1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions identifies calls to builtin functions that allocate
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
51 #define DEBUG_TYPE "memory-builtins"
53 enum AllocType
: uint8_t {
54 OpNewLike
= 1<<0, // allocates; never returns null
55 MallocLike
= 1<<1 | OpNewLike
, // allocates; may return null
56 CallocLike
= 1<<2, // allocates + bzero
57 ReallocLike
= 1<<3, // reallocates
59 MallocOrCallocLike
= MallocLike
| CallocLike
,
60 AllocLike
= MallocLike
| CallocLike
| StrDupLike
,
61 AnyAlloc
= AllocLike
| ReallocLike
67 // First and Second size parameters (or -1 if unused)
68 int FstParam
, SndParam
;
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair
<LibFunc
, AllocFnsTy
> AllocationFnData
[] = {
74 {LibFunc_malloc
, {MallocLike
, 1, 0, -1}},
75 {LibFunc_valloc
, {MallocLike
, 1, 0, -1}},
76 {LibFunc_Znwj
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
77 {LibFunc_ZnwjRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
78 {LibFunc_ZnwjSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned int, align_val_t)
79 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t
, // new(unsigned int, align_val_t, nothrow)
80 {MallocLike
, 3, 0, -1}},
81 {LibFunc_Znwm
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long)
82 {LibFunc_ZnwmRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned long, nothrow)
83 {LibFunc_ZnwmSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned long, align_val_t)
84 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
, // new(unsigned long, align_val_t, nothrow)
85 {MallocLike
, 3, 0, -1}},
86 {LibFunc_Znaj
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
87 {LibFunc_ZnajRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
88 {LibFunc_ZnajSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned int, align_val_t)
89 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t
, // new[](unsigned int, align_val_t, nothrow)
90 {MallocLike
, 3, 0, -1}},
91 {LibFunc_Znam
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long)
92 {LibFunc_ZnamRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long, nothrow)
93 {LibFunc_ZnamSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned long, align_val_t)
94 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
, // new[](unsigned long, align_val_t, nothrow)
95 {MallocLike
, 3, 0, -1}},
96 {LibFunc_msvc_new_int
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
97 {LibFunc_msvc_new_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
98 {LibFunc_msvc_new_longlong
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long long)
99 {LibFunc_msvc_new_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned long long, nothrow)
100 {LibFunc_msvc_new_array_int
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
101 {LibFunc_msvc_new_array_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
102 {LibFunc_msvc_new_array_longlong
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long long)
103 {LibFunc_msvc_new_array_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long long, nothrow)
104 {LibFunc_calloc
, {CallocLike
, 2, 0, 1}},
105 {LibFunc_realloc
, {ReallocLike
, 2, 1, -1}},
106 {LibFunc_reallocf
, {ReallocLike
, 2, 1, -1}},
107 {LibFunc_strdup
, {StrDupLike
, 1, -1, -1}},
108 {LibFunc_strndup
, {StrDupLike
, 2, 1, -1}}
109 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
112 static const Function
*getCalledFunction(const Value
*V
, bool LookThroughBitCast
,
114 // Don't care about intrinsics in this case.
115 if (isa
<IntrinsicInst
>(V
))
118 if (LookThroughBitCast
)
119 V
= V
->stripPointerCasts();
121 ImmutableCallSite
CS(V
);
122 if (!CS
.getInstruction())
125 IsNoBuiltin
= CS
.isNoBuiltin();
127 if (const Function
*Callee
= CS
.getCalledFunction())
132 /// Returns the allocation data for the given value if it's either a call to a
133 /// known allocation function, or a call to a function with the allocsize
135 static Optional
<AllocFnsTy
>
136 getAllocationDataForFunction(const Function
*Callee
, AllocType AllocTy
,
137 const TargetLibraryInfo
*TLI
) {
138 // Make sure that the function is available.
139 StringRef FnName
= Callee
->getName();
141 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
144 const auto *Iter
= find_if(
145 AllocationFnData
, [TLIFn
](const std::pair
<LibFunc
, AllocFnsTy
> &P
) {
146 return P
.first
== TLIFn
;
149 if (Iter
== std::end(AllocationFnData
))
152 const AllocFnsTy
*FnData
= &Iter
->second
;
153 if ((FnData
->AllocTy
& AllocTy
) != FnData
->AllocTy
)
156 // Check function prototype.
157 int FstParam
= FnData
->FstParam
;
158 int SndParam
= FnData
->SndParam
;
159 FunctionType
*FTy
= Callee
->getFunctionType();
161 if (FTy
->getReturnType() == Type::getInt8PtrTy(FTy
->getContext()) &&
162 FTy
->getNumParams() == FnData
->NumParams
&&
164 (FTy
->getParamType(FstParam
)->isIntegerTy(32) ||
165 FTy
->getParamType(FstParam
)->isIntegerTy(64))) &&
167 FTy
->getParamType(SndParam
)->isIntegerTy(32) ||
168 FTy
->getParamType(SndParam
)->isIntegerTy(64)))
173 static Optional
<AllocFnsTy
> getAllocationData(const Value
*V
, AllocType AllocTy
,
174 const TargetLibraryInfo
*TLI
,
175 bool LookThroughBitCast
= false) {
176 bool IsNoBuiltinCall
;
177 if (const Function
*Callee
=
178 getCalledFunction(V
, LookThroughBitCast
, IsNoBuiltinCall
))
179 if (!IsNoBuiltinCall
)
180 return getAllocationDataForFunction(Callee
, AllocTy
, TLI
);
184 static Optional
<AllocFnsTy
> getAllocationSize(const Value
*V
,
185 const TargetLibraryInfo
*TLI
) {
186 bool IsNoBuiltinCall
;
187 const Function
*Callee
=
188 getCalledFunction(V
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
192 // Prefer to use existing information over allocsize. This will give us an
194 if (!IsNoBuiltinCall
)
195 if (Optional
<AllocFnsTy
> Data
=
196 getAllocationDataForFunction(Callee
, AnyAlloc
, TLI
))
199 Attribute Attr
= Callee
->getFnAttribute(Attribute::AllocSize
);
200 if (Attr
== Attribute())
203 std::pair
<unsigned, Optional
<unsigned>> Args
= Attr
.getAllocSizeArgs();
206 // Because allocsize only tells us how many bytes are allocated, we're not
207 // really allowed to assume anything, so we use MallocLike.
208 Result
.AllocTy
= MallocLike
;
209 Result
.NumParams
= Callee
->getNumOperands();
210 Result
.FstParam
= Args
.first
;
211 Result
.SndParam
= Args
.second
.getValueOr(-1);
215 static bool hasNoAliasAttr(const Value
*V
, bool LookThroughBitCast
) {
216 ImmutableCallSite
CS(LookThroughBitCast
? V
->stripPointerCasts() : V
);
217 return CS
&& CS
.hasRetAttr(Attribute::NoAlias
);
220 /// Tests if a value is a call or invoke to a library function that
221 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
223 bool llvm::isAllocationFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
224 bool LookThroughBitCast
) {
225 return getAllocationData(V
, AnyAlloc
, TLI
, LookThroughBitCast
).hasValue();
228 /// Tests if a value is a call or invoke to a function that returns a
229 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
230 bool llvm::isNoAliasFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
231 bool LookThroughBitCast
) {
232 // it's safe to consider realloc as noalias since accessing the original
233 // pointer is undefined behavior
234 return isAllocationFn(V
, TLI
, LookThroughBitCast
) ||
235 hasNoAliasAttr(V
, LookThroughBitCast
);
238 /// Tests if a value is a call or invoke to a library function that
239 /// allocates uninitialized memory (such as malloc).
240 bool llvm::isMallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
241 bool LookThroughBitCast
) {
242 return getAllocationData(V
, MallocLike
, TLI
, LookThroughBitCast
).hasValue();
245 /// Tests if a value is a call or invoke to a library function that
246 /// allocates zero-filled memory (such as calloc).
247 bool llvm::isCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
248 bool LookThroughBitCast
) {
249 return getAllocationData(V
, CallocLike
, TLI
, LookThroughBitCast
).hasValue();
252 /// Tests if a value is a call or invoke to a library function that
253 /// allocates memory similar to malloc or calloc.
254 bool llvm::isMallocOrCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
255 bool LookThroughBitCast
) {
256 return getAllocationData(V
, MallocOrCallocLike
, TLI
,
257 LookThroughBitCast
).hasValue();
260 /// Tests if a value is a call or invoke to a library function that
261 /// allocates memory (either malloc, calloc, or strdup like).
262 bool llvm::isAllocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
263 bool LookThroughBitCast
) {
264 return getAllocationData(V
, AllocLike
, TLI
, LookThroughBitCast
).hasValue();
267 /// extractMallocCall - Returns the corresponding CallInst if the instruction
268 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
269 /// ignore InvokeInst here.
270 const CallInst
*llvm::extractMallocCall(const Value
*I
,
271 const TargetLibraryInfo
*TLI
) {
272 return isMallocLikeFn(I
, TLI
) ? dyn_cast
<CallInst
>(I
) : nullptr;
275 static Value
*computeArraySize(const CallInst
*CI
, const DataLayout
&DL
,
276 const TargetLibraryInfo
*TLI
,
277 bool LookThroughSExt
= false) {
281 // The size of the malloc's result type must be known to determine array size.
282 Type
*T
= getMallocAllocatedType(CI
, TLI
);
283 if (!T
|| !T
->isSized())
286 unsigned ElementSize
= DL
.getTypeAllocSize(T
);
287 if (StructType
*ST
= dyn_cast
<StructType
>(T
))
288 ElementSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
290 // If malloc call's arg can be determined to be a multiple of ElementSize,
291 // return the multiple. Otherwise, return NULL.
292 Value
*MallocArg
= CI
->getArgOperand(0);
293 Value
*Multiple
= nullptr;
294 if (ComputeMultiple(MallocArg
, ElementSize
, Multiple
, LookThroughSExt
))
300 /// getMallocType - Returns the PointerType resulting from the malloc call.
301 /// The PointerType depends on the number of bitcast uses of the malloc call:
302 /// 0: PointerType is the calls' return type.
303 /// 1: PointerType is the bitcast's result type.
304 /// >1: Unique PointerType cannot be determined, return NULL.
305 PointerType
*llvm::getMallocType(const CallInst
*CI
,
306 const TargetLibraryInfo
*TLI
) {
307 assert(isMallocLikeFn(CI
, TLI
) && "getMallocType and not malloc call");
309 PointerType
*MallocType
= nullptr;
310 unsigned NumOfBitCastUses
= 0;
312 // Determine if CallInst has a bitcast use.
313 for (Value::const_user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
315 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(*UI
++)) {
316 MallocType
= cast
<PointerType
>(BCI
->getDestTy());
320 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
321 if (NumOfBitCastUses
== 1)
324 // Malloc call was not bitcast, so type is the malloc function's return type.
325 if (NumOfBitCastUses
== 0)
326 return cast
<PointerType
>(CI
->getType());
328 // Type could not be determined.
332 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
333 /// The Type depends on the number of bitcast uses of the malloc call:
334 /// 0: PointerType is the malloc calls' return type.
335 /// 1: PointerType is the bitcast's result type.
336 /// >1: Unique PointerType cannot be determined, return NULL.
337 Type
*llvm::getMallocAllocatedType(const CallInst
*CI
,
338 const TargetLibraryInfo
*TLI
) {
339 PointerType
*PT
= getMallocType(CI
, TLI
);
340 return PT
? PT
->getElementType() : nullptr;
343 /// getMallocArraySize - Returns the array size of a malloc call. If the
344 /// argument passed to malloc is a multiple of the size of the malloced type,
345 /// then return that multiple. For non-array mallocs, the multiple is
346 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
348 Value
*llvm::getMallocArraySize(CallInst
*CI
, const DataLayout
&DL
,
349 const TargetLibraryInfo
*TLI
,
350 bool LookThroughSExt
) {
351 assert(isMallocLikeFn(CI
, TLI
) && "getMallocArraySize and not malloc call");
352 return computeArraySize(CI
, DL
, TLI
, LookThroughSExt
);
355 /// extractCallocCall - Returns the corresponding CallInst if the instruction
356 /// is a calloc call.
357 const CallInst
*llvm::extractCallocCall(const Value
*I
,
358 const TargetLibraryInfo
*TLI
) {
359 return isCallocLikeFn(I
, TLI
) ? cast
<CallInst
>(I
) : nullptr;
362 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
363 const CallInst
*llvm::isFreeCall(const Value
*I
, const TargetLibraryInfo
*TLI
) {
364 bool IsNoBuiltinCall
;
365 const Function
*Callee
=
366 getCalledFunction(I
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
367 if (Callee
== nullptr || IsNoBuiltinCall
)
370 StringRef FnName
= Callee
->getName();
372 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
375 unsigned ExpectedNumParams
;
376 if (TLIFn
== LibFunc_free
||
377 TLIFn
== LibFunc_ZdlPv
|| // operator delete(void*)
378 TLIFn
== LibFunc_ZdaPv
|| // operator delete[](void*)
379 TLIFn
== LibFunc_msvc_delete_ptr32
|| // operator delete(void*)
380 TLIFn
== LibFunc_msvc_delete_ptr64
|| // operator delete(void*)
381 TLIFn
== LibFunc_msvc_delete_array_ptr32
|| // operator delete[](void*)
382 TLIFn
== LibFunc_msvc_delete_array_ptr64
) // operator delete[](void*)
383 ExpectedNumParams
= 1;
384 else if (TLIFn
== LibFunc_ZdlPvj
|| // delete(void*, uint)
385 TLIFn
== LibFunc_ZdlPvm
|| // delete(void*, ulong)
386 TLIFn
== LibFunc_ZdlPvRKSt9nothrow_t
|| // delete(void*, nothrow)
387 TLIFn
== LibFunc_ZdlPvSt11align_val_t
|| // delete(void*, align_val_t)
388 TLIFn
== LibFunc_ZdaPvj
|| // delete[](void*, uint)
389 TLIFn
== LibFunc_ZdaPvm
|| // delete[](void*, ulong)
390 TLIFn
== LibFunc_ZdaPvRKSt9nothrow_t
|| // delete[](void*, nothrow)
391 TLIFn
== LibFunc_ZdaPvSt11align_val_t
|| // delete[](void*, align_val_t)
392 TLIFn
== LibFunc_msvc_delete_ptr32_int
|| // delete(void*, uint)
393 TLIFn
== LibFunc_msvc_delete_ptr64_longlong
|| // delete(void*, ulonglong)
394 TLIFn
== LibFunc_msvc_delete_ptr32_nothrow
|| // delete(void*, nothrow)
395 TLIFn
== LibFunc_msvc_delete_ptr64_nothrow
|| // delete(void*, nothrow)
396 TLIFn
== LibFunc_msvc_delete_array_ptr32_int
|| // delete[](void*, uint)
397 TLIFn
== LibFunc_msvc_delete_array_ptr64_longlong
|| // delete[](void*, ulonglong)
398 TLIFn
== LibFunc_msvc_delete_array_ptr32_nothrow
|| // delete[](void*, nothrow)
399 TLIFn
== LibFunc_msvc_delete_array_ptr64_nothrow
) // delete[](void*, nothrow)
400 ExpectedNumParams
= 2;
401 else if (TLIFn
== LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t
|| // delete(void*, align_val_t, nothrow)
402 TLIFn
== LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t
) // delete[](void*, align_val_t, nothrow)
403 ExpectedNumParams
= 3;
407 // Check free prototype.
408 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
409 // attribute will exist.
410 FunctionType
*FTy
= Callee
->getFunctionType();
411 if (!FTy
->getReturnType()->isVoidTy())
413 if (FTy
->getNumParams() != ExpectedNumParams
)
415 if (FTy
->getParamType(0) != Type::getInt8PtrTy(Callee
->getContext()))
418 return dyn_cast
<CallInst
>(I
);
421 //===----------------------------------------------------------------------===//
422 // Utility functions to compute size of objects.
424 static APInt
getSizeWithOverflow(const SizeOffsetType
&Data
) {
425 if (Data
.second
.isNegative() || Data
.first
.ult(Data
.second
))
426 return APInt(Data
.first
.getBitWidth(), 0);
427 return Data
.first
- Data
.second
;
430 /// Compute the size of the object pointed by Ptr. Returns true and the
431 /// object size in Size if successful, and false otherwise.
432 /// If RoundToAlign is true, then Size is rounded up to the alignment of
433 /// allocas, byval arguments, and global variables.
434 bool llvm::getObjectSize(const Value
*Ptr
, uint64_t &Size
, const DataLayout
&DL
,
435 const TargetLibraryInfo
*TLI
, ObjectSizeOpts Opts
) {
436 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Ptr
->getContext(), Opts
);
437 SizeOffsetType Data
= Visitor
.compute(const_cast<Value
*>(Ptr
));
438 if (!Visitor
.bothKnown(Data
))
441 Size
= getSizeWithOverflow(Data
).getZExtValue();
445 ConstantInt
*llvm::lowerObjectSizeCall(IntrinsicInst
*ObjectSize
,
446 const DataLayout
&DL
,
447 const TargetLibraryInfo
*TLI
,
449 assert(ObjectSize
->getIntrinsicID() == Intrinsic::objectsize
&&
450 "ObjectSize must be a call to llvm.objectsize!");
452 bool MaxVal
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(1))->isZero();
453 ObjectSizeOpts EvalOptions
;
454 // Unless we have to fold this to something, try to be as accurate as
457 EvalOptions
.EvalMode
=
458 MaxVal
? ObjectSizeOpts::Mode::Max
: ObjectSizeOpts::Mode::Min
;
460 EvalOptions
.EvalMode
= ObjectSizeOpts::Mode::Exact
;
462 EvalOptions
.NullIsUnknownSize
=
463 cast
<ConstantInt
>(ObjectSize
->getArgOperand(2))->isOne();
465 // FIXME: Does it make sense to just return a failure value if the size won't
466 // fit in the output and `!MustSucceed`?
468 auto *ResultType
= cast
<IntegerType
>(ObjectSize
->getType());
469 if (getObjectSize(ObjectSize
->getArgOperand(0), Size
, DL
, TLI
, EvalOptions
) &&
470 isUIntN(ResultType
->getBitWidth(), Size
))
471 return ConstantInt::get(ResultType
, Size
);
476 return ConstantInt::get(ResultType
, MaxVal
? -1ULL : 0);
479 STATISTIC(ObjectVisitorArgument
,
480 "Number of arguments with unsolved size and offset");
481 STATISTIC(ObjectVisitorLoad
,
482 "Number of load instructions with unsolved size and offset");
484 APInt
ObjectSizeOffsetVisitor::align(APInt Size
, uint64_t Align
) {
485 if (Options
.RoundToAlign
&& Align
)
486 return APInt(IntTyBits
, alignTo(Size
.getZExtValue(), Align
));
490 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout
&DL
,
491 const TargetLibraryInfo
*TLI
,
492 LLVMContext
&Context
,
493 ObjectSizeOpts Options
)
494 : DL(DL
), TLI(TLI
), Options(Options
) {
495 // Pointer size must be rechecked for each object visited since it could have
496 // a different address space.
499 SizeOffsetType
ObjectSizeOffsetVisitor::compute(Value
*V
) {
500 IntTyBits
= DL
.getPointerTypeSizeInBits(V
->getType());
501 Zero
= APInt::getNullValue(IntTyBits
);
503 V
= V
->stripPointerCasts();
504 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
505 // If we have already seen this instruction, bail out. Cycles can happen in
506 // unreachable code after constant propagation.
507 if (!SeenInsts
.insert(I
).second
)
510 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
))
511 return visitGEPOperator(*GEP
);
514 if (Argument
*A
= dyn_cast
<Argument
>(V
))
515 return visitArgument(*A
);
516 if (ConstantPointerNull
*P
= dyn_cast
<ConstantPointerNull
>(V
))
517 return visitConstantPointerNull(*P
);
518 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
519 return visitGlobalAlias(*GA
);
520 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
521 return visitGlobalVariable(*GV
);
522 if (UndefValue
*UV
= dyn_cast
<UndefValue
>(V
))
523 return visitUndefValue(*UV
);
524 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
525 if (CE
->getOpcode() == Instruction::IntToPtr
)
526 return unknown(); // clueless
527 if (CE
->getOpcode() == Instruction::GetElementPtr
)
528 return visitGEPOperator(cast
<GEPOperator
>(*CE
));
531 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
536 /// When we're compiling N-bit code, and the user uses parameters that are
537 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
538 /// trouble with APInt size issues. This function handles resizing + overflow
539 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
541 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt
&I
) {
542 // More bits than we can handle. Checking the bit width isn't necessary, but
543 // it's faster than checking active bits, and should give `false` in the
544 // vast majority of cases.
545 if (I
.getBitWidth() > IntTyBits
&& I
.getActiveBits() > IntTyBits
)
547 if (I
.getBitWidth() != IntTyBits
)
548 I
= I
.zextOrTrunc(IntTyBits
);
552 SizeOffsetType
ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst
&I
) {
553 if (!I
.getAllocatedType()->isSized())
556 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(I
.getAllocatedType()));
557 if (!I
.isArrayAllocation())
558 return std::make_pair(align(Size
, I
.getAlignment()), Zero
);
560 Value
*ArraySize
= I
.getArraySize();
561 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(ArraySize
)) {
562 APInt NumElems
= C
->getValue();
563 if (!CheckedZextOrTrunc(NumElems
))
567 Size
= Size
.umul_ov(NumElems
, Overflow
);
568 return Overflow
? unknown() : std::make_pair(align(Size
, I
.getAlignment()),
574 SizeOffsetType
ObjectSizeOffsetVisitor::visitArgument(Argument
&A
) {
575 // No interprocedural analysis is done at the moment.
576 if (!A
.hasByValOrInAllocaAttr()) {
577 ++ObjectVisitorArgument
;
580 PointerType
*PT
= cast
<PointerType
>(A
.getType());
581 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(PT
->getElementType()));
582 return std::make_pair(align(Size
, A
.getParamAlignment()), Zero
);
585 SizeOffsetType
ObjectSizeOffsetVisitor::visitCallSite(CallSite CS
) {
586 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
590 // Handle strdup-like functions separately.
591 if (FnData
->AllocTy
== StrDupLike
) {
592 APInt
Size(IntTyBits
, GetStringLength(CS
.getArgument(0)));
596 // Strndup limits strlen.
597 if (FnData
->FstParam
> 0) {
599 dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
603 APInt MaxSize
= Arg
->getValue().zextOrSelf(IntTyBits
);
604 if (Size
.ugt(MaxSize
))
607 return std::make_pair(Size
, Zero
);
610 ConstantInt
*Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
614 APInt Size
= Arg
->getValue();
615 if (!CheckedZextOrTrunc(Size
))
618 // Size is determined by just 1 parameter.
619 if (FnData
->SndParam
< 0)
620 return std::make_pair(Size
, Zero
);
622 Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->SndParam
));
626 APInt NumElems
= Arg
->getValue();
627 if (!CheckedZextOrTrunc(NumElems
))
631 Size
= Size
.umul_ov(NumElems
, Overflow
);
632 return Overflow
? unknown() : std::make_pair(Size
, Zero
);
634 // TODO: handle more standard functions (+ wchar cousins):
635 // - strdup / strndup
636 // - strcpy / strncpy
637 // - strcat / strncat
638 // - memcpy / memmove
639 // - strcat / strncat
644 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull
& CPN
) {
645 // If null is unknown, there's nothing we can do. Additionally, non-zero
646 // address spaces can make use of null, so we don't presume to know anything
649 // TODO: How should this work with address space casts? We currently just drop
650 // them on the floor, but it's unclear what we should do when a NULL from
651 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
652 if (Options
.NullIsUnknownSize
|| CPN
.getType()->getAddressSpace())
654 return std::make_pair(Zero
, Zero
);
658 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst
&) {
663 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst
&) {
664 // Easy cases were already folded by previous passes.
668 SizeOffsetType
ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator
&GEP
) {
669 SizeOffsetType PtrData
= compute(GEP
.getPointerOperand());
670 APInt
Offset(IntTyBits
, 0);
671 if (!bothKnown(PtrData
) || !GEP
.accumulateConstantOffset(DL
, Offset
))
674 return std::make_pair(PtrData
.first
, PtrData
.second
+ Offset
);
677 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias
&GA
) {
678 if (GA
.isInterposable())
680 return compute(GA
.getAliasee());
683 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable
&GV
){
684 if (!GV
.hasDefinitiveInitializer())
687 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(GV
.getType()->getElementType()));
688 return std::make_pair(align(Size
, GV
.getAlignment()), Zero
);
691 SizeOffsetType
ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst
&) {
696 SizeOffsetType
ObjectSizeOffsetVisitor::visitLoadInst(LoadInst
&) {
701 SizeOffsetType
ObjectSizeOffsetVisitor::visitPHINode(PHINode
&) {
702 // too complex to analyze statically.
706 SizeOffsetType
ObjectSizeOffsetVisitor::visitSelectInst(SelectInst
&I
) {
707 SizeOffsetType TrueSide
= compute(I
.getTrueValue());
708 SizeOffsetType FalseSide
= compute(I
.getFalseValue());
709 if (bothKnown(TrueSide
) && bothKnown(FalseSide
)) {
710 if (TrueSide
== FalseSide
) {
714 APInt TrueResult
= getSizeWithOverflow(TrueSide
);
715 APInt FalseResult
= getSizeWithOverflow(FalseSide
);
717 if (TrueResult
== FalseResult
) {
720 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Min
) {
721 if (TrueResult
.slt(FalseResult
))
725 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Max
) {
726 if (TrueResult
.sgt(FalseResult
))
734 SizeOffsetType
ObjectSizeOffsetVisitor::visitUndefValue(UndefValue
&) {
735 return std::make_pair(Zero
, Zero
);
738 SizeOffsetType
ObjectSizeOffsetVisitor::visitInstruction(Instruction
&I
) {
739 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
744 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
745 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, LLVMContext
&Context
,
747 : DL(DL
), TLI(TLI
), Context(Context
), Builder(Context
, TargetFolder(DL
)),
748 RoundToAlign(RoundToAlign
) {
749 // IntTy and Zero must be set for each compute() since the address space may
750 // be different for later objects.
753 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute(Value
*V
) {
754 // XXX - Are vectors of pointers possible here?
755 IntTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
756 Zero
= ConstantInt::get(IntTy
, 0);
758 SizeOffsetEvalType Result
= compute_(V
);
760 if (!bothKnown(Result
)) {
761 // Erase everything that was computed in this iteration from the cache, so
762 // that no dangling references are left behind. We could be a bit smarter if
763 // we kept a dependency graph. It's probably not worth the complexity.
764 for (const Value
*SeenVal
: SeenVals
) {
765 CacheMapTy::iterator CacheIt
= CacheMap
.find(SeenVal
);
766 // non-computable results can be safely cached
767 if (CacheIt
!= CacheMap
.end() && anyKnown(CacheIt
->second
))
768 CacheMap
.erase(CacheIt
);
776 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute_(Value
*V
) {
777 ObjectSizeOpts ObjSizeOptions
;
778 ObjSizeOptions
.RoundToAlign
= RoundToAlign
;
780 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Context
, ObjSizeOptions
);
781 SizeOffsetType Const
= Visitor
.compute(V
);
782 if (Visitor
.bothKnown(Const
))
783 return std::make_pair(ConstantInt::get(Context
, Const
.first
),
784 ConstantInt::get(Context
, Const
.second
));
786 V
= V
->stripPointerCasts();
789 CacheMapTy::iterator CacheIt
= CacheMap
.find(V
);
790 if (CacheIt
!= CacheMap
.end())
791 return CacheIt
->second
;
793 // Always generate code immediately before the instruction being
794 // processed, so that the generated code dominates the same BBs.
795 BuilderTy::InsertPointGuard
Guard(Builder
);
796 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
797 Builder
.SetInsertPoint(I
);
799 // Now compute the size and offset.
800 SizeOffsetEvalType Result
;
802 // Record the pointers that were handled in this run, so that they can be
803 // cleaned later if something fails. We also use this set to break cycles that
804 // can occur in dead code.
805 if (!SeenVals
.insert(V
).second
) {
807 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
808 Result
= visitGEPOperator(*GEP
);
809 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
811 } else if (isa
<Argument
>(V
) ||
812 (isa
<ConstantExpr
>(V
) &&
813 cast
<ConstantExpr
>(V
)->getOpcode() == Instruction::IntToPtr
) ||
814 isa
<GlobalAlias
>(V
) ||
815 isa
<GlobalVariable
>(V
)) {
816 // Ignore values where we cannot do more than ObjectSizeVisitor.
820 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
825 // Don't reuse CacheIt since it may be invalid at this point.
826 CacheMap
[V
] = Result
;
830 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst
&I
) {
831 if (!I
.getAllocatedType()->isSized())
835 assert(I
.isArrayAllocation());
836 Value
*ArraySize
= I
.getArraySize();
837 Value
*Size
= ConstantInt::get(ArraySize
->getType(),
838 DL
.getTypeAllocSize(I
.getAllocatedType()));
839 Size
= Builder
.CreateMul(Size
, ArraySize
);
840 return std::make_pair(Size
, Zero
);
843 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS
) {
844 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
848 // Handle strdup-like functions separately.
849 if (FnData
->AllocTy
== StrDupLike
) {
854 Value
*FirstArg
= CS
.getArgument(FnData
->FstParam
);
855 FirstArg
= Builder
.CreateZExt(FirstArg
, IntTy
);
856 if (FnData
->SndParam
< 0)
857 return std::make_pair(FirstArg
, Zero
);
859 Value
*SecondArg
= CS
.getArgument(FnData
->SndParam
);
860 SecondArg
= Builder
.CreateZExt(SecondArg
, IntTy
);
861 Value
*Size
= Builder
.CreateMul(FirstArg
, SecondArg
);
862 return std::make_pair(Size
, Zero
);
864 // TODO: handle more standard functions (+ wchar cousins):
865 // - strdup / strndup
866 // - strcpy / strncpy
867 // - strcat / strncat
868 // - memcpy / memmove
869 // - strcat / strncat
874 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst
&) {
879 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst
&) {
884 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator
&GEP
) {
885 SizeOffsetEvalType PtrData
= compute_(GEP
.getPointerOperand());
886 if (!bothKnown(PtrData
))
889 Value
*Offset
= EmitGEPOffset(&Builder
, DL
, &GEP
, /*NoAssumptions=*/true);
890 Offset
= Builder
.CreateAdd(PtrData
.second
, Offset
);
891 return std::make_pair(PtrData
.first
, Offset
);
894 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst
&) {
899 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst
&) {
903 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitPHINode(PHINode
&PHI
) {
904 // Create 2 PHIs: one for size and another for offset.
905 PHINode
*SizePHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
906 PHINode
*OffsetPHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
908 // Insert right away in the cache to handle recursive PHIs.
909 CacheMap
[&PHI
] = std::make_pair(SizePHI
, OffsetPHI
);
911 // Compute offset/size for each PHI incoming pointer.
912 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
) {
913 Builder
.SetInsertPoint(&*PHI
.getIncomingBlock(i
)->getFirstInsertionPt());
914 SizeOffsetEvalType EdgeData
= compute_(PHI
.getIncomingValue(i
));
916 if (!bothKnown(EdgeData
)) {
917 OffsetPHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
918 OffsetPHI
->eraseFromParent();
919 SizePHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
920 SizePHI
->eraseFromParent();
923 SizePHI
->addIncoming(EdgeData
.first
, PHI
.getIncomingBlock(i
));
924 OffsetPHI
->addIncoming(EdgeData
.second
, PHI
.getIncomingBlock(i
));
927 Value
*Size
= SizePHI
, *Offset
= OffsetPHI
, *Tmp
;
928 if ((Tmp
= SizePHI
->hasConstantValue())) {
930 SizePHI
->replaceAllUsesWith(Size
);
931 SizePHI
->eraseFromParent();
933 if ((Tmp
= OffsetPHI
->hasConstantValue())) {
935 OffsetPHI
->replaceAllUsesWith(Offset
);
936 OffsetPHI
->eraseFromParent();
938 return std::make_pair(Size
, Offset
);
941 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst
&I
) {
942 SizeOffsetEvalType TrueSide
= compute_(I
.getTrueValue());
943 SizeOffsetEvalType FalseSide
= compute_(I
.getFalseValue());
945 if (!bothKnown(TrueSide
) || !bothKnown(FalseSide
))
947 if (TrueSide
== FalseSide
)
950 Value
*Size
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.first
,
952 Value
*Offset
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.second
,
954 return std::make_pair(Size
, Offset
);
957 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitInstruction(Instruction
&I
) {
958 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I