1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified. This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation. Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
25 //===----------------------------------------------------------------------===//
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
60 /// Allow disabling BasicAA from the AA results. This is particularly useful
61 /// when testing to isolate a single AA implementation.
62 static cl::opt
<bool> DisableBasicAA("disable-basicaa", cl::Hidden
,
65 AAResults::AAResults(AAResults
&&Arg
)
66 : TLI(Arg
.TLI
), AAs(std::move(Arg
.AAs
)), AADeps(std::move(Arg
.AADeps
)) {
68 AA
->setAAResults(this);
71 AAResults::~AAResults() {
72 // FIXME; It would be nice to at least clear out the pointers back to this
73 // aggregation here, but we end up with non-nesting lifetimes in the legacy
74 // pass manager that prevent this from working. In the legacy pass manager
75 // we'll end up with dangling references here in some cases.
78 AA
->setAAResults(nullptr);
82 bool AAResults::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
83 FunctionAnalysisManager::Invalidator
&Inv
) {
84 // Check if the AA manager itself has been invalidated.
85 auto PAC
= PA
.getChecker
<AAManager
>();
86 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
87 return true; // The manager needs to be blown away, clear everything.
89 // Check all of the dependencies registered.
90 for (AnalysisKey
*ID
: AADeps
)
91 if (Inv
.invalidate(ID
, F
, PA
))
94 // Everything we depend on is still fine, so are we. Nothing to invalidate.
98 //===----------------------------------------------------------------------===//
99 // Default chaining methods
100 //===----------------------------------------------------------------------===//
102 AliasResult
AAResults::alias(const MemoryLocation
&LocA
,
103 const MemoryLocation
&LocB
) {
104 for (const auto &AA
: AAs
) {
105 auto Result
= AA
->alias(LocA
, LocB
);
106 if (Result
!= MayAlias
)
112 bool AAResults::pointsToConstantMemory(const MemoryLocation
&Loc
,
114 for (const auto &AA
: AAs
)
115 if (AA
->pointsToConstantMemory(Loc
, OrLocal
))
121 ModRefInfo
AAResults::getArgModRefInfo(ImmutableCallSite CS
, unsigned ArgIdx
) {
122 ModRefInfo Result
= ModRefInfo::ModRef
;
124 for (const auto &AA
: AAs
) {
125 Result
= intersectModRef(Result
, AA
->getArgModRefInfo(CS
, ArgIdx
));
127 // Early-exit the moment we reach the bottom of the lattice.
128 if (isNoModRef(Result
))
129 return ModRefInfo::NoModRef
;
135 ModRefInfo
AAResults::getModRefInfo(Instruction
*I
, ImmutableCallSite Call
) {
136 // We may have two calls.
137 if (auto CS
= ImmutableCallSite(I
)) {
138 // Check if the two calls modify the same memory.
139 return getModRefInfo(CS
, Call
);
140 } else if (I
->isFenceLike()) {
141 // If this is a fence, just return ModRef.
142 return ModRefInfo::ModRef
;
144 // Otherwise, check if the call modifies or references the
145 // location this memory access defines. The best we can say
146 // is that if the call references what this instruction
147 // defines, it must be clobbered by this location.
148 const MemoryLocation DefLoc
= MemoryLocation::get(I
);
149 ModRefInfo MR
= getModRefInfo(Call
, DefLoc
);
150 if (isModOrRefSet(MR
))
151 return setModAndRef(MR
);
153 return ModRefInfo::NoModRef
;
156 ModRefInfo
AAResults::getModRefInfo(ImmutableCallSite CS
,
157 const MemoryLocation
&Loc
) {
158 ModRefInfo Result
= ModRefInfo::ModRef
;
160 for (const auto &AA
: AAs
) {
161 Result
= intersectModRef(Result
, AA
->getModRefInfo(CS
, Loc
));
163 // Early-exit the moment we reach the bottom of the lattice.
164 if (isNoModRef(Result
))
165 return ModRefInfo::NoModRef
;
168 // Try to refine the mod-ref info further using other API entry points to the
169 // aggregate set of AA results.
170 auto MRB
= getModRefBehavior(CS
);
171 if (MRB
== FMRB_DoesNotAccessMemory
||
172 MRB
== FMRB_OnlyAccessesInaccessibleMem
)
173 return ModRefInfo::NoModRef
;
175 if (onlyReadsMemory(MRB
))
176 Result
= clearMod(Result
);
177 else if (doesNotReadMemory(MRB
))
178 Result
= clearRef(Result
);
180 if (onlyAccessesArgPointees(MRB
) || onlyAccessesInaccessibleOrArgMem(MRB
)) {
181 bool DoesAlias
= false;
182 bool IsMustAlias
= true;
183 ModRefInfo AllArgsMask
= ModRefInfo::NoModRef
;
184 if (doesAccessArgPointees(MRB
)) {
185 for (auto AI
= CS
.arg_begin(), AE
= CS
.arg_end(); AI
!= AE
; ++AI
) {
186 const Value
*Arg
= *AI
;
187 if (!Arg
->getType()->isPointerTy())
189 unsigned ArgIdx
= std::distance(CS
.arg_begin(), AI
);
190 MemoryLocation ArgLoc
= MemoryLocation::getForArgument(CS
, ArgIdx
, TLI
);
191 AliasResult ArgAlias
= alias(ArgLoc
, Loc
);
192 if (ArgAlias
!= NoAlias
) {
193 ModRefInfo ArgMask
= getArgModRefInfo(CS
, ArgIdx
);
195 AllArgsMask
= unionModRef(AllArgsMask
, ArgMask
);
197 // Conservatively clear IsMustAlias unless only MustAlias is found.
198 IsMustAlias
&= (ArgAlias
== MustAlias
);
201 // Return NoModRef if no alias found with any argument.
203 return ModRefInfo::NoModRef
;
204 // Logical & between other AA analyses and argument analysis.
205 Result
= intersectModRef(Result
, AllArgsMask
);
206 // If only MustAlias found above, set Must bit.
207 Result
= IsMustAlias
? setMust(Result
) : clearMust(Result
);
210 // If Loc is a constant memory location, the call definitely could not
211 // modify the memory location.
212 if (isModSet(Result
) && pointsToConstantMemory(Loc
, /*OrLocal*/ false))
213 Result
= clearMod(Result
);
218 ModRefInfo
AAResults::getModRefInfo(ImmutableCallSite CS1
,
219 ImmutableCallSite CS2
) {
220 ModRefInfo Result
= ModRefInfo::ModRef
;
222 for (const auto &AA
: AAs
) {
223 Result
= intersectModRef(Result
, AA
->getModRefInfo(CS1
, CS2
));
225 // Early-exit the moment we reach the bottom of the lattice.
226 if (isNoModRef(Result
))
227 return ModRefInfo::NoModRef
;
230 // Try to refine the mod-ref info further using other API entry points to the
231 // aggregate set of AA results.
233 // If CS1 or CS2 are readnone, they don't interact.
234 auto CS1B
= getModRefBehavior(CS1
);
235 if (CS1B
== FMRB_DoesNotAccessMemory
)
236 return ModRefInfo::NoModRef
;
238 auto CS2B
= getModRefBehavior(CS2
);
239 if (CS2B
== FMRB_DoesNotAccessMemory
)
240 return ModRefInfo::NoModRef
;
242 // If they both only read from memory, there is no dependence.
243 if (onlyReadsMemory(CS1B
) && onlyReadsMemory(CS2B
))
244 return ModRefInfo::NoModRef
;
246 // If CS1 only reads memory, the only dependence on CS2 can be
247 // from CS1 reading memory written by CS2.
248 if (onlyReadsMemory(CS1B
))
249 Result
= clearMod(Result
);
250 else if (doesNotReadMemory(CS1B
))
251 Result
= clearRef(Result
);
253 // If CS2 only access memory through arguments, accumulate the mod/ref
254 // information from CS1's references to the memory referenced by
256 if (onlyAccessesArgPointees(CS2B
)) {
257 if (!doesAccessArgPointees(CS2B
))
258 return ModRefInfo::NoModRef
;
259 ModRefInfo R
= ModRefInfo::NoModRef
;
260 bool IsMustAlias
= true;
261 for (auto I
= CS2
.arg_begin(), E
= CS2
.arg_end(); I
!= E
; ++I
) {
262 const Value
*Arg
= *I
;
263 if (!Arg
->getType()->isPointerTy())
265 unsigned CS2ArgIdx
= std::distance(CS2
.arg_begin(), I
);
266 auto CS2ArgLoc
= MemoryLocation::getForArgument(CS2
, CS2ArgIdx
, TLI
);
268 // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the
269 // dependence of CS1 on that location is the inverse:
270 // - If CS2 modifies location, dependence exists if CS1 reads or writes.
271 // - If CS2 only reads location, dependence exists if CS1 writes.
272 ModRefInfo ArgModRefCS2
= getArgModRefInfo(CS2
, CS2ArgIdx
);
273 ModRefInfo ArgMask
= ModRefInfo::NoModRef
;
274 if (isModSet(ArgModRefCS2
))
275 ArgMask
= ModRefInfo::ModRef
;
276 else if (isRefSet(ArgModRefCS2
))
277 ArgMask
= ModRefInfo::Mod
;
279 // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use
280 // above ArgMask to update dependence info.
281 ModRefInfo ModRefCS1
= getModRefInfo(CS1
, CS2ArgLoc
);
282 ArgMask
= intersectModRef(ArgMask
, ModRefCS1
);
284 // Conservatively clear IsMustAlias unless only MustAlias is found.
285 IsMustAlias
&= isMustSet(ModRefCS1
);
287 R
= intersectModRef(unionModRef(R
, ArgMask
), Result
);
289 // On early exit, not all args were checked, cannot set Must.
297 return ModRefInfo::NoModRef
;
299 // If MustAlias found above, set Must bit.
300 return IsMustAlias
? setMust(R
) : clearMust(R
);
303 // If CS1 only accesses memory through arguments, check if CS2 references
304 // any of the memory referenced by CS1's arguments. If not, return NoModRef.
305 if (onlyAccessesArgPointees(CS1B
)) {
306 if (!doesAccessArgPointees(CS1B
))
307 return ModRefInfo::NoModRef
;
308 ModRefInfo R
= ModRefInfo::NoModRef
;
309 bool IsMustAlias
= true;
310 for (auto I
= CS1
.arg_begin(), E
= CS1
.arg_end(); I
!= E
; ++I
) {
311 const Value
*Arg
= *I
;
312 if (!Arg
->getType()->isPointerTy())
314 unsigned CS1ArgIdx
= std::distance(CS1
.arg_begin(), I
);
315 auto CS1ArgLoc
= MemoryLocation::getForArgument(CS1
, CS1ArgIdx
, TLI
);
317 // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might
318 // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If
319 // CS1 might Ref, then we care only about a Mod by CS2.
320 ModRefInfo ArgModRefCS1
= getArgModRefInfo(CS1
, CS1ArgIdx
);
321 ModRefInfo ModRefCS2
= getModRefInfo(CS2
, CS1ArgLoc
);
322 if ((isModSet(ArgModRefCS1
) && isModOrRefSet(ModRefCS2
)) ||
323 (isRefSet(ArgModRefCS1
) && isModSet(ModRefCS2
)))
324 R
= intersectModRef(unionModRef(R
, ArgModRefCS1
), Result
);
326 // Conservatively clear IsMustAlias unless only MustAlias is found.
327 IsMustAlias
&= isMustSet(ModRefCS2
);
330 // On early exit, not all args were checked, cannot set Must.
338 return ModRefInfo::NoModRef
;
340 // If MustAlias found above, set Must bit.
341 return IsMustAlias
? setMust(R
) : clearMust(R
);
347 FunctionModRefBehavior
AAResults::getModRefBehavior(ImmutableCallSite CS
) {
348 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
350 for (const auto &AA
: AAs
) {
351 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(CS
));
353 // Early-exit the moment we reach the bottom of the lattice.
354 if (Result
== FMRB_DoesNotAccessMemory
)
361 FunctionModRefBehavior
AAResults::getModRefBehavior(const Function
*F
) {
362 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
364 for (const auto &AA
: AAs
) {
365 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(F
));
367 // Early-exit the moment we reach the bottom of the lattice.
368 if (Result
== FMRB_DoesNotAccessMemory
)
375 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, AliasResult AR
) {
387 OS
<< "PartialAlias";
393 //===----------------------------------------------------------------------===//
394 // Helper method implementation
395 //===----------------------------------------------------------------------===//
397 ModRefInfo
AAResults::getModRefInfo(const LoadInst
*L
,
398 const MemoryLocation
&Loc
) {
399 // Be conservative in the face of atomic.
400 if (isStrongerThan(L
->getOrdering(), AtomicOrdering::Unordered
))
401 return ModRefInfo::ModRef
;
403 // If the load address doesn't alias the given address, it doesn't read
404 // or write the specified memory.
406 AliasResult AR
= alias(MemoryLocation::get(L
), Loc
);
408 return ModRefInfo::NoModRef
;
410 return ModRefInfo::MustRef
;
412 // Otherwise, a load just reads.
413 return ModRefInfo::Ref
;
416 ModRefInfo
AAResults::getModRefInfo(const StoreInst
*S
,
417 const MemoryLocation
&Loc
) {
418 // Be conservative in the face of atomic.
419 if (isStrongerThan(S
->getOrdering(), AtomicOrdering::Unordered
))
420 return ModRefInfo::ModRef
;
423 AliasResult AR
= alias(MemoryLocation::get(S
), Loc
);
424 // If the store address cannot alias the pointer in question, then the
425 // specified memory cannot be modified by the store.
427 return ModRefInfo::NoModRef
;
429 // If the pointer is a pointer to constant memory, then it could not have
430 // been modified by this store.
431 if (pointsToConstantMemory(Loc
))
432 return ModRefInfo::NoModRef
;
434 // If the store address aliases the pointer as must alias, set Must.
436 return ModRefInfo::MustMod
;
439 // Otherwise, a store just writes.
440 return ModRefInfo::Mod
;
443 ModRefInfo
AAResults::getModRefInfo(const FenceInst
*S
, const MemoryLocation
&Loc
) {
444 // If we know that the location is a constant memory location, the fence
445 // cannot modify this location.
446 if (Loc
.Ptr
&& pointsToConstantMemory(Loc
))
447 return ModRefInfo::Ref
;
448 return ModRefInfo::ModRef
;
451 ModRefInfo
AAResults::getModRefInfo(const VAArgInst
*V
,
452 const MemoryLocation
&Loc
) {
454 AliasResult AR
= alias(MemoryLocation::get(V
), Loc
);
455 // If the va_arg address cannot alias the pointer in question, then the
456 // specified memory cannot be accessed by the va_arg.
458 return ModRefInfo::NoModRef
;
460 // If the pointer is a pointer to constant memory, then it could not have
461 // been modified by this va_arg.
462 if (pointsToConstantMemory(Loc
))
463 return ModRefInfo::NoModRef
;
465 // If the va_arg aliases the pointer as must alias, set Must.
467 return ModRefInfo::MustModRef
;
470 // Otherwise, a va_arg reads and writes.
471 return ModRefInfo::ModRef
;
474 ModRefInfo
AAResults::getModRefInfo(const CatchPadInst
*CatchPad
,
475 const MemoryLocation
&Loc
) {
477 // If the pointer is a pointer to constant memory,
478 // then it could not have been modified by this catchpad.
479 if (pointsToConstantMemory(Loc
))
480 return ModRefInfo::NoModRef
;
483 // Otherwise, a catchpad reads and writes.
484 return ModRefInfo::ModRef
;
487 ModRefInfo
AAResults::getModRefInfo(const CatchReturnInst
*CatchRet
,
488 const MemoryLocation
&Loc
) {
490 // If the pointer is a pointer to constant memory,
491 // then it could not have been modified by this catchpad.
492 if (pointsToConstantMemory(Loc
))
493 return ModRefInfo::NoModRef
;
496 // Otherwise, a catchret reads and writes.
497 return ModRefInfo::ModRef
;
500 ModRefInfo
AAResults::getModRefInfo(const AtomicCmpXchgInst
*CX
,
501 const MemoryLocation
&Loc
) {
502 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
503 if (isStrongerThanMonotonic(CX
->getSuccessOrdering()))
504 return ModRefInfo::ModRef
;
507 AliasResult AR
= alias(MemoryLocation::get(CX
), Loc
);
508 // If the cmpxchg address does not alias the location, it does not access
511 return ModRefInfo::NoModRef
;
513 // If the cmpxchg address aliases the pointer as must alias, set Must.
515 return ModRefInfo::MustModRef
;
518 return ModRefInfo::ModRef
;
521 ModRefInfo
AAResults::getModRefInfo(const AtomicRMWInst
*RMW
,
522 const MemoryLocation
&Loc
) {
523 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
524 if (isStrongerThanMonotonic(RMW
->getOrdering()))
525 return ModRefInfo::ModRef
;
528 AliasResult AR
= alias(MemoryLocation::get(RMW
), Loc
);
529 // If the atomicrmw address does not alias the location, it does not access
532 return ModRefInfo::NoModRef
;
534 // If the atomicrmw address aliases the pointer as must alias, set Must.
536 return ModRefInfo::MustModRef
;
539 return ModRefInfo::ModRef
;
542 /// Return information about whether a particular call site modifies
543 /// or reads the specified memory location \p MemLoc before instruction \p I
544 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
545 /// instruction-ordering queries inside the BasicBlock containing \p I.
546 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
547 /// BasicAA isn't willing to spend linear time determining whether an alloca
548 /// was captured before or after this particular call, while we are. However,
549 /// with a smarter AA in place, this test is just wasting compile time.
550 ModRefInfo
AAResults::callCapturesBefore(const Instruction
*I
,
551 const MemoryLocation
&MemLoc
,
553 OrderedBasicBlock
*OBB
) {
555 return ModRefInfo::ModRef
;
557 const Value
*Object
=
558 GetUnderlyingObject(MemLoc
.Ptr
, I
->getModule()->getDataLayout());
559 if (!isIdentifiedObject(Object
) || isa
<GlobalValue
>(Object
) ||
560 isa
<Constant
>(Object
))
561 return ModRefInfo::ModRef
;
563 ImmutableCallSite
CS(I
);
564 if (!CS
.getInstruction() || CS
.getInstruction() == Object
)
565 return ModRefInfo::ModRef
;
567 if (PointerMayBeCapturedBefore(Object
, /* ReturnCaptures */ true,
568 /* StoreCaptures */ true, I
, DT
,
569 /* include Object */ true,
570 /* OrderedBasicBlock */ OBB
))
571 return ModRefInfo::ModRef
;
574 ModRefInfo R
= ModRefInfo::NoModRef
;
575 bool IsMustAlias
= true;
576 // Set flag only if no May found and all operands processed.
577 for (auto CI
= CS
.data_operands_begin(), CE
= CS
.data_operands_end();
578 CI
!= CE
; ++CI
, ++ArgNo
) {
579 // Only look at the no-capture or byval pointer arguments. If this
580 // pointer were passed to arguments that were neither of these, then it
581 // couldn't be no-capture.
582 if (!(*CI
)->getType()->isPointerTy() ||
583 (!CS
.doesNotCapture(ArgNo
) &&
584 ArgNo
< CS
.getNumArgOperands() && !CS
.isByValArgument(ArgNo
)))
587 AliasResult AR
= alias(MemoryLocation(*CI
), MemoryLocation(Object
));
588 // If this is a no-capture pointer argument, see if we can tell that it
589 // is impossible to alias the pointer we're checking. If not, we have to
590 // assume that the call could touch the pointer, even though it doesn't
596 if (CS
.doesNotAccessMemory(ArgNo
))
598 if (CS
.onlyReadsMemory(ArgNo
)) {
602 // Not returning MustModRef since we have not seen all the arguments.
603 return ModRefInfo::ModRef
;
605 return IsMustAlias
? setMust(R
) : clearMust(R
);
608 /// canBasicBlockModify - Return true if it is possible for execution of the
609 /// specified basic block to modify the location Loc.
611 bool AAResults::canBasicBlockModify(const BasicBlock
&BB
,
612 const MemoryLocation
&Loc
) {
613 return canInstructionRangeModRef(BB
.front(), BB
.back(), Loc
, ModRefInfo::Mod
);
616 /// canInstructionRangeModRef - Return true if it is possible for the
617 /// execution of the specified instructions to mod\ref (according to the
618 /// mode) the location Loc. The instructions to consider are all
619 /// of the instructions in the range of [I1,I2] INCLUSIVE.
620 /// I1 and I2 must be in the same basic block.
621 bool AAResults::canInstructionRangeModRef(const Instruction
&I1
,
622 const Instruction
&I2
,
623 const MemoryLocation
&Loc
,
624 const ModRefInfo Mode
) {
625 assert(I1
.getParent() == I2
.getParent() &&
626 "Instructions not in same basic block!");
627 BasicBlock::const_iterator I
= I1
.getIterator();
628 BasicBlock::const_iterator E
= I2
.getIterator();
629 ++E
; // Convert from inclusive to exclusive range.
631 for (; I
!= E
; ++I
) // Check every instruction in range
632 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I
, Loc
), Mode
)))
637 // Provide a definition for the root virtual destructor.
638 AAResults::Concept::~Concept() = default;
640 // Provide a definition for the static object used to identify passes.
641 AnalysisKey
AAManager::Key
;
645 /// A wrapper pass for external alias analyses. This just squirrels away the
646 /// callback used to run any analyses and register their results.
647 struct ExternalAAWrapperPass
: ImmutablePass
{
648 using CallbackT
= std::function
<void(Pass
&, Function
&, AAResults
&)>;
654 ExternalAAWrapperPass() : ImmutablePass(ID
) {
655 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
658 explicit ExternalAAWrapperPass(CallbackT CB
)
659 : ImmutablePass(ID
), CB(std::move(CB
)) {
660 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
663 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
664 AU
.setPreservesAll();
668 } // end anonymous namespace
670 char ExternalAAWrapperPass::ID
= 0;
672 INITIALIZE_PASS(ExternalAAWrapperPass
, "external-aa", "External Alias Analysis",
676 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback
) {
677 return new ExternalAAWrapperPass(std::move(Callback
));
680 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID
) {
681 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
684 char AAResultsWrapperPass::ID
= 0;
686 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass
, "aa",
687 "Function Alias Analysis Results", false, true)
688 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
689 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass
)
690 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass
)
691 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass
)
692 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
693 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass
)
694 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
695 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass
)
696 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass
)
697 INITIALIZE_PASS_END(AAResultsWrapperPass
, "aa",
698 "Function Alias Analysis Results", false, true)
700 FunctionPass
*llvm::createAAResultsWrapperPass() {
701 return new AAResultsWrapperPass();
704 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
706 /// This is the legacy pass manager's interface to the new-style AA results
707 /// aggregation object. Because this is somewhat shoe-horned into the legacy
708 /// pass manager, we hard code all the specific alias analyses available into
709 /// it. While the particular set enabled is configured via commandline flags,
710 /// adding a new alias analysis to LLVM will require adding support for it to
712 bool AAResultsWrapperPass::runOnFunction(Function
&F
) {
713 // NB! This *must* be reset before adding new AA results to the new
714 // AAResults object because in the legacy pass manager, each instance
715 // of these will refer to the *same* immutable analyses, registering and
716 // unregistering themselves with them. We need to carefully tear down the
717 // previous object first, in this case replacing it with an empty one, before
718 // registering new results.
720 new AAResults(getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI()));
722 // BasicAA is always available for function analyses. Also, we add it first
723 // so that it can trump TBAA results when it proves MustAlias.
724 // FIXME: TBAA should have an explicit mode to support this and then we
725 // should reconsider the ordering here.
727 AAR
->addAAResult(getAnalysis
<BasicAAWrapperPass
>().getResult());
729 // Populate the results with the currently available AAs.
730 if (auto *WrapperPass
= getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
731 AAR
->addAAResult(WrapperPass
->getResult());
732 if (auto *WrapperPass
= getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
733 AAR
->addAAResult(WrapperPass
->getResult());
734 if (auto *WrapperPass
=
735 getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
736 AAR
->addAAResult(WrapperPass
->getResult());
737 if (auto *WrapperPass
= getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
738 AAR
->addAAResult(WrapperPass
->getResult());
739 if (auto *WrapperPass
= getAnalysisIfAvailable
<SCEVAAWrapperPass
>())
740 AAR
->addAAResult(WrapperPass
->getResult());
741 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
742 AAR
->addAAResult(WrapperPass
->getResult());
743 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
744 AAR
->addAAResult(WrapperPass
->getResult());
746 // If available, run an external AA providing callback over the results as
748 if (auto *WrapperPass
= getAnalysisIfAvailable
<ExternalAAWrapperPass
>())
750 WrapperPass
->CB(*this, F
, *AAR
);
752 // Analyses don't mutate the IR, so return false.
756 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
757 AU
.setPreservesAll();
758 AU
.addRequired
<BasicAAWrapperPass
>();
759 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
761 // We also need to mark all the alias analysis passes we will potentially
762 // probe in runOnFunction as used here to ensure the legacy pass manager
763 // preserves them. This hard coding of lists of alias analyses is specific to
764 // the legacy pass manager.
765 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
766 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
767 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
768 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
769 AU
.addUsedIfAvailable
<SCEVAAWrapperPass
>();
770 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
771 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();
774 AAResults
llvm::createLegacyPMAAResults(Pass
&P
, Function
&F
,
775 BasicAAResult
&BAR
) {
776 AAResults
AAR(P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI());
778 // Add in our explicitly constructed BasicAA results.
780 AAR
.addAAResult(BAR
);
782 // Populate the results with the other currently available AAs.
783 if (auto *WrapperPass
=
784 P
.getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
785 AAR
.addAAResult(WrapperPass
->getResult());
786 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
787 AAR
.addAAResult(WrapperPass
->getResult());
788 if (auto *WrapperPass
=
789 P
.getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
790 AAR
.addAAResult(WrapperPass
->getResult());
791 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
792 AAR
.addAAResult(WrapperPass
->getResult());
793 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
794 AAR
.addAAResult(WrapperPass
->getResult());
795 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
796 AAR
.addAAResult(WrapperPass
->getResult());
801 bool llvm::isNoAliasCall(const Value
*V
) {
802 if (auto CS
= ImmutableCallSite(V
))
803 return CS
.hasRetAttr(Attribute::NoAlias
);
807 bool llvm::isNoAliasArgument(const Value
*V
) {
808 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
809 return A
->hasNoAliasAttr();
813 bool llvm::isIdentifiedObject(const Value
*V
) {
814 if (isa
<AllocaInst
>(V
))
816 if (isa
<GlobalValue
>(V
) && !isa
<GlobalAlias
>(V
))
818 if (isNoAliasCall(V
))
820 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
821 return A
->hasNoAliasAttr() || A
->hasByValAttr();
825 bool llvm::isIdentifiedFunctionLocal(const Value
*V
) {
826 return isa
<AllocaInst
>(V
) || isNoAliasCall(V
) || isNoAliasArgument(V
);
829 void llvm::getAAResultsAnalysisUsage(AnalysisUsage
&AU
) {
830 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
831 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
832 // to be added here also.
833 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
834 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
835 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
836 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
837 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
838 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
839 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();