i.e., at compile time) bitcasted.
12340 unsigned NumOfBitCastedElts = 0;
12341 unsigned NumElts = VT.getVectorNumElements();
12342 unsigned NumOfRelevantElts = NumElts;
12343 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
12344 SDValue Elt = N->getOperand(Idx);
12345 if (Elt->getOpcode() == ISD::BITCAST) {
12346 // Assume only bit cast to i32 will go away.
12347 if (Elt->getOperand(0).getValueType() == MVT::i32)
12348 ++NumOfBitCastedElts;
12349 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
12350 // Constants are statically casted, thus do not count them as
12351 // relevant operands.
12352 --NumOfRelevantElts;
12355 // Check if more than half of the elements require a non-free bitcast.
12356 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
12357 return SDValue();
12359 SelectionDAG &DAG = DCI.DAG;
12360 // Create the new vector type.
12361 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
12362 // Check if the type is legal.
12363 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12364 if (!TLI.isTypeLegal(VecVT))
12365 return SDValue();
12367 // Combine:
12368 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12369 // => BITCAST INSERT_VECTOR_ELT
12370 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12371 // (BITCAST EN), N.
12372 SDValue Vec = DAG.getUNDEF(VecVT);
12373 SDLoc dl(N);
12374 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
12375 SDValue V = N->getOperand(Idx);
12376 if (V.isUndef())
12377 continue;
12378 if (V.getOpcode() == ISD::BITCAST &&
12379 V->getOperand(0).getValueType() == MVT::i32)
12380 // Fold obvious case.
12381 V = V.getOperand(0);
12382 else {
12383 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
12384 // Make the DAGCombiner fold the bitcasts.
12385 DCI.AddToWorklist(V.getNode());
12387 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
12388 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
12390 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
12391 // Make the DAGCombiner fold the bitcasts.
12392 DCI.AddToWorklist(Vec.getNode());
12393 return Vec;
12396 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12397 /// ISD::INSERT_VECTOR_ELT.
12398 static SDValue PerformInsertEltCombine(SDNode *N,
12399 TargetLowering::DAGCombinerInfo &DCI) {
12400 // Bitcast an i64 load inserted into a vector to f64.
12401 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12402 EVT VT = N->getValueType(0);
12403 SDNode *Elt = N->getOperand(1).getNode();
12404 if (VT.getVectorElementType() != MVT::i64 ||
12405 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
12406 return SDValue();
12408 SelectionDAG &DAG = DCI.DAG;
12409 SDLoc dl(N);
12410 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12411 VT.getVectorNumElements());
12412 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
12413 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
12414 // Make the DAGCombiner fold the bitcasts.
12415 DCI.AddToWorklist(Vec.getNode());
12416 DCI.AddToWorklist(V.getNode());
12417 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
12418 Vec, V, N->getOperand(2));
12419 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
12422 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12423 /// ISD::VECTOR_SHUFFLE.
12424 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
12425 // The LLVM shufflevector instruction does not require the shuffle mask
12426 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12427 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12428 // operands do not match the mask length, they are extended by concatenating
12429 // them with undef vectors. That is probably the right thing for other
12430 // targets, but for NEON it is better to concatenate two double-register
12431 // size vector operands into a single quad-register size vector. Do that
12432 // transformation here:
12433 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12434 // shuffle(concat(v1, v2), undef)
12435 SDValue Op0 = N->getOperand(0);
12436 SDValue Op1 = N->getOperand(1);
12437 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
12438 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
12439 Op0.getNumOperands() != 2 ||
12440 Op1.getNumOperands() != 2)
12441 return SDValue();
12442 SDValue Concat0Op1 = Op0.getOperand(1);
12443 SDValue Concat1Op1 = Op1.getOperand(1);
12444 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
12445 return SDValue();
12446 // Skip the transformation if any of the types are illegal.
12447 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12448 EVT VT = N->getValueType(0);
12449 if (!TLI.isTypeLegal(VT) ||
12450 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
12451 !TLI.isTypeLegal(Concat1Op1.getValueType()))
12452 return SDValue();
12454 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
12455 Op0.getOperand(0), Op1.getOperand(0));
12456 // Translate the shuffle mask.
12457 SmallVector<int, 16> NewMask;
12458 unsigned NumElts = VT.getVectorNumElements();
12459 unsigned HalfElts = NumElts/2;
12460 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
12461 for (unsigned n = 0; n < NumElts; ++n) {
12462 int MaskElt = SVN->getMaskElt(n);
12463 int NewElt = -1;
12464 if (MaskElt < (int)HalfElts)
12465 NewElt = MaskElt;
12466 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
12467 NewElt = HalfElts + MaskElt - NumElts;
12468 NewMask.push_back(NewElt);
12470 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
12471 DAG.getUNDEF(VT), NewMask);
12474 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12475 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12476 /// base address updates.
12477 /// For generic load/stores, the memory type is assumed to be a vector.
12478 /// The caller is assumed to have checked legality.
12479 static SDValue CombineBaseUpdate(SDNode *N,
12480 TargetLowering::DAGCombinerInfo &DCI) {
12481 SelectionDAG &DAG = DCI.DAG;
12482 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
12483 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
12484 const bool isStore = N->getOpcode() == ISD::STORE;
12485 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
12486 SDValue Addr = N->getOperand(AddrOpIdx);
12487 MemSDNode *MemN = cast<MemSDNode>(N);
12488 SDLoc dl(N);
12490 // Search for a use of the address operand that is an increment.
12491 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
12492 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
12493 SDNode *User = *UI;
12494 if (User->getOpcode() != ISD::ADD ||
12495 UI.getUse().getResNo() != Addr.getResNo())
12496 continue;
12498 // Check that the add is independent of the load/store. Otherwise, folding
12499 // it would create a cycle. We can avoid searching through Addr as it's a
12500 // predecessor to both.
12501 SmallPtrSet<const SDNode *, 32> Visited;
12502 SmallVector<const SDNode *, 16> Worklist;
12503 Visited.insert(Addr.getNode());
12504 Worklist.push_back(N);
12505 Worklist.push_back(User);
12506 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
12507 SDNode::hasPredecessorHelper(User, Visited, Worklist))
12508 continue;
12510 // Find the new opcode for the updating load/store.
12511 bool isLoadOp = true;
12512 bool isLaneOp = false;
12513 unsigned NewOpc = 0;
12514 unsigned NumVecs = 0;
12515 if (isIntrinsic) {
12516 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
12517 switch (IntNo) {
12518 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12519 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
12520 NumVecs = 1; break;
12521 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
12522 NumVecs = 2; break;
12523 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
12524 NumVecs = 3; break;
12525 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
12526 NumVecs = 4; break;
12527 case Intrinsic::arm_neon_vld2dup:
12528 case Intrinsic::arm_neon_vld3dup:
12529 case Intrinsic::arm_neon_vld4dup:
12530 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12531 // combining base updates for such intrinsics.
12532 continue;
12533 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
12534 NumVecs = 2; isLaneOp = true; break;
12535 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
12536 NumVecs = 3; isLaneOp = true; break;
12537 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
12538 NumVecs = 4; isLaneOp = true; break;
12539 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
12540 NumVecs = 1; isLoadOp = false; break;
12541 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
12542 NumVecs = 2; isLoadOp = false; break;
12543 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
12544 NumVecs = 3; isLoadOp = false; break;
12545 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
12546 NumVecs = 4; isLoadOp = false; break;
12547 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
12548 NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
12549 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
12550 NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
12551 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
12552 NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
12554 } else {
12555 isLaneOp = true;
12556 switch (N->getOpcode()) {
12557 default: llvm_unreachable("unexpected opcode for Neon base update");
12558 case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
12559 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
12560 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
12561 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
12562 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
12563 NumVecs = 1; isLaneOp = false; break;
12564 case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
12565 NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
12569 // Find the size of memory referenced by the load/store.
12570 EVT VecTy;
12571 if (isLoadOp) {
12572 VecTy = N->getValueType(0);
12573 } else if (isIntrinsic) {
12574 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
12575 } else {
12576 assert(isStore && "Node has to be a load, a store, or an intrinsic!");
12577 VecTy = N->getOperand(1).getValueType();
12580 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
12581 if (isLaneOp)
12582 NumBytes /= VecTy.getVectorNumElements();
12584 // If the increment is a constant, it must match the memory ref size.
12585 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
12586 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
12587 if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
12588 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12589 // separate instructions that make it harder to use a non-constant update.
12590 continue;
12593 // OK, we found an ADD we can fold into the base update.
12594 // Now, create a _UPD node, taking care of not breaking alignment.
12596 EVT AlignedVecTy = VecTy;
12597 unsigned Alignment = MemN->getAlignment();
12599 // If this is a less-than-standard-aligned load/store, change the type to
12600 // match the standard alignment.
12601 // The alignment is overlooked when selecting _UPD variants; and it's
12602 // easier to introduce bitcasts here than fix that.
12603 // There are 3 ways to get to this base-update combine:
12604 // - intrinsics: they are assumed to be properly aligned (to the standard
12605 // alignment of the memory type), so we don't need to do anything.
12606 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12607 // intrinsics, so, likewise, there's nothing to do.
12608 // - generic load/store instructions: the alignment is specified as an
12609 // explicit operand, rather than implicitly as the standard alignment
12610 // of the memory type (like the intrisics). We need to change the
12611 // memory type to match the explicit alignment. That way, we don't
12612 // generate non-standard-aligned ARMISD::VLDx nodes.
12613 if (isa<LSBaseSDNode>(N)) {
12614 if (Alignment == 0)
12615 Alignment = 1;
12616 if (Alignment < VecTy.getScalarSizeInBits() / 8) {
12617 MVT EltTy = MVT::getIntegerVT(Alignment * 8);
12618 assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
12619 assert(!isLaneOp && "Unexpected generic load/store lane.");
12620 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
12621 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
12623 // Don't set an explicit alignment on regular load/stores that we want
12624 // to transform to VLD/VST 1_UPD nodes.
12625 // This matches the behavior of regular load/stores, which only get an
12626 // explicit alignment if the MMO alignment is larger than the standard
12627 // alignment of the memory type.
12628 // Intrinsics, however, always get an explicit alignment, set to the
12629 // alignment of the MMO.
12630 Alignment = 1;
12633 // Create the new updating load/store node.
12634 // First, create an SDVTList for the new updating node's results.
12635 EVT Tys[6];
12636 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
12637 unsigned n;
12638 for (n = 0; n < NumResultVecs; ++n)
12639 Tys[n] = AlignedVecTy;
12640 Tys[n++] = MVT::i32;
12641 Tys[n] = MVT::Other;
12642 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
12644 // Then, gather the new node's operands.
12645 SmallVector<SDValue, 8> Ops;
12646 Ops.push_back(N->getOperand(0)); // incoming chain
12647 Ops.push_back(N->getOperand(AddrOpIdx));
12648 Ops.push_back(Inc);
12650 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
12651 // Try to match the intrinsic's signature
12652 Ops.push_back(StN->getValue());
12653 } else {
12654 // Loads (and of course intrinsics) match the intrinsics' signature,
12655 // so just add all but the alignment operand.
12656 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
12657 Ops.push_back(N->getOperand(i));
12660 // For all node types, the alignment operand is always the last one.
12661 Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
12663 // If this is a non-standard-aligned STORE, the penultimate operand is the
12664 // stored value. Bitcast it to the aligned type.
12665 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
12666 SDValue &StVal = Ops[Ops.size()-2];
12667 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
12670 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
12671 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
12672 MemN->getMemOperand());
12674 // Update the uses.
12675 SmallVector<SDValue, 5> NewResults;
12676 for (unsigned i = 0; i < NumResultVecs; ++i)
12677 NewResults.push_back(SDValue(UpdN.getNode(), i));
12679 // If this is an non-standard-aligned LOAD, the first result is the loaded
12680 // value. Bitcast it to the expected result type.
12681 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
12682 SDValue &LdVal = NewResults[0];
12683 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
12686 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
12687 DCI.CombineTo(N, NewResults);
12688 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
12690 break;
12692 return SDValue();
12695 static SDValue PerformVLDCombine(SDNode *N,
12696 TargetLowering::DAGCombinerInfo &DCI) {
12697 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12698 return SDValue();
12700 return CombineBaseUpdate(N, DCI);
12703 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12704 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12705 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12706 /// return true.
12707 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12708 SelectionDAG &DAG = DCI.DAG;
12709 EVT VT = N->getValueType(0);
12710 // vldN-dup instructions only support 64-bit vectors for N > 1.
12711 if (!VT.is64BitVector())
12712 return false;
12714 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12715 SDNode *VLD = N->getOperand(0).getNode();
12716 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
12717 return false;
12718 unsigned NumVecs = 0;
12719 unsigned NewOpc = 0;
12720 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
12721 if (IntNo == Intrinsic::arm_neon_vld2lane) {
12722 NumVecs = 2;
12723 NewOpc = ARMISD::VLD2DUP;
12724 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
12725 NumVecs = 3;
12726 NewOpc = ARMISD::VLD3DUP;
12727 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
12728 NumVecs = 4;
12729 NewOpc = ARMISD::VLD4DUP;
12730 } else {
12731 return false;
12734 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12735 // numbers match the load.
12736 unsigned VLDLaneNo =
12737 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
12738 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
12739 UI != UE; ++UI) {
12740 // Ignore uses of the chain result.
12741 if (UI.getUse().getResNo() == NumVecs)
12742 continue;
12743 SDNode *User = *UI;
12744 if (User->getOpcode() != ARMISD::VDUPLANE ||
12745 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
12746 return false;
12749 // Create the vldN-dup node.
12750 EVT Tys[5];
12751 unsigned n;
12752 for (n = 0; n < NumVecs; ++n)
12753 Tys[n] = VT;
12754 Tys[n] = MVT::Other;
12755 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
12756 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
12757 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
12758 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
12759 Ops, VLDMemInt->getMemoryVT(),
12760 VLDMemInt->getMemOperand());
12762 // Update the uses.
12763 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
12764 UI != UE; ++UI) {
12765 unsigned ResNo = UI.getUse().getResNo();
12766 // Ignore uses of the chain result.
12767 if (ResNo == NumVecs)
12768 continue;
12769 SDNode *User = *UI;
12770 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
12773 // Now the vldN-lane intrinsic is dead except for its chain result.
12774 // Update uses of the chain.
12775 std::vector<SDValue> VLDDupResults;
12776 for (unsigned n = 0; n < NumVecs; ++n)
12777 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
12778 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
12779 DCI.CombineTo(VLD, VLDDupResults);
12781 return true;
12784 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12785 /// ARMISD::VDUPLANE.
12786 static SDValue PerformVDUPLANECombine(SDNode *N,
12787 TargetLowering::DAGCombinerInfo &DCI) {
12788 SDValue Op = N->getOperand(0);
12790 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12791 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12792 if (CombineVLDDUP(N, DCI))
12793 return SDValue(N, 0);
12795 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12796 // redundant. Ignore bit_converts for now; element sizes are checked below.
12797 while (Op.getOpcode() == ISD::BITCAST)
12798 Op = Op.getOperand(0);
12799 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
12800 return SDValue();
12802 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12803 unsigned EltSize = Op.getScalarValueSizeInBits();
12804 // The canonical VMOV for a zero vector uses a 32-bit element size.
12805 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12806 unsigned EltBits;
12807 if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
12808 EltSize = 8;
12809 EVT VT = N->getValueType(0);
12810 if (EltSize > VT.getScalarSizeInBits())
12811 return SDValue();
12813 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
12816 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12817 static SDValue PerformVDUPCombine(SDNode *N,
12818 TargetLowering::DAGCombinerInfo &DCI,
12819 const ARMSubtarget *Subtarget) {
12820 SelectionDAG &DAG = DCI.DAG;
12821 SDValue Op = N->getOperand(0);
12823 if (!Subtarget->hasNEON())
12824 return SDValue();
12826 // Match VDUP(LOAD) -> VLD1DUP.
12827 // We match this pattern here rather than waiting for isel because the
12828 // transform is only legal for unindexed loads.
12829 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
12830 if (LD && Op.hasOneUse() && LD->isUnindexed() &&
12831 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
12832 SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
12833 DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
12834 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
12835 SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
12836 Ops, LD->getMemoryVT(),
12837 LD->getMemOperand());
12838 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
12839 return VLDDup;
12842 return SDValue();
12845 static SDValue PerformLOADCombine(SDNode *N,
12846 TargetLowering::DAGCombinerInfo &DCI) {
12847 EVT VT = N->getValueType(0);
12849 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12850 if (ISD::isNormalLoad(N) && VT.isVector() &&
12851 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12852 return CombineBaseUpdate(N, DCI);
12854 return SDValue();
12857 /// PerformSTORECombine - Target-specific dag combine xforms for
12858 /// ISD::STORE.
12859 static SDValue PerformSTORECombine(SDNode *N,
12860 TargetLowering::DAGCombinerInfo &DCI) {
12861 StoreSDNode *St = cast<StoreSDNode>(N);
12862 if (St->isVolatile())
12863 return SDValue();
12865 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12866 // pack all of the elements in one place. Next, store to memory in fewer
12867 // chunks.
12868 SDValue StVal = St->getValue();
12869 EVT VT = StVal.getValueType();
12870 if (St->isTruncatingStore() && VT.isVector()) {
12871 SelectionDAG &DAG = DCI.DAG;
12872 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12873 EVT StVT = St->getMemoryVT();
12874 unsigned NumElems = VT.getVectorNumElements();
12875 assert(StVT != VT && "Cannot truncate to the same type");
12876 unsigned FromEltSz = VT.getScalarSizeInBits();
12877 unsigned ToEltSz = StVT.getScalarSizeInBits();
12879 // From, To sizes and ElemCount must be pow of two
12880 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
12882 // We are going to use the original vector elt for storing.
12883 // Accumulated smaller vector elements must be a multiple of the store size.
12884 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
12886 unsigned SizeRatio = FromEltSz / ToEltSz;
12887 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
12889 // Create a type on which we perform the shuffle.
12890 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
12891 NumElems*SizeRatio);
12892 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
12894 SDLoc DL(St);
12895 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
12896 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
12897 for (unsigned i = 0; i < NumElems; ++i)
12898 ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
12899 ? (i + 1) * SizeRatio - 1
12900 : i * SizeRatio;
12902 // Can't shuffle using an illegal type.
12903 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
12905 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
12906 DAG.getUNDEF(WideVec.getValueType()),
12907 ShuffleVec);
12908 // At this point all of the data is stored at the bottom of the
12909 // register. We now need to save it to mem.
12911 // Find the largest store unit
12912 MVT StoreType = MVT::i8;
12913 for (MVT Tp : MVT::integer_valuetypes()) {
12914 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
12915 StoreType = Tp;
12917 // Didn't find a legal store type.
12918 if (!TLI.isTypeLegal(StoreType))
12919 return SDValue();
12921 // Bitcast the original vector into a vector of store-size units
12922 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
12923 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
12924 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
12925 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
12926 SmallVector<SDValue, 8> Chains;
12927 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
12928 TLI.getPointerTy(DAG.getDataLayout()));
12929 SDValue BasePtr = St->getBasePtr();
12931 // Perform one or more big stores into memory.
12932 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
12933 for (unsigned I = 0; I < E; I++) {
12934 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
12935 StoreType, ShuffWide,
12936 DAG.getIntPtrConstant(I, DL));
12937 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
12938 St->getPointerInfo(), St->getAlignment(),
12939 St->getMemOperand()->getFlags());
12940 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
12941 Increment);
12942 Chains.push_back(Ch);
12944 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
12947 if (!ISD::isNormalStore(St))
12948 return SDValue();
12950 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12951 // ARM stores of arguments in the same cache line.
12952 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
12953 StVal.getNode()->hasOneUse()) {
12954 SelectionDAG &DAG = DCI.DAG;
12955 bool isBigEndian = DAG.getDataLayout().isBigEndian();
12956 SDLoc DL(St);
12957 SDValue BasePtr = St->getBasePtr();
12958 SDValue NewST1 = DAG.getStore(
12959 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
12960 BasePtr, St->getPointerInfo(), St->getAlignment(),
12961 St->getMemOperand()->getFlags());
12963 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12964 DAG.getConstant(4, DL, MVT::i32));
12965 return DAG.getStore(NewST1.getValue(0), DL,
12966 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12967 OffsetPtr, St->getPointerInfo(),
12968 std::min(4U, St->getAlignment() / 2),
12969 St->getMemOperand()->getFlags());
12972 if (StVal.getValueType() == MVT::i64 &&
12973 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12975 // Bitcast an i64 store extracted from a vector to f64.
12976 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12977 SelectionDAG &DAG = DCI.DAG;
12978 SDLoc dl(StVal);
12979 SDValue IntVec = StVal.getOperand(0);
12980 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12981 IntVec.getValueType().getVectorNumElements());
12982 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
12983 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12984 Vec, StVal.getOperand(1));
12985 dl = SDLoc(N);
12986 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
12987 // Make the DAGCombiner fold the bitcasts.
12988 DCI.AddToWorklist(Vec.getNode());
12989 DCI.AddToWorklist(ExtElt.getNode());
12990 DCI.AddToWorklist(V.getNode());
12991 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
12992 St->getPointerInfo(), St->getAlignment(),
12993 St->getMemOperand()->getFlags(), St->getAAInfo());
12996 // If this is a legal vector store, try to combine it into a VST1_UPD.
12997 if (ISD::isNormalStore(N) && VT.isVector() &&
12998 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12999 return CombineBaseUpdate(N, DCI);
13001 return SDValue();
13004 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13005 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13006 /// when the VMUL has a constant operand that is a power of 2.
13008 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13009 /// vmul.f32 d16, d17, d16
13010 /// vcvt.s32.f32 d16, d16
13011 /// becomes:
13012 /// vcvt.s32.f32 d16, d16, #3
13013 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
13014 const ARMSubtarget *Subtarget) {
13015 if (!Subtarget->hasNEON())
13016 return SDValue();
13018 SDValue Op = N->getOperand(0);
13019 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
13020 Op.getOpcode() != ISD::FMUL)
13021 return SDValue();
13023 SDValue ConstVec = Op->getOperand(1);
13024 if (!isa<BuildVectorSDNode>(ConstVec))
13025 return SDValue();
13027 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
13028 uint32_t FloatBits = FloatTy.getSizeInBits();
13029 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
13030 uint32_t IntBits = IntTy.getSizeInBits();
13031 unsigned NumLanes = Op.getValueType().getVectorNumElements();
13032 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13033 // These instructions only exist converting from f32 to i32. We can handle
13034 // smaller integers by generating an extra truncate, but larger ones would
13035 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13036 // these intructions only support v2i32/v4i32 types.
13037 return SDValue();
13040 BitVector UndefElements;
13041 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13042 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13043 if (C == -1 || C == 0 || C > 32)
13044 return SDValue();
13046 SDLoc dl(N);
13047 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
13048 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
13049 Intrinsic::arm_neon_vcvtfp2fxu;
13050 SDValue FixConv = DAG.getNode(
13051 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13052 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
13053 DAG.getConstant(C, dl, MVT::i32));
13055 if (IntBits < FloatBits)
13056 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
13058 return FixConv;
13061 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13062 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13063 /// when the VDIV has a constant operand that is a power of 2.
13065 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13066 /// vcvt.f32.s32 d16, d16
13067 /// vdiv.f32 d16, d17, d16
13068 /// becomes:
13069 /// vcvt.f32.s32 d16, d16, #3
13070 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
13071 const ARMSubtarget *Subtarget) {
13072 if (!Subtarget->hasNEON())
13073 return SDValue();
13075 SDValue Op = N->getOperand(0);
13076 unsigned OpOpcode = Op.getNode()->getOpcode();
13077 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
13078 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
13079 return SDValue();
13081 SDValue ConstVec = N->getOperand(1);
13082 if (!isa<BuildVectorSDNode>(ConstVec))
13083 return SDValue();
13085 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
13086 uint32_t FloatBits = FloatTy.getSizeInBits();
13087 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
13088 uint32_t IntBits = IntTy.getSizeInBits();
13089 unsigned NumLanes = Op.getValueType().getVectorNumElements();
13090 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13091 // These instructions only exist converting from i32 to f32. We can handle
13092 // smaller integers by generating an extra extend, but larger ones would
13093 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13094 // these intructions only support v2i32/v4i32 types.
13095 return SDValue();
13098 BitVector UndefElements;
13099 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13100 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13101 if (C == -1 || C == 0 || C > 32)
13102 return SDValue();
13104 SDLoc dl(N);
13105 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
13106 SDValue ConvInput = Op.getOperand(0);
13107 if (IntBits < FloatBits)
13108 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
13109 dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13110 ConvInput);
13112 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
13113 Intrinsic::arm_neon_vcvtfxu2fp;
13114 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
13115 Op.getValueType(),
13116 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
13117 ConvInput, DAG.getConstant(C, dl, MVT::i32));
13120 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13121 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
13122 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13123 switch (IntNo) {
13124 default:
13125 // Don't do anything for most intrinsics.
13126 break;
13128 // Vector shifts: check for immediate versions and lower them.
13129 // Note: This is done during DAG combining instead of DAG legalizing because
13130 // the build_vectors for 64-bit vector element shift counts are generally
13131 // not legal, and it is hard to see their values after they get legalized to
13132 // loads from a constant pool.
13133 case Intrinsic::arm_neon_vshifts:
13134 case Intrinsic::arm_neon_vshiftu:
13135 case Intrinsic::arm_neon_vrshifts:
13136 case Intrinsic::arm_neon_vrshiftu:
13137 case Intrinsic::arm_neon_vrshiftn:
13138 case Intrinsic::arm_neon_vqshifts:
13139 case Intrinsic::arm_neon_vqshiftu:
13140 case Intrinsic::arm_neon_vqshiftsu:
13141 case Intrinsic::arm_neon_vqshiftns:
13142 case Intrinsic::arm_neon_vqshiftnu:
13143 case Intrinsic::arm_neon_vqshiftnsu:
13144 case Intrinsic::arm_neon_vqrshiftns:
13145 case Intrinsic::arm_neon_vqrshiftnu:
13146 case Intrinsic::arm_neon_vqrshiftnsu: {
13147 EVT VT = N->getOperand(1).getValueType();
13148 int64_t Cnt;
13149 unsigned VShiftOpc = 0;
13151 switch (IntNo) {
13152 case Intrinsic::arm_neon_vshifts:
13153 case Intrinsic::arm_neon_vshiftu:
13154 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
13155 VShiftOpc = ARMISD::VSHLIMM;
13156 break;
13158 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
13159 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
13160 : ARMISD::VSHRuIMM);
13161 break;
13163 return SDValue();
13165 case Intrinsic::arm_neon_vrshifts:
13166 case Intrinsic::arm_neon_vrshiftu:
13167 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
13168 break;
13169 return SDValue();
13171 case Intrinsic::arm_neon_vqshifts:
13172 case Intrinsic::arm_neon_vqshiftu:
13173 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13174 break;
13175 return SDValue();
13177 case Intrinsic::arm_neon_vqshiftsu:
13178 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13179 break;
13180 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13182 case Intrinsic::arm_neon_vrshiftn:
13183 case Intrinsic::arm_neon_vqshiftns:
13184 case Intrinsic::arm_neon_vqshiftnu:
13185 case Intrinsic::arm_neon_vqshiftnsu:
13186 case Intrinsic::arm_neon_vqrshiftns:
13187 case Intrinsic::arm_neon_vqrshiftnu:
13188 case Intrinsic::arm_neon_vqrshiftnsu:
13189 // Narrowing shifts require an immediate right shift.
13190 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
13191 break;
13192 llvm_unreachable("invalid shift count for narrowing vector shift "
13193 "intrinsic");
13195 default:
13196 llvm_unreachable("unhandled vector shift");
13199 switch (IntNo) {
13200 case Intrinsic::arm_neon_vshifts:
13201 case Intrinsic::arm_neon_vshiftu:
13202 // Opcode already set above.
13203 break;
13204 case Intrinsic::arm_neon_vrshifts:
13205 VShiftOpc = ARMISD::VRSHRsIMM;
13206 break;
13207 case Intrinsic::arm_neon_vrshiftu:
13208 VShiftOpc = ARMISD::VRSHRuIMM;
13209 break;
13210 case Intrinsic::arm_neon_vrshiftn:
13211 VShiftOpc = ARMISD::VRSHRNIMM;
13212 break;
13213 case Intrinsic::arm_neon_vqshifts:
13214 VShiftOpc = ARMISD::VQSHLsIMM;
13215 break;
13216 case Intrinsic::arm_neon_vqshiftu:
13217 VShiftOpc = ARMISD::VQSHLuIMM;
13218 break;
13219 case Intrinsic::arm_neon_vqshiftsu:
13220 VShiftOpc = ARMISD::VQSHLsuIMM;
13221 break;
13222 case Intrinsic::arm_neon_vqshiftns:
13223 VShiftOpc = ARMISD::VQSHRNsIMM;
13224 break;
13225 case Intrinsic::arm_neon_vqshiftnu:
13226 VShiftOpc = ARMISD::VQSHRNuIMM;
13227 break;
13228 case Intrinsic::arm_neon_vqshiftnsu:
13229 VShiftOpc = ARMISD::VQSHRNsuIMM;
13230 break;
13231 case Intrinsic::arm_neon_vqrshiftns:
13232 VShiftOpc = ARMISD::VQRSHRNsIMM;
13233 break;
13234 case Intrinsic::arm_neon_vqrshiftnu:
13235 VShiftOpc = ARMISD::VQRSHRNuIMM;
13236 break;
13237 case Intrinsic::arm_neon_vqrshiftnsu:
13238 VShiftOpc = ARMISD::VQRSHRNsuIMM;
13239 break;
13242 SDLoc dl(N);
13243 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13244 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
13247 case Intrinsic::arm_neon_vshiftins: {
13248 EVT VT = N->getOperand(1).getValueType();
13249 int64_t Cnt;
13250 unsigned VShiftOpc = 0;
13252 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
13253 VShiftOpc = ARMISD::VSLIIMM;
13254 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
13255 VShiftOpc = ARMISD::VSRIIMM;
13256 else {
13257 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13260 SDLoc dl(N);
13261 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13262 N->getOperand(1), N->getOperand(2),
13263 DAG.getConstant(Cnt, dl, MVT::i32));
13266 case Intrinsic::arm_neon_vqrshifts:
13267 case Intrinsic::arm_neon_vqrshiftu:
13268 // No immediate versions of these to check for.
13269 break;
13272 return SDValue();
13275 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13276 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13277 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13278 /// vector element shift counts are generally not legal, and it is hard to see
13279 /// their values after they get legalized to loads from a constant pool.
13280 static SDValue PerformShiftCombine(SDNode *N,
13281 TargetLowering::DAGCombinerInfo &DCI,
13282 const ARMSubtarget *ST) {
13283 SelectionDAG &DAG = DCI.DAG;
13284 EVT VT = N->getValueType(0);
13285 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
13286 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13287 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13288 SDValue N1 = N->getOperand(1);
13289 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
13290 SDValue N0 = N->getOperand(0);
13291 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
13292 DAG.MaskedValueIsZero(N0.getOperand(0),
13293 APInt::getHighBitsSet(32, 16)))
13294 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
13298 if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
13299 N->getOperand(0)->getOpcode() == ISD::AND &&
13300 N->getOperand(0)->hasOneUse()) {
13301 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13302 return SDValue();
13303 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13304 // usually show up because instcombine prefers to canonicalize it to
13305 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13306 // out of GEP lowering in some cases.
13307 SDValue N0 = N->getOperand(0);
13308 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
13309 if (!ShiftAmtNode)
13310 return SDValue();
13311 uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
13312 ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13313 if (!AndMaskNode)
13314 return SDValue();
13315 uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
13316 // Don't transform uxtb/uxth.
13317 if (AndMask == 255 || AndMask == 65535)
13318 return SDValue();
13319 if (isMask_32(AndMask)) {
13320 uint32_t MaskedBits = countLeadingZeros(AndMask);
13321 if (MaskedBits > ShiftAmt) {
13322 SDLoc DL(N);
13323 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
13324 DAG.getConstant(MaskedBits, DL, MVT::i32));
13325 return DAG.getNode(
13326 ISD::SRL, DL, MVT::i32, SHL,
13327 DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
13332 // Nothing to be done for scalar shifts.
13333 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13334 if (!VT.isVector() || !TLI.isTypeLegal(VT))
13335 return SDValue();
13336 if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
13337 return SDValue();
13339 int64_t Cnt;
13341 switch (N->getOpcode()) {
13342 default: llvm_unreachable("unexpected shift opcode");
13344 case ISD::SHL:
13345 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
13346 SDLoc dl(N);
13347 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
13348 DAG.getConstant(Cnt, dl, MVT::i32));
13350 break;
13352 case ISD::SRA:
13353 case ISD::SRL:
13354 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
13355 unsigned VShiftOpc =
13356 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
13357 SDLoc dl(N);
13358 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
13359 DAG.getConstant(Cnt, dl, MVT::i32));
13362 return SDValue();
13365 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13366 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13367 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
13368 const ARMSubtarget *ST) {
13369 SDValue N0 = N->getOperand(0);
13371 // Check for sign- and zero-extensions of vector extract operations of 8-
13372 // and 16-bit vector elements. NEON supports these directly. They are
13373 // handled during DAG combining because type legalization will promote them
13374 // to 32-bit types and it is messy to recognize the operations after that.
13375 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13376 SDValue Vec = N0.getOperand(0);
13377 SDValue Lane = N0.getOperand(1);
13378 EVT VT = N->getValueType(0);
13379 EVT EltVT = N0.getValueType();
13380 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13382 if (VT == MVT::i32 &&
13383 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
13384 TLI.isTypeLegal(Vec.getValueType()) &&
13385 isa<ConstantSDNode>(Lane)) {
13387 unsigned Opc = 0;
13388 switch (N->getOpcode()) {
13389 default: llvm_unreachable("unexpected opcode");
13390 case ISD::SIGN_EXTEND:
13391 Opc = ARMISD::VGETLANEs;
13392 break;
13393 case ISD::ZERO_EXTEND:
13394 case ISD::ANY_EXTEND:
13395 Opc = ARMISD::VGETLANEu;
13396 break;
13398 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
13402 return SDValue();
13405 static const APInt *isPowerOf2Constant(SDValue V) {
13406 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
13407 if (!C)
13408 return nullptr;
13409 const APInt *CV = &C->getAPIntValue();
13410 return CV->isPowerOf2() ? CV : nullptr;
13413 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
13414 // If we have a CMOV, OR and AND combination such as:
13415 // if (x & CN)
13416 // y |= CM;
13418 // And:
13419 // * CN is a single bit;
13420 // * All bits covered by CM are known zero in y
13422 // Then we can convert this into a sequence of BFI instructions. This will
13423 // always be a win if CM is a single bit, will always be no worse than the
13424 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13425 // three bits (due to the extra IT instruction).
13427 SDValue Op0 = CMOV->getOperand(0);
13428 SDValue Op1 = CMOV->getOperand(1);
13429 auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
13430 auto CC = CCNode->getAPIntValue().getLimitedValue();
13431 SDValue CmpZ = CMOV->getOperand(4);
13433 // The compare must be against zero.
13434 if (!isNullConstant(CmpZ->getOperand(1)))
13435 return SDValue();
13437 assert(CmpZ->getOpcode() == ARMISD::CMPZ);
13438 SDValue And = CmpZ->getOperand(0);
13439 if (And->getOpcode() != ISD::AND)
13440 return SDValue();
13441 const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
13442 if (!AndC)
13443 return SDValue();
13444 SDValue X = And->getOperand(0);
13446 if (CC == ARMCC::EQ) {
13447 // We're performing an "equal to zero" compare. Swap the operands so we
13448 // canonicalize on a "not equal to zero" compare.
13449 std::swap(Op0, Op1);
13450 } else {
13451 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
13454 if (Op1->getOpcode() != ISD::OR)
13455 return SDValue();
13457 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
13458 if (!OrC)
13459 return SDValue();
13460 SDValue Y = Op1->getOperand(0);
13462 if (Op0 != Y)
13463 return SDValue();
13465 // Now, is it profitable to continue?
13466 APInt OrCI = OrC->getAPIntValue();
13467 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
13468 if (OrCI.countPopulation() > Heuristic)
13469 return SDValue();
13471 // Lastly, can we determine that the bits defined by OrCI
13472 // are zero in Y?
13473 KnownBits Known = DAG.computeKnownBits(Y);
13474 if ((OrCI & Known.Zero) != OrCI)
13475 return SDValue();
13477 // OK, we can do the combine.
13478 SDValue V = Y;
13479 SDLoc dl(X);
13480 EVT VT = X.getValueType();
13481 unsigned BitInX = AndC->logBase2();
13483 if (BitInX != 0) {
13484 // We must shift X first.
13485 X = DAG.getNode(ISD::SRL, dl, VT, X,
13486 DAG.getConstant(BitInX, dl, VT));
13489 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
13490 BitInY < NumActiveBits; ++BitInY) {
13491 if (OrCI[BitInY] == 0)
13492 continue;
13493 APInt Mask(VT.getSizeInBits(), 0);
13494 Mask.setBit(BitInY);
13495 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
13496 // Confusingly, the operand is an *inverted* mask.
13497 DAG.getConstant(~Mask, dl, VT));
13500 return V;
13503 // Given N, the value controlling the conditional branch, search for the loop
13504 // intrinsic, returning it, along with how the value is used. We need to handle
13505 // patterns such as the following:
13506 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13507 // (brcond (setcc (loop.decrement), 0, eq), exit)
13508 // (brcond (setcc (loop.decrement), 0, ne), header)
13509 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
13510 bool &Negate) {
13511 switch (N->getOpcode()) {
13512 default:
13513 break;
13514 case ISD::XOR: {
13515 if (!isa<ConstantSDNode>(N.getOperand(1)))
13516 return SDValue();
13517 if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
13518 return SDValue();
13519 Negate = !Negate;
13520 return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
13522 case ISD::SETCC: {
13523 auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
13524 if (!Const)
13525 return SDValue();
13526 if (Const->isNullValue())
13527 Imm = 0;
13528 else if (Const->isOne())
13529 Imm = 1;
13530 else
13531 return SDValue();
13532 CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
13533 return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
13535 case ISD::INTRINSIC_W_CHAIN: {
13536 unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
13537 if (IntOp != Intrinsic::test_set_loop_iterations &&
13538 IntOp != Intrinsic::loop_decrement_reg)
13539 return SDValue();
13540 return N;
13543 return SDValue();
13546 static SDValue PerformHWLoopCombine(SDNode *N,
13547 TargetLowering::DAGCombinerInfo &DCI,
13548 const ARMSubtarget *ST) {
13550 // The hwloop intrinsics that we're interested are used for control-flow,
13551 // either for entering or exiting the loop:
13552 // - test.set.loop.iterations will test whether its operand is zero. If it
13553 // is zero, the proceeding branch should not enter the loop.
13554 // - loop.decrement.reg also tests whether its operand is zero. If it is
13555 // zero, the proceeding branch should not branch back to the beginning of
13556 // the loop.
13557 // So here, we need to check that how the brcond is using the result of each
13558 // of the intrinsics to ensure that we're branching to the right place at the
13559 // right time.
13561 ISD::CondCode CC;
13562 SDValue Cond;
13563 int Imm = 1;
13564 bool Negate = false;
13565 SDValue Chain = N->getOperand(0);
13566 SDValue Dest;
13568 if (N->getOpcode() == ISD::BRCOND) {
13569 CC = ISD::SETEQ;
13570 Cond = N->getOperand(1);
13571 Dest = N->getOperand(2);
13572 } else {
13573 assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
13574 CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13575 Cond = N->getOperand(2);
13576 Dest = N->getOperand(4);
13577 if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
13578 if (!Const->isOne() && !Const->isNullValue())
13579 return SDValue();
13580 Imm = Const->getZExtValue();
13581 } else
13582 return SDValue();
13585 SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
13586 if (!Int)
13587 return SDValue();
13589 if (Negate)
13590 CC = ISD::getSetCCInverse(CC, true);
13592 auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
13593 return (CC == ISD::SETEQ && Imm == 0) ||
13594 (CC == ISD::SETNE && Imm == 1) ||
13595 (CC == ISD::SETLT && Imm == 1) ||
13596 (CC == ISD::SETULT && Imm == 1);
13599 auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
13600 return (CC == ISD::SETEQ && Imm == 1) ||
13601 (CC == ISD::SETNE && Imm == 0) ||
13602 (CC == ISD::SETGT && Imm == 0) ||
13603 (CC == ISD::SETUGT && Imm == 0) ||
13604 (CC == ISD::SETGE && Imm == 1) ||
13605 (CC == ISD::SETUGE && Imm == 1);
13608 assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
13609 "unsupported condition");
13611 SDLoc dl(Int);
13612 SelectionDAG &DAG = DCI.DAG;
13613 SDValue Elements = Int.getOperand(2);
13614 unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
13615 assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
13616 && "expected single br user");
13617 SDNode *Br = *N->use_begin();
13618 SDValue OtherTarget = Br->getOperand(1);
13620 // Update the unconditional branch to branch to the given Dest.
13621 auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
13622 SDValue NewBrOps[] = { Br->getOperand(0), Dest };
13623 SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
13624 DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
13627 if (IntOp == Intrinsic::test_set_loop_iterations) {
13628 SDValue Res;
13629 // We expect this 'instruction' to branch when the counter is zero.
13630 if (IsTrueIfZero(CC, Imm)) {
13631 SDValue Ops[] = { Chain, Elements, Dest };
13632 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
13633 } else {
13634 // The logic is the reverse of what we need for WLS, so find the other
13635 // basic block target: the target of the proceeding br.
13636 UpdateUncondBr(Br, Dest, DAG);
13638 SDValue Ops[] = { Chain, Elements, OtherTarget };
13639 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
13641 DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
13642 return Res;
13643 } else {
13644 SDValue Size = DAG.getTargetConstant(
13645 cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
13646 SDValue Args[] = { Int.getOperand(0), Elements, Size, };
13647 SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
13648 DAG.getVTList(MVT::i32, MVT::Other), Args);
13649 DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
13651 // We expect this instruction to branch when the count is not zero.
13652 SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
13654 // Update the unconditional branch to target the loop preheader if we've
13655 // found the condition has been reversed.
13656 if (Target == OtherTarget)
13657 UpdateUncondBr(Br, Dest, DAG);
13659 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13660 SDValue(LoopDec.getNode(), 1), Chain);
13662 SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
13663 return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
13665 return SDValue();
13668 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13669 SDValue
13670 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
13671 SDValue Cmp = N->getOperand(4);
13672 if (Cmp.getOpcode() != ARMISD::CMPZ)
13673 // Only looking at NE cases.
13674 return SDValue();
13676 EVT VT = N->getValueType(0);
13677 SDLoc dl(N);
13678 SDValue LHS = Cmp.getOperand(0);
13679 SDValue RHS = Cmp.getOperand(1);
13680 SDValue Chain = N->getOperand(0);
13681 SDValue BB = N->getOperand(1);
13682 SDValue ARMcc = N->getOperand(2);
13683 ARMCC::CondCodes CC =
13684 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
13686 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13687 // -> (brcond Chain BB CC CPSR Cmp)
13688 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
13689 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
13690 LHS->getOperand(0)->hasOneUse()) {
13691 auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
13692 auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
13693 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13694 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
13695 if ((LHS00C && LHS00C->getZExtValue() == 0) &&
13696 (LHS01C && LHS01C->getZExtValue() == 1) &&
13697 (LHS1C && LHS1C->getZExtValue() == 1) &&
13698 (RHSC && RHSC->getZExtValue() == 0)) {
13699 return DAG.getNode(
13700 ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
13701 LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
13705 return SDValue();
13708 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13709 SDValue
13710 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
13711 SDValue Cmp = N->getOperand(4);
13712 if (Cmp.getOpcode() != ARMISD::CMPZ)
13713 // Only looking at EQ and NE cases.
13714 return SDValue();
13716 EVT VT = N->getValueType(0);
13717 SDLoc dl(N);
13718 SDValue LHS = Cmp.getOperand(0);
13719 SDValue RHS = Cmp.getOperand(1);
13720 SDValue FalseVal = N->getOperand(0);
13721 SDValue TrueVal = N->getOperand(1);
13722 SDValue ARMcc = N->getOperand(2);
13723 ARMCC::CondCodes CC =
13724 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
13726 // BFI is only available on V6T2+.
13727 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
13728 SDValue R = PerformCMOVToBFICombine(N, DAG);
13729 if (R)
13730 return R;
13733 // Simplify
13734 // mov r1, r0
13735 // cmp r1, x
13736 // mov r0, y
13737 // moveq r0, x
13738 // to
13739 // cmp r0, x
13740 // movne r0, y
13742 // mov r1, r0
13743 // cmp r1, x
13744 // mov r0, x
13745 // movne r0, y
13746 // to
13747 // cmp r0, x
13748 // movne r0, y
13749 /// FIXME: Turn this into a target neutral optimization?
13750 SDValue Res;
13751 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
13752 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
13753 N->getOperand(3), Cmp);
13754 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
13755 SDValue ARMcc;
13756 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
13757 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
13758 N->getOperand(3), NewCmp);
13761 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13762 // -> (cmov F T CC CPSR Cmp)
13763 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
13764 auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
13765 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13766 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
13767 if ((LHS0C && LHS0C->getZExtValue() == 0) &&
13768 (LHS1C && LHS1C->getZExtValue() == 1) &&
13769 (RHSC && RHSC->getZExtValue() == 0)) {
13770 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
13771 LHS->getOperand(2), LHS->getOperand(3),
13772 LHS->getOperand(4));
13776 if (!VT.isInteger())
13777 return SDValue();
13779 // Materialize a boolean comparison for integers so we can avoid branching.
13780 if (isNullConstant(FalseVal)) {
13781 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
13782 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
13783 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13784 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13785 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13786 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
13787 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
13788 DAG.getConstant(5, dl, MVT::i32));
13789 } else {
13790 // CMOV 0, 1, ==, (CMPZ x, y) ->
13791 // (ADDCARRY (SUB x, y), t:0, t:1)
13792 // where t = (SUBCARRY 0, (SUB x, y), 0)
13794 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13795 // x != y. In other words, a carry C == 1 when x == y, C == 0
13796 // otherwise.
13797 // The final ADDCARRY computes
13798 // x - y + (0 - (x - y)) + C == C
13799 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
13800 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13801 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
13802 // ISD::SUBCARRY returns a borrow but we want the carry here
13803 // actually.
13804 SDValue Carry =
13805 DAG.getNode(ISD::SUB, dl, MVT::i32,
13806 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
13807 Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
13809 } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
13810 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
13811 // This seems pointless but will allow us to combine it further below.
13812 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13813 SDValue Sub =
13814 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
13815 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
13816 Sub.getValue(1), SDValue());
13817 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
13818 N->getOperand(3), CPSRGlue.getValue(1));
13819 FalseVal = Sub;
13821 } else if (isNullConstant(TrueVal)) {
13822 if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
13823 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
13824 // This seems pointless but will allow us to combine it further below
13825 // Note that we change == for != as this is the dual for the case above.
13826 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13827 SDValue Sub =
13828 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
13829 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
13830 Sub.getValue(1), SDValue());
13831 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
13832 DAG.getConstant(ARMCC::NE, dl, MVT::i32),
13833 N->getOperand(3), CPSRGlue.getValue(1));
13834 FalseVal = Sub;
13838 // On Thumb1, the DAG above may be further combined if z is a power of 2
13839 // (z == 2 ^ K).
13840 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13841 // t1 = (USUBO (SUB x, y), 1)
13842 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13843 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13845 // This also handles the special case of comparing against zero; it's
13846 // essentially, the same pattern, except there's no SUBS:
13847 // CMOV x, z, !=, (CMPZ x, 0) ->
13848 // t1 = (USUBO x, 1)
13849 // t2 = (SUBCARRY x, t1:0, t1:1)
13850 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13851 const APInt *TrueConst;
13852 if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
13853 ((FalseVal.getOpcode() == ARMISD::SUBS &&
13854 FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
13855 (FalseVal == LHS && isNullConstant(RHS))) &&
13856 (TrueConst = isPowerOf2Constant(TrueVal))) {
13857 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13858 unsigned ShiftAmount = TrueConst->logBase2();
13859 if (ShiftAmount)
13860 TrueVal = DAG.getConstant(1, dl, VT);
13861 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
13862 Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
13864 if (ShiftAmount)
13865 Res = DAG.getNode(ISD::SHL, dl, VT, Res,
13866 DAG.getConstant(ShiftAmount, dl, MVT::i32));
13869 if (Res.getNode()) {
13870 KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
13871 // Capture demanded bits information that would be otherwise lost.
13872 if (Known.Zero == 0xfffffffe)
13873 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13874 DAG.getValueType(MVT::i1));
13875 else if (Known.Zero == 0xffffff00)
13876 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13877 DAG.getValueType(MVT::i8));
13878 else if (Known.Zero == 0xffff0000)
13879 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13880 DAG.getValueType(MVT::i16));
13883 return Res;
13886 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
13887 DAGCombinerInfo &DCI) const {
13888 switch (N->getOpcode()) {
13889 default: break;
13890 case ISD::ABS: return PerformABSCombine(N, DCI, Subtarget);
13891 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
13892 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
13893 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
13894 case ISD::SUB: return PerformSUBCombine(N, DCI);
13895 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
13896 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
13897 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
13898 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
13899 case ISD::BRCOND:
13900 case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget);
13901 case ARMISD::ADDC:
13902 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
13903 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
13904 case ARMISD::BFI: return PerformBFICombine(N, DCI);
13905 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
13906 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
13907 case ISD::STORE: return PerformSTORECombine(N, DCI);
13908 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
13909 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
13910 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
13911 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
13912 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
13913 case ISD::FP_TO_SINT:
13914 case ISD::FP_TO_UINT:
13915 return PerformVCVTCombine(N, DCI.DAG, Subtarget);
13916 case ISD::FDIV:
13917 return PerformVDIVCombine(N, DCI.DAG, Subtarget);
13918 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
13919 case ISD::SHL:
13920 case ISD::SRA:
13921 case ISD::SRL:
13922 return PerformShiftCombine(N, DCI, Subtarget);
13923 case ISD::SIGN_EXTEND:
13924 case ISD::ZERO_EXTEND:
13925 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
13926 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
13927 case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
13928 case ISD::LOAD: return PerformLOADCombine(N, DCI);
13929 case ARMISD::VLD1DUP:
13930 case ARMISD::VLD2DUP:
13931 case ARMISD::VLD3DUP:
13932 case ARMISD::VLD4DUP:
13933 return PerformVLDCombine(N, DCI);
13934 case ARMISD::BUILD_VECTOR:
13935 return PerformARMBUILD_VECTORCombine(N, DCI);
13936 case ARMISD::SMULWB: {
13937 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13938 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
13939 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
13940 return SDValue();
13941 break;
13943 case ARMISD::SMULWT: {
13944 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13945 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
13946 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
13947 return SDValue();
13948 break;
13950 case ARMISD::SMLALBB: {
13951 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13952 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
13953 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
13954 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
13955 return SDValue();
13956 break;
13958 case ARMISD::SMLALBT: {
13959 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
13960 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
13961 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
13962 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
13963 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
13964 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
13965 return SDValue();
13966 break;
13968 case ARMISD::SMLALTB: {
13969 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
13970 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
13971 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
13972 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
13973 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
13974 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
13975 return SDValue();
13976 break;
13978 case ARMISD::SMLALTT: {
13979 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13980 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
13981 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
13982 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
13983 return SDValue();
13984 break;
13986 case ISD::INTRINSIC_VOID:
13987 case ISD::INTRINSIC_W_CHAIN:
13988 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13989 case Intrinsic::arm_neon_vld1:
13990 case Intrinsic::arm_neon_vld1x2:
13991 case Intrinsic::arm_neon_vld1x3:
13992 case Intrinsic::arm_neon_vld1x4:
13993 case Intrinsic::arm_neon_vld2:
13994 case Intrinsic::arm_neon_vld3:
13995 case Intrinsic::arm_neon_vld4:
13996 case Intrinsic::arm_neon_vld2lane:
13997 case Intrinsic::arm_neon_vld3lane:
13998 case Intrinsic::arm_neon_vld4lane:
13999 case Intrinsic::arm_neon_vld2dup:
14000 case Intrinsic::arm_neon_vld3dup:
14001 case Intrinsic::arm_neon_vld4dup:
14002 case Intrinsic::arm_neon_vst1:
14003 case Intrinsic::arm_neon_vst1x2:
14004 case Intrinsic::arm_neon_vst1x3:
14005 case Intrinsic::arm_neon_vst1x4:
14006 case Intrinsic::arm_neon_vst2:
14007 case Intrinsic::arm_neon_vst3:
14008 case Intrinsic::arm_neon_vst4:
14009 case Intrinsic::arm_neon_vst2lane:
14010 case Intrinsic::arm_neon_vst3lane:
14011 case Intrinsic::arm_neon_vst4lane:
14012 return PerformVLDCombine(N, DCI);
14013 default: break;
14015 break;
14017 return SDValue();
14020 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
14021 EVT VT) const {
14022 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
14025 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
14026 unsigned Alignment,
14027 MachineMemOperand::Flags,
14028 bool *Fast) const {
14029 // Depends what it gets converted into if the type is weird.
14030 if (!VT.isSimple())
14031 return false;
14033 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14034 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
14035 auto Ty = VT.getSimpleVT().SimpleTy;
14037 if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
14038 // Unaligned access can use (for example) LRDB, LRDH, LDR
14039 if (AllowsUnaligned) {
14040 if (Fast)
14041 *Fast = Subtarget->hasV7Ops();
14042 return true;
14046 if (Ty == MVT::f64 || Ty == MVT::v2f64) {
14047 // For any little-endian targets with neon, we can support unaligned ld/st
14048 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14049 // A big-endian target may also explicitly support unaligned accesses
14050 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
14051 if (Fast)
14052 *Fast = true;
14053 return true;
14057 if (!Subtarget->hasMVEIntegerOps())
14058 return false;
14060 // These are for predicates
14061 if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
14062 if (Fast)
14063 *Fast = true;
14064 return true;
14067 if (Ty != MVT::v16i8 && Ty != MVT::v8i16 && Ty != MVT::v8f16 &&
14068 Ty != MVT::v4i32 && Ty != MVT::v4f32 && Ty != MVT::v2i64 &&
14069 Ty != MVT::v2f64 &&
14070 // These are for truncated stores
14071 Ty != MVT::v4i8 && Ty != MVT::v8i8 && Ty != MVT::v4i16)
14072 return false;
14074 if (Subtarget->isLittle()) {
14075 // In little-endian MVE, the store instructions VSTRB.U8,
14076 // VSTRH.U16 and VSTRW.U32 all store the vector register in
14077 // exactly the same format, and differ only in the range of
14078 // their immediate offset field and the required alignment.
14080 // In particular, VSTRB.U8 can store a vector at byte alignment.
14081 // So at this stage we can simply say that loads/stores of all
14082 // 128-bit wide vector types are permitted at any alignment,
14083 // because we know at least _one_ instruction can manage that.
14085 // Later on we might find that some of those loads are better
14086 // generated as VLDRW.U32 if alignment permits, to take
14087 // advantage of the larger immediate range. But for the moment,
14088 // all that matters is that if we don't lower the load then
14089 // _some_ instruction can handle it.
14090 if (Fast)
14091 *Fast = true;
14092 return true;
14093 } else {
14094 // In big-endian MVE, those instructions aren't so similar
14095 // after all, because they reorder the bytes of the vector
14096 // differently. So this time we can only store a particular
14097 // kind of vector if its alignment is at least the element
14098 // type. And we can't store vectors of i64 or f64 at all
14099 // without having to do some postprocessing, because there's
14100 // no VSTRD.U64.
14101 if (Ty == MVT::v16i8 ||
14102 ((Ty == MVT::v8i16 || Ty == MVT::v8f16) && Alignment >= 2) ||
14103 ((Ty == MVT::v4i32 || Ty == MVT::v4f32) && Alignment >= 4)) {
14104 if (Fast)
14105 *Fast = true;
14106 return true;
14110 return false;
14113 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
14114 unsigned AlignCheck) {
14115 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
14116 (DstAlign == 0 || DstAlign % AlignCheck == 0));
14119 EVT ARMTargetLowering::getOptimalMemOpType(
14120 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14121 bool ZeroMemset, bool MemcpyStrSrc,
14122 const AttributeList &FuncAttributes) const {
14123 // See if we can use NEON instructions for this...
14124 if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
14125 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14126 bool Fast;
14127 if (Size >= 16 &&
14128 (memOpAlign(SrcAlign, DstAlign, 16) ||
14129 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
14130 MachineMemOperand::MONone, &Fast) &&
14131 Fast))) {
14132 return MVT::v2f64;
14133 } else if (Size >= 8 &&
14134 (memOpAlign(SrcAlign, DstAlign, 8) ||
14135 (allowsMisalignedMemoryAccesses(
14136 MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
14137 Fast))) {
14138 return MVT::f64;
14142 // Let the target-independent logic figure it out.
14143 return MVT::Other;
14146 // 64-bit integers are split into their high and low parts and held in two
14147 // different registers, so the trunc is free since the low register can just
14148 // be used.
14149 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
14150 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
14151 return false;
14152 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
14153 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
14154 return (SrcBits == 64 && DestBits == 32);
14157 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
14158 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
14159 !DstVT.isInteger())
14160 return false;
14161 unsigned SrcBits = SrcVT.getSizeInBits();
14162 unsigned DestBits = DstVT.getSizeInBits();
14163 return (SrcBits == 64 && DestBits == 32);
14166 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14167 if (Val.getOpcode() != ISD::LOAD)
14168 return false;
14170 EVT VT1 = Val.getValueType();
14171 if (!VT1.isSimple() || !VT1.isInteger() ||
14172 !VT2.isSimple() || !VT2.isInteger())
14173 return false;
14175 switch (VT1.getSimpleVT().SimpleTy) {
14176 default: break;
14177 case MVT::i1:
14178 case MVT::i8:
14179 case MVT::i16:
14180 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14181 return true;
14184 return false;
14187 bool ARMTargetLowering::isFNegFree(EVT VT) const {
14188 if (!VT.isSimple())
14189 return false;
14191 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14192 // negate values directly (fneg is free). So, we don't want to let the DAG
14193 // combiner rewrite fneg into xors and some other instructions. For f16 and
14194 // FullFP16 argument passing, some bitcast nodes may be introduced,
14195 // triggering this DAG combine rewrite, so we are avoiding that with this.
14196 switch (VT.getSimpleVT().SimpleTy) {
14197 default: break;
14198 case MVT::f16:
14199 return Subtarget->hasFullFP16();
14202 return false;
14205 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14206 /// of the vector elements.
14207 static bool areExtractExts(Value *Ext1, Value *Ext2) {
14208 auto areExtDoubled = [](Instruction *Ext) {
14209 return Ext->getType()->getScalarSizeInBits() ==
14210 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
14213 if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
14214 !match(Ext2, m_ZExtOrSExt(m_Value())) ||
14215 !areExtDoubled(cast<Instruction>(Ext1)) ||
14216 !areExtDoubled(cast<Instruction>(Ext2)))
14217 return false;
14219 return true;
14222 /// Check if sinking \p I's operands to I's basic block is profitable, because
14223 /// the operands can be folded into a target instruction, e.g.
14224 /// sext/zext can be folded into vsubl.
14225 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
14226 SmallVectorImpl<Use *> &Ops) const {
14227 if (!Subtarget->hasNEON() || !I->getType()->isVectorTy())
14228 return false;
14230 switch (I->getOpcode()) {
14231 case Instruction::Sub:
14232 case Instruction::Add: {
14233 if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
14234 return false;
14235 Ops.push_back(&I->getOperandUse(0));
14236 Ops.push_back(&I->getOperandUse(1));
14237 return true;
14239 default:
14240 return false;
14242 return false;
14245 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
14246 EVT VT = ExtVal.getValueType();
14248 if (!isTypeLegal(VT))
14249 return false;
14251 // Don't create a loadext if we can fold the extension into a wide/long
14252 // instruction.
14253 // If there's more than one user instruction, the loadext is desirable no
14254 // matter what. There can be two uses by the same instruction.
14255 if (ExtVal->use_empty() ||
14256 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
14257 return true;
14259 SDNode *U = *ExtVal->use_begin();
14260 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
14261 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
14262 return false;
14264 return true;
14267 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
14268 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14269 return false;
14271 if (!isTypeLegal(EVT::getEVT(Ty1)))
14272 return false;
14274 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14276 // Assuming the caller doesn't have a zeroext or signext return parameter,
14277 // truncation all the way down to i1 is valid.
14278 return true;
14281 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
14282 const AddrMode &AM, Type *Ty,
14283 unsigned AS) const {
14284 if (isLegalAddressingMode(DL, AM, Ty, AS)) {
14285 if (Subtarget->hasFPAO())
14286 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
14287 return 0;
14289 return -1;
14292 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
14293 if (V < 0)
14294 return false;
14296 unsigned Scale = 1;
14297 switch (VT.getSimpleVT().SimpleTy) {
14298 case MVT::i1:
14299 case MVT::i8:
14300 // Scale == 1;
14301 break;
14302 case MVT::i16:
14303 // Scale == 2;
14304 Scale = 2;
14305 break;
14306 default:
14307 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14308 // Scale == 4;
14309 Scale = 4;
14310 break;
14313 if ((V & (Scale - 1)) != 0)
14314 return false;
14315 return isUInt<5>(V / Scale);
14318 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
14319 const ARMSubtarget *Subtarget) {
14320 if (!VT.isInteger() && !VT.isFloatingPoint())
14321 return false;
14322 if (VT.isVector() && Subtarget->hasNEON())
14323 return false;
14324 if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
14325 !Subtarget->hasMVEFloatOps())
14326 return false;
14328 bool IsNeg = false;
14329 if (V < 0) {
14330 IsNeg = true;
14331 V = -V;
14334 unsigned NumBytes = std::max(VT.getSizeInBits() / 8, 1U);
14336 // MVE: size * imm7
14337 if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
14338 switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
14339 case MVT::i32:
14340 case MVT::f32:
14341 return isShiftedUInt<7,2>(V);
14342 case MVT::i16:
14343 case MVT::f16:
14344 return isShiftedUInt<7,1>(V);
14345 case MVT::i8:
14346 return isUInt<7>(V);
14347 default:
14348 return false;
14352 // half VLDR: 2 * imm8
14353 if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
14354 return isShiftedUInt<8, 1>(V);
14355 // VLDR and LDRD: 4 * imm8
14356 if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
14357 return isShiftedUInt<8, 2>(V);
14359 if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
14360 // + imm12 or - imm8
14361 if (IsNeg)
14362 return isUInt<8>(V);
14363 return isUInt<12>(V);
14366 return false;
14369 /// isLegalAddressImmediate - Return true if the integer value can be used
14370 /// as the offset of the target addressing mode for load / store of the
14371 /// given type.
14372 static bool isLegalAddressImmediate(int64_t V, EVT VT,
14373 const ARMSubtarget *Subtarget) {
14374 if (V == 0)
14375 return true;
14377 if (!VT.isSimple())
14378 return false;
14380 if (Subtarget->isThumb1Only())
14381 return isLegalT1AddressImmediate(V, VT);
14382 else if (Subtarget->isThumb2())
14383 return isLegalT2AddressImmediate(V, VT, Subtarget);
14385 // ARM mode.
14386 if (V < 0)
14387 V = - V;
14388 switch (VT.getSimpleVT().SimpleTy) {
14389 default: return false;
14390 case MVT::i1:
14391 case MVT::i8:
14392 case MVT::i32:
14393 // +- imm12
14394 return isUInt<12>(V);
14395 case MVT::i16:
14396 // +- imm8
14397 return isUInt<8>(V);
14398 case MVT::f32:
14399 case MVT::f64:
14400 if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
14401 return false;
14402 return isShiftedUInt<8, 2>(V);
14406 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
14407 EVT VT) const {
14408 int Scale = AM.Scale;
14409 if (Scale < 0)
14410 return false;
14412 switch (VT.getSimpleVT().SimpleTy) {
14413 default: return false;
14414 case MVT::i1:
14415 case MVT::i8:
14416 case MVT::i16:
14417 case MVT::i32:
14418 if (Scale == 1)
14419 return true;
14420 // r + r << imm
14421 Scale = Scale & ~1;
14422 return Scale == 2 || Scale == 4 || Scale == 8;
14423 case MVT::i64:
14424 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14425 // version in Thumb mode.
14426 // r + r
14427 if (Scale == 1)
14428 return true;
14429 // r * 2 (this can be lowered to r + r).
14430 if (!AM.HasBaseReg && Scale == 2)
14431 return true;
14432 return false;
14433 case MVT::isVoid:
14434 // Note, we allow "void" uses (basically, uses that aren't loads or
14435 // stores), because arm allows folding a scale into many arithmetic
14436 // operations. This should be made more precise and revisited later.
14438 // Allow r << imm, but the imm has to be a multiple of two.
14439 if (Scale & 1) return false;
14440 return isPowerOf2_32(Scale);
14444 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
14445 EVT VT) const {
14446 const int Scale = AM.Scale;
14448 // Negative scales are not supported in Thumb1.
14449 if (Scale < 0)
14450 return false;
14452 // Thumb1 addressing modes do not support register scaling excepting the
14453 // following cases:
14454 // 1. Scale == 1 means no scaling.
14455 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14456 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
14459 /// isLegalAddressingMode - Return true if the addressing mode represented
14460 /// by AM is legal for this target, for a load/store of the specified type.
14461 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14462 const AddrMode &AM, Type *Ty,
14463 unsigned AS, Instruction *I) const {
14464 EVT VT = getValueType(DL, Ty, true);
14465 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
14466 return false;
14468 // Can never fold addr of global into load/store.
14469 if (AM.BaseGV)
14470 return false;
14472 switch (AM.Scale) {
14473 case 0: // no scale reg, must be "r+i" or "r", or "i".
14474 break;
14475 default:
14476 // ARM doesn't support any R+R*scale+imm addr modes.
14477 if (AM.BaseOffs)
14478 return false;
14480 if (!VT.isSimple())
14481 return false;
14483 if (Subtarget->isThumb1Only())
14484 return isLegalT1ScaledAddressingMode(AM, VT);
14486 if (Subtarget->isThumb2())
14487 return isLegalT2ScaledAddressingMode(AM, VT);
14489 int Scale = AM.Scale;
14490 switch (VT.getSimpleVT().SimpleTy) {
14491 default: return false;
14492 case MVT::i1:
14493 case MVT::i8:
14494 case MVT::i32:
14495 if (Scale < 0) Scale = -Scale;
14496 if (Scale == 1)
14497 return true;
14498 // r + r << imm
14499 return isPowerOf2_32(Scale & ~1);
14500 case MVT::i16:
14501 case MVT::i64:
14502 // r +/- r
14503 if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
14504 return true;
14505 // r * 2 (this can be lowered to r + r).
14506 if (!AM.HasBaseReg && Scale == 2)
14507 return true;
14508 return false;
14510 case MVT::isVoid:
14511 // Note, we allow "void" uses (basically, uses that aren't loads or
14512 // stores), because arm allows folding a scale into many arithmetic
14513 // operations. This should be made more precise and revisited later.
14515 // Allow r << imm, but the imm has to be a multiple of two.
14516 if (Scale & 1) return false;
14517 return isPowerOf2_32(Scale);
14520 return true;
14523 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14524 /// icmp immediate, that is the target has icmp instructions which can compare
14525 /// a register against the immediate without having to materialize the
14526 /// immediate into a register.
14527 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14528 // Thumb2 and ARM modes can use cmn for negative immediates.
14529 if (!Subtarget->isThumb())
14530 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
14531 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
14532 if (Subtarget->isThumb2())
14533 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
14534 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
14535 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14536 return Imm >= 0 && Imm <= 255;
14539 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14540 /// *or sub* immediate, that is the target has add or sub instructions which can
14541 /// add a register with the immediate without having to materialize the
14542 /// immediate into a register.
14543 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14544 // Same encoding for add/sub, just flip the sign.
14545 int64_t AbsImm = std::abs(Imm);
14546 if (!Subtarget->isThumb())
14547 return ARM_AM::getSOImmVal(AbsImm) != -1;
14548 if (Subtarget->isThumb2())
14549 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
14550 // Thumb1 only has 8-bit unsigned immediate.
14551 return AbsImm >= 0 && AbsImm <= 255;
14554 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
14555 bool isSEXTLoad, SDValue &Base,
14556 SDValue &Offset, bool &isInc,
14557 SelectionDAG &DAG) {
14558 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
14559 return false;
14561 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
14562 // AddressingMode 3
14563 Base = Ptr->getOperand(0);
14564 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
14565 int RHSC = (int)RHS->getZExtValue();
14566 if (RHSC < 0 && RHSC > -256) {
14567 assert(Ptr->getOpcode() == ISD::ADD);
14568 isInc = false;
14569 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14570 return true;
14573 isInc = (Ptr->getOpcode() == ISD::ADD);
14574 Offset = Ptr->getOperand(1);
14575 return true;
14576 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
14577 // AddressingMode 2
14578 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
14579 int RHSC = (int)RHS->getZExtValue();
14580 if (RHSC < 0 && RHSC > -0x1000) {
14581 assert(Ptr->getOpcode() == ISD::ADD);
14582 isInc = false;
14583 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14584 Base = Ptr->getOperand(0);
14585 return true;
14589 if (Ptr->getOpcode() == ISD::ADD) {
14590 isInc = true;
14591 ARM_AM::ShiftOpc ShOpcVal=
14592 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
14593 if (ShOpcVal != ARM_AM::no_shift) {
14594 Base = Ptr->getOperand(1);
14595 Offset = Ptr->getOperand(0);
14596 } else {
14597 Base = Ptr->getOperand(0);
14598 Offset = Ptr->getOperand(1);
14600 return true;
14603 isInc = (Ptr->getOpcode() == ISD::ADD);
14604 Base = Ptr->getOperand(0);
14605 Offset = Ptr->getOperand(1);
14606 return true;
14609 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14610 return false;
14613 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
14614 bool isSEXTLoad, SDValue &Base,
14615 SDValue &Offset, bool &isInc,
14616 SelectionDAG &DAG) {
14617 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
14618 return false;
14620 Base = Ptr->getOperand(0);
14621 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
14622 int RHSC = (int)RHS->getZExtValue();
14623 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
14624 assert(Ptr->getOpcode() == ISD::ADD);
14625 isInc = false;
14626 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14627 return true;
14628 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
14629 isInc = Ptr->getOpcode() == ISD::ADD;
14630 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
14631 return true;
14635 return false;
14638 /// getPreIndexedAddressParts - returns true by value, base pointer and
14639 /// offset pointer and addressing mode by reference if the node's address
14640 /// can be legally represented as pre-indexed load / store address.
14641 bool
14642 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
14643 SDValue &Offset,
14644 ISD::MemIndexedMode &AM,
14645 SelectionDAG &DAG) const {
14646 if (Subtarget->isThumb1Only())
14647 return false;
14649 EVT VT;
14650 SDValue Ptr;
14651 bool isSEXTLoad = false;
14652 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
14653 Ptr = LD->getBasePtr();
14654 VT = LD->getMemoryVT();
14655 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
14656 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
14657 Ptr = ST->getBasePtr();
14658 VT = ST->getMemoryVT();
14659 } else
14660 return false;
14662 bool isInc;
14663 bool isLegal = false;
14664 if (Subtarget->isThumb2())
14665 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
14666 Offset, isInc, DAG);
14667 else
14668 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
14669 Offset, isInc, DAG);
14670 if (!isLegal)
14671 return false;
14673 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
14674 return true;
14677 /// getPostIndexedAddressParts - returns true by value, base pointer and
14678 /// offset pointer and addressing mode by reference if this node can be
14679 /// combined with a load / store to form a post-indexed load / store.
14680 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
14681 SDValue &Base,
14682 SDValue &Offset,
14683 ISD::MemIndexedMode &AM,
14684 SelectionDAG &DAG) const {
14685 EVT VT;
14686 SDValue Ptr;
14687 bool isSEXTLoad = false, isNonExt;
14688 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
14689 VT = LD->getMemoryVT();
14690 Ptr = LD->getBasePtr();
14691 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
14692 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
14693 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
14694 VT = ST->getMemoryVT();
14695 Ptr = ST->getBasePtr();
14696 isNonExt = !ST->isTruncatingStore();
14697 } else
14698 return false;
14700 if (Subtarget->isThumb1Only()) {
14701 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14702 // must be non-extending/truncating, i32, with an offset of 4.
14703 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
14704 if (Op->getOpcode() != ISD::ADD || !isNonExt)
14705 return false;
14706 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
14707 if (!RHS || RHS->getZExtValue() != 4)
14708 return false;
14710 Offset = Op->getOperand(1);
14711 Base = Op->getOperand(0);
14712 AM = ISD::POST_INC;
14713 return true;
14716 bool isInc;
14717 bool isLegal = false;
14718 if (Subtarget->isThumb2())
14719 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
14720 isInc, DAG);
14721 else
14722 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
14723 isInc, DAG);
14724 if (!isLegal)
14725 return false;
14727 if (Ptr != Base) {
14728 // Swap base ptr and offset to catch more post-index load / store when
14729 // it's legal. In Thumb2 mode, offset must be an immediate.
14730 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
14731 !Subtarget->isThumb2())
14732 std::swap(Base, Offset);
14734 // Post-indexed load / store update the base pointer.
14735 if (Ptr != Base)
14736 return false;
14739 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
14740 return true;
14743 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14744 KnownBits &Known,
14745 const APInt &DemandedElts,
14746 const SelectionDAG &DAG,
14747 unsigned Depth) const {
14748 unsigned BitWidth = Known.getBitWidth();
14749 Known.resetAll();
14750 switch (Op.getOpcode()) {
14751 default: break;
14752 case ARMISD::ADDC:
14753 case ARMISD::ADDE:
14754 case ARMISD::SUBC:
14755 case ARMISD::SUBE:
14756 // Special cases when we convert a carry to a boolean.
14757 if (Op.getResNo() == 0) {
14758 SDValue LHS = Op.getOperand(0);
14759 SDValue RHS = Op.getOperand(1);
14760 // (ADDE 0, 0, C) will give us a single bit.
14761 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
14762 isNullConstant(RHS)) {
14763 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14764 return;
14767 break;
14768 case ARMISD::CMOV: {
14769 // Bits are known zero/one if known on the LHS and RHS.
14770 Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
14771 if (Known.isUnknown())
14772 return;
14774 KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
14775 Known.Zero &= KnownRHS.Zero;
14776 Known.One &= KnownRHS.One;
14777 return;
14779 case ISD::INTRINSIC_W_CHAIN: {
14780 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
14781 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
14782 switch (IntID) {
14783 default: return;
14784 case Intrinsic::arm_ldaex:
14785 case Intrinsic::arm_ldrex: {
14786 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
14787 unsigned MemBits = VT.getScalarSizeInBits();
14788 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
14789 return;
14793 case ARMISD::BFI: {
14794 // Conservatively, we can recurse down the first operand
14795 // and just mask out all affected bits.
14796 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
14798 // The operand to BFI is already a mask suitable for removing the bits it
14799 // sets.
14800 ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
14801 const APInt &Mask = CI->getAPIntValue();
14802 Known.Zero &= Mask;
14803 Known.One &= Mask;
14804 return;
14806 case ARMISD::VGETLANEs:
14807 case ARMISD::VGETLANEu: {
14808 const SDValue &SrcSV = Op.getOperand(0);
14809 EVT VecVT = SrcSV.getValueType();
14810 assert(VecVT.isVector() && "VGETLANE expected a vector type");
14811 const unsigned NumSrcElts = VecVT.getVectorNumElements();
14812 ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
14813 assert(Pos->getAPIntValue().ult(NumSrcElts) &&
14814 "VGETLANE index out of bounds");
14815 unsigned Idx = Pos->getZExtValue();
14816 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
14817 Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
14819 EVT VT = Op.getValueType();
14820 const unsigned DstSz = VT.getScalarSizeInBits();
14821 const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
14822 (void)SrcSz;
14823 assert(SrcSz == Known.getBitWidth());
14824 assert(DstSz > SrcSz);
14825 if (Op.getOpcode() == ARMISD::VGETLANEs)
14826 Known = Known.sext(DstSz);
14827 else {
14828 Known = Known.zext(DstSz, true /* extended bits are known zero */);
14830 assert(DstSz == Known.getBitWidth());
14831 break;
14836 bool
14837 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
14838 const APInt &DemandedAPInt,
14839 TargetLoweringOpt &TLO) const {
14840 // Delay optimization, so we don't have to deal with illegal types, or block
14841 // optimizations.
14842 if (!TLO.LegalOps)
14843 return false;
14845 // Only optimize AND for now.
14846 if (Op.getOpcode() != ISD::AND)
14847 return false;
14849 EVT VT = Op.getValueType();
14851 // Ignore vectors.
14852 if (VT.isVector())
14853 return false;
14855 assert(VT == MVT::i32 && "Unexpected integer type");
14857 // Make sure the RHS really is a constant.
14858 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
14859 if (!C)
14860 return false;
14862 unsigned Mask = C->getZExtValue();
14864 unsigned Demanded = DemandedAPInt.getZExtValue();
14865 unsigned ShrunkMask = Mask & Demanded;
14866 unsigned ExpandedMask = Mask | ~Demanded;
14868 // If the mask is all zeros, let the target-independent code replace the
14869 // result with zero.
14870 if (ShrunkMask == 0)
14871 return false;
14873 // If the mask is all ones, erase the AND. (Currently, the target-independent
14874 // code won't do this, so we have to do it explicitly to avoid an infinite
14875 // loop in obscure cases.)
14876 if (ExpandedMask == ~0U)
14877 return TLO.CombineTo(Op, Op.getOperand(0));
14879 auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
14880 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
14882 auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
14883 if (NewMask == Mask)
14884 return true;
14885 SDLoc DL(Op);
14886 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
14887 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
14888 return TLO.CombineTo(Op, NewOp);
14891 // Prefer uxtb mask.
14892 if (IsLegalMask(0xFF))
14893 return UseMask(0xFF);
14895 // Prefer uxth mask.
14896 if (IsLegalMask(0xFFFF))
14897 return UseMask(0xFFFF);
14899 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14900 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14901 if (ShrunkMask < 256)
14902 return UseMask(ShrunkMask);
14904 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14905 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14906 if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
14907 return UseMask(ExpandedMask);
14909 // Potential improvements:
14911 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14912 // We could try to prefer Thumb1 immediates which can be lowered to a
14913 // two-instruction sequence.
14914 // We could try to recognize more legal ARM/Thumb2 immediates here.
14916 return false;
14920 //===----------------------------------------------------------------------===//
14921 // ARM Inline Assembly Support
14922 //===----------------------------------------------------------------------===//
14924 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
14925 // Looking for "rev" which is V6+.
14926 if (!Subtarget->hasV6Ops())
14927 return false;
14929 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14930 std::string AsmStr = IA->getAsmString();
14931 SmallVector<StringRef, 4> AsmPieces;
14932 SplitString(AsmStr, AsmPieces, ";\n");
14934 switch (AsmPieces.size()) {
14935 default: return false;
14936 case 1:
14937 AsmStr = AsmPieces[0];
14938 AsmPieces.clear();
14939 SplitString(AsmStr, AsmPieces, " \t,");
14941 // rev $0, $1
14942 if (AsmPieces.size() == 3 &&
14943 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
14944 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
14945 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14946 if (Ty && Ty->getBitWidth() == 32)
14947 return IntrinsicLowering::LowerToByteSwap(CI);
14949 break;
14952 return false;
14955 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
14956 // At this point, we have to lower this constraint to something else, so we
14957 // lower it to an "r" or "w". However, by doing this we will force the result
14958 // to be in register, while the X constraint is much more permissive.
14960 // Although we are correct (we are free to emit anything, without
14961 // constraints), we might break use cases that would expect us to be more
14962 // efficient and emit something else.
14963 if (!Subtarget->hasVFP2Base())
14964 return "r";
14965 if (ConstraintVT.isFloatingPoint())
14966 return "w";
14967 if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
14968 (ConstraintVT.getSizeInBits() == 64 ||
14969 ConstraintVT.getSizeInBits() == 128))
14970 return "w";
14972 return "r";
14975 /// getConstraintType - Given a constraint letter, return the type of
14976 /// constraint it is for this target.
14977 ARMTargetLowering::ConstraintType
14978 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
14979 unsigned S = Constraint.size();
14980 if (S == 1) {
14981 switch (Constraint[0]) {
14982 default: break;
14983 case 'l': return C_RegisterClass;
14984 case 'w': return C_RegisterClass;
14985 case 'h': return C_RegisterClass;
14986 case 'x': return C_RegisterClass;
14987 case 't': return C_RegisterClass;
14988 case 'j': return C_Immediate; // Constant for movw.
14989 // An address with a single base register. Due to the way we
14990 // currently handle addresses it is the same as an 'r' memory constraint.
14991 case 'Q': return C_Memory;
14993 } else if (S == 2) {
14994 switch (Constraint[0]) {
14995 default: break;
14996 case 'T': return C_RegisterClass;
14997 // All 'U+' constraints are addresses.
14998 case 'U': return C_Memory;
15001 return TargetLowering::getConstraintType(Constraint);
15004 /// Examine constraint type and operand type and determine a weight value.
15005 /// This object must already have been set up with the operand type
15006 /// and the current alternative constraint selected.
15007 TargetLowering::ConstraintWeight
15008 ARMTargetLowering::getSingleConstraintMatchWeight(
15009 AsmOperandInfo &info, const char *constraint) const {
15010 ConstraintWeight weight = CW_Invalid;
15011 Value *CallOperandVal = info.CallOperandVal;
15012 // If we don't have a value, we can't do a match,
15013 // but allow it at the lowest weight.
15014 if (!CallOperandVal)
15015 return CW_Default;
15016 Type *type = CallOperandVal->getType();
15017 // Look at the constraint type.
15018 switch (*constraint) {
15019 default:
15020 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15021 break;
15022 case 'l':
15023 if (type->isIntegerTy()) {
15024 if (Subtarget->isThumb())
15025 weight = CW_SpecificReg;
15026 else
15027 weight = CW_Register;
15029 break;
15030 case 'w':
15031 if (type->isFloatingPointTy())
15032 weight = CW_Register;
15033 break;
15035 return weight;
15038 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
15040 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
15041 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
15042 switch (Constraint.size()) {
15043 case 1:
15044 // GCC ARM Constraint Letters
15045 switch (Constraint[0]) {
15046 case 'l': // Low regs or general regs.
15047 if (Subtarget->isThumb())
15048 return RCPair(0U, &ARM::tGPRRegClass);
15049 return RCPair(0U, &ARM::GPRRegClass);
15050 case 'h': // High regs or no regs.
15051 if (Subtarget->isThumb())
15052 return RCPair(0U, &ARM::hGPRRegClass);
15053 break;
15054 case 'r':
15055 if (Subtarget->isThumb1Only())
15056 return RCPair(0U, &ARM::tGPRRegClass);
15057 return RCPair(0U, &ARM::GPRRegClass);
15058 case 'w':
15059 if (VT == MVT::Other)
15060 break;
15061 if (VT == MVT::f32)
15062 return RCPair(0U, &ARM::SPRRegClass);
15063 if (VT.getSizeInBits() == 64)
15064 return RCPair(0U, &ARM::DPRRegClass);
15065 if (VT.getSizeInBits() == 128)
15066 return RCPair(0U, &ARM::QPRRegClass);
15067 break;
15068 case 'x':
15069 if (VT == MVT::Other)
15070 break;
15071 if (VT == MVT::f32)
15072 return RCPair(0U, &ARM::SPR_8RegClass);
15073 if (VT.getSizeInBits() == 64)
15074 return RCPair(0U, &ARM::DPR_8RegClass);
15075 if (VT.getSizeInBits() == 128)
15076 return RCPair(0U, &ARM::QPR_8RegClass);
15077 break;
15078 case 't':
15079 if (VT == MVT::Other)
15080 break;
15081 if (VT == MVT::f32 || VT == MVT::i32)
15082 return RCPair(0U, &ARM::SPRRegClass);
15083 if (VT.getSizeInBits() == 64)
15084 return RCPair(0U, &ARM::DPR_VFP2RegClass);
15085 if (VT.getSizeInBits() == 128)
15086 return RCPair(0U, &ARM::QPR_VFP2RegClass);
15087 break;
15089 break;
15091 case 2:
15092 if (Constraint[0] == 'T') {
15093 switch (Constraint[1]) {
15094 default:
15095 break;
15096 case 'e':
15097 return RCPair(0U, &ARM::tGPREvenRegClass);
15098 case 'o':
15099 return RCPair(0U, &ARM::tGPROddRegClass);
15102 break;
15104 default:
15105 break;
15108 if (StringRef("{cc}").equals_lower(Constraint))
15109 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
15111 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15114 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15115 /// vector. If it is invalid, don't add anything to Ops.
15116 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15117 std::string &Constraint,
15118 std::vector<SDValue>&Ops,
15119 SelectionDAG &DAG) const {
15120 SDValue Result;
15122 // Currently only support length 1 constraints.
15123 if (Constraint.length() != 1) return;
15125 char ConstraintLetter = Constraint[0];
15126 switch (ConstraintLetter) {
15127 default: break;
15128 case 'j':
15129 case 'I': case 'J': case 'K': case 'L':
15130 case 'M': case 'N': case 'O':
15131 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
15132 if (!C)
15133 return;
15135 int64_t CVal64 = C->getSExtValue();
15136 int CVal = (int) CVal64;
15137 // None of these constraints allow values larger than 32 bits. Check
15138 // that the value fits in an int.
15139 if (CVal != CVal64)
15140 return;
15142 switch (ConstraintLetter) {
15143 case 'j':
15144 // Constant suitable for movw, must be between 0 and
15145 // 65535.
15146 if (Subtarget->hasV6T2Ops())
15147 if (CVal >= 0 && CVal <= 65535)
15148 break;
15149 return;
15150 case 'I':
15151 if (Subtarget->isThumb1Only()) {
15152 // This must be a constant between 0 and 255, for ADD
15153 // immediates.
15154 if (CVal >= 0 && CVal <= 255)
15155 break;
15156 } else if (Subtarget->isThumb2()) {
15157 // A constant that can be used as an immediate value in a
15158 // data-processing instruction.
15159 if (ARM_AM::getT2SOImmVal(CVal) != -1)
15160 break;
15161 } else {
15162 // A constant that can be used as an immediate value in a
15163 // data-processing instruction.
15164 if (ARM_AM::getSOImmVal(CVal) != -1)
15165 break;
15167 return;
15169 case 'J':
15170 if (Subtarget->isThumb1Only()) {
15171 // This must be a constant between -255 and -1, for negated ADD
15172 // immediates. This can be used in GCC with an "n" modifier that
15173 // prints the negated value, for use with SUB instructions. It is
15174 // not useful otherwise but is implemented for compatibility.
15175 if (CVal >= -255 && CVal <= -1)
15176 break;
15177 } else {
15178 // This must be a constant between -4095 and 4095. It is not clear
15179 // what this constraint is intended for. Implemented for
15180 // compatibility with GCC.
15181 if (CVal >= -4095 && CVal <= 4095)
15182 break;
15184 return;
15186 case 'K':
15187 if (Subtarget->isThumb1Only()) {
15188 // A 32-bit value where only one byte has a nonzero value. Exclude
15189 // zero to match GCC. This constraint is used by GCC internally for
15190 // constants that can be loaded with a move/shift combination.
15191 // It is not useful otherwise but is implemented for compatibility.
15192 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
15193 break;
15194 } else if (Subtarget->isThumb2()) {
15195 // A constant whose bitwise inverse can be used as an immediate
15196 // value in a data-processing instruction. This can be used in GCC
15197 // with a "B" modifier that prints the inverted value, for use with
15198 // BIC and MVN instructions. It is not useful otherwise but is
15199 // implemented for compatibility.
15200 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
15201 break;
15202 } else {
15203 // A constant whose bitwise inverse can be used as an immediate
15204 // value in a data-processing instruction. This can be used in GCC
15205 // with a "B" modifier that prints the inverted value, for use with
15206 // BIC and MVN instructions. It is not useful otherwise but is
15207 // implemented for compatibility.
15208 if (ARM_AM::getSOImmVal(~CVal) != -1)
15209 break;
15211 return;
15213 case 'L':
15214 if (Subtarget->isThumb1Only()) {
15215 // This must be a constant between -7 and 7,
15216 // for 3-operand ADD/SUB immediate instructions.
15217 if (CVal >= -7 && CVal < 7)
15218 break;
15219 } else if (Subtarget->isThumb2()) {
15220 // A constant whose negation can be used as an immediate value in a
15221 // data-processing instruction. This can be used in GCC with an "n"
15222 // modifier that prints the negated value, for use with SUB
15223 // instructions. It is not useful otherwise but is implemented for
15224 // compatibility.
15225 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
15226 break;
15227 } else {
15228 // A constant whose negation can be used as an immediate value in a
15229 // data-processing instruction. This can be used in GCC with an "n"
15230 // modifier that prints the negated value, for use with SUB
15231 // instructions. It is not useful otherwise but is implemented for
15232 // compatibility.
15233 if (ARM_AM::getSOImmVal(-CVal) != -1)
15234 break;
15236 return;
15238 case 'M':
15239 if (Subtarget->isThumb1Only()) {
15240 // This must be a multiple of 4 between 0 and 1020, for
15241 // ADD sp + immediate.
15242 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
15243 break;
15244 } else {
15245 // A power of two or a constant between 0 and 32. This is used in
15246 // GCC for the shift amount on shifted register operands, but it is
15247 // useful in general for any shift amounts.
15248 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
15249 break;
15251 return;
15253 case 'N':
15254 if (Subtarget->isThumb()) { // FIXME thumb2
15255 // This must be a constant between 0 and 31, for shift amounts.
15256 if (CVal >= 0 && CVal <= 31)
15257 break;
15259 return;
15261 case 'O':
15262 if (Subtarget->isThumb()) { // FIXME thumb2
15263 // This must be a multiple of 4 between -508 and 508, for
15264 // ADD/SUB sp = sp + immediate.
15265 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
15266 break;
15268 return;
15270 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
15271 break;
15274 if (Result.getNode()) {
15275 Ops.push_back(Result);
15276 return;
15278 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15281 static RTLIB::Libcall getDivRemLibcall(
15282 const SDNode *N, MVT::SimpleValueType SVT) {
15283 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
15284 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
15285 "Unhandled Opcode in getDivRemLibcall");
15286 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
15287 N->getOpcode() == ISD::SREM;
15288 RTLIB::Libcall LC;
15289 switch (SVT) {
15290 default: llvm_unreachable("Unexpected request for libcall!");
15291 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
15292 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
15293 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
15294 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
15296 return LC;
15299 static TargetLowering::ArgListTy getDivRemArgList(
15300 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
15301 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
15302 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
15303 "Unhandled Opcode in getDivRemArgList");
15304 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
15305 N->getOpcode() == ISD::SREM;
15306 TargetLowering::ArgListTy Args;
15307 TargetLowering::ArgListEntry Entry;
15308 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
15309 EVT ArgVT = N->getOperand(i).getValueType();
15310 Type *ArgTy = ArgVT.getTypeForEVT(*Context);
15311 Entry.Node = N->getOperand(i);
15312 Entry.Ty = ArgTy;
15313 Entry.IsSExt = isSigned;
15314 Entry.IsZExt = !isSigned;
15315 Args.push_back(Entry);
15317 if (Subtarget->isTargetWindows() && Args.size() >= 2)
15318 std::swap(Args[0], Args[1]);
15319 return Args;
15322 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
15323 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
15324 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
15325 Subtarget->isTargetWindows()) &&
15326 "Register-based DivRem lowering only");
15327 unsigned Opcode = Op->getOpcode();
15328 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
15329 "Invalid opcode for Div/Rem lowering");
15330 bool isSigned = (Opcode == ISD::SDIVREM);
15331 EVT VT = Op->getValueType(0);
15332 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
15333 SDLoc dl(Op);
15335 // If the target has hardware divide, use divide + multiply + subtract:
15336 // div = a / b
15337 // rem = a - b * div
15338 // return {div, rem}
15339 // This should be lowered into UDIV/SDIV + MLS later on.
15340 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
15341 : Subtarget->hasDivideInARMMode();
15342 if (hasDivide && Op->getValueType(0).isSimple() &&
15343 Op->getSimpleValueType(0) == MVT::i32) {
15344 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
15345 const SDValue Dividend = Op->getOperand(0);
15346 const SDValue Divisor = Op->getOperand(1);
15347 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
15348 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
15349 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
15351 SDValue Values[2] = {Div, Rem};
15352 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
15355 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
15356 VT.getSimpleVT().SimpleTy);
15357 SDValue InChain = DAG.getEntryNode();
15359 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
15360 DAG.getContext(),
15361 Subtarget);
15363 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15364 getPointerTy(DAG.getDataLayout()));
15366 Type *RetTy = StructType::get(Ty, Ty);
15368 if (Subtarget->isTargetWindows())
15369 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
15371 TargetLowering::CallLoweringInfo CLI(DAG);
15372 CLI.setDebugLoc(dl).setChain(InChain)
15373 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
15374 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
15376 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
15377 return CallInfo.first;
15380 // Lowers REM using divmod helpers
15381 // see RTABI section 4.2/4.3
15382 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
15383 // Build return types (div and rem)
15384 std::vector<Type*> RetTyParams;
15385 Type *RetTyElement;
15387 switch (N->getValueType(0).getSimpleVT().SimpleTy) {
15388 default: llvm_unreachable("Unexpected request for libcall!");
15389 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
15390 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
15391 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
15392 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
15395 RetTyParams.push_back(RetTyElement);
15396 RetTyParams.push_back(RetTyElement);
15397 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
15398 Type *RetTy = StructType::get(*DAG.getContext(), ret);
15400 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
15401 SimpleTy);
15402 SDValue InChain = DAG.getEntryNode();
15403 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
15404 Subtarget);
15405 bool isSigned = N->getOpcode() == ISD::SREM;
15406 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15407 getPointerTy(DAG.getDataLayout()));
15409 if (Subtarget->isTargetWindows())
15410 InChain = WinDBZCheckDenominator(DAG, N, InChain);
15412 // Lower call
15413 CallLoweringInfo CLI(DAG);
15414 CLI.setChain(InChain)
15415 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
15416 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
15417 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
15419 // Return second (rem) result operand (first contains div)
15420 SDNode *ResNode = CallResult.first.getNode();
15421 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
15422 return ResNode->getOperand(1);
15425 SDValue
15426 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
15427 assert(Subtarget->isTargetWindows() && "unsupported target platform");
15428 SDLoc DL(Op);
15430 // Get the inputs.
15431 SDValue Chain = Op.getOperand(0);
15432 SDValue Size = Op.getOperand(1);
15434 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
15435 "no-stack-arg-probe")) {
15436 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
15437 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
15438 Chain = SP.getValue(1);
15439 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
15440 if (Align)
15441 SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
15442 DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
15443 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
15444 SDValue Ops[2] = { SP, Chain };
15445 return DAG.getMergeValues(Ops, DL);
15448 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
15449 DAG.getConstant(2, DL, MVT::i32));
15451 SDValue Flag;
15452 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
15453 Flag = Chain.getValue(1);
15455 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
15456 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
15458 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
15459 Chain = NewSP.getValue(1);
15461 SDValue Ops[2] = { NewSP, Chain };
15462 return DAG.getMergeValues(Ops, DL);
15465 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
15466 SDValue SrcVal = Op.getOperand(0);
15467 const unsigned DstSz = Op.getValueType().getSizeInBits();
15468 const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
15469 assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
15470 "Unexpected type for custom-lowering FP_EXTEND");
15472 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
15473 "With both FP DP and 16, any FP conversion is legal!");
15475 assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
15476 "With FP16, 16 to 32 conversion is legal!");
15478 // Either we are converting from 16 -> 64, without FP16 and/or
15479 // FP.double-precision or without Armv8-fp. So we must do it in two
15480 // steps.
15481 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15482 // without FP16. So we must do a function call.
15483 SDLoc Loc(Op);
15484 RTLIB::Libcall LC;
15485 if (SrcSz == 16) {
15486 // Instruction from 16 -> 32
15487 if (Subtarget->hasFP16())
15488 SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, SrcVal);
15489 // Lib call from 16 -> 32
15490 else {
15491 LC = RTLIB::getFPEXT(MVT::f16, MVT::f32);
15492 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
15493 "Unexpected type for custom-lowering FP_EXTEND");
15494 SrcVal =
15495 makeLibCall(DAG, LC, MVT::f32, SrcVal, /*isSigned*/ false, Loc).first;
15499 if (DstSz != 64)
15500 return SrcVal;
15501 // For sure now SrcVal is 32 bits
15502 if (Subtarget->hasFP64()) // Instruction from 32 -> 64
15503 return DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f64, SrcVal);
15505 LC = RTLIB::getFPEXT(MVT::f32, MVT::f64);
15506 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
15507 "Unexpected type for custom-lowering FP_EXTEND");
15508 return makeLibCall(DAG, LC, MVT::f64, SrcVal, /*isSigned*/ false, Loc).first;
15511 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
15512 SDValue SrcVal = Op.getOperand(0);
15513 EVT SrcVT = SrcVal.getValueType();
15514 EVT DstVT = Op.getValueType();
15515 const unsigned DstSz = Op.getValueType().getSizeInBits();
15516 const unsigned SrcSz = SrcVT.getSizeInBits();
15517 (void)DstSz;
15518 assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
15519 "Unexpected type for custom-lowering FP_ROUND");
15521 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
15522 "With both FP DP and 16, any FP conversion is legal!");
15524 SDLoc Loc(Op);
15526 // Instruction from 32 -> 16 if hasFP16 is valid
15527 if (SrcSz == 32 && Subtarget->hasFP16())
15528 return Op;
15530 // Lib call from 32 -> 16 / 64 -> [32, 16]
15531 RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
15532 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
15533 "Unexpected type for custom-lowering FP_ROUND");
15534 return makeLibCall(DAG, LC, DstVT, SrcVal, /*isSigned*/ false, Loc).first;
15537 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
15538 SelectionDAG &DAG) const {
15539 assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
15540 MVT HalfT = MVT::i32;
15541 SDLoc dl(N);
15542 SDValue Hi, Lo, Tmp;
15544 if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
15545 !isOperationLegalOrCustom(ISD::UADDO, HalfT))
15546 return ;
15548 unsigned OpTypeBits = HalfT.getScalarSizeInBits();
15549 SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
15551 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
15552 DAG.getConstant(0, dl, HalfT));
15553 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
15554 DAG.getConstant(1, dl, HalfT));
15556 Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
15557 DAG.getConstant(OpTypeBits - 1, dl,
15558 getShiftAmountTy(HalfT, DAG.getDataLayout())));
15559 Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
15560 Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
15561 SDValue(Lo.getNode(), 1));
15562 Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
15563 Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
15565 Results.push_back(Lo);
15566 Results.push_back(Hi);
15569 bool
15570 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15571 // The ARM target isn't yet aware of offsets.
15572 return false;
15575 bool ARM::isBitFieldInvertedMask(unsigned v) {
15576 if (v == 0xffffffff)
15577 return false;
15579 // there can be 1's on either or both "outsides", all the "inside"
15580 // bits must be 0's
15581 return isShiftedMask_32(~v);
15584 /// isFPImmLegal - Returns true if the target can instruction select the
15585 /// specified FP immediate natively. If false, the legalizer will
15586 /// materialize the FP immediate as a load from a constant pool.
15587 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15588 bool ForCodeSize) const {
15589 if (!Subtarget->hasVFP3Base())
15590 return false;
15591 if (VT == MVT::f16 && Subtarget->hasFullFP16())
15592 return ARM_AM::getFP16Imm(Imm) != -1;
15593 if (VT == MVT::f32)
15594 return ARM_AM::getFP32Imm(Imm) != -1;
15595 if (VT == MVT::f64 && Subtarget->hasFP64())
15596 return ARM_AM::getFP64Imm(Imm) != -1;
15597 return false;
15600 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15601 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15602 /// specified in the intrinsic calls.
15603 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15604 const CallInst &I,
15605 MachineFunction &MF,
15606 unsigned Intrinsic) const {
15607 switch (Intrinsic) {
15608 case Intrinsic::arm_neon_vld1:
15609 case Intrinsic::arm_neon_vld2:
15610 case Intrinsic::arm_neon_vld3:
15611 case Intrinsic::arm_neon_vld4:
15612 case Intrinsic::arm_neon_vld2lane:
15613 case Intrinsic::arm_neon_vld3lane:
15614 case Intrinsic::arm_neon_vld4lane:
15615 case Intrinsic::arm_neon_vld2dup:
15616 case Intrinsic::arm_neon_vld3dup:
15617 case Intrinsic::arm_neon_vld4dup: {
15618 Info.opc = ISD::INTRINSIC_W_CHAIN;
15619 // Conservatively set memVT to the entire set of vectors loaded.
15620 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15621 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
15622 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15623 Info.ptrVal = I.getArgOperand(0);
15624 Info.offset = 0;
15625 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
15626 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
15627 // volatile loads with NEON intrinsics not supported
15628 Info.flags = MachineMemOperand::MOLoad;
15629 return true;
15631 case Intrinsic::arm_neon_vld1x2:
15632 case Intrinsic::arm_neon_vld1x3:
15633 case Intrinsic::arm_neon_vld1x4: {
15634 Info.opc = ISD::INTRINSIC_W_CHAIN;
15635 // Conservatively set memVT to the entire set of vectors loaded.
15636 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15637 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
15638 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15639 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
15640 Info.offset = 0;
15641 Info.align = 0;
15642 // volatile loads with NEON intrinsics not supported
15643 Info.flags = MachineMemOperand::MOLoad;
15644 return true;
15646 case Intrinsic::arm_neon_vst1:
15647 case Intrinsic::arm_neon_vst2:
15648 case Intrinsic::arm_neon_vst3:
15649 case Intrinsic::arm_neon_vst4:
15650 case Intrinsic::arm_neon_vst2lane:
15651 case Intrinsic::arm_neon_vst3lane:
15652 case Intrinsic::arm_neon_vst4lane: {
15653 Info.opc = ISD::INTRINSIC_VOID;
15654 // Conservatively set memVT to the entire set of vectors stored.
15655 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15656 unsigned NumElts = 0;
15657 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
15658 Type *ArgTy = I.getArgOperand(ArgI)->getType();
15659 if (!ArgTy->isVectorTy())
15660 break;
15661 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
15663 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15664 Info.ptrVal = I.getArgOperand(0);
15665 Info.offset = 0;
15666 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
15667 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
15668 // volatile stores with NEON intrinsics not supported
15669 Info.flags = MachineMemOperand::MOStore;
15670 return true;
15672 case Intrinsic::arm_neon_vst1x2:
15673 case Intrinsic::arm_neon_vst1x3:
15674 case Intrinsic::arm_neon_vst1x4: {
15675 Info.opc = ISD::INTRINSIC_VOID;
15676 // Conservatively set memVT to the entire set of vectors stored.
15677 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15678 unsigned NumElts = 0;
15679 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
15680 Type *ArgTy = I.getArgOperand(ArgI)->getType();
15681 if (!ArgTy->isVectorTy())
15682 break;
15683 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
15685 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15686 Info.ptrVal = I.getArgOperand(0);
15687 Info.offset = 0;
15688 Info.align = 0;
15689 // volatile stores with NEON intrinsics not supported
15690 Info.flags = MachineMemOperand::MOStore;
15691 return true;
15693 case Intrinsic::arm_ldaex:
15694 case Intrinsic::arm_ldrex: {
15695 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15696 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
15697 Info.opc = ISD::INTRINSIC_W_CHAIN;
15698 Info.memVT = MVT::getVT(PtrTy->getElementType());
15699 Info.ptrVal = I.getArgOperand(0);
15700 Info.offset = 0;
15701 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
15702 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
15703 return true;
15705 case Intrinsic::arm_stlex:
15706 case Intrinsic::arm_strex: {
15707 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15708 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
15709 Info.opc = ISD::INTRINSIC_W_CHAIN;
15710 Info.memVT = MVT::getVT(PtrTy->getElementType());
15711 Info.ptrVal = I.getArgOperand(1);
15712 Info.offset = 0;
15713 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
15714 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
15715 return true;
15717 case Intrinsic::arm_stlexd:
15718 case Intrinsic::arm_strexd:
15719 Info.opc = ISD::INTRINSIC_W_CHAIN;
15720 Info.memVT = MVT::i64;
15721 Info.ptrVal = I.getArgOperand(2);
15722 Info.offset = 0;
15723 Info.align = 8;
15724 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
15725 return true;
15727 case Intrinsic::arm_ldaexd:
15728 case Intrinsic::arm_ldrexd:
15729 Info.opc = ISD::INTRINSIC_W_CHAIN;
15730 Info.memVT = MVT::i64;
15731 Info.ptrVal = I.getArgOperand(0);
15732 Info.offset = 0;
15733 Info.align = 8;
15734 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
15735 return true;
15737 default:
15738 break;
15741 return false;
15744 /// Returns true if it is beneficial to convert a load of a constant
15745 /// to just the constant itself.
15746 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15747 Type *Ty) const {
15748 assert(Ty->isIntegerTy());
15750 unsigned Bits = Ty->getPrimitiveSizeInBits();
15751 if (Bits == 0 || Bits > 32)
15752 return false;
15753 return true;
15756 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
15757 unsigned Index) const {
15758 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
15759 return false;
15761 return (Index == 0 || Index == ResVT.getVectorNumElements());
15764 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
15765 ARM_MB::MemBOpt Domain) const {
15766 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15768 // First, if the target has no DMB, see what fallback we can use.
15769 if (!Subtarget->hasDataBarrier()) {
15770 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15771 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15772 // here.
15773 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
15774 Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
15775 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
15776 Builder.getInt32(0), Builder.getInt32(7),
15777 Builder.getInt32(10), Builder.getInt32(5)};
15778 return Builder.CreateCall(MCR, args);
15779 } else {
15780 // Instead of using barriers, atomic accesses on these subtargets use
15781 // libcalls.
15782 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15784 } else {
15785 Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
15786 // Only a full system barrier exists in the M-class architectures.
15787 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
15788 Constant *CDomain = Builder.getInt32(Domain);
15789 return Builder.CreateCall(DMB, CDomain);
15793 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15794 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
15795 Instruction *Inst,
15796 AtomicOrdering Ord) const {
15797 switch (Ord) {
15798 case AtomicOrdering::NotAtomic:
15799 case AtomicOrdering::Unordered:
15800 llvm_unreachable("Invalid fence: unordered/non-atomic");
15801 case AtomicOrdering::Monotonic:
15802 case AtomicOrdering::Acquire:
15803 return nullptr; // Nothing to do
15804 case AtomicOrdering::SequentiallyConsistent:
15805 if (!Inst->hasAtomicStore())
15806 return nullptr; // Nothing to do
15807 LLVM_FALLTHROUGH;
15808 case AtomicOrdering::Release:
15809 case AtomicOrdering::AcquireRelease:
15810 if (Subtarget->preferISHSTBarriers())
15811 return makeDMB(Builder, ARM_MB::ISHST);
15812 // FIXME: add a comment with a link to documentation justifying this.
15813 else
15814 return makeDMB(Builder, ARM_MB::ISH);
15816 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15819 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
15820 Instruction *Inst,
15821 AtomicOrdering Ord) const {
15822 switch (Ord) {
15823 case AtomicOrdering::NotAtomic:
15824 case AtomicOrdering::Unordered:
15825 llvm_unreachable("Invalid fence: unordered/not-atomic");
15826 case AtomicOrdering::Monotonic:
15827 case AtomicOrdering::Release:
15828 return nullptr; // Nothing to do
15829 case AtomicOrdering::Acquire:
15830 case AtomicOrdering::AcquireRelease:
15831 case AtomicOrdering::SequentiallyConsistent:
15832 return makeDMB(Builder, ARM_MB::ISH);
15834 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15837 // Loads and stores less than 64-bits are already atomic; ones above that
15838 // are doomed anyway, so defer to the default libcall and blame the OS when
15839 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15840 // anything for those.
15841 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
15842 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
15843 return (Size == 64) && !Subtarget->isMClass();
15846 // Loads and stores less than 64-bits are already atomic; ones above that
15847 // are doomed anyway, so defer to the default libcall and blame the OS when
15848 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15849 // anything for those.
15850 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15851 // guarantee, see DDI0406C ARM architecture reference manual,
15852 // sections A8.8.72-74 LDRD)
15853 TargetLowering::AtomicExpansionKind
15854 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
15855 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
15856 return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
15857 : AtomicExpansionKind::None;
15860 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15861 // and up to 64 bits on the non-M profiles
15862 TargetLowering::AtomicExpansionKind
15863 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
15864 if (AI->isFloatingPointOperation())
15865 return AtomicExpansionKind::CmpXChg;
15867 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
15868 bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
15869 return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
15870 ? AtomicExpansionKind::LLSC
15871 : AtomicExpansionKind::None;
15874 TargetLowering::AtomicExpansionKind
15875 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
15876 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15877 // implement cmpxchg without spilling. If the address being exchanged is also
15878 // on the stack and close enough to the spill slot, this can lead to a
15879 // situation where the monitor always gets cleared and the atomic operation
15880 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15881 bool HasAtomicCmpXchg =
15882 !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
15883 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
15884 return AtomicExpansionKind::LLSC;
15885 return AtomicExpansionKind::None;
15888 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15889 const Instruction *I) const {
15890 return InsertFencesForAtomic;
15893 // This has so far only been implemented for MachO.
15894 bool ARMTargetLowering::useLoadStackGuardNode() const {
15895 return Subtarget->isTargetMachO();
15898 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
15899 if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
15900 return TargetLowering::insertSSPDeclarations(M);
15902 // MSVC CRT has a global variable holding security cookie.
15903 M.getOrInsertGlobal("__security_cookie",
15904 Type::getInt8PtrTy(M.getContext()));
15906 // MSVC CRT has a function to validate security cookie.
15907 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
15908 "__security_check_cookie", Type::getVoidTy(M.getContext()),
15909 Type::getInt8PtrTy(M.getContext()));
15910 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
15911 F->addAttribute(1, Attribute::AttrKind::InReg);
15914 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
15915 // MSVC CRT has a global variable holding security cookie.
15916 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
15917 return M.getGlobalVariable("__security_cookie");
15918 return TargetLowering::getSDagStackGuard(M);
15921 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
15922 // MSVC CRT has a function to validate security cookie.
15923 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
15924 return M.getFunction("__security_check_cookie");
15925 return TargetLowering::getSSPStackGuardCheck(M);
15928 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
15929 unsigned &Cost) const {
15930 // If we do not have NEON, vector types are not natively supported.
15931 if (!Subtarget->hasNEON())
15932 return false;
15934 // Floating point values and vector values map to the same register file.
15935 // Therefore, although we could do a store extract of a vector type, this is
15936 // better to leave at float as we have more freedom in the addressing mode for
15937 // those.
15938 if (VectorTy->isFPOrFPVectorTy())
15939 return false;
15941 // If the index is unknown at compile time, this is very expensive to lower
15942 // and it is not possible to combine the store with the extract.
15943 if (!isa<ConstantInt>(Idx))
15944 return false;
15946 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
15947 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
15948 // We can do a store + vector extract on any vector that fits perfectly in a D
15949 // or Q register.
15950 if (BitWidth == 64 || BitWidth == 128) {
15951 Cost = 0;
15952 return true;
15954 return false;
15957 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
15958 return Subtarget->hasV6T2Ops();
15961 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
15962 return Subtarget->hasV6T2Ops();
15965 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
15966 return !Subtarget->hasMinSize();
15969 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
15970 AtomicOrdering Ord) const {
15971 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15972 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
15973 bool IsAcquire = isAcquireOrStronger(Ord);
15975 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
15976 // intrinsic must return {i32, i32} and we have to recombine them into a
15977 // single i64 here.
15978 if (ValTy->getPrimitiveSizeInBits() == 64) {
15979 Intrinsic::ID Int =
15980 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
15981 Function *Ldrex = Intrinsic::getDeclaration(M, Int);
15983 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
15984 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
15986 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
15987 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
15988 if (!Subtarget->isLittle())
15989 std::swap (Lo, Hi);
15990 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
15991 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
15992 return Builder.CreateOr(
15993 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
15996 Type *Tys[] = { Addr->getType() };
15997 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
15998 Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
16000 return Builder.CreateTruncOrBitCast(
16001 Builder.CreateCall(Ldrex, Addr),
16002 cast<PointerType>(Addr->getType())->getElementType());
16005 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16006 IRBuilder<> &Builder) const {
16007 if (!Subtarget->hasV7Ops())
16008 return;
16009 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16010 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
16013 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
16014 Value *Addr,
16015 AtomicOrdering Ord) const {
16016 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16017 bool IsRelease = isReleaseOrStronger(Ord);
16019 // Since the intrinsics must have legal type, the i64 intrinsics take two
16020 // parameters: "i32, i32". We must marshal Val into the appropriate form
16021 // before the call.
16022 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
16023 Intrinsic::ID Int =
16024 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
16025 Function *Strex = Intrinsic::getDeclaration(M, Int);
16026 Type *Int32Ty = Type::getInt32Ty(M->getContext());
16028 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
16029 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
16030 if (!Subtarget->isLittle())
16031 std::swap(Lo, Hi);
16032 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16033 return Builder.CreateCall(Strex, {Lo, Hi, Addr});
16036 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
16037 Type *Tys[] = { Addr->getType() };
16038 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
16040 return Builder.CreateCall(
16041 Strex, {Builder.CreateZExtOrBitCast(
16042 Val, Strex->getFunctionType()->getParamType(0)),
16043 Addr});
16047 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16048 return Subtarget->isMClass();
16051 /// A helper function for determining the number of interleaved accesses we
16052 /// will generate when lowering accesses of the given type.
16053 unsigned
16054 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
16055 const DataLayout &DL) const {
16056 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
16059 bool ARMTargetLowering::isLegalInterleavedAccessType(
16060 VectorType *VecTy, const DataLayout &DL) const {
16062 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
16063 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
16065 // Ensure the vector doesn't have f16 elements. Even though we could do an
16066 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16067 // f32.
16068 if (VecTy->getElementType()->isHalfTy())
16069 return false;
16071 // Ensure the number of vector elements is greater than 1.
16072 if (VecTy->getNumElements() < 2)
16073 return false;
16075 // Ensure the element type is legal.
16076 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
16077 return false;
16079 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16080 // 128 will be split into multiple interleaved accesses.
16081 return VecSize == 64 || VecSize % 128 == 0;
16084 /// Lower an interleaved load into a vldN intrinsic.
16086 /// E.g. Lower an interleaved load (Factor = 2):
16087 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16088 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16089 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16091 /// Into:
16092 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16093 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16094 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16095 bool ARMTargetLowering::lowerInterleavedLoad(
16096 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
16097 ArrayRef<unsigned> Indices, unsigned Factor) const {
16098 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
16099 "Invalid interleave factor");
16100 assert(!Shuffles.empty() && "Empty shufflevector input");
16101 assert(Shuffles.size() == Indices.size() &&
16102 "Unmatched number of shufflevectors and indices");
16104 VectorType *VecTy = Shuffles[0]->getType();
16105 Type *EltTy = VecTy->getVectorElementType();
16107 const DataLayout &DL = LI->getModule()->getDataLayout();
16109 // Skip if we do not have NEON and skip illegal vector types. We can
16110 // "legalize" wide vector types into multiple interleaved accesses as long as
16111 // the vector types are divisible by 128.
16112 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
16113 return false;
16115 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
16117 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16118 // load integer vectors first and then convert to pointer vectors.
16119 if (EltTy->isPointerTy())
16120 VecTy =
16121 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
16123 IRBuilder<> Builder(LI);
16125 // The base address of the load.
16126 Value *BaseAddr = LI->getPointerOperand();
16128 if (NumLoads > 1) {
16129 // If we're going to generate more than one load, reset the sub-vector type
16130 // to something legal.
16131 VecTy = VectorType::get(VecTy->getVectorElementType(),
16132 VecTy->getVectorNumElements() / NumLoads);
16134 // We will compute the pointer operand of each load from the original base
16135 // address using GEPs. Cast the base address to a pointer to the scalar
16136 // element type.
16137 BaseAddr = Builder.CreateBitCast(
16138 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
16139 LI->getPointerAddressSpace()));
16142 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
16144 Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
16145 Type *Tys[] = {VecTy, Int8Ptr};
16146 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
16147 Intrinsic::arm_neon_vld3,
16148 Intrinsic::arm_neon_vld4};
16149 Function *VldnFunc =
16150 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
16152 // Holds sub-vectors extracted from the load intrinsic return values. The
16153 // sub-vectors are associated with the shufflevector instructions they will
16154 // replace.
16155 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
16157 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
16158 // If we're generating more than one load, compute the base address of
16159 // subsequent loads as an offset from the previous.
16160 if (LoadCount > 0)
16161 BaseAddr =
16162 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
16163 VecTy->getVectorNumElements() * Factor);
16165 SmallVector<Value *, 2> Ops;
16166 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
16167 Ops.push_back(Builder.getInt32(LI->getAlignment()));
16169 CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
16171 // Replace uses of each shufflevector with the corresponding vector loaded
16172 // by ldN.
16173 for (unsigned i = 0; i < Shuffles.size(); i++) {
16174 ShuffleVectorInst *SV = Shuffles[i];
16175 unsigned Index = Indices[i];
16177 Value *SubVec = Builder.CreateExtractValue(VldN, Index);
16179 // Convert the integer vector to pointer vector if the element is pointer.
16180 if (EltTy->isPointerTy())
16181 SubVec = Builder.CreateIntToPtr(
16182 SubVec, VectorType::get(SV->getType()->getVectorElementType(),
16183 VecTy->getVectorNumElements()));
16185 SubVecs[SV].push_back(SubVec);
16189 // Replace uses of the shufflevector instructions with the sub-vectors
16190 // returned by the load intrinsic. If a shufflevector instruction is
16191 // associated with more than one sub-vector, those sub-vectors will be
16192 // concatenated into a single wide vector.
16193 for (ShuffleVectorInst *SVI : Shuffles) {
16194 auto &SubVec = SubVecs[SVI];
16195 auto *WideVec =
16196 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
16197 SVI->replaceAllUsesWith(WideVec);
16200 return true;
16203 /// Lower an interleaved store into a vstN intrinsic.
16205 /// E.g. Lower an interleaved store (Factor = 3):
16206 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16207 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16208 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16210 /// Into:
16211 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16212 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16213 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16214 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16216 /// Note that the new shufflevectors will be removed and we'll only generate one
16217 /// vst3 instruction in CodeGen.
16219 /// Example for a more general valid mask (Factor 3). Lower:
16220 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16221 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16222 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16224 /// Into:
16225 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16226 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16227 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16228 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16229 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
16230 ShuffleVectorInst *SVI,
16231 unsigned Factor) const {
16232 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
16233 "Invalid interleave factor");
16235 VectorType *VecTy = SVI->getType();
16236 assert(VecTy->getVectorNumElements() % Factor == 0 &&
16237 "Invalid interleaved store");
16239 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
16240 Type *EltTy = VecTy->getVectorElementType();
16241 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
16243 const DataLayout &DL = SI->getModule()->getDataLayout();
16245 // Skip if we do not have NEON and skip illegal vector types. We can
16246 // "legalize" wide vector types into multiple interleaved accesses as long as
16247 // the vector types are divisible by 128.
16248 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
16249 return false;
16251 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
16253 Value *Op0 = SVI->getOperand(0);
16254 Value *Op1 = SVI->getOperand(1);
16255 IRBuilder<> Builder(SI);
16257 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16258 // vectors to integer vectors.
16259 if (EltTy->isPointerTy()) {
16260 Type *IntTy = DL.getIntPtrType(EltTy);
16262 // Convert to the corresponding integer vector.
16263 Type *IntVecTy =
16264 VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
16265 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
16266 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
16268 SubVecTy = VectorType::get(IntTy, LaneLen);
16271 // The base address of the store.
16272 Value *BaseAddr = SI->getPointerOperand();
16274 if (NumStores > 1) {
16275 // If we're going to generate more than one store, reset the lane length
16276 // and sub-vector type to something legal.
16277 LaneLen /= NumStores;
16278 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
16280 // We will compute the pointer operand of each store from the original base
16281 // address using GEPs. Cast the base address to a pointer to the scalar
16282 // element type.
16283 BaseAddr = Builder.CreateBitCast(
16284 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
16285 SI->getPointerAddressSpace()));
16288 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
16290 auto Mask = SVI->getShuffleMask();
16292 Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
16293 Type *Tys[] = {Int8Ptr, SubVecTy};
16294 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
16295 Intrinsic::arm_neon_vst3,
16296 Intrinsic::arm_neon_vst4};
16298 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
16299 // If we generating more than one store, we compute the base address of
16300 // subsequent stores as an offset from the previous.
16301 if (StoreCount > 0)
16302 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
16303 BaseAddr, LaneLen * Factor);
16305 SmallVector<Value *, 6> Ops;
16306 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
16308 Function *VstNFunc =
16309 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
16311 // Split the shufflevector operands into sub vectors for the new vstN call.
16312 for (unsigned i = 0; i < Factor; i++) {
16313 unsigned IdxI = StoreCount * LaneLen * Factor + i;
16314 if (Mask[IdxI] >= 0) {
16315 Ops.push_back(Builder.CreateShuffleVector(
16316 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
16317 } else {
16318 unsigned StartMask = 0;
16319 for (unsigned j = 1; j < LaneLen; j++) {
16320 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
16321 if (Mask[IdxJ * Factor + IdxI] >= 0) {
16322 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
16323 break;
16326 // Note: If all elements in a chunk are undefs, StartMask=0!
16327 // Note: Filling undef gaps with random elements is ok, since
16328 // those elements were being written anyway (with undefs).
16329 // In the case of all undefs we're defaulting to using elems from 0
16330 // Note: StartMask cannot be negative, it's checked in
16331 // isReInterleaveMask
16332 Ops.push_back(Builder.CreateShuffleVector(
16333 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
16337 Ops.push_back(Builder.getInt32(SI->getAlignment()));
16338 Builder.CreateCall(VstNFunc, Ops);
16340 return true;
16343 enum HABaseType {
16344 HA_UNKNOWN = 0,
16345 HA_FLOAT,
16346 HA_DOUBLE,
16347 HA_VECT64,
16348 HA_VECT128
16351 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
16352 uint64_t &Members) {
16353 if (auto *ST = dyn_cast<StructType>(Ty)) {
16354 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
16355 uint64_t SubMembers = 0;
16356 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
16357 return false;
16358 Members += SubMembers;
16360 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
16361 uint64_t SubMembers = 0;
16362 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
16363 return false;
16364 Members += SubMembers * AT->getNumElements();
16365 } else if (Ty->isFloatTy()) {
16366 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
16367 return false;
16368 Members = 1;
16369 Base = HA_FLOAT;
16370 } else if (Ty->isDoubleTy()) {
16371 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
16372 return false;
16373 Members = 1;
16374 Base = HA_DOUBLE;
16375 } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
16376 Members = 1;
16377 switch (Base) {
16378 case HA_FLOAT:
16379 case HA_DOUBLE:
16380 return false;
16381 case HA_VECT64:
16382 return VT->getBitWidth() == 64;
16383 case HA_VECT128:
16384 return VT->getBitWidth() == 128;
16385 case HA_UNKNOWN:
16386 switch (VT->getBitWidth()) {
16387 case 64:
16388 Base = HA_VECT64;
16389 return true;
16390 case 128:
16391 Base = HA_VECT128;
16392 return true;
16393 default:
16394 return false;
16399 return (Members > 0 && Members <= 4);
16402 /// Return the correct alignment for the current calling convention.
16403 unsigned
16404 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
16405 DataLayout DL) const {
16406 if (!ArgTy->isVectorTy())
16407 return DL.getABITypeAlignment(ArgTy);
16409 // Avoid over-aligning vector parameters. It would require realigning the
16410 // stack and waste space for no real benefit.
16411 return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
16414 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16415 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16416 /// passing according to AAPCS rules.
16417 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16418 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
16419 if (getEffectiveCallingConv(CallConv, isVarArg) !=
16420 CallingConv::ARM_AAPCS_VFP)
16421 return false;
16423 HABaseType Base = HA_UNKNOWN;
16424 uint64_t Members = 0;
16425 bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
16426 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
16428 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
16429 return IsHA || IsIntArray;
16432 unsigned ARMTargetLowering::getExceptionPointerRegister(
16433 const Constant *PersonalityFn) const {
16434 // Platforms which do not use SjLj EH may return values in these registers
16435 // via the personality function.
16436 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
16439 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16440 const Constant *PersonalityFn) const {
16441 // Platforms which do not use SjLj EH may return values in these registers
16442 // via the personality function.
16443 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
16446 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
16447 // Update IsSplitCSR in ARMFunctionInfo.
16448 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
16449 AFI->setIsSplitCSR(true);
16452 void ARMTargetLowering::insertCopiesSplitCSR(
16453 MachineBasicBlock *Entry,
16454 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
16455 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
16456 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
16457 if (!IStart)
16458 return;
16460 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
16461 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
16462 MachineBasicBlock::iterator MBBI = Entry->begin();
16463 for (const MCPhysReg *I = IStart; *I; ++I) {
16464 const TargetRegisterClass *RC = nullptr;
16465 if (ARM::GPRRegClass.contains(*I))
16466 RC = &ARM::GPRRegClass;
16467 else if (ARM::DPRRegClass.contains(*I))
16468 RC = &ARM::DPRRegClass;
16469 else
16470 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16472 unsigned NewVR = MRI->createVirtualRegister(RC);
16473 // Create copy from CSR to a virtual register.
16474 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16475 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16476 // nounwind. If we want to generalize this later, we may need to emit
16477 // CFI pseudo-instructions.
16478 assert(Entry->getParent()->getFunction().hasFnAttribute(
16479 Attribute::NoUnwind) &&
16480 "Function should be nounwind in insertCopiesSplitCSR!");
16481 Entry->addLiveIn(*I);
16482 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
16483 .addReg(*I);
16485 // Insert the copy-back instructions right before the terminator.
16486 for (auto *Exit : Exits)
16487 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
16488 TII->get(TargetOpcode::COPY), *I)
16489 .addReg(NewVR);
16493 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
16494 MF.getFrameInfo().computeMaxCallFrameSize(MF);
16495 TargetLoweringBase::finalizeLowering(MF);