[x86/SLH] Improve name and comments for the main hardening function.
[llvm-complete.git] / lib / Analysis / AliasAnalysis.cpp
bloba6585df949f8f4d27595c0776a5173c23b3e3574
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified. This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation. Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
25 //===----------------------------------------------------------------------===//
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <functional>
56 #include <iterator>
58 using namespace llvm;
60 /// Allow disabling BasicAA from the AA results. This is particularly useful
61 /// when testing to isolate a single AA implementation.
62 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
63 cl::init(false));
65 AAResults::AAResults(AAResults &&Arg)
66 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
67 for (auto &AA : AAs)
68 AA->setAAResults(this);
71 AAResults::~AAResults() {
72 // FIXME; It would be nice to at least clear out the pointers back to this
73 // aggregation here, but we end up with non-nesting lifetimes in the legacy
74 // pass manager that prevent this from working. In the legacy pass manager
75 // we'll end up with dangling references here in some cases.
76 #if 0
77 for (auto &AA : AAs)
78 AA->setAAResults(nullptr);
79 #endif
82 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
83 FunctionAnalysisManager::Invalidator &Inv) {
84 // Check if the AA manager itself has been invalidated.
85 auto PAC = PA.getChecker<AAManager>();
86 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
87 return true; // The manager needs to be blown away, clear everything.
89 // Check all of the dependencies registered.
90 for (AnalysisKey *ID : AADeps)
91 if (Inv.invalidate(ID, F, PA))
92 return true;
94 // Everything we depend on is still fine, so are we. Nothing to invalidate.
95 return false;
98 //===----------------------------------------------------------------------===//
99 // Default chaining methods
100 //===----------------------------------------------------------------------===//
102 AliasResult AAResults::alias(const MemoryLocation &LocA,
103 const MemoryLocation &LocB) {
104 for (const auto &AA : AAs) {
105 auto Result = AA->alias(LocA, LocB);
106 if (Result != MayAlias)
107 return Result;
109 return MayAlias;
112 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
113 bool OrLocal) {
114 for (const auto &AA : AAs)
115 if (AA->pointsToConstantMemory(Loc, OrLocal))
116 return true;
118 return false;
121 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
122 ModRefInfo Result = ModRefInfo::ModRef;
124 for (const auto &AA : AAs) {
125 Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx));
127 // Early-exit the moment we reach the bottom of the lattice.
128 if (isNoModRef(Result))
129 return ModRefInfo::NoModRef;
132 return Result;
135 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
136 // We may have two calls.
137 if (auto CS = ImmutableCallSite(I)) {
138 // Check if the two calls modify the same memory.
139 return getModRefInfo(CS, Call);
140 } else if (I->isFenceLike()) {
141 // If this is a fence, just return ModRef.
142 return ModRefInfo::ModRef;
143 } else {
144 // Otherwise, check if the call modifies or references the
145 // location this memory access defines. The best we can say
146 // is that if the call references what this instruction
147 // defines, it must be clobbered by this location.
148 const MemoryLocation DefLoc = MemoryLocation::get(I);
149 ModRefInfo MR = getModRefInfo(Call, DefLoc);
150 if (isModOrRefSet(MR))
151 return setModAndRef(MR);
153 return ModRefInfo::NoModRef;
156 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
157 const MemoryLocation &Loc) {
158 ModRefInfo Result = ModRefInfo::ModRef;
160 for (const auto &AA : AAs) {
161 Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc));
163 // Early-exit the moment we reach the bottom of the lattice.
164 if (isNoModRef(Result))
165 return ModRefInfo::NoModRef;
168 // Try to refine the mod-ref info further using other API entry points to the
169 // aggregate set of AA results.
170 auto MRB = getModRefBehavior(CS);
171 if (MRB == FMRB_DoesNotAccessMemory ||
172 MRB == FMRB_OnlyAccessesInaccessibleMem)
173 return ModRefInfo::NoModRef;
175 if (onlyReadsMemory(MRB))
176 Result = clearMod(Result);
177 else if (doesNotReadMemory(MRB))
178 Result = clearRef(Result);
180 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
181 bool DoesAlias = false;
182 bool IsMustAlias = true;
183 ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
184 if (doesAccessArgPointees(MRB)) {
185 for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
186 const Value *Arg = *AI;
187 if (!Arg->getType()->isPointerTy())
188 continue;
189 unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
190 MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
191 AliasResult ArgAlias = alias(ArgLoc, Loc);
192 if (ArgAlias != NoAlias) {
193 ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
194 DoesAlias = true;
195 AllArgsMask = unionModRef(AllArgsMask, ArgMask);
197 // Conservatively clear IsMustAlias unless only MustAlias is found.
198 IsMustAlias &= (ArgAlias == MustAlias);
201 // Return NoModRef if no alias found with any argument.
202 if (!DoesAlias)
203 return ModRefInfo::NoModRef;
204 // Logical & between other AA analyses and argument analysis.
205 Result = intersectModRef(Result, AllArgsMask);
206 // If only MustAlias found above, set Must bit.
207 Result = IsMustAlias ? setMust(Result) : clearMust(Result);
210 // If Loc is a constant memory location, the call definitely could not
211 // modify the memory location.
212 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
213 Result = clearMod(Result);
215 return Result;
218 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
219 ImmutableCallSite CS2) {
220 ModRefInfo Result = ModRefInfo::ModRef;
222 for (const auto &AA : AAs) {
223 Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2));
225 // Early-exit the moment we reach the bottom of the lattice.
226 if (isNoModRef(Result))
227 return ModRefInfo::NoModRef;
230 // Try to refine the mod-ref info further using other API entry points to the
231 // aggregate set of AA results.
233 // If CS1 or CS2 are readnone, they don't interact.
234 auto CS1B = getModRefBehavior(CS1);
235 if (CS1B == FMRB_DoesNotAccessMemory)
236 return ModRefInfo::NoModRef;
238 auto CS2B = getModRefBehavior(CS2);
239 if (CS2B == FMRB_DoesNotAccessMemory)
240 return ModRefInfo::NoModRef;
242 // If they both only read from memory, there is no dependence.
243 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
244 return ModRefInfo::NoModRef;
246 // If CS1 only reads memory, the only dependence on CS2 can be
247 // from CS1 reading memory written by CS2.
248 if (onlyReadsMemory(CS1B))
249 Result = clearMod(Result);
250 else if (doesNotReadMemory(CS1B))
251 Result = clearRef(Result);
253 // If CS2 only access memory through arguments, accumulate the mod/ref
254 // information from CS1's references to the memory referenced by
255 // CS2's arguments.
256 if (onlyAccessesArgPointees(CS2B)) {
257 if (!doesAccessArgPointees(CS2B))
258 return ModRefInfo::NoModRef;
259 ModRefInfo R = ModRefInfo::NoModRef;
260 bool IsMustAlias = true;
261 for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
262 const Value *Arg = *I;
263 if (!Arg->getType()->isPointerTy())
264 continue;
265 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
266 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
268 // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the
269 // dependence of CS1 on that location is the inverse:
270 // - If CS2 modifies location, dependence exists if CS1 reads or writes.
271 // - If CS2 only reads location, dependence exists if CS1 writes.
272 ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx);
273 ModRefInfo ArgMask = ModRefInfo::NoModRef;
274 if (isModSet(ArgModRefCS2))
275 ArgMask = ModRefInfo::ModRef;
276 else if (isRefSet(ArgModRefCS2))
277 ArgMask = ModRefInfo::Mod;
279 // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use
280 // above ArgMask to update dependence info.
281 ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc);
282 ArgMask = intersectModRef(ArgMask, ModRefCS1);
284 // Conservatively clear IsMustAlias unless only MustAlias is found.
285 IsMustAlias &= isMustSet(ModRefCS1);
287 R = intersectModRef(unionModRef(R, ArgMask), Result);
288 if (R == Result) {
289 // On early exit, not all args were checked, cannot set Must.
290 if (I + 1 != E)
291 IsMustAlias = false;
292 break;
296 if (isNoModRef(R))
297 return ModRefInfo::NoModRef;
299 // If MustAlias found above, set Must bit.
300 return IsMustAlias ? setMust(R) : clearMust(R);
303 // If CS1 only accesses memory through arguments, check if CS2 references
304 // any of the memory referenced by CS1's arguments. If not, return NoModRef.
305 if (onlyAccessesArgPointees(CS1B)) {
306 if (!doesAccessArgPointees(CS1B))
307 return ModRefInfo::NoModRef;
308 ModRefInfo R = ModRefInfo::NoModRef;
309 bool IsMustAlias = true;
310 for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
311 const Value *Arg = *I;
312 if (!Arg->getType()->isPointerTy())
313 continue;
314 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
315 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
317 // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might
318 // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If
319 // CS1 might Ref, then we care only about a Mod by CS2.
320 ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx);
321 ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc);
322 if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) ||
323 (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2)))
324 R = intersectModRef(unionModRef(R, ArgModRefCS1), Result);
326 // Conservatively clear IsMustAlias unless only MustAlias is found.
327 IsMustAlias &= isMustSet(ModRefCS2);
329 if (R == Result) {
330 // On early exit, not all args were checked, cannot set Must.
331 if (I + 1 != E)
332 IsMustAlias = false;
333 break;
337 if (isNoModRef(R))
338 return ModRefInfo::NoModRef;
340 // If MustAlias found above, set Must bit.
341 return IsMustAlias ? setMust(R) : clearMust(R);
344 return Result;
347 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
348 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
350 for (const auto &AA : AAs) {
351 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
353 // Early-exit the moment we reach the bottom of the lattice.
354 if (Result == FMRB_DoesNotAccessMemory)
355 return Result;
358 return Result;
361 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
362 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
364 for (const auto &AA : AAs) {
365 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
367 // Early-exit the moment we reach the bottom of the lattice.
368 if (Result == FMRB_DoesNotAccessMemory)
369 return Result;
372 return Result;
375 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
376 switch (AR) {
377 case NoAlias:
378 OS << "NoAlias";
379 break;
380 case MustAlias:
381 OS << "MustAlias";
382 break;
383 case MayAlias:
384 OS << "MayAlias";
385 break;
386 case PartialAlias:
387 OS << "PartialAlias";
388 break;
390 return OS;
393 //===----------------------------------------------------------------------===//
394 // Helper method implementation
395 //===----------------------------------------------------------------------===//
397 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
398 const MemoryLocation &Loc) {
399 // Be conservative in the face of atomic.
400 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
401 return ModRefInfo::ModRef;
403 // If the load address doesn't alias the given address, it doesn't read
404 // or write the specified memory.
405 if (Loc.Ptr) {
406 AliasResult AR = alias(MemoryLocation::get(L), Loc);
407 if (AR == NoAlias)
408 return ModRefInfo::NoModRef;
409 if (AR == MustAlias)
410 return ModRefInfo::MustRef;
412 // Otherwise, a load just reads.
413 return ModRefInfo::Ref;
416 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
417 const MemoryLocation &Loc) {
418 // Be conservative in the face of atomic.
419 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
420 return ModRefInfo::ModRef;
422 if (Loc.Ptr) {
423 AliasResult AR = alias(MemoryLocation::get(S), Loc);
424 // If the store address cannot alias the pointer in question, then the
425 // specified memory cannot be modified by the store.
426 if (AR == NoAlias)
427 return ModRefInfo::NoModRef;
429 // If the pointer is a pointer to constant memory, then it could not have
430 // been modified by this store.
431 if (pointsToConstantMemory(Loc))
432 return ModRefInfo::NoModRef;
434 // If the store address aliases the pointer as must alias, set Must.
435 if (AR == MustAlias)
436 return ModRefInfo::MustMod;
439 // Otherwise, a store just writes.
440 return ModRefInfo::Mod;
443 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
444 // If we know that the location is a constant memory location, the fence
445 // cannot modify this location.
446 if (Loc.Ptr && pointsToConstantMemory(Loc))
447 return ModRefInfo::Ref;
448 return ModRefInfo::ModRef;
451 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
452 const MemoryLocation &Loc) {
453 if (Loc.Ptr) {
454 AliasResult AR = alias(MemoryLocation::get(V), Loc);
455 // If the va_arg address cannot alias the pointer in question, then the
456 // specified memory cannot be accessed by the va_arg.
457 if (AR == NoAlias)
458 return ModRefInfo::NoModRef;
460 // If the pointer is a pointer to constant memory, then it could not have
461 // been modified by this va_arg.
462 if (pointsToConstantMemory(Loc))
463 return ModRefInfo::NoModRef;
465 // If the va_arg aliases the pointer as must alias, set Must.
466 if (AR == MustAlias)
467 return ModRefInfo::MustModRef;
470 // Otherwise, a va_arg reads and writes.
471 return ModRefInfo::ModRef;
474 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
475 const MemoryLocation &Loc) {
476 if (Loc.Ptr) {
477 // If the pointer is a pointer to constant memory,
478 // then it could not have been modified by this catchpad.
479 if (pointsToConstantMemory(Loc))
480 return ModRefInfo::NoModRef;
483 // Otherwise, a catchpad reads and writes.
484 return ModRefInfo::ModRef;
487 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
488 const MemoryLocation &Loc) {
489 if (Loc.Ptr) {
490 // If the pointer is a pointer to constant memory,
491 // then it could not have been modified by this catchpad.
492 if (pointsToConstantMemory(Loc))
493 return ModRefInfo::NoModRef;
496 // Otherwise, a catchret reads and writes.
497 return ModRefInfo::ModRef;
500 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
501 const MemoryLocation &Loc) {
502 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
503 if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
504 return ModRefInfo::ModRef;
506 if (Loc.Ptr) {
507 AliasResult AR = alias(MemoryLocation::get(CX), Loc);
508 // If the cmpxchg address does not alias the location, it does not access
509 // it.
510 if (AR == NoAlias)
511 return ModRefInfo::NoModRef;
513 // If the cmpxchg address aliases the pointer as must alias, set Must.
514 if (AR == MustAlias)
515 return ModRefInfo::MustModRef;
518 return ModRefInfo::ModRef;
521 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
522 const MemoryLocation &Loc) {
523 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
524 if (isStrongerThanMonotonic(RMW->getOrdering()))
525 return ModRefInfo::ModRef;
527 if (Loc.Ptr) {
528 AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
529 // If the atomicrmw address does not alias the location, it does not access
530 // it.
531 if (AR == NoAlias)
532 return ModRefInfo::NoModRef;
534 // If the atomicrmw address aliases the pointer as must alias, set Must.
535 if (AR == MustAlias)
536 return ModRefInfo::MustModRef;
539 return ModRefInfo::ModRef;
542 /// Return information about whether a particular call site modifies
543 /// or reads the specified memory location \p MemLoc before instruction \p I
544 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
545 /// instruction-ordering queries inside the BasicBlock containing \p I.
546 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
547 /// BasicAA isn't willing to spend linear time determining whether an alloca
548 /// was captured before or after this particular call, while we are. However,
549 /// with a smarter AA in place, this test is just wasting compile time.
550 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
551 const MemoryLocation &MemLoc,
552 DominatorTree *DT,
553 OrderedBasicBlock *OBB) {
554 if (!DT)
555 return ModRefInfo::ModRef;
557 const Value *Object =
558 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
559 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
560 isa<Constant>(Object))
561 return ModRefInfo::ModRef;
563 ImmutableCallSite CS(I);
564 if (!CS.getInstruction() || CS.getInstruction() == Object)
565 return ModRefInfo::ModRef;
567 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
568 /* StoreCaptures */ true, I, DT,
569 /* include Object */ true,
570 /* OrderedBasicBlock */ OBB))
571 return ModRefInfo::ModRef;
573 unsigned ArgNo = 0;
574 ModRefInfo R = ModRefInfo::NoModRef;
575 bool IsMustAlias = true;
576 // Set flag only if no May found and all operands processed.
577 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
578 CI != CE; ++CI, ++ArgNo) {
579 // Only look at the no-capture or byval pointer arguments. If this
580 // pointer were passed to arguments that were neither of these, then it
581 // couldn't be no-capture.
582 if (!(*CI)->getType()->isPointerTy() ||
583 (!CS.doesNotCapture(ArgNo) &&
584 ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
585 continue;
587 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
588 // If this is a no-capture pointer argument, see if we can tell that it
589 // is impossible to alias the pointer we're checking. If not, we have to
590 // assume that the call could touch the pointer, even though it doesn't
591 // escape.
592 if (AR != MustAlias)
593 IsMustAlias = false;
594 if (AR == NoAlias)
595 continue;
596 if (CS.doesNotAccessMemory(ArgNo))
597 continue;
598 if (CS.onlyReadsMemory(ArgNo)) {
599 R = ModRefInfo::Ref;
600 continue;
602 // Not returning MustModRef since we have not seen all the arguments.
603 return ModRefInfo::ModRef;
605 return IsMustAlias ? setMust(R) : clearMust(R);
608 /// canBasicBlockModify - Return true if it is possible for execution of the
609 /// specified basic block to modify the location Loc.
611 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
612 const MemoryLocation &Loc) {
613 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
616 /// canInstructionRangeModRef - Return true if it is possible for the
617 /// execution of the specified instructions to mod\ref (according to the
618 /// mode) the location Loc. The instructions to consider are all
619 /// of the instructions in the range of [I1,I2] INCLUSIVE.
620 /// I1 and I2 must be in the same basic block.
621 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
622 const Instruction &I2,
623 const MemoryLocation &Loc,
624 const ModRefInfo Mode) {
625 assert(I1.getParent() == I2.getParent() &&
626 "Instructions not in same basic block!");
627 BasicBlock::const_iterator I = I1.getIterator();
628 BasicBlock::const_iterator E = I2.getIterator();
629 ++E; // Convert from inclusive to exclusive range.
631 for (; I != E; ++I) // Check every instruction in range
632 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
633 return true;
634 return false;
637 // Provide a definition for the root virtual destructor.
638 AAResults::Concept::~Concept() = default;
640 // Provide a definition for the static object used to identify passes.
641 AnalysisKey AAManager::Key;
643 namespace {
645 /// A wrapper pass for external alias analyses. This just squirrels away the
646 /// callback used to run any analyses and register their results.
647 struct ExternalAAWrapperPass : ImmutablePass {
648 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
650 CallbackT CB;
652 static char ID;
654 ExternalAAWrapperPass() : ImmutablePass(ID) {
655 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
658 explicit ExternalAAWrapperPass(CallbackT CB)
659 : ImmutablePass(ID), CB(std::move(CB)) {
660 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
663 void getAnalysisUsage(AnalysisUsage &AU) const override {
664 AU.setPreservesAll();
668 } // end anonymous namespace
670 char ExternalAAWrapperPass::ID = 0;
672 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
673 false, true)
675 ImmutablePass *
676 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
677 return new ExternalAAWrapperPass(std::move(Callback));
680 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
681 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
684 char AAResultsWrapperPass::ID = 0;
686 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
687 "Function Alias Analysis Results", false, true)
688 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
689 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
690 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
691 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
692 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
693 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
694 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
695 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
696 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
697 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
698 "Function Alias Analysis Results", false, true)
700 FunctionPass *llvm::createAAResultsWrapperPass() {
701 return new AAResultsWrapperPass();
704 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
706 /// This is the legacy pass manager's interface to the new-style AA results
707 /// aggregation object. Because this is somewhat shoe-horned into the legacy
708 /// pass manager, we hard code all the specific alias analyses available into
709 /// it. While the particular set enabled is configured via commandline flags,
710 /// adding a new alias analysis to LLVM will require adding support for it to
711 /// this list.
712 bool AAResultsWrapperPass::runOnFunction(Function &F) {
713 // NB! This *must* be reset before adding new AA results to the new
714 // AAResults object because in the legacy pass manager, each instance
715 // of these will refer to the *same* immutable analyses, registering and
716 // unregistering themselves with them. We need to carefully tear down the
717 // previous object first, in this case replacing it with an empty one, before
718 // registering new results.
719 AAR.reset(
720 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
722 // BasicAA is always available for function analyses. Also, we add it first
723 // so that it can trump TBAA results when it proves MustAlias.
724 // FIXME: TBAA should have an explicit mode to support this and then we
725 // should reconsider the ordering here.
726 if (!DisableBasicAA)
727 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
729 // Populate the results with the currently available AAs.
730 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
731 AAR->addAAResult(WrapperPass->getResult());
732 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
733 AAR->addAAResult(WrapperPass->getResult());
734 if (auto *WrapperPass =
735 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
736 AAR->addAAResult(WrapperPass->getResult());
737 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
738 AAR->addAAResult(WrapperPass->getResult());
739 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
740 AAR->addAAResult(WrapperPass->getResult());
741 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
742 AAR->addAAResult(WrapperPass->getResult());
743 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
744 AAR->addAAResult(WrapperPass->getResult());
746 // If available, run an external AA providing callback over the results as
747 // well.
748 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
749 if (WrapperPass->CB)
750 WrapperPass->CB(*this, F, *AAR);
752 // Analyses don't mutate the IR, so return false.
753 return false;
756 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
757 AU.setPreservesAll();
758 AU.addRequired<BasicAAWrapperPass>();
759 AU.addRequired<TargetLibraryInfoWrapperPass>();
761 // We also need to mark all the alias analysis passes we will potentially
762 // probe in runOnFunction as used here to ensure the legacy pass manager
763 // preserves them. This hard coding of lists of alias analyses is specific to
764 // the legacy pass manager.
765 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
766 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
767 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
768 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
769 AU.addUsedIfAvailable<SCEVAAWrapperPass>();
770 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
771 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
774 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
775 BasicAAResult &BAR) {
776 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
778 // Add in our explicitly constructed BasicAA results.
779 if (!DisableBasicAA)
780 AAR.addAAResult(BAR);
782 // Populate the results with the other currently available AAs.
783 if (auto *WrapperPass =
784 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
785 AAR.addAAResult(WrapperPass->getResult());
786 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
787 AAR.addAAResult(WrapperPass->getResult());
788 if (auto *WrapperPass =
789 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
790 AAR.addAAResult(WrapperPass->getResult());
791 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
792 AAR.addAAResult(WrapperPass->getResult());
793 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
794 AAR.addAAResult(WrapperPass->getResult());
795 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
796 AAR.addAAResult(WrapperPass->getResult());
798 return AAR;
801 bool llvm::isNoAliasCall(const Value *V) {
802 if (auto CS = ImmutableCallSite(V))
803 return CS.hasRetAttr(Attribute::NoAlias);
804 return false;
807 bool llvm::isNoAliasArgument(const Value *V) {
808 if (const Argument *A = dyn_cast<Argument>(V))
809 return A->hasNoAliasAttr();
810 return false;
813 bool llvm::isIdentifiedObject(const Value *V) {
814 if (isa<AllocaInst>(V))
815 return true;
816 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
817 return true;
818 if (isNoAliasCall(V))
819 return true;
820 if (const Argument *A = dyn_cast<Argument>(V))
821 return A->hasNoAliasAttr() || A->hasByValAttr();
822 return false;
825 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
826 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
829 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
830 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
831 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
832 // to be added here also.
833 AU.addRequired<TargetLibraryInfoWrapperPass>();
834 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
835 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
836 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
837 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
838 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
839 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();